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Abstract: A strong first-order electroweak phase transition (SFOEWPT) is essential for

explaining baryogenesis and for potentially generating observable gravitational waves. This

study investigates the potential of a high-energy muon collider to examine the occurrence

of SFOEWPT within the context of a Standard Model extended by a real scalar singlet

(xSM). We analyzed all possible decay modes of the singlet to constrain the valid parameter

space of SFOEWPT, which was extracted numerically at different renormalization scales

to account for theoretical uncertainties, thereby determining the sensitivity of a muon col-

lider to the production and decay channels of novel heavy scalar particles that emerge

in the xSM. The findings demonstrate that a 3 TeV muon collider can directly examine

the nature of electroweak symmetry breaking by efficiently detecting novel scalar particles

associated with a first-order electroweak phase transition through jet-rich final states, thus

complementing the indirect constraints from gravitational wave experiments.
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1 Introduction

The current structure of the universe remains an unresolved enigma, tracing its origins to

the initial moments of its existence, when symmetry breaking resulted in the differentia-

tion of the fundamental forces observed today. Electroweak symmetry breaking (EWSB)

occurred approximately 10−11 s after Big Bang, leading to the generation of mass for most

Standard Model (SM) particles, followed by chiral symmetry breaking (∼ 10−6 s), which led

to hadron confinement. Electroweak symmetry was spontaneously broken when the thermal

evolution of the universe reached a state where the Higgs field’s potential became unsta-

ble around its vanishing minimum, leading to a transition towards another non-vanishing,

“broken”, minimum that evolved at lower temperatures, a phenomenon referred to as the

electroweak phase transition (EWPT) [1–7]. This transition could serve as Sakharov’s

third condition for explaining baryogenesis, that is the generation of the observed matter-

antimatter asymmetry if it was of the first-order type. Additionally, CP-violating processes

that constitute Sakharov’s second condition would have to occur in thermal disequilibrium,

in order to prevent the sphaleron wash-out of the generated asymmetric baryon number
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(Sakharov’s first condition) [8–14]. Previous studies have shown that this sphaleron con-

dition, which is quantitatively expressed as
Esp(Tc)

Tc
> 45, can be translated into a relation

between the theoretical parameters,
v(Tc)

Tc
≥ 1, that can only be satisfied if a first-order

EWPT (FOEWPT) occurs [15, 16]. A FOEWPT is characterized by the existence of two

degenerate minima that are separated by a barrier at a critical temperature Tc. In SM,

such behavior can only arise from the cubic term in the Higgs field, generated from thermal

loop corrections, which is further suppressed by a mass-screening effect resulting from the

IR-divergences from the massless Matsubara modes. Earlier studies have suggested that

SM can still produce FOEWPT if thermal corrections with the leading contribution of the

IR-divergent daisy diagrams are included [17]. However, subsequent studies demonstrated

that this possibility disappears when the subleading terms of the daisy and superdaisy

contributions are included, which shifts the SM phase transition more towards the second-

order type [18, 19]. Currently, it is established that a large Higgs boson mass cannot allow

for FOEWPT, therefore , at best, the SM EWPT can only be of crossover type when all

non-perturbative corrections are included [20, 21]. Thus, to explain spontaneous symme-

try breaking (SSB) through FOEWPT, additional degree(s) of freedom must be added to

the SM to improve the sphaleron condition, primarily by strengthening the Higgs field’s

vacuum expectation value through coupling with other scalars.

Multiple extensions have been proposed in recent decades, including additional real

scalars, complex scalars, Higgs doublets, and supersymmetric extensions [22–30]. The real

gauge-singlet extension (xSM) is considered to be one of the simplest yet promising ex-

tensions to the Standard Model (SM) for several reasons. Primarily, it can enhance the

critical cubic term through a direct, non-vanishing contribution at the tree level. Addition-

ally, it serves as a simplified model for more complex extensions, such as that of a complex

singlet or the Next-to-Minimal Supersymmetric Standard Model (NMSSM), in which mul-

tiple scalar fields exist with a substantial mass hierarchy. This hierarchy effectively isolates

the heavier scalars from the electroweak symmetry breaking (EWSB) dynamics, with a

contribution that is exponentially suppressed, resulting in only the lighter scalar being

the effective scalar, which is adequately approximated by xSM [30]. Conversely, this sce-

nario presents significant testing challenges, often referred to as the “nightmare scenario”

which renders it valuable for evaluating future colliders and assessing their capacity to

make definitive statements regarding the nature of electroweak symmetry breaking. Con-

sequently, a critical examination of xSM can effectively serve as a concurrent investigation

of some of more complex extensions. For these reasons, this model has been extensively

explored in previous research, including studies of its implications for the gravitational

waves produced by real vacuum bubbles dynamics and its phenomenological consequences

on the precision of the Higgs portal couplings at colliders [26, 27, 31–34].

While the nature of electroweak symmetry breaking is currently being explored at the

Large Hadron Collider (LHC), it is also advantageous to examine its prospects in future

collider facilities [26]. A high-energy muon collider can provide sufficient energy and inte-
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grated luminosity, to obtain information complementary to that of an LHC [35, 36, 36, 37].

In particular, the clean experimental environment of the muon collider will facilitate high-

precision measurements in the Higgs sector. These measurements will not only test the

SM but also provide information about potential extensions of the SM. This information

should enable researchers to elucidate the mechanism of electroweak symmetry breaking

and explore beyond the electroweak sector. Specifically, the maximal sensitivity of a lepton

collider with center-of-mass energy
√
s, to a scalar of mass mϕ, produced via vector boson

fusion, occurs at approximately
√
s/mϕ ≈ 1.7 [26]. Such a relationship does not exist for

Hadron Colliders. Consequently, it is possible to optimize the search for a scalar in a muon

collider by knowing its approximate mass. In the context of electroweak symmetry break-

ing, the mass of the scalar augmenting the strength of the phase transition is typically close

to the electroweak scale, which is within the operational range of the muon collider. This

characteristic renders the muon collider an ideal environment for discovering a new scalar

associated with electroweak symmetry breaking. In this article, we present an analysis of

the minimum sensitivity of a future muon collider to probe a real scalar singlet that could

mediate a strong FOEWPT. We focus on the kinematical region where the new scalar

mass exceeds that of the SM Higgs boson mass, thereby allowing for singlet decay into two

Higgs bosons, consistent with the current LHC constraints. Subsequently, by analyzing the

decay channels, we identified the most promising avenues for investigation in future muon

colliders.

The remainder of this paper is structured as follows: Section 2 aims to elucidate how

the real singlet extension enhances the electroweak phase transition (EWPT) to be of a first-

order type. Approximations were employed where appropriate to simplify calculations and

highlight the primary features for pedagogical purposes. In addition, this section discusses

the constraints utilized to identify the parameter space points that are consistent with

FOEWPT. Section 3 addresses the direct and indirect verifications of xSM at colliders.

Section 4 presents analysis of the various channels of the new heavy scalar decay. Finally,

Section 5 discusses the results and provides commentary on the subsequent steps of this

investigation.

2 Electroweak Phase Transition with a Scalar Singlet

The most general renormalizable gauge-singlet scalar potential takes the form,

V (S) = ρS + 1

2
µ2
sS

2 + 1

4
λsS

4 + 1

3
βS3 . (2.1)

The singlet scalar S can couple to the Higgs field H using the following terms,

Vint =
1

2
αS(H†H) + 1

4
λhsS

2(H†H) . (2.2)

A Z2-symmeteric potential can be obtained directly by setting the parameters of the odd

term to zero (α,β → 0). In this case, if the mass of the resulting new scalar exceeds half of

the Higgs boson mass, it becomes challenging to detect at the colliders. This phenomenon
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is commonly referred to as the ”nightmare scenario.” Nevertheless, in this study, we opted

to keep these Z2-asymmeteric terms to maintain a more general representation that en-

compasses other types of challenging scenarios that induce some hard-to-reach regions of

the parameter space, where both the mixing angle and di-Higgs boson decays are minimal.

Furthermore, these specific terms are crucial for facilitating a strong first-order EWPT; see,

for example [23]. The singlet term in the scalar field can be eliminated using shift symme-

try, which only results in the redefinition of the remaining parameters, as demonstrated in

previous studies [22, 38]. Consequently, the most general renormalizable representation of

the real gauge-singlet extension of SM (xSM) is,

V (H,S) = −1
2
µ2
h(H

†H) + 1

4
λh(H†H)2 + 1

2
µ2
sS

2 + 1

4
λsS

4 + 1

2
αS(H†H)

+ 1

4
λhsS

2(H†H) + 1

3
βS3 . (2.3)

Electroweak symmetry breaking generates vacuum expectation values (vevs), v and ω, for

the Higgs doublet and scalar singlet fields, respectively. The physical states are obtained

by expanding around vevs, H → 1
√

2
(v + h) and S → ω + s, derived from the minimization

conditions:

∂V (h, s)
∂h

RRRRRRRRRRR ⟨h⟩=v,
⟨s⟩=ω

= 0, ∂V (h, s)
∂s

RRRRRRRRRRR ⟨h⟩=v,
⟨s⟩=ω

= 0, (2.4)

which demonstrates that the fields become coupled,

−µ2
h + λhv

2 + αω + 1

2
λhsω

2 = 0 , (2.5)

(2µ2
s + λhsv

2)ω + 2(β + λsω)ω2 + αv2 = 0 . (2.6)

These equations can generate up to eight stationary points, in addition to the typical

symmetric point at the origin(0,0). Some of these points may be degenerate, whereas

others may not be physically viable. Consequently, the singlet extension in Eq. (2.3)

directly influences the Higgs vacuum at the tree level, which becomes dependent on the

singlet parameters after spontaneous symmetry breaking (SSB):

vb =
⎛
⎜
⎝
±

¿
ÁÁÀµ2

h − (α +
1
2λhsω)ω

λh
, ±
√
−2(µ2

s + βω + λsω2)ω
α + λhsω

⎞
⎟
⎠
. (2.7)

If the singlet has a vanishing vacuum expectation value (vev), ω = 0, or when α = 1
2λhsω,

the broken minima in (2.7) will converge to the electroweak vev ,vEW = 247 GeV, which

is also evident from Eq.(2.5). Moreover, Eq. (2.5) indicates that at high temperatures,

where the vevs become temperature-dependent, a large negative value for the cubic term,

α > 1
2λhsω, can derive the electroweak phase transition (EWPT) towards the first-order

type solely through the tree-level (TL) contribution by improving the sphaleron condition.

This is a consequence of a decrease in µ2
h can significantly reduce the critical temperature as

Tc ∝ µh as will be demonstrated subsequently. This phenomenon may not be immediately
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mi(v,ω) ni fi

W ± 1
2g1v 6 5

6

Z 1
2

√
g21 + g22 v 3 5

6

t 1
√

2
ytv -12 3

2

H m1(v,ω) 1 3
2

S m2(v,ω) 1 3
2

Table 1. Properties of the particles participating in the Coleman-Weinberg potential.

apparent from (2.7) as a reduction in µ2
h may result in decreasing vb, and consequently

may diminish the first-order electroweak phase transition (FOEWPT) condition, vc
Tc
, in

totality. However, this is not the case, as will be demonstrated. Consequently, this ex-

tensive parameter space facilitates the possibility of obtaining FOEWPT. Conversely, the

TL corrections would reduce the mixing angle and the di-Higgs boson decays, potentially

necessitating higher luminosity to examine the Z2-asymmetric scenario compared with the

Z2-symmetric one [26, 34]. In addition to tree-level correction, NLO corrections, both at

zero temperature from the Coleman-Weinberg one-particle irreducible (1PI) contribution,

and at finite temperature, could further catalyze the phase transition towards FOEWPT.

The Coleman-Weinberg correction to the tree level potential is given by

V
(1)
CW (v,ω) =∑

i

ni

64π2
m4

i (v,ω) [log
m2

i (v,ω)
Λ2

− fi] , (2.8)

where ni corresponds to the number of degrees of freedom of particle i, fi represents the

residual fraction from dimensional regularization in the MS-renormalization scheme and Λ

is the renormalization scale. The values of the corresponding parameters for each particle

contributing to the Coleman-Weinberg potential are listed in Table 1. Generally, all massive

particles contribute to this correction; however, owing to the large mass hierarchy among

the SM particles, considering only the heavy particles (W ±, Z, t) provides a reasonable

approximation. Because these particles are not directly coupled to the real singlet, their

masses retain their SM values. Nevertheless, the expression for the Higgs boson mass differs

from that of SM because of its coupling with the real singlet field. The new Higgs boson

mass, in conjunction with the singlet mass, is obtained through the diagonalization of the

mass matrix:

M =
⎛
⎜
⎝

∂2V (h,s)
∂h2

∂2V (h,s)
∂h∂s

∂2V (h,s)
∂h∂s

∂2V (h,s)
∂s2

⎞
⎟
⎠
, (2.9)
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which returns,

m2
1,2(v,ω) =

1

4

⎡⎢⎢⎢⎢⎣
2(µ2

s − µ2
h) + 2(α + 2β)ω + (λhs + 6λh)v2 + (λhs + 6λs)ω2 ∓

⎧⎪⎪⎨⎪⎪⎩
[2(µ2

s + µ2
h)

− 2(α − 2β)ω + (λhs − 6λh)v2 − (λhs − 6λs)ω2]
2
+ 16(α + 2β)v2

⎫⎪⎪⎬⎪⎪⎭

1
2 ⎤⎥⎥⎥⎥⎦
, (2.10)

The new scalar mass is considered to be the heavier one, m2
2(v,ω), to maintain consistency

with the SM Higgs boson mass m2
h(v) = 2λhv

2, which is only satisfied by m2
1(v,ω) when all

the real singlet parameters vanish. Furthermore, this analysis focuses on the kinematical

region where ms > mh, necessitating that the heavier mass m2
2(v,ω) be the new scalar

mass.

0.0 2.0 4.0 6.0 8.0 10.0
y = m

T

0.12

0.10

0.08

0.06

0.04

0.02

0.00

V T
(h

,s
,T

)

Comparision between low/high TE and exact numerical result

Exact Result
 y 1 @ (e y)
 y 1 @ (y2)
 y 1 @ (y3)
 y 1 @ (y4)
 y 1 @ (y6)

Figure 1. The dashed red curve shows the low-temperature expansion of the VT (y, T ) in Eq.(2.11).

By definition, it will only converge to the exact numerical calculation (solid black curve) whenm > T
and will both coincide at y ≥ 5. The other colored dashed curves represent the HTE of VT (y, T ) at
different order of expansion in y.

The finite temperature corrections are obtained from (refer to, e.g. [3, 4, 39] for a compre-

hensive review),

VT (y, T ) =∑
i

ni T
4

2π2 ∫
∞

0
dx x2 log [1 ∓ e−

√

x2+y2] , (2.11)

where, x = p

T
, y = m

T
, and the sign depends on the particle type (negative for bosons and

positive for fermions). For non-vanishing particle masses, y ≠ 0, the integral must be
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evaluated numerically. Nevertheless, high-temperature expansion (HTE) to order O(y6),

V HTE
T,B (v,ω, T ) = −

π2T 4

90
+ ∑

i=Z,W±,
H,S

ni
⎛
⎝
m2

iT
2

24
−
m3

iT

12π
−

m4
i

2(4π)2
[ln(mie

−γE

4πT
) − 3

4
]

+
m6

i ξ(3)
3(4π)4T 2

+O(m8)
⎞
⎠
, (2.12)

V HTE
T,t (v,ω, T ) = −

21π2T 4

180
+ m2

tT
2

4
+ 6m4

t

(4π)2
[ln(mte

−γE

4πT
) − 3

4
]

− 28m6
t ξ(3)

(4π)4T 2
+O(m8) (2.13)

could be a valid approximation up to m ≲ 3T as explained in Ref. [39] (See Fig. 1). In

this study, we set ms ∈ [200 ∶ 1000], indicating that certain scalar mass values do not

conform to this approximation. However, for these values, the thermal corrections can be

disregarded because in this case, ms > 3T , the low-temperature expansion will be a valid

approximation, superseding the HTE, which is exponentially suppressed. Consequently,

this contribution can be disregarded for this pedagogical analysis, particularly given that

in Z2-asymmetric xSM, the FOEWPT is predominantly driven by the TL odd terms.

Therefore, the calculations can be modified according to the valid mass as follows:

• For ms ≲ 3T , which represents the majority of valid conservative parameter-space

points (see Fig. 2), the thermal corrections can be approximated by the HTE, such

that the overall effective potential becomes,

Veff(v,ω, T ) = VTL(v,ω) + V HTE
T (v,ω), (2.14)

where, V HTE
T (v,ω) is the sum of Eq. (2.12) and Eq. (2.13) for all bosonic and fermionic

contributions, including the real scalar singlet.

• For ms > 3T , which represents the majority of liberal parameter-space points, the

overall effective potential becomes,

Veff(v,ω, T ) = VTL(v,ω) + V
HTE

T (v,ω), (2.15)

where, V
HTE

T (v,ω) is given by the sum of Eq. (2.12) and Eq. (2.13) but with the

scalar singlet contribution excluded from Eq. (2.12), retaining only the contributions

of h, Z, W ± particles.

Notably the fractional term proportional to m4
i in Eq. (2.12) and m4

t in Eq. (2.13) cancels

it out with the corresponding CW correction in Eq. (2.8), whereas the logarithmic part

is reduced to log [ e2γET 2

Λ2 ], where e2γET 2

Λ2 ≈ O(1), if the scale is considered equal to the
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temperature. For other scales, one can qualitatively estimate the relative weight of the CW

corrections by examining the possible shift in the Higgs vacuum structure when considering

CW contributions as

Veff(v,ω) = VTL(v,ω) + V (1)CW (v,ω). (2.16)

Then,

1

v
∇(∆Veff(v,ω)) =

1

v

∂V
(1)
CW

∂v
(2.17)

=∑
i

niρi
32π2

[log(
m4

i

Λ4
) − 2fi + 1] v2 , (2.18)

where mi = ρiv, and ρi is the coefficient of v for each particle i in Table 1. The logarithmic

term in Eq. (2.18) is attenuated by the corresponding contributions from the thermal

corrections and the running of the couplings, which also partially cancel the CW corrections.

Hence it can be disregarded in comparison to the other terms in brackets,

1

v

∂V
(1)
CW

∂v
≈∑

i

niρi
32π2

[1 − 2fi] v2, (2.19)

This results in an increase in coefficients of v2 in Eq. (2.5) and Eq. (2.6), which is smaller

than 0.005 when only including the effect of t, Z, W ±. This becomes even smaller when

the effects of H,S are added because they have an overall negative value for the bracket

in Eq. (2.19). Consequently, this correction can maximally change Higgs vev by a factor

smaller than 1% when compared to the leading v2-coefficients; λh ≈ 0.13 and α which could

be even larger than λh for non-vanishing ω, when α > 1
2λhsω. Therefore, for an approximate

understanding of the thermal evolution of Higgs vev, one can disregard the CW correction

to the effective potential as well.

In addition to thermal corrections, the contributions from the rings diagrams must be

considered to secure the cubic mass term1 in Eq. (2.12) from having imaginary values

for m1,m2 at certain values of the vevs [17], indicating the breakdown of perturbative

expansion at high temperatures due to the quartic coupling running with temperature [40,

42, 43]. This issue can be resolved by incorporating higher-order IR-divergent contributions,

ring (Daisy) diagrams, which, according to Ref. [17] takes the following form:

Vrings = −
T

12π

⎡⎢⎢⎢⎢⎣
(m2(v,ω) + λ

4
T 2)

3
2

−m3(v,ω)
⎤⎥⎥⎥⎥⎦
. (2.20)

This corresponds to the shift m3
1,2 →M3

1,2 = (m2
1,2(v,ω) + λ

4T
2)

3
2 , where the gauge bosons

do not lead to any imaginary parts. Therefore, at very high temperatures, λT 2 ≫ m2
1,2,

1This term characterizes the bosonic contributions, as it only originates from the vanishing Matsubara

mode, see [40, 41], but the gauge boson terms will not generate any imaginary output for all values of v, as

their mass can never be negative.
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the scalar cubic term is reduced to a pure temperature term, independent of the fields.

This implies that the cubic term coefficient will be exclusive to the vector gauge boson

contributions, in this approximation, and will not receive any further corrections in xSM.

Considering the main corrections in Eq. (2.11) and Eq. (2.20), the effective potential be-

comes,

Veff(v,ω, T ) = VTL(v,ω) + V HTE
T (v,ω) + Vrings

= 1

2
C(T 2 − T 2

0 )v2 −E T v3 + 1

2
αv2ω + 1

4
λhsv

2ω2

+ 1

4
λhv

4 + 1

2
D(T 2 − T 2

1 )ω2 + 1

3
βω3 + 1

4
λsω

4 +O ( 1

T 2
) (2.21)

where,

C = 1

4
(1
4
(3g21 + g22) + 2y2t + λh +

λhs

6
) , (2.22)

E = 1

32π
(2g21 + (g21 + g22)

3
2 ) , (2.23)

D = 1

4
(λs +

λhs

6
) , T 2

0 =
µ2
h

C
, T 2

1 =
−µ2

s

D
, (2.24)

and O ( 1
T 2 ) represent corrections arising from the m6-term in the HTE. The vevs then

become temperature dependent,

vb(T ) =
⎧⎪⎪⎨⎪⎪⎩

6ET ±
√
36E2T 2 − 8λh[2C(T 2 − T 2

0 ) + (2α + λhsω)ω]
4λh

,

±

¿
ÁÁÀ−2[D(T 2 − T 2

1 ) + βω + λsω2]ω
α + λhsω

⎫⎪⎪⎬⎪⎪⎭
. (2.25)

The above equation represents the temperature-dependent version of Eq. (2.7), and it can

be rewritten using the relations in Eq. (2.24) as,

vb(T )
T
= 3E

2λh
+

¿
ÁÁÀµ2

h

T 2
+ 9E2

4λ2
h

− C

λh
− ξ(T ), (2.26)

where ξ(T ) = (2α + λhsω)ω
2λhT 2

. At critical temperature in SM, the sphaleron condition in

Eq.2.26 returns
vc
Tc
= 2E

λh
≈ 0.15, where T SM

c = µh√
C (1 − 2E2

λhC
)

and ξ(T ) = 0. This means

that the sphaleron condition in xSM is primarly improved by the ξ(T )−correction term,

which can contribute significant negative values to Eq.2.26 for large negative values of the

odd Z2−asymmetric term αH†HS. An additional supporting correction arises from the

decrease in the critical temperature due to the λhs portal coupling correction to the C-

term, as per Eq.(2.22) and the correction to the µ2
h term given in Eq.(2.5). The critical
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temperature is determined from the degeneracy condition2,

Veff(0, ω;Tc) = Veff(vc, ω;Tc),
∂Veff(v,w,Tc)

∂v

RRRRRRRRRRR⟨v⟩=0
= ∂Veff(v,w,Tc)

∂v

RRRRRRRRRRR⟨v⟩=vc
, (2.27)

which yields,

T xSM
c ≈ 6.6 × 10−3 ( µh√

C
)

xSM ⎡⎢⎢⎢⎢⎣
1 −
(α + 1

2λhsω)ω
µ2
h

⎤⎥⎥⎥⎥⎦

1
2

T SM
c . (2.28)

Where (
√
C

µh
)
SM

≈ 6.6 × 10−3. For large negative values for α, α > 1
2λhsω, the square

bracket in Eq.(2.28) becomes greater than one; however µh simultaneously decreases and

the C-term increases, which collectively leads to a significant decrease in the critical tem-

perature in xSM, T xSM
c < T SM

c .

This approximate analytical investigation of the xSM extension is corroborated by the

numerical methods employed to account for the full NLO (CW and finite temperature)

corrections to the TL potential at different renormalization scales (conservative and liberal

categories) in order to address the theoretical uncertainties in the FOEWPT parameter

space points, which are necessary for accurately exploring the muon collider. As illustrated

in Fig.2, the improvement of the sphaleron condition by the xSM extension is evident, as is

the decrease in critical temperature due to the singlet contribution to the C and µ2
h-terms,

as demonstrated in Fig.3 for various singlet mass values.

2.1 First-Order Electroweak Phase Transition Parameter Space within the

xSM

Catalyzing a first-order EWPT through the real singlet extension depends on the param-

eter space points, particularly on the Z2-asymmetric parameters and Higgs-scalar quartic

coupling, as shown in Eqs. (2.26). The additional scalar degree of freedom introduces five

free parameter {µ2
s, λs, α, β, λhs} which need to be determined. In [22, 31, 38], a set of di-

verse constraints, stemming from theoretical and phenomenological sources, were discussed

to restrict these parameters,

• The stability of the effective potential necessiates positive dimensionless quartic cou-

plings, (λh, λs, λhs) > 0.

• The validity of perturbative expansion requires quartic couplings to be smaller than

unity, (λh, λs, λhs) ∈ [0 ∶ 1].
2We only consider a one-step phase transition, assuming that the scalar singlet field evolved a non-

vanishing vev, which remains the same at Tc. In principle, a two-step phase transition mainly accounts for

a shift in the effective potential that can affect the gravitational-wave spectrum, while barely affecting the

value of the critical temperature [31].
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Parameter Range

µs [−2000,2000]

λs [10−4,1.5]

λhs [0,5]

α [−1000,0]

β [−1800,1800]

Table 2. Ranges of xSM parameters obtained from theoretical and phenomenological constrains

used in ref. [44].

• Electroweak symmetry breaking necessitates a positive determinant of the mass ma-

trix in Eq. (2.9) as (vEW, ωEW) should constitute the true global minima, which re-

quires, 4λhλs − λhs > 0.

• The electroweak precision obeservables (EWPO) were included, where the scalar

decay into gauge boson pairs modifies the S,T, ρ,U parameters.

• Higgs boson branching ratio corrections owing to mixing with the scalar, in addition

to the absence of exotic Higgs boson decays, were applied. This shifts the scalar mass

towards higher values and constrains the (µs, α, β) parameters.

We used the values obtained in [44], in which nearly identical constraints were applied

with minor variations. In this study, valid points satisfying the sphaleron condition vc
Tc
> 1

were obtained through a scan using the PhaseTracer package [45], which tracks vacuum

evolution by evaluating the thermal integral of Eq. (2.11) numerically by employing the

methods described in [46, 47], rather than the HTE approximation discussed in the previ-

ous calculations to obtain an approximate understanding of xSM. Furthermore, the ranges

of the “portal” coupling λhs, and singlet quartic coupling λs, were set to be quite loose in

[44], as listed in Table 2. The rationale behind this approach is that for colliders to exclude

the possibility of a strong first-order EWP, the candidate parameter space points should

be relatively broad.

The values of the λhs coupling control the shift in the quadratic correction on C

from the SM expectation, and consequently improve the sphaleron condition. However,

this raises concerns regarding the validity of the perturbative expansion and its sensitivity

to theoretical uncertainties related to the scale and gauge dependencies of the thermal

parameters. This consideration is crucial not only for analyzing specific points but also for

comprehending the parameter space [48, 49]. According to [44], the dominant uncertainty

originates from the slow convergence of perturbation theory which is manifested in the

dependence on an arbitrary renormalization scale. We follow [44] and define a conservative

point as a point that admits an SFOEWPT for a full order of magnitude variation of the
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Figure 2. Verification of the sphaleron condition against the singlet scalar mass range, as obtained

from the xSM parameters.

RG scale, whereas a liberal point is one that admits an SFOEWPT for particular choices

of the scale [Check [44] for more details].

Figure 3. The left panel shows the correction to the quadratic thermal term from the λhs, while

the right panel shows the drop in the critical temperature obtained from the xSM. The observed

decrease in the critical temperature and increase in the C(T ) term collectively enhance the sphaleron

condition.

A substantial number of parameter space points do fulfill the SFOEWPT (sphaleron)

condition out of theO(106) points generated according to Table 2, as obtained by PhaseTracer.

The SFOEWPT condition is plotted against the scalar mass in Fig. 2 for conservative and

liberal categories. The observation that conservative category values shift more towards

lower values of scalar mass, unlike liberal values, is a good indicator that this category can
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be verified by current collider searches. For instance, the LHC searches for an SM-like

Higgs boson [50], which may lead to the exclusion of the conservative category.

Figure 4. The dimensionless quartic couplings are shifted more towards lower values, which is a

preferred behaviour, as required by the validity of the perturbative expansion.

Portal coupling λhs improves the SFOEWPT condition primarily through the correction it

contributes to the quadratic C-term, which subsequently reduces the critical temperature.

This phenomena is illustrated in Fig. 3 (left panel) which demonstartes the increase in

the C−term with λhs, contrary to the SM expectation. The right panel of Fig. 3 depicts

the tendency towards a lower critical temperature compared to the SM expectation, for

both Conservative and Liberal categories. Furthermore, the valid parameter points exhibit

a propensity to concentrate towards lower values of the quartic couplings (λs, λhs), as

shown in Fig. 4, which indicates favorable behavior regarding the validity of perturbative

expansion.

3 The Electroweak Phase Transition at Colliders

A direct test for SFOEWPT could be derived from the gravitational waves emanating from

bubble dynamics. Specifically, sound waves in the plasma and magneto-hydrodynamic tur-

bulence generate gravitational waves that are expected to peak at low frequencies ranging

from mHz to 10 Hz. Collider searches provide another promising and complementary ap-

proach for verifying the nature of EWPT. This is attributable to the fact that the catalyst

of the FOEWPT, the singlet scalar in this instance, can be probed either directly through

resonant production, if its mass is within the range of current and future searches, or indi-

rectly, through precise measurements of potential deviations in the Higgs boson couplings

from the SM expectation. In contrast to gravitational wave detection, which can only be

produced from FOEWPT, collider searches can be sensitive to SOEWPT as well; however,

this is more challenging owing to the weak mixing with the Standard Model particles.
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3.1 Direct Singlet Production at Colliders

The mass of the new scalar particle in xSM is expected to be of O(TEW), which suggests

the possibility of resonant production at colliders [26]. At zero temperature, that is, in

the collider scenario, the mass of the singlet is given by m2(vEW, ωEW), Eq. (2.10), which
yields a scalar mass in the range ms ∈ [200,1000], when utilizing the range of parameters

as shown in Fig. 2. This can be approximated using the curvature of the effective potential

in Eq. (2.21),

m2
s(0) =

∂2Veff

∂s2

= 1

2
λhsv

2
EW −D(T 2

1 ) + 2βωEW + 3λsω
2
EW

= λhs

6
(3v2EW −

6

λhs
(DT 2

1 − 2βω − 3λsω
2)) , (3.1)

This coincides with the results of [26], if we set T 2
EW =

6

λhs
(DT 2

1 − 2βω − 3λsω
2). This mass

range is within the scope of prospective future collider experiments such as a muon collider,

where a new scalar can be produced resonantly through one of the main production channels

µ+µ− → s → XX. The probability of direct detection is more promising for channels with

charged fermions in the final states (i.e. four leptons, l−l+l−l+, or four quarks, bb̄bb̄), where

the invariant mass can be fully reconstructed.

Because of the anticipated low mass of the new scalar, ≲ O(TeV), both hadron and

lepton colliders are valid options for detection. Previous studies [26, 27] have confirmed

that a 100 TeV proton-proton collider can substantially explore this parameter space.

Recently, there has been a growing interest in muon colliders, which can explore the same

parameter space efficiently, at a significantly lower center of mass energy (
√
s ∈ [3 − 10]

TeV) [26, 36]. In a muon collider, most of the available energy is consumed in the hard

process, which directly relates the resonance peak to the center of mass energy according

to
√
s

2ms
≈ 1.7 as demonstrated in ref. [26]. This characteristic is unique for lepton colliders,

unlike hadron colliders where ECM of the beam differs from that of the parton beams,

necessitating integration over the parton density functions. Furthermore, a muon collider

will not suffer from the huge QCD radiation resulting from the initial state as in the case of

hadron colliders, nor will its energy be dissipated in the large synchrotron radiation as in

an electron collider. Notably, the optimal channel for the single production of a new scalar

is through vector boson fusion (VBF), mainly W +W − fusion, which contributes ∼ 90% of

the total cross section [36, 37].

3.2 Indirect Evidence: Modification of Higgs Boson Couplings

The most significant terms for indirect detection in the extended potential are those that

couple the new scalar to the Higgs field,

V (h, s) ⊃ 1

2
µmSH†H + 1

4
λmS2(H†H)2 , (3.2)

which consequently form a “portal” of the new scalar to the other SM particles. The

– 14 –



Figure 5. The Higgs-singlet mixing angle against the portal coupling λhs and singlet vacuum

expectation value, ω.

other self-interaction couplings of the new scalar do play a crucial role in determining the

points of EWPT but do not substantially affect phenomenological studies 3. The terms

in Eq. (3.2) inevitably lead to mixing between H and S and consequently the new scalar

“inherits” interactions with SM particles. The mass eigenstates are obtained using the

rotation angle θ, after symmetry breaking as follows:

⎛
⎜
⎝

h1

h2

⎞
⎟
⎠
=
⎛
⎜
⎝

cos θ sin θ

− sin θ cos θ

⎞
⎟
⎠

⎛
⎜
⎝

h

s

⎞
⎟
⎠
, (3.3)

where the mixing angle is given by,

tan θ =
M2

hs

M2
h −M2

s +
√
(M2

h −M2
s )2 +M2

hs

, (3.4)

where M2
h , M

2
s , M

2
hs are the components of the mass matrix in Eq. (2.9). Consequently,

the SM-like Higgs boson couplings must be adjusted according to:

gSM
hXX → gSM

h1XX cos θ − gSM
h2XX sin θ. (3.5)

Here, gSM
h1XX cos θ represents the scaling of the original Higgs boson couplings, and -gSM

h2XX sin θ

represents the new scalar couplings to the XX-SM-particles. This opens up a range of

possible precision tests such as small deviations in SM-like Higgs boson production rates

according to σBSM

h = cos2 θσSM

h1
. Another significant phenomenological test would be the

deviation of Higgs boson trilinear self-coupling from the SM expectation, where after sym-

metry breaking this term becomes,

λhhh =
1

4
[cθ(λhc

2
θ + λhss

2
θ)vEW + (α + λhsω)c2θsθ +

4

3
(β + 3λsω)s3θ] , (3.6)

3For example, the λs coupling only appears in the daisy resummation part of the effective potential [34].
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where cθ = cos θ and sθ = sin θ. In [34], a scan was performed over the possible parameter

space which led to FOEWPT demonstrating a significant difference between λBSM

hhh and λSM

hhh,

that could be as big as
λBSM

hhh

λSM

hhh

∼ 1.3. Conversely, the current precision of the Higgs boson

couplings and branching ratios favor a small value of the mixing angle, which in our study

was adopted to better constrain the parameter space using the additional phenomenological

constraint in Eq. (3.4). This constraint indicates that the points that satisfy SFOEWPT

favor smaller values of λhs and singlet vev, ω, as depicted in Fig. 5, which is in agreement

with the perturbativity constraint. In this study we are focusing on the possible direct

detection at a muon collider and save the possible precision tests of the Higgs couplings at

muon collider for future work.

4 Constraints on the xSM at a Muon Collider

The dominant production mechanism of the new scalar (S) at a muon collider is vector

boson fusion (VBF), with W +W − fusion (WWF) dominating ZZ fusion (ZZF) as reported

in previous studies [36, 37, 51]. In our analysis, we set the muon beam center of mass

energy to
√
s = 3 TeV, where VBF became the main production channel, as illustrated in

Fig. 6. The mass range of the scalar was taken to be MS ∈ [250 ∶ 1000] GeV, stemming from

the thermal correction constraint as discussed in the previous section. Consequently, the

S decay into two SM-like Higgs bosons becomes possible given a non-vanishing α. Based

on the potential in Eq. (2.3), the new scalar will then primarily decay either directly into

two Higgs bosons (h1h1), or into two vector bosons through the mixing between the two

scalars,

µ+µ− → S µ+µ−(νµν̃µ)→XX µ+µ−(νµν̃µ), (XX = h1h1, W +W −, ZZ).

The final states obtained from these scalars encompass different topologies, which can

be classified into two main categories: pure visible states such as 4l, 4q, 2l2q, 2q2γ, and

visible-invisible mixed states such as lνl2q, 2l2νl, 2q2νl. For each final state, we consid-

ered the backgrounds originating from all possible channels that would produce the same

final state as without the resonant production of the S scalar. Therefore, the invariant

mass is expected to serve as a highly effective discriminant against the substantially larger

background. In our analysis we initially filter the signal through the invariant mass com-

puted for each specific topology, and subsequently refine the remaining events based on

their transverse momentum and pseudorapidity window, obtained by direct comparison of

the generated signal to the dominant background. An advantage of a muon collider, that

becomes apparent in this analysis, is the ability to track the missing energy that may be

present in the final states and account for it in the invariant mass calculations, as we will

see now. In the remaining parts of this section, we enumerate the channels that we have in-

vestigated and provide their corresponding expected sensitivities. Subsequently, we project

these sensitivity plots onto the FOEWPT xSM parameter space, to assess the potential of

the proposed muon collider to provide meaningful constraints.

– 16 –



100 101

s    [TeV]
10 4

10 3

10 2

10 1

100

101

102

   
[fb

]

Singlet production at Muon collider

+ S +

+ S v V
+ z S
+ t t S

(A)

400 500 600 700 800 900
Ms   [GeV]

0.5

1.0

1.5

2.0

2.5

3.0

   
[fb

]

3 TeV

10 TeV

ZZF Channel

400 500 600 700 800 900
Ms   [GeV]

5

10

15

20

25

30

   
[fb

]

3 TeV

10 TeV

WWF Channel

(B)

Figure 6. The different production mechanisms are illustrated in (A), which also shows that VBF is

dominated by W +W − fusion (WWF) (green curve), which is further confirmed in (B), showing that

WWF accounts nearly for 90% of VBF. (B) also shows that the S-production cross section is only

marginally sensitive on its mass MS . The plots have been generated through MadGraph5 aMC@NLO

simulations at parton level.

4.1 Event Generation

Both signal and background Monte Carlo events were generated at the parton level using

MadGraph5 aMC@NLO [52] (MG5 aMC), while the scalar decays to gauge/Higgs bosons were

generated in HERWIG 7 [53–59], along with the parton showering, underlying event and

hadronization. The HwSim plugin for HERWIG 7 [60] was used to generate ROOT [61] files for

all event samples. Signal events were produced in MG5 aMC by using the loop sm scalar

model [44].4 Due to background events at a muon collider occurring at much lower rates

than at a hadron collider, we took into account all the possible background events for each

final state by generating it directly in MG5 aMC, without importing the loop sm scalar

4We used electron-positron beams for event generation instead of muon-antimuon beams since HERWIG

7, at the time of writing, cannot recognize muons in the initial state. This does not affect our analysis at

all due to the lepton universality and the irrelevance of the lepton mass at high energies.
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model. For example, for µ+µ− → µ+µ−S → µ+µ−l+l+l−l−, we generated the combined

background, µ+µ− → µ+µ−l+l+l−l. Combined process generation implicitly contains all the
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Figure 7. The summed background (red curve) is evidently the sum of all subdominant background

resulting from ZZ, Zτ−τ+, Zt t as seen in transverse momentum distribution (left) and pseudora-

pidity distribution (right).

dominant backgrounds resulting from ZZ, Zτ+τ−, Ztt̃,⋯. We have examined this claim

by comparing the kinematic distributions (PT , η) of the 4l-combined background to the

dominant 4l background sources, such as those coming from ZZ, Zτ+τ−, Ztt̃, and confirmed

that the combined 4l- background is indeed almost identical to the sum of the individual

dominant backgrounds, as evident in Fig. 7. Therefore, in our analysis, we compare the

signals to the combined backgrounds, instead of just the main ones.

4.2 4l Final States

The four-lepton final state originates from S → ZZ, and its dominant background is

µ+µ− → 2l+2l−µ+µ− and µ+µ− → 2l+2l−νµν̄µ. The signal leptons are expected to have

higher transverse momentum compared to the background ones, as they originate from

Z-boson decays, which suggests a constraint on the transverse momentum in terms of

Z-boson mass as ∼ PT (l±) ≥ 2
5Mz. This assumption was verified by comparing the signal-

background transverse momentum distributions for the charged leptons, which showed

signal domination in the region ∼ 50GeV ≤ PT (l±) ≤ 400GeV. Consequently, we identified

any oppositely-charged same-flavour leptons whose PT (l±) ≥ 2
5Mz, and their invariant mass

peaked around the Z-boson mass, 0.8MZ ≤ M(l+l−) ≤ 1.2MZ as being valid pairs result-

ing from Z−boson decay. This works as a strong signal-background separator because the

leptons produced from the background generated in MG5 aMC@NLO are sourced from differ-

ent mediators, as discussed in the previous section. This is in contrast to the signal case

where they are mainly produced from Z-bosons, S → ZZ. Then, the surviving pairs were

further constrained by requiring the invariant mass of the two pairs to be in the vicinity of

the scalar mass, Ms − 50GeV ≤M(l+l−l+l−) ≤Ms + 50GeV, which further suppressed the

background events, as they were not resonantly produced in this range. Sharp constraint

in the invariant mass of the four leptons, ∆M(l+l−l+l−) = 50 GeV, was adopted due to the
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Figure 8. Transverse momentum and pseudorapidity distributions for signal events of MS = 450
GeV are shown in (A) and (B) respectively. The plot in (C) shows the invariant mass distribution

of the four leptons (M(4l)) for different values of the S masses. The backgrounds considered are

the sum of all backgrounds resulting from µ+µ− → µ+µ−2l+2l−.

good expected resolution in the reconstruction of the charged leptons. These combined

invariant mass cuts led to significant suppression of background events, with < 10% sur-

viving, in comparison to the signal events, where ∼ 50% survived, as can be seen in Fig. 8

(C). The remaining events were further constrained using the transverse momentum and

pseudorapidity of pairs of oppositely-charged leptons, see Fig. 8 (A,B). The selected ranges

for PT (l+l−), η(l+l−) are automated for each Ms value where only regions that contain

Ns ≥ 3.5Nb for PT (l+l−) and Ns ≥ 4.5Nb for η(l+l−) were selected.5 These ranges change

according to the Ms value, as can be seen in Table 3. The efficiencies obtained via this

analysis were then used to estimate the expected exclusion cross section using,

S = S√
B + (αB)2

, (4.1)

where S = εsLσs is the signal number of events, and B = εbLσb is the background number

of events. The exclusion limit S is set to 2, corresponding to a 95% confidence level (C.L.)

5Ns,Nb are the number of signal and background events respectively.
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MS [GeV] 250 500 750 1000

PT (l+l−) [GeV] 86 : 956 37 : 877 18 : 938 76 : 916

∣η(l+l−)∣ < 1.15 < 1.35 < 1.75 < 1.75

Table 3. Samples of transverse momentum and pseudorapidity cuts for 4l channel, automated for

different values of the scalar mass.

exclusion.
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Figure 9. Cross section exclusion curve for σ(S) × BR(S → ZZ) with ZZ → 4l. The green and

yellow intervals correspond to the 1σ and 2σ confidence levels.

The four-lepton invariant mass cut, M(l+l−l+l−), is the most crucial constraint in this

analysis, as backgrounds lack resonant production, so we calculated the uncertainty in our

calculations by repeating the analysis for different invariant mass ranges, ∆M(l+l−l+l−) =
100 GeV where both εs, εb would deviate from the previous one leading to uncertainty in

the signal cross section given by,

U(σs) =
σs(εs, εb)

2

¿
ÁÁÀ(δεs

εs
)
2

+ (δεb
εb
)
2

. (4.2)

Finally, the resulting sensitivity plot for a luminosity of 104 fb−1 is shwon in Fig. 9, at 68%

and 95% C.L.

4.3 4q Final States

The 4q final state can result from three different pathways: S Ð→ ZZ, W+W −, hh, and

could also provide strong constraints. The main background is similar to those dis-

cussed in the previous channel, with l → q now. In principle, the jets originating from

(ZZ, W+W −, hh) decays will have almost identical kinematics due to the approximate

symmetry in the Z,W ±, h masses especially for MS ≫ MZ ,MW± ,Mh. Nevertheless, the

– 20 –



0 200 400 600 800 1000

PT(JJ)   [GeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

(1
/

)d
/d

P T
 [G

eV
1 ]

MS = 300 GeV

PT  for S XX 2(qq) 
background
XX = hh
XX = ZZ
XX = W + W

4 2 0 2 4

(JJ) 
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(1
/

)d
/d

MS = 300 GeV

 distribution for S XX 2(qq)
background
XX = hh
XX = ZZ
XX = W + W

(A) (B)

200 400 600 800 1000
M(nJ) [GeV]

10 5

10 4

10 3

10 2

(1
/

)d
/d

M
 [G

eV
1 ] MS = 600 GeV

Invariant mass for S XX 2(qq) 
background
XX = hh
XX = ZZ
XX = W + W

(C)

Figure 10. Plots in (A) and (B) show the transverse momentum and pseudorapidity distributions

for the paired jets in final states for the signal at MS = 300 GeV coming from S → hh, ZZ, W +W −,

as well as for the background. Subplot (C) shows the invariant mass M(nJ) for jets originated

from h, Z, W ± decays respectively at MS = 600 GeV.

differences in the branching ratios of Higgs boson and weak gauge boson decays into quarks

will lead to a deviation in the kinematical behavior of the two cases, especially for the trans-

verse momentum and invariant mass distributions, as can be seen in Fig. 10 (A,C). These

differences can be further investigated by tracking the jet’s origin, and this can play a

vital role in exploring the Z2 nature of xSM. Hence, this specific channel, which has not

been explored sufficiently to date, to the best of our knowledge, can further constrain the

parameter space of FOEWPT. This proves as an additional advantage of a muon collider,

in which such channel could be explored with much less effort than at hadron colliders due

to the lower QCD backgrounds. A detailed study of these differences left for future work.

Jets were clustered using FastJet (v3.3.2) [62], where the anti-kT algorithm [63–65] with

a radius parameter R = 0.4 was chosen to be the default jet clustering algorithm. The

calculation of the invariant mass for this channel is more challenging than in the previous

one, mainly due to the high tendency of quarks to radiate via QCD. This means that we

can not simply calculate the invariant mass as previously using M2(4j) = (
4

∑
i=1

p(Ji))
2
. In-
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MS [GeV] 300 500 750 1000

ZZ → 2(qq)
PT [GeV] 6 ∶ 376 5 ∶ 445 5 ∶ 265 5 ∶ 205

∣η∣ < 1.75 < 1.75 < 1.25 < 1.05

W +W − → 2(qq)
PT [GeV] 5 ∶ 375 5 ∶ 305 5 ∶ 175 5 ∶ 185

∣η∣ < 2.25 < 1.65 < 1.35 < 1.05

hh→ 2(qq)
PT [GeV] −5 ∶ 55 5 ∶ 25 5 ∶ 25 5 ∶ 25

∣η∣ − < 3.95 < 2.15 < 1.15 < 1.065

Table 4. Samples of transverse momentum and pseudorapidity cuts for the different 4q channels,

automated at each value of the scalar mass.

stead, for each event, we defined P =
n

∑
i=1

p(Ji), that sums all the jets to a single four vector,

from which we construct M2(nj) = P 2. This, still, will not add up to the parent S particle

mass, as some of the energy will have escaped in the form of radiation, but this could be

neglected as a similar effect will be also found in background events. The main effect of

this final-state radiation is a shift in M(nj) towards lower values, as evident in Fig. 10 (C),

which was taken into account in the analysis by setting a loose M(nj) interval cut. An

event was accepted if its jets invariant mass was in the range 0.55MS ≤M(nj) ≤ 1.05MS

for the ZZ,WW channels and 0.8MS ≤ M(nj) ≤ 1.05MS for the hh channel. Based on

Fig. 10 (C), the hh channel accepted range was adopted to be narrower as compared to

that of the ZZ,WW channels. Most likely, this is because jets coming from a Higgs boson’s

decay are produced more collinearly, and hence lose less energy in the form of radiation.

This fact is supported by examining in Fig. 10 (A), that shows the tendency of jet pairs

coming from the Higgs boson’s decay to accumulate towards lower PT values in comparison

to those coming from WW,ZZ. Since jets in both cases (signal and backgrounds) arise

either due to weak gauge bosons or the Higgs boson, which have approximately similar

masses, then applying a di-jet invariant mass cut around the mediator’s mass will not help

much in suppressing the background, except for the case of jets coming from W +W −, which

yielded better efficiency for signal separation when applying 0.4MW ≤ M(JJ) ≤ 1.5MW ,

with PT (J, J) ≥ 1
5MW . The events passing the M(nJ) cut were then used to build all the

possible jet pairs, and the event is accepted at the end if it contains at least two jet pairs.

The surviving events were then further filtered using transverse momentum and pseu-

dorapidity constraints via direct comparison of signal events to the background events, as

illustrated in Fig. 10 (A,B). Bins of transverse momentum, PT , were selected such that

Ns ≥ 1.02Nb for the ZZ,hh channels and Ns ≥ 1.4Nb for the WW channel. The η bins were

selected by requiring Ns ≥ 1.4Nb for both ZZ,hh channels, and Ns ≥ 1.5Nb for the WW

channel.

These combined cuts led to an overall signal efficiency above 35% on average for all

signal channels and below 10% on average for the backgrounds. The cuts were automated

– 22 –



300 400 500 600 700 800 900 1000
Ms [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

(S
)x

BR
(S

W
+

W
) [

fb
] W + W 2(qq) @ L = 104  fb 1

Expected 
±2
±1

300 400 500 600 700 800 900 1000
Ms [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

(S
)x

BR
(S

ZZ
) [

fb
]

ZZ 2(qq) @ L = 104  fb 1

Expected 
±2
±1

(A) (B)

300 400 500 600 700 800 900 1000
Ms [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

(S
)x

BR
(S

hh
) [

fb
]

hh 2(qq) @ L = 104  fb 1

Expected 
±2
±1

(C)

Figure 11. The sensitivity plots for (A) S Ð→ (WW, ZZ, hh)→ 4J , (B) S Ð→ ZZ → 4J , and (C)

S Ð→W +W − → 4J , shown with the 68% and 95% C.L. intervals.

based on the Ms value, as shown in Table 4. Furthermore, the uncertainties in the signal

and background efficiencies (εs, εb) were computed using Eq. 4.2, by repeating the previous

analysis for different M(nJ) ranges, as this represents the most critical cut in this analysis.

For the second analysis, we chose a wider range for the invariant mass, 0.45Ms ≤M(nJ) ≤
1.1Ms for the ZZ,WW channels and 0.75Ms ≤M(nJ) ≤ 1.1Ms for the hh channel, which

led to the uncertainty in the exclusion curves shown in Fig. 11 for a luminosity of 104 fb−1.

4.4 2l2q Final States

The 2l2q channel is also exclusively produced by S → ZZ. All possible backgrounds were

generated in MG5 aMC via µ+µ− → µ+µ−l+l−qq. As in the previous channels, the most

crucial distinction between signal and background is the invariant mass which separates

the resonant production from the background.

On the leptonic side, we required PT (l±) ≥ 1
5MZ , based on a direct comparison of the

transverse momentum of single leptons, to guarantee that we did not lose any possible

leptons resulting from Z decays. Then, we paired the same-flavour oppositely-charged

leptons if their invariant mass satisfied 0.75MZ ≤ M(l+l−) ≤ 1.25MZ . Similarly, on the

jet side, we asked for 0.4MZ ≤ M(nJ) ≤ 1.5MZ , and then paired jets according to their

transverse momentum PT (J) ≥ 1
5MZ , which is also confirmed from single PT (J) comparison
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Figure 12. Plots in (A) and (B) show the transverse momentum and pseudorapidity comparisons

between signal and background for MS = 500 GeV. (C) shows the invariant mass M(l+l− + nJ)
obtained from Eq. (4.4) for MS = 250,500,800 GeV.

between signal and background. We then look for resonant production around the scalar

mass by computing the invariant mass of all possible combinations of the accepted (l+l−)

pairs, together with all the accompanying jets (nJ) in each event using the formula,

M2(l+l− + nJ) = (
3

∑
i=1

(p(l+i ) + p(l−i )) +
n

∑
k=1

p(Jk))
2

(4.3)

= (P (J) +
3

∑
i=1

p(l+i ) + p(l−i ))
2

, (4.4)

such that P (J) = ∑k p(Jk) is the previously defined four vectors that add up all the

jets present in a single event. This approach returned the correct invariant mass, which

shifted towards lower mass values because of the unavoidable final-state radiation, espe-

cially towards higher Ms values, as depicted in Fig. 12 (C). The same figure also suggests

a selection range of Ms − 150 GeV ≤ M(l+l− + nJ) ≤ Ms + 10 GeV. The event is then

selected if it contains at least one combination that passe the M(l+l− +nJ) cut and has at

least one l+l− pair and one (JJ) pair passing the previous MZ(l+l−, nJ), PT (l+l−, JJ) con-
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MS [GeV] 250 500 750 1000

Leptons
PT [GeV] 6 ∶ 346 19 ∶ 689 46 ∶ 686 67 ∶ 657

∣η∣ < 2.25 < 1.65 < 2.35 < 2.35

Jets
PT [GeV] 28 ∶ 568 37 ∶ 607 34 ∶ 584 41 ∶ 591

∣η∣ < 2.15 < 1.35 < 1.75 < 1.85

Table 5. Samples of transverse momentum and pseudorapidity cuts for the 2l2q channel, automated

for each value of the scalar mass.

straints. Following the invariant mass cuts, the remaining events were subjected to cuts on

PT (l+l−, JJ), η(l+l−, JJ), through direct comparison between the signal and background

for each specific Ms value, as shown in Fig. 12 (A,B) for Ms = 500 GeV. The PT bins for

this channel were selected by requiring Ns ≥ 2Nb, and Ns ≥ 1.8Nb for the pseudorapidity

(η) bins.

These bins fluctuate from Ms value to another, as shown in Table 5. These cuts led to

significant suppression of the background, where εb ∼ 3% on average and εs ∼ 35% for the

signal.
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Figure 13. Sensitivity curves at L = 104 fb−1 and
√
s = 3 TeV for S Ð→ l+l−2J channel at a muon

collider with 68% and 95% CL intervals.

Fluctuations in PT , η were then considered according to Eq. 4.2, by repeating the

previous analysis for different invariant mass ranges Ms − 250 GeV ≤ M(l+l− + nJ) ≤
Ms + 20 GeV which led to the sensitivity curve for this channel, plotted in Fig. 13 at

L = 104 fb−1.

4.5 2γ2q Final States

This final state arises from the S → h1h1 decay channel in addition to all the different,

non resonant background channels that lead to the same final state at the muon collider

(µ+µ− Ð→ µ+µ−2γ2J), which was generated in MG5 aMC. This channel is very challenging
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because of the difficulty in reconstructing both photons and jets in the final state because a

considerable number of photons would be present from the muon and quark QED radiation.
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Figure 14. Subplots (A) and (B) show the transverse momentum and pseudorapidity comparisons

between signal and background for MS = 600 GeV, while (C) shows the invariant mass obtained

from Eq. (4.6) for different Ms values.

As before, the main difference between the signal and background is the absence of

resonant production in the background, which suggests invariant mass cuts on the final

state as an effective probe to identify the signal. Photons resulting from Higgs boson decay

could be separated from photons resulting from other decay modes, or initial/final state

radiation, by requiring PT (γ) ≥ 2
5Mh, which was confirmed through direct comparison of

the transverse momentum distributions. Then, in order to pair photons we computed the

invariant mass of all the possible combinations of the photons that passed the PT cut, and

only keeping the pairs that had 0.8Mh ≤M(γγ) ≤ 1.2Mh. We then computed the invariant

mass of the selected photon pairs and all jets contained in the event, M(γγ + nJ), given
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MS [GeV] 300 500 750 1000

Photons
PT [GeV] 5 ∶ 355 6 ∶ 476 7 ∶ 457 6 ∶ 446

∣η∣ < 2.25 < 2.15 < 2.25 < 2.15

Jets
PT [GeV] 7 ∶ 747 14 ∶ 684 7 ∶ 877 26 ∶ 826

∣η∣ < 1.45 < 1.35 < 2.35 < 1.55

Table 6. Samples of transverse momentum and pseudorapidity cuts for the 2l2q channel, automated

for each value of the scalar mass.

by6

M2(γγ + nJ) = (p(γγ) +
n

∑
k=1

p(Jk))
2

, (4.5)

= P 2(γγ + nJ), (4.6)

where p(γγ) = p(γ1) + p(γ2), represents the summed vector of the photon pairs, which

returns very precise peaks around the parent Ms value, as shown in Fig.15 (C). The event

was accepted if it possessed Ms − 80 GeV ≤ M(γγ + nJ) ≤ Ms + 80 GeV, and contained

at least one accepted γγ pair. Subsequently, jet pairs were constructed for all possible

combinations of the remaining jets after the PT (J) ≥ 2
5 constraint was applied.
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Figure 15. The sensitivity curve at L = 104 fb−1 and
√
s = 3 TeV, for the S → 2γ2J channel at a

muon collider with 68% and 95% CLs interval.

The accepted events were further subjected to transverse momentum and pseudora-

pidity constraints, obtained through a direct comparison between the remaining signal and

background events, as shown in Fig. 4.6 (A,B), for Ms = 600 GeV. We automated these cuts

to make them sensitive to the Ms value, as shown in Table 6. The PT bins were obtained by

requiring Ns ≥ 1.1Nb, while Ns ≥ 1.01Nb was adopted for pseudorapidity (η). These observ-

ables are, in turn, dependent on the invariant mass, M(γγ+nJ), cut applied, so we repeated
6This is a modification of Eq. (4.4), where we take into account all the possible combinations of the

accepted γγ pairs with the entire n-jets available in the event.
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the above analysis for a different range, Ms − 150GeV ≤M(γγ + nJ) ≤Ms + 100GeV, and

computed the resulting uncertainty in the signal and background efficiencies (εs, εb) using

Eq. (4.2). This set of cuts significantly suppressed the background, where the background

efficiency was εb ∼ 1%, against the signal efficiency of εs ∼ 50% on average. These re-

sults were reflected in the characteristic sensitivity curve for the 2γ2q-channel as plotted

in Fig. 15 at a luminosity of 104 fb−1.

4.6 2l2νl Final states

The 2l2νl final state can originate either from the S decay into weak gauge bosons S →
ZZ, W+W −, or other backgrounds that can be generated at a muon collider through

µ+µ− → µ+µ−(νµνµ)2l2νl, and all were considered in our analysis. The invariant mass

of such final states is not immediately calculable, because of the missing energy carried

away by neutrinos. However, unlike in hadron colliders, the partonic energy of the muon

beam used in scalar production can be precisely estimated, giving us an opportunity to

reconstruct the parent particle’s mass, emphasizing one of the advantages of muon colliders

over hadron colliders.
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Figure 16. Subplots (A), (B) show the transverse momentum and pseudorapidity comparisons

between signal and background for Z and W decays respectively, for MS = 500 GeV. Subplot (C)

shows the invariant mass from 2l2νl-channel for MS = 600 GeV.
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The kinematics of a typical ZZF to 2l2νl state can be derived from the Feynman

diagram in Fig. 17 as follows:

√
s = (q1 + q2 + q3 + q4) + (k1 + k2). (4.7)

We define ∆ = (k1 + k2), as the invariant mass of the X particle. ∆ can then be easily

evaluated from the muon beam energy and detected charged leptons. In other words, ∆

would be a function of all four visible leptonic vectors, ∆(s, q1, q2, q3, q4). Then ∆ ≠ 0

signifies the existence of missing energy, and the scalar mass is given by

Ms =M(l+l−) +∆(s, q1, q2, q3, q4), (4.8)

µ−(q)
µ−(q1)

µ+(p) µ+(q4)

S
X

X

νl(k1)

ν̃l(k1)

l−(q2)

l+(q3)

Figure 17. Feynman diagram of ZZF to 2l2νl.

where M(l+l−) is the invariant mass of the two oppositely charged leptons. In the

case of ZZF, the l+l− pair will originate from a single Z-boson, so only pairs with 0.8MZ ≤
M(l+l−) ≤ 1.2MZ were accepted. For WWF, l+ and l− will originate from different particles,

that is, W +,W − respectively, and hence M(l+l−) is not expected to peak around the

MW mass. Despite this, we found that the signal from WWF tends to outnumber the

background in the region 250 GeV ≤M(l+l−) ≤ 600 GeV. In both cases, ZZF and WWF,

only leptons with PT (l±) ≥ 1
5MX were included in pair formation. In this way, it is most

likely that leptons included are those resulting from mediator (X) decay. Nevertheless,

some percentages of forward muons may satisfy these requirements. Therefore, a peak is

expected to occur at mij ∼
√
s. However, this is not of interest to us, since we are already

limiting MS ∈ [200,1000] GeV, and consequently such peaks will automatically be cut out

(see Fig. 16 (C)). We accepted events that had 0.6MX ≤M(l+l− +∆) ≤ 1.2MX due to the

broadening of the resulting invariant mass distributions observed in Fig. 16 (C).

The accepted events up to this point were further constrained by applying cuts on

PT (l+l−), η(l+l−), from a signal-background comparison, automated for each Ms value as

shown in Fig. 16 (A,B) for Ms = 500 GeV. The results are shown in Table 7 for a sample

of different Ms values. The PT bins were selected by requiring Ns ≥ 1.2Nb and Ns ≥ 1.1Nb

for the η bins for both the ZZ,WW channels. Similar to the previous channels, the

uncertainty in εs, εb was computed from Eq. (4.2), by repeating the previous analysis for

different invariant mass range, 0.5MX ≤M(l+l− +∆) ≤ 1.3MX .

The overall analysis yielded a background efficiency of εb ∼ 4% against a signal efficiency

of εs ∼ 40% for the ZZ → 2l2νl. Instead, for the WW → 2l2νl final state, the results were
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MS [GeV] 250 500 750 1000

ZZ → 2l2νl
PT [GeV] 7 ∶ 627 7 ∶ 797 13 ∶ 803 67 ∶ 827

∣η∣ < 2.35 < 2.35 < 2.35 < 2.35

W +W − → 2l2νl
PT [GeV] 26 ∶ 726 126 ∶ 506 85 ∶ 595 45 ∶ 725

∣η∣ < 2.35 < 2.35 < 2.35 < 2.35

Table 7. Samples of transverse momentum and pseudorapidity cuts for the 2l2νl channel automated

for each value of the scalar mass.
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Figure 18. (A) and (B) show the sensitivity curves at L = 104 fb−1 and
√
s = 3 TeV for S Ð→

ZZ → 2l2νl and S Ð→W +W − → 2l2νl channels respectively at a muon collider with 68% and 95%

CLs intervals.

not as good, because the leptons did not originate from the same particle, which led to less

efficient signal-background separation. This is reflected in the sensitivity plots of Fig. 18,

which show a more uncertain curve for the WW channel in comparison to the ZZ channel.

4.7 2q2νl Final states

Unlike the 2l2νl case, this final state can originate from the S decay into Z-bosons, S → ZZ,

together with all possible backgrounds resulting from µ+µ− → µ+µ−(νµνµ)2q2νl. Similar to

the previous channel, it would be impossible to directly compute the invariant mass owing

to the missing energy carried away by the neutrinos. However, we can employ the same

formula as Eq. (4.8) to evaluate it, with a slight replacement of l+l− → nJ , where all the

jets contained in the event are sourced from a single Z boson, and ∆ becomes a function

of the forward muons (q1, q2) and the all the jets (p1, p2,⋯pn).
Therefore, the invariant mass in this case is given by

M(nJ +∆) =M(nJ) +∆(s, q1, q2, p1, p2,⋯pn) . (4.9)

This formula correctly returns a resonant peak around each Ms value, as shown in Fig. 19

(C) for Ms = 250,550,750 GeV. Figure 19 (C) also suggests an invariant mass range of

.9Ms ≤M(nJ +∆) ≤ 1.5Ms to separate the signal from the background.
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MS [GeV] 250 500 750 1000

PT (JJ) [GeV] 9 : 979 5 : 1185 5 : 1105 5 : 1205

∣η(JJ)∣ < 0.55 < 2.45 < 2.65 < 2.75

Table 8. Samples of transverse momentum and pseudorapidity cuts for the 2q2νl channel, auto-

mated for each value of the scalar mass.
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Figure 19. Subplots (A), (B) show the transverse momentum and pseudorapidity comparisons

between signal and background for MS = 550 GeV. Subplot (C) shows the invariant mass obtained

for MS = 250,550.750 GeV.

In order to accept an event, we further require that it must contain at least one jet

pair, JJ , with 0.5MZ ≤ M(JJ) ≤ 1.4MZ) for PT (J, J) ≥ 1
5MZ . We then applied cuts

on PT (JJ), η(JJ), obtained through a direct signal-background comparison, as shown in

Fig. 19 (A,B) for Ms = 550 GeV. These secondary cuts were automated for each Ms value,

as illustrated in Table 8 for a sample of selected Ms values. The PT bins were selected by

requiring Ns ≥ 1.2Nb and Ns ≥ 1.4Nb for the η bins. Similar to all previous channels, the

uncertainty in εs, εb was computed using Eq.(4.2) by repeating the preceding analysis for

a different invariant mass range, 0.85MX ≤M(l+l− +∆) ≤ 1.6MX .
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Figure 20. The sensitivity curves at L = 104 fb−1 and
√
s = 3 TeV for S → ZZ → 2q2νl at a muon

collider with 68% and 95% CLs intervals.

This analysis scheme greatly suppressed the background, yielding a background efficiency

of εb ∼ 1% on average, whereas the signal efficiency εs exceeded 25% on average. The

corresponding sensitivity plot for this final state is shown in Fig. 20 for a luminosity of

L = 104 fb−1.

4.8 lνl2q Final states

This final state is another gauge boson-initiated channel that only arise from S Ð→
W +W − → l+νl(l−ν̃l)qq. All backgrounds contributing to this channel that could be gener-

ated at the muon collider from µ+µ− Ð→mu+µ−l+νl(l−ν̃l)qq were considered. The invariant
mass of the fully visible final states can also be evaluated using Eq. 4.8, but now ‘∆’ will

be a function of an extra lepton vector (i.e. p3) which results from W -boson decay,

Ms =M(l± + nJ) +∆(s, q1, q2, q3, p1, p2,⋯pn), (4.10)

where ‘q1, q2, q3’ are the four vectors of the two forward muons and extra lepton resulting

from one W ±-boson decay. ‘p1, p2,⋯pn’ are the entire n-jets four vectors in the event.

M(l± + nJ) runs over all possible combinations of a single charged lepton in the final

state, with n jets available in the event. This includes forward high-energy scattered

muons, so a secondary peak around MS ≈
√
s should be expected, and could be ignored

for the reasons discussed earlier. In fact, this will not even be seen in this case due to

the jets largely outnumbering the the forward muons, and hence the secondary peak at

MS =
√
s will be smeared away, which would be further enhanced by only considering

charged leptons with PT (l±) ≥ 1
5MW that shall suppress the forward muons contributions.

This approach generated well-defined invariant mass distributions for all the examined

Ms values. as can be seen in Fig. 21 (C), which suggests narrower invariant mass range

compared to the previous channel, 0.85Ms ≤M(l± + nJ +∆) ≤ 1.5Ms. If the event passes
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Figure 21. (A) and (B) show the transverse momentum and pseudorapidity distributions of

paired jets and a single charged lepton obtained from lνl2q-channel for MS = 600 GeV. (C) shows

the invariant mass distributions of lνl2q-channel for Ms = 300,600,900 GeV.

MS [GeV] 250 500 750 1000

W +W − → l±νl(νl)qq

PT (l±) [GeV] 111 ∶ 361 111 ∶ 311 91 ∶ 331 81 ∶ 371

∣η(l±)∣ 2 ∶ 2.45 2.1 ∶ 2.45 < 2.45 < 2.45

PT (JJ) [GeV] 39 ∶ 509 409 ∶ 469 32 ∶ 612 35 ∶ 725

∣η(JJ)∣ < 2.25 < 1.95 < 1.65 < 1.65

Table 9. Samples of transverse momentum and pseudorapidity cuts for the 2q2νl and lνl2q chan-

nels, automated for different values of the scalar mass.

this primary cut, we then check whether the jet invariant mass peaks around W -boson

mass, 0.75MW ≤M(nJ) ≤ 1.25MW . If it does, we then construct all the possible jet pairs

with PT ≥ 1
5MW . At least one jet pair, JJ , is required in order to pass this event to the

secondary analysis. In this step we checked for the observables PT (JJ), η(JJ), the regions
where the signal outnumbers the background, keeping only the bins where Ns ≥ 1.1Nb for

PT (JJ) and Ns ≥ 1.2Nb for the η(JJ). This scanning procedure is automated for each Ms

value as shown in Fig. 21 (A,B) for Ms = 600 GeV, and for other different scalar mass values
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in Table.9. We finally account for the fluctuations in the measured efficiencies by repeating

the previous analysis for different invariant mass range, 0.8Ms ≤M(l± +nJ +∆) ≤ 1.65Ms,

and then compute U(σs) using Eq. (4.2).

200 300 400 500 600 700 800 900 1000
Ms [GeV]

1.00

1.25

1.50

1.75
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)x
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] W + W qql +

l(l l) @ L = 104  fb 1

Expected 
±2
±1

Figure 22. Sensitivity curves for S → lνl2q at a muon collider with L = 104 fb−1 and
√
s = 3 with

68% and 95% C.L. intervals.

Our analysis successfully suppressed backgrounds in comparison to signal events, with

εb ∼ 10 ∶ 40%, and εs ∼ 25 ∶ 88%. This channel shows a sensitivity in εs, εb to the scalar

mass value, as both tend to grow for higher Ms values, a feature that was not observed in

the other channels. This feature is reflected in the sensitivity plot in Fig. 22, where the

uncertainty in the signal cross-section converges towards higher values of the scalar mass

as εs becomes larger than 50%, which guarantees that the uncertainties will be smaller.

4.9 Exclusion Plots

Utilizing the aforementioned phenomenological analyses, we explored the parameter-space

points that fulfill the SFOEWPT conditions using the derived sensitivity plots, as illus-

trated in Fig. 23. It is evident that channels containing quarks in the final state can explore

a larger portion of the xSM SFOEWPT parameter space. This is primarily attributed to

the higher branching ratios of the Higgs bosons and vector bosons to the jets. The rela-

tive absence of substantial QCD backgrounds at a muon collider, in comparison to hadron

colliders, enables the reconstruction of jets via a comparatively straightforward approach.

This factor facilitates efficient background suppression, even for channels with invisible

final states. This same rationale supports the pursuit of potential precision tests of the

Higgs boson’s self-couplings at a muon collider, and the possible confirmation or exclusion

of the SFOEWPT scenario. We reserve such an investigation for future studies, along with

the examination of potential kinematical differences between jets originating from S → hh

and S → ZZ(WW ), which may be related to the Z2-nature of xSM extended potential.

Figure 23 presents the currently viable parameter-space points that satisfy the SFOEWPT

conditions for both the liberal and conservative categories discussed in Section 2 in con-

junction with the sensitivity plots obtained from the previous subsections. Figure 23 (A)

summarizes all the different final states that could be obtained fromWW decay, and Fig. 23
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(A) (B)

(C)

Figure 23. Exclusion curves for all channels from S Ð→ WW, ZZ, hh respectively at a muon

collider with
√
s = 3 TeV and L = 105 fb−1.

(B,C) for ZZ and hh, respectively, at a luminosity of 105 fb−1.7 The preferred channels,

that is, jet-rich channels, have consequently been isolated in Fig. 24, as they represent

the primary limiting channels in a muon collider. In comparison to the FCC-hh potential

for searches, depicted in Fig. 24 (B), the muon collider appears to be capable of exclud-

ing the majority of points that could be examined at the FCC-hh at significantly lower

center-of-mass energies, particularly for S →XX → 4q.

5 Conclusions

In this study, we investigated the potential of a high-energy muon collider to explore elec-

troweak phase transitions in the context of the Standard Model extended by a real scalar

singlet. Our analysis focused on examining the occurrence of a strong first-order elec-

troweak phase transition, which is essential for explaining baryogenesis and may result in

7The exclusion curve is proportional to 1
√

L
(see Eq. (4.1)), so we have chosen an order of magnitude

higher luminosity than the value used in the previous exclusion curves in order to explore a larger parameter

space volume.
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(A) (B)

Figure 24. (A) shows the combined WW, ZZ, hh→ nJ final states at a muon collider with
√
s = 3

TeV and L = 105 ab−1. (B) shows the FCC-hh exclusion curves for the same channels at a much

higher energy
√
s = 100, TeV and much smaller luminosity L = 20 fb−1.

observable gravitational waves.

As the initial step of our investigation, we identified Lagrangian parameter values for

which xSM can produce a strong first-order phase transition that satisfies the sphaleron

critical conditions for baryogenesis. These parameter values span a broad parameter space

for the xSM. Subsequently, assuming a future muon collider with center-of-mass energy√
s = 3 TeV, we assessed the sensitivity to a scalar singlet through various final states.

Our findings indicate that the muon collider can be an effective tool for probing the xSM

parameter space if high luminosities can be approached, where the clean environment of

a muon collider allows for precise measurements, particularly producing a scalar singlet

via vector boson fusion (VBF). We primarily examined the direct production of the scalar

singlet and its decay into all possible final states, which offers a promising avenue for iden-

tifying new scalar states. We found that decay channels rich with jets in the final states

are the most promising for excluding FOEWPT parameter space points at the muon col-

lider. Indirectly, deviations in the Higgs boson couplings from the SM expectations could

provide further evidence for the presence of a scalar singlet, which would be valuable to

explore further in the muon collider. With precision measurements, the zero-temperature

part of the effective potential can be reconstructed at the muon collider, whereas gravita-

tional wave observations can provide additional information on thermal dynamics. Scalar

singlet-enhanced electroweak phase transition can also generate a signal in gravitational

wave detectors, which enables the muon collider to provide complementary information for

gravitational wave detectors.

Our findings highlight the unique advantages of a muon collider in exploring elec-

troweak symmetry breaking and potentially new physics beyond the Standard Model. The

ability to resolve the nature of the EWPT in such a collider is of paramount importance,
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especially for advancing our understanding of early universe dynamics and the mechanisms

behind baryogenesis, providing significant advancement in our understanding of electroweak

symmetry breaking and its implications in cosmology.
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