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Gaussian processes are notorious for scaling cubically with the size of
the training set, preventing application to very large regression problems.
Computation-aware Gaussian processes (CAGPs) tackle this scaling issue
by exploiting probabilistic linear solvers to reduce complexity, widening the
posterior with additional computational uncertainty due to reduced computa-
tion. However, the most commonly used CAGP framework results in (some-
times dramatically) conservative uncertainty quantification, making the pos-
terior unrealistic in practice. In this work, we prove that if the utilised
probabilistic linear solver is calibrated, in a rigorous statistical sense, then
so too is the induced CAGP. We thus propose a new CAGP framework,
CAGP-GS, based on using Gauss-Seidel iterations for the underlying prob-
abilistic linear solver. CAGP-GS performs favourably compared to existing
approaches when the test set is low-dimensional and few iterations are per-
formed. We test the calibratedness on a synthetic problem, and compare
the performance to existing approaches on a large-scale global temperature
regression problem.

1. Introduction

Gaussian processes are a powerful and flexible tool for Bayesian nonparametric regres-
sion, allowing a user to fit a wide array of possibly nonlinear phenomena using simple
computational routines.

The most major challenge in scaling Gaussian processes to high-dimensional datasets
is its cubic scaling with the number of training points, arising from the need to invert a
Gramian matrix representing the prior covariance between data points (Rasmussen and
Williams, 2005). To address this, a wide array of computational approximations have
been proposed, including iterative solvers (e.g. Wenger et al. (2022a)), approximations
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to the kernel matrix (e.g. Ferrari-Trecate et al. (1998)), and inducing point methods
(e.g. Titsias (2009)).
A particularly appealing approach recently proposed in Wenger et al. (2022b) is

computation-aware GPs (CAGPs). In this framework one uses a probabilistic linear
solver (PLS) to solve a linear system involving the Gramian matrix and then marginalises
the uncertainty from the PLS. The result is an elegant cancellation that eliminates the
need to invert the Gramian (see Section 2.2.2 for a more detailed explanation). The
new posterior obtained is called “computation aware” because it is widened to represent
additional computational uncertainty due to reduced computation in the PLS, compared
to an exact (but computationally prohibitive) linear solve.
The most commonly used PLS for CAGPs is an approach often called BayesCG (see

Cockayne et al. (2019a))—in this setting called as CAGP-CG. This approach is favoured
because of rapid mean convergence. One of the major challenges with CAGP-CG is that
resulting CAGP is typically conservative—the posterior mean is much closer to the truth
than the width of the posterior covariance suggests it should be. This is inherited from
the widely observed poor calibration properties of BayesCG, which has been observed
in several works including Cockayne et al. (2019a); Bartels et al. (2019); Wenger and
Hennig (2020); Reid et al. (2023). We formally introduce calibration in Section 2.3.
While some empirical Bayesian methods for mitigating this issue have been proposed
(e.g., Wenger and Hennig (2020); Reid et al. (2022, 2023)), they are difficult to apply
within CAGPs as the choice of prior is heavily constrained by the method.

1.1. Contributions

The contributions of this paper are as follows:
• We rigorously prove that, if a calibrated PLS is used, the resulting CAGP is
calibrated (Theorem 4).

• We introduce a new class of CAGPs based on probabilistic stationary iterative
methods (PSIMs) (as seen in Cockayne et al. (2021)).

• We explore efficient implementation of a new CAGP approach based on Gauss-
Seidel iterations (CAGP-GS, Section 4.2). CAGP-GS scales favourably compared
to CAGP-CG in regimes where only a small number of test points are required.

• We explore the empirical properties of CAGP-GS on a synthetic test problem and
a large-scale geospatial regression problem (Sections 5.1 and 5.2). In particular, we
note that for small iteration numbers, CAGP-GS outperforms all known alternative
CAGP frameworks in terms of mean convergence and uncertainty quantification.

1.2. Structure of the Paper

The rest of the paper proceeds as follows. In Section 2 we discuss the required background
on CAGPs, PLSs and calibratedness. Section 3 discusses calibratedness in the context
of CAGPs, while Section 4 presents a particular class of PLSs that are both calibrated
and can be used in the CAGP framework. Section 5 presents simulations demonstrating
the new methodology, and we conclude in Section 6. Proofs and additional results for
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experiments from Section 5 are included in the supplementary material.

2. Background

2.1. GP Regression

Suppose f ∼ µ0 = GP(m0, k), where k is a positive definite kernel function. Consider
Gaussian process (GP) inference under the observation model

y = f(X) + ζ (1)

where X ⊂ D is a set of d distinct training points the domain of f , while ζ ∼ N (0, σ2I).
It may be helpful to think of D as a subset of Rn for some n, but this is not required.
The predictive distribution conditional on this information at a set of dtest test points
X ′ is given by

f(X ′) | y ∼ µ = GP(m̄, k̄) (2a)

m̄(X ′) = m0(X
′) + k(X ′, X)v⋆ (2b)

k̄(X ′, X ′) = k(X ′, X ′)− k(X ′, X)G−1k(X,X ′) (2c)

where G = K(X,X) + σ2I, while v⋆ is the solution to the linear system

Gv⋆ = b. (3)

with b = (y −m0(X)).
As has been widely noted (e.g., in Rasmussen and Williams (2005)), one of the major

challenges of the GP regression is that the complexity of the computations above is O(d3)
owing to the inversion of the Gramian matrix G. Recent work (Wenger et al. (2022b))
proposes a novel framework to mitigate this cost called CAGPs, introduced next.

2.2. Computation-Aware GPs

CAGPs center on use of PLSs to solve the system Eq. (3). We will first outline the
literature on the PLSs before discussing CAGPs themselves in Section 2.2.2.

2.2.1. (Bayesian) PLS

At the most generic level, PLSs are probabilistic numerical methods (PNMs) (Hennig
et al. (2022); Cockayne et al. (2019b)) for solving linear systems, that is, they are learning
procedures that return a probability distribution intended to quantify error due to having
expended reduced computational effort1 to calculate v⋆. It is common for such learning
procedures to depend on some “prior” belief about v⋆, expressed through the distribution
η0. So we use the notation η : P(Rd)×Rd → P(Rd) or (η0, b) 7→ η(η0, b), where P(Rd) is

1e.g. compared to applying a direct method such as Cholesky factorisation followed by two triangular
solves, which calculates v⋆ precisely in exact arithmetic, but have cubic complexity.
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the set of all probability measures on Rd for a PLS. We will limit attention to Gaussian
learning procedures, i.e. those that accept Gaussian input η0 = N (m0, C0) and return a
Gaussian output η(η0, b) = N (v̄, C̄). The particular prior η0 = N (0, G−1) (referred to
as the “inverse prior” in this paper) is intrinsic to CAGPs, and we will limit attention
to this throughout the following sections. However, note that material in Sections 2.2.1
and 2.4 can be generalised to arbitrary priors.

Many PLSs have a Bayesian interpretation, i.e. they are based on conditioning η0 on
observations of the form zm = S⊤

mb, where Sm ∈ Rd×m is a matrix of search directions
with linearly independent columns. Under such observations and the inverse prior, the
posterior is

v | zm = η ∼ N (v̄m, C̄m) (4a)

v̄m = Sm(S⊤
mGSm)−1S⊤

mb (4b)

C̄m = G−1 −DBayes
m (4c)

D̄Bayes
m = Sm(S⊤

mGSm)−1S⊤
m. (4d)

This posterior is not directly computable, as computing C̄m requires computation of
G−1, which we assumed in Section 2.1 we did not want to compute. Nevertheless, as we
will see in Section 2.2.2, this choice leads to some cancellations for CAGPs.

Choice of Search Directions Generic choices of Sm that have been examined in the
literature include standard Euclidean basis vectors and random unit vectors (Cockayne
et al., 2019a; Wenger et al., 2022b; Pförtner et al., 2024). However, these typically
suffer from slow convergence of vm → v⋆ compared to state-of-the-art iterative methods,
making them unattractive.
A particularly important choice of Sm are those based on the conjugate gradient

method (CG)2. In this case the PLS is often referred to as BayesCG (Cockayne et al.,
2019a). These directions are favoured because (i) they can be proven to converge at
an exponential rate in m in the worst case (often faster in practice), and (ii) they are
G-conjugate, meaning that S⊤

mGSm is diagonal. As a result the posterior reported in
Eq. (4) simplifies further. On the other hand, these directions result in poor calibration
of the posterior, which will be discussed further in Section 2.3.

Computational Complexity Ignoring the cost of computing G−1, the complexity of
computing Eqs. (4b) and (4d) is O(m(m2 + d2)) owing to the inversion of the m × m
matrix S⊤

mGSm and the requirement to compute (dense) products of the form GSm

which have complexity O(md2). Thus, if m ≪ d the complexity compared to a direct
method is significantly reduced. For BayesCG the diagonal matrix inversion is reduced
to O(m), so that the complexity is only O(md2).

2Often these are instead obtained from the Lanczos algorithm, which provides directions that span the
same space but have different orthogonality properties.
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2.2.2. The Marginalisation Trick

The central “trick” behind CAGPs is that, given any belief from a PLSs of the form

v ∼ η = N (v̄, G−1 −D) (5)

we can construct a new belief over f(X ′) through the marginalisation

p̃(f) =

∫
Rd

p(f(X ′) | v)η(dv) (6)

the law of which we denote µ̃. Since all the involved distributions are Gaussian, Wenger
et al. (2022b) derived the modified posterior as

µ̃ = GP(m̃, k̃) (7)

m̃(X ′) = m0(X
′) + k(X ′, X)v̄ (8)

k̃(X ′, X ′) = k(X ′, X ′)− k(X ′, X)Dk(X,X ′). (9)

Notably, the presence of G−1 in η is crucial as it leads to cancellation of the downdate
involving G−1 from Eq. (2c). As a result we need only calculate the D term in the
underlying PLS, negating any need to invert G. If D can be computed at significantly
lower complexity than G−1, as in Section 2.2.1, then the overall cost of GP inference
is reduced. Moreover, Wenger et al. (2022b, Section 2) demonstrates that k̃(X ′, X ′)
is “wider” than k̄(X ′, X ′) and can be interpreted as providing additional uncertainty
quantification for the reduced computation.

Algorithm 1 Computation Aware GP

1: function cagp(X, y, X ′, σ2)
2: b = y −m0(X)
3: V = k(X ′, X)
4: G(v) = v 7→ k(X,X)v + σ2v
5: ṽ, D̃ = cagp pls(G, b, V )
6: m̃ = m0(X

′) + ṽ
7: k̃ = k(X ′, X ′)− D̃
8: return m̃, k̃

Algorithm 1 gives an implementation of this as pseudocode. Note that it is assumed
cagp pls requires access to G only through its action on vectors v, rather than explicitly,
allowing for a matrix-free implementation. Algorithm 1 is a slightly modified version of
that presented in Wenger et al. (2022b); the quantities ṽ and D̃ returned by the routine
cagp pls are given by ṽ = V v̄ = k(X ′, X)v̄, and D̃ = V DV ⊤ = k(X ′, X)Dk(X,X ′),
i.e. they are the image of η under the map v 7→ V v. This is more commensurate with
the novel algorithms we will introduce in Sections 3 and 4.
Going forward we will use CAGP-CG to refer to a CAGP using BayesCG as the PLS.
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2.3. Calibrated Learning Procedures

While BayesCG has several numerically appealing properties, as already mentioned it is
poorly calibrated. In particular the uncertainty quantification provided is conservative,
meaning that the posterior covariance C̄m is typically much wider than the error v̄m−v⋆.
This is due to an incorrect application of Bayesian inference in constructing the poste-

rior. It can be shown (Golub and Van Loan, 2013, Section 11.3.3) that (when the initial
guess for the solution is zero) the CG directions form a basis of the Krylov subspace

Km(G, b) = span(b,Gb,G2b, . . . , Gm−1b)

= span(Gv⋆, G2v⋆, . . . , Gmv⋆).

If we ignore the orthogonalisation of the search directions (which would not affect the
posterior in a Bayesian inference problem) this results in information of the form zi =
s⊤i Gv⋆ = (v⋆)⊤Gi+1v⋆, i = 1, . . . ,m, each of which is quadratic in v⋆ rather than linear.
Linearity of the information zi is intrinsic to the Gaussian conditioning argument that
underpins PLSs, and ignoring this yields the poor calibration of BayesCG-based PLSs.
In this paper we will discuss how another class of PLSs can be used in the CAGP

framework. These PLSs do not have a Bayesian interpretation, but can nevertheless be
said to be calibrated in a formal sense. We will be interested in the question of whether,
when the PLS is calibrated, the derived CAGP is also calibrated, so we present this rather
generically. Cockayne et al. (2022) introduces the notion of strong calibration, a more
intuitive description of which is given below; we refer the reader to the aforementioned
paper for a formal introduction.
Briefly, a learning procedure µ : P(U) × Y → P(U) is said to be strongly calibrated

with respect to a distribution µ0 and a data-generating model dgm : U → Y if, under
the following procedure:

1. u⋆ ∼ µ0

2. y = dgm(u⋆)

it holds that, on average over µ0, u
⋆ is a “plausible sample” from the posterior µ(µ0, y).

The last statement can be made formal in several ways, but a particularly simple defi-
nition for the case of Gaussian learning procedures is given by Cockayne et al. (2021).

Definition 1 (Cockayne et al. (2021, Definition 6 and 9)). Consider a fixed Gaussian
prior µ0 = N (u0,Σ0), a data-generating model dgm and a learning procedure µ(µ0, y) =
N (ū, Σ̄). Suppose that Σ̄ is independent of y and potentially singular, with N and R
matrices whose columns form (mutually) orthonormal bases of its null and row spaces
respectively. Then µ is said to be strongly calibrated to (µ0,dgm) if:

1. (R⊤Σ̄R)−
1
2R⊤(ū− u⋆) ∼ N (0, I).

2. N⊤(ū− u⋆) = 0

when u⋆ ∼ µ0.
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Note that in Definition 1 the randomisation of u⋆ induces randomness in ū through
dependence on y, making the statement rather nontrivial. The assumption that Σ̄ is
independent of y is important to ensure that the range and null spaces are consistent
across draws from µ0; this can be relaxed, but resulting definitions are far less analytically
tractable3. Lastly in the case that Σ̄ is full rank, the second of the two conditions is
redundant.
Definition 1 provides a theoretical framework for validating strong calibration, but

we are also interested in validating this numerically. To accomplish this, we will apply
the simulation-based calibration tests of Talts et al. (2018); these are described in more
detail in Appendix B.

2.4. Probabilistic Stationary Iterative Methods

Another subclass of PLSs are PSIMs, introduced in Cockayne et al. (2021)4. PSIMs are
based on an underlying stationary iterative method for solving the linear system (see e.g.
Young (1971)), that is, methods that evolve an iterate vm according to the map vm =
P (vm−1), with some user-supplied initial guess v0. Given such a method, the associated
PSIM is obtained by pushing the prior η0 through the map Pm defined by composing
P with itself m times. We will restrict attention to affine P , i.e. P (v) = Mv + g, where
M ∈ Rd×d while g ∈ Rd. Then, for Gaussian η0 = N (0, G−1) the output of the PSIM is
given by

ηm = N (vm, Cm) (10a)

vm = Pm(0) =
m−1∑
i=0

M ig (10b)

Cm = MmG−1(M⊤)m (10c)

Since the output of a PSIM is not a Bayesian posterior, several important questions
arise: (i) when does the posterior contract around the truth, and (ii) is the output
calibrated in the sense of Definition 1. For (i), Cockayne et al. (2021, Proposition
2) establishes that provided the underlying stationary iterative method converges to
the true solution5, the PSIMs contracts around the true solution, and does so at the
same rate as the error converges in any norm on Rd. For (ii), Cockayne et al. (2021,
Propositions 7 and 10) show that any PSIM based on appropriate affine P is strongly
calibrated in the sense of Definition 1, provided M is diagonalisable (over C). This is a
fairly mild restriction considering the density of diagonalisable matrices (Gorodentsev,
2017, Chapter 2).
In the next sections we will demonstrate how PSIMs can be adapted to work with

CAGPs, and discuss transfer of calibratedness in this setting.

3Note however that this precludes selecting hyperparameters using empirical Bayesian procedures.
4These were originally termed “probabilistic iterative methods”, but we adopt different nomenclature
to avoid confusion (since the methods described in Section 2.2.1 are also both probabilistic and
iterative).

5This is not guaranteed; they converge to the truth only when the spectral radius of M is below 1 and
if they are completely consistent (see Section 4.1).
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3. Calibrated Computation-Aware GPs

In this section we prove that CAGPs are calibrated if a calibrated PLSs is used to solve
Eq. (3). First we observe that the reparameterisation in Eq. (2) can be formulated as
Bayesian inference with an alternative observation model.

Proposition 2. It holds that f | y from Eq. (2) is equal to the posterior f | v from
Bayesian inference under the observation model:

v | f = G−1b = G−1(f(X)−m0(X)) + ζ̄

where ζ̄ ∼ N (0, σ2G−2).

The next corollary establishes that under the observation model used in Proposition 2,
the prior distribution adopted in CAGPs is correct in a subjective Bayesian sense.

Corollary 3. The a-priori marginal distribution of v is v ∼ N (0, G−1).

This is an important result for calibration, since to be able to talk about calibrated
posteriors for Eq. (3) we first need to know that if the prior on f is correct, the prior on
v is also correct.

The next result is the central result of the paper, establishing calibratedness of CAGPs
when a calibrated PLS is used.

Theorem 4. Suppose that f ∼ GP(m0, k) and y | f = f(X) + ζ, where k is a positive
definite kernel. Further, suppose that the PLS in Eq. (5) is a learning procedure that is
calibrated for N (0, G−1), and satisfies the following conditions:

1. D is independent of y.

2. Cov(f(X ′), v̄) = K(X ′, X)G−1Cov(y, v̄).

Then the CAGP posterior is calibrated for the original GP prior and the original data
generating model.

Regarding the conditions above, as mentioned previously, Condition 1 is satisfied by
most PLSs, with the notable exception of those where some calibration procedure has
been applied to choose the prior. Condition 2 seems technical, but is in fact satisfied
under mild conditions.

Corollary 5. Suppose that the assumptions of Theorem 4 are satisfied, and further that
v̄ is an affine map of y, i.e. v̄ = My+ g. Then the CAGP posterior is calibrated for the
original GP prior and original data generating model.

Note that the requirements of Corollary 5 are satisfied by any Bayesian procedure, as
well as for the probabilistic iterative methods we will introduce in the next section. An
important exception is CAGP-CG since, as mentioned in Section 2.2.1, in this case the
map is not affine owing to dependence of Sm on v⋆. Having established this result, we
next proceed to show how PSIMs can be integrated with CAGPs to provide calibrated
uncertainty.
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4. Probabilistic Stationary Iterative Methods with the Inverse
Prior

To embed a probabilistic stationary iterative method in a CAGP we need to obtain an
output measure as in Eq. (5). We now show that for all reasonable PSIMs, Cm from
Eq. (10c) can be rearranged to have this structure.

4.1. Convergent Linear Stationary Iterative Methods

As mentioned in Section 2.4, convergence of stationary iterative methods is not guaran-
teed for all affine maps P . We therefore limit attention to completely consistent methods
(Young, 1971, Section 3.2 and 3.5). These methods have the property that, if they con-
verge, they are guaranteed to converge to the true solution, and therefore they are the
widest class of reasonable stationary iterative methods to use for solving a linear system.
For nonsingular G, any completely consistent iterative method can be written in the

form M = I − M̃G, g = M̃b where M̃ is a nonsingular matrix. The next proposition
shows that the iterations of any PSIM based on a completely consistent iterative method
can be written in a form commensurate with CAGPs.

Proposition 6. Let ηm be the mth iterate of a probabilistic iterative method whose
underlying stationary iterative method is completely consistent. Then ηm ∼ N (v̄m, G−1−
Dm), where v̄m is the mth iterate of the stationary iterative method with v0 = 0, while
D0 = 0 and

Dm = M̃ + M̃⊤ − M̃GM̃⊤ + (I − M̃G)Dm−1(I − M̃G)⊤. (11)

While it is useful to know that this holds for any completely consistent probabilistic
iterative method, it is not clear that the above computations can be made to be efficient.
Moreover, we still need to ensure that the iterative method converges, as it will be
highly problematic for embedding within GP regression otherwise. In the next section
we consider a particular instance of a probabilistic iterative method which is provably
convergent for any symmetric positive definite matrix.

4.2. Gauss-Seidel

The Gauss-Seidel method partitions G = L+U , where L is the lower-triangular part of
G and U is the strict upper triangular part. We then take M = −L−1U and g = L−1b.
Golub and Van Loan (2013, Theorem 11.2.3) establishes that Gauss-Seidel converges
to the true solution for any initial guess v0 provided G is symmetric positive-definite,
making it particularly attractive for CAGPs.
To apply Proposition 6 we must first identify M̃ . Note that U = G − L, so that

M = −L−1U = I − L−1G; thus M̃ = L−1. Also note that if DG is the diagonal of
G, since G is symmetric positive definite, we have that U = (L −DG)

⊤. The Di from

9



Proposition 6 can then be simplified:

L−1GL−⊤ = L−1(L+ L⊤ −DG)L
−⊤

= L−1 + L−⊤ − L−1DGL
−⊤

so that D1 = L−1DGL
−⊤, and

Di = L−1DGL
−⊤ +MDi−1M

⊤

= L−1DGL
−⊤ + L−1UDi−1U

⊤L−⊤.

We therefore have the following non-recursive expression for the downdate:

Dm =

m−1∑
i=0

(L−1U)iL−1DGL
−⊤(U⊤L−⊤)i. (12)

We can also establish several important properties of this PLS, in the following propo-
sition:

Proposition 7. The covariance matrix G−1 −Dm from probabilistic Gauss-Seidel has
rank d − 1 for all m ≥ 1, and its null space is equal to span(L⊤ed), where ed is the dth

Euclidean basis vector.

Considering Section 2 we can therefore implement cagp pls with Gauss-Seidel as
described in Algorithm 2.

Algorithm 2 CAGP-GS

1: function cagp pls gs(G, b, V , m)
2: Z1 = L−⊤V ⊤

3: z = L−1b
4: v1 = z

5: Z̃1 = D
1
2
GZ1

6: for i = 2 to m do
7: vi = z − L−1Uvi−1

8: Zi = L−⊤U⊤Zi−1

9: Z̃i = D
1
2
GZi

10: return ṽ = V vi, D̃ =
∑m

i=1 Z̃
⊤
i Z̃i

4.2.1. Complexity

Since L−1 is lower triangular, the action of L−1 and L−⊤ can be computed using for-
ward and back substitution, having complexity O(d2) The computational complexity of
Algorithm 2 is thus O(mddtest(d+ dtest)).

As mentioned in Section 2.2.1, the cost of CAGP-CG is O(md2) to compute the
posterior over v. Once this has been computed, computing the implied ṽ and D̃ costs,

10



respectively O(ddtest) and O(mdtest(d+dtest)), for an overall complexity of O(m(d2+
ddtest + d2test)).
In terms of memory, for CAGP-GS we need to store the matrix Zi for complexity

O(ddtest); computed factors can be saved to disk and loaded later to compute D̃ (which is
only dtest×dtest). For CAGP-CG only O(d) memory is required at execution time. This
ignores storage ofG (required for both algorithms); however since each algorithm requires
only the action of G (or L, U) on matrices / vectors, a matrix-free implementation is
possible (though this is not explored in this paper). Also note that this highlights that
to apply CAGP-CG on a new set of test points does not require rerunning the algorithm,
while for CAGP-GS we need to do so.
Clearly CAGP-GS has a higher complexity than CAGP-CG, though under the as-

sumption that d ≫ m, dtest the leading order of both algorithms is O(d2), so in this
setting the costs should still be comparable. In the next section we will consider the
empirical performance of CAGP-GS compared to CAGP-CG.

5. Experiments

5.1. Synthetic Problem

We first consider a synthetic test problem, so that we can test for calibratedness. We
take m0 = 0 and k to be a Matèrn 3/2 covariance with amplitude set to 1, and will vary
the length-scale. For the data-generating model we set σ = 0.1. We set our domain
to be D = [0, 1]2 and generate our training points by sampling 400 points uniformly at
random. Test points are a regular grid with spacing 0.05, i.e. generating 21× 21 equally
spaced points for a total of d = 441 points. The underlying true function is taken to be
sample from the prior, so that the calibration guarantee from Corollary 5 can be tested.
Plots of convergence for the posterior mean as a function ofm, with length scales set to

0.1, 0.2 and 0.4, averaged over 50 runs, can be seen in Fig. 1. We compare CAGP-GS to
both CAGP-CG and CAGP-Rand, a method that uses a Bayesian PLS with Si having
IID normal entries. This approach should be calibrated, but shows slow convergence
typical of most Bayesian PLSs not using CG directions. Unexpectedly, the posterior
mean for CAGP-GS initially converges faster than that from CAGP-CG for all length-
scales, though ultimately it is overtaken by CG. However, in expensive problems where
few iterations can be performed, this suggests that CAGP-GS should be preferred to
CAGP-CG owing to its initially faster convergence with calibration guarantees. As a
function of the length-scale, it appears that this behaviour is less pronounced for smaller
values, in which cases the matrix will typically be better conditioned.
In Fig. 2 we highlight the uncertainty quantification properties of CAGP-GS compared

to CAGP-CG and CAGP-Rand using the simulation-based calibration method described
in Algorithm 3 for Nsim = 1000 simulations, with length-scale now fixed to ℓ = 0.2
and m = 5 iterations. We also report the result of a Kolmogorov-Smirnov test for
uniformity. As implied by Theorem 4, both CAGP-GS and CAGP-Rand are calibrated
(p-values 0.6689 and 0.6802), while CAGP-CG shows the expected inverted U-shape
characteristic of an overly conservative posterior and has a p-value of 0.0084.
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Figure 1: Mean Convergence for the synthetic problem in Section 5.1.

(a) CAGP-GS (b) CAGP-CG (c) CAGP-Rand

Figure 2: Simulation-based calibration results for the synthetic problem described in
Section 5.1.

5.2. ERA5 Regression

In this section we run a geospatial regression problem on the ERA5 global 2 metre tem-
perature dataset (Hersbach et al., 2023). This is a reanalysis dataset with approximately
31 km resolution, and has temporal coverage from 1940 to present. For the purposes of
this demonstration we limit our attention to a single timestamp on 1st January 2024 at
00.00. This results in a grid of a total of ≈ 1 million points. To obtain matrices that
can be more easily represented in memory these points were downsampled as described
in the results below.
To fix a prior we used a Matèrn 3/2 covariance function, and optimised hyper-parameters

by maximising marginal likelihood (see Rasmussen and Williams (2005, Sec. 2.2)) on a
coarse uniform grid of 72× 144 points on the globe. We use a constant prior mean fixed
to the average of the data points.
We first examine qualitative convergence of the method by presenting plots of the

posterior mean obtained from CAGP-GS and CAGP-CG for a uniformly spaced grid of
28, 000 training and 7, 225 test points in Fig. 3. Interestingly the CAGP-GS posterior
means are considerably smoother than the CAGP-CG posterior means; this smoother
convergence may be more desirable in low iteration number regimes, and is likely due to
known smoothing properties of Gauss-Seidel (see e.g. Xu and Zikatanov (2017, Section
5.5)).
In Fig. 4, we compare the wall-time taken to compute the posterior mean and covari-

ance using CAGP-GS and CAGP-CG. In each plot we vary one parameter, fixing the
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Figure 3: Sequences of posterior means for the large-scale regression from Section 5.2,
as a function of m. The x and y axes represent longitudes and latitudes
respectively, and the contours indicate the temperature in Kelvin.

others to m = 80, d = 10638, dtest = 25. Results were computed on a high-performance
computing service on a single node with 40 cores. The results are mostly as expected
from Section 4.2.1. With increasing iterations, CAGP-GS and CAGP-CG scale simi-
larly, with CAGP-GS performing slightly better for higher iterations. With increasing d
CAGP-CG is initially faster, but CAGP-GS takes over in the later part. For small dtest
CAGP-GS performs better, but CAGP-CG improves as dtest increases and becomes
comparable to d.

Finally, we test the calibratedness for a uniformly spaced grid of d = 64, 700 training
points and dtest = 100 held out test points. Note that in this setting Theorem 4 does
not provide a calibration guarantee, and in particular our theory says nothing about
calibratedness on held-out data. Nevertheless, it is interesting to see whether some
version of calibratedness is obtained in a practical setting. For this d, G requires around
30 GB of storage, so is around the largest that can practically be considered without

matrix-free implementations. Histograms of ti = Φ
(
m̃(xi)−f(xi)

sd(xi)

)
for test points xi are

shown in Fig. 5. The Kolmogorov-Smirnov test for uniformity gives a p-value of 0.4707
for CAGP-GS and 5.0112 × 10−1 CAGP-CG. This shows that CAGP-GS is closer to
calibrated, and CAGP-CG remains miscalibrated.

6. Conclusion

The theoretical and computational results presented above provide a clear motivation
for considering PLSs other than BayesCG for CAGPs. Mean convergence is faster for
small m as shown in Fig. 1, and the posterior mean plots in Fig. 3 show recoveries that,
we would argue, retain more of the smoothness and structure of the prior than those
for CAGP-CG. Further, with an appropriate GP calibration approach it appears we
can obtain reasonably well-calibrated CAGPs even outside of the synthetic calibration
guarantees of Theorem 4.
The principle downsides of CAGP-GS are (i) higher computational complexity and

(ii) worse scaling for large m. On (i) we would argue that this approach should only be
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used in a small dtest regime which, in very large scale regression problems, is likely to
be a limitation in any case. For (ii) we would argue that small m is the regime in which
well-calibrated CAGPs are most attractive, since for larger m the added computational
uncertainty is dominated by the mathematical uncertainty. Moreover, we feel that the
calibration benefits are enough to justify these disadvantages.
There are several interesting future research directions. First, we have not explored

matrix-free methods to scale to “big data” problems. Efficient, parallelisable matrix-
free implementations of L−⊤ are challenging due to the inherently sequential nature
of backward substitution, but would nevertheless allow further scaling. Second, we
would like to explore further accelerations of calibrated CAGPs. One avenue that seems
promising is to combine CAGP-GS and CAGP-CG; this would sacrifice calibratedness
but, if GS is either used in the initial convergence period or interleved with CG iterations
to provide smoothing, this may result in superior mean convergence.
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A. Proofs of Theoretical Results

Proof of Proposition 2. This is demonstrated by direct calculation. We have that f(X ′)
and v are jointly Gaussian:[

f(X ′)
v

]
∼ N

([
m0(X

′)
0

]
,

[
k(X ′, X ′) k(X ′, X)G−1

G−1k(X,X ′) G−1k(X,X)G−1 + σ2G−2

])
.

Clearly

G−1k(X,X)G−1 + σ2G−2 = G−1(k(X,X) + σ2I)G−1

= G−1

and so [
f(X ′)

v

]
∼ N

([
m0(X

′)
0

]
,

[
k(X ′, X ′) k(X ′, X)G−1

G−1k(X,X ′) G−1

])
.

Applying the Gaussian conditioning formula we obtain

E[f(X ′) | v] = m0(X
′) + k(X ′, X)G−1Gv

= m0(X
′) + k(X ′, X)v

V[f(X ′) | v] = k(X ′, X ′)− k(X ′, X)G−1GG−1k(X,X ′)

= k(X ′, X ′)− k(X ′, X)G−1k(X,X ′)

as required.

Proof of Corollary 3. This can be verified by inspection of the joint distributions in the
proof of Proposition 2.

Proof of Theorem 4. To prove this we use the definition of calibratedness from Defi-
nition 1. First let C̃ = k̃(X ′, X ′) and C̄ = k̄(X ′, X ′). We will similarly abbreviate
m̃ = m̃(X ′), m̄ = m̄(X ′) and f = f(X ′).

We first establish that C̃ is full rank; this is trivial since C̃ = C̄+k(X ′, X)Cmk(X,X ′),
where the latter term is positive semidefinite owing to positive semidefiniteness of Cm.
Thus, C̃ ⪰ C̄, and since C̄ is positive definite, C̃ is full rank. For the purposes of checking
calibration of the GP, we therefore do not need to worry about range and null spaces of
C̃, so the quantity of interest is:

C̃− 1
2 (m̃− f) = C̃

1
2 C̃−1(m̃− f) (13)

= C̃
1
2 C̃−1(m̄− f) + C̃

1
2 C̃−1k(X ′, X)(v̄ − v) (14)
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Preliminary Transformations. We start by applying the matrix inversion lemma to
obtain a more useful expression for C̃. Since Cm = G−1 −Dm is not assumed to be full
rank we let R, N be bases of its row and null spaces of Cm respectively, and such that
U =

[
R N

]
is unitary. We then have that

C̃ = C̄ + k(X ′, X)Cmk(X,X ′)

= C̄ + k(X ′, X)UU⊤CmUU⊤k(X,X ′)

= C̄ + k(X ′, X)RCR
mR⊤k(X,X ′)

where CR
m = R⊤CmR, since CmNv = 0 by definition for all v. Applying the matrix

inversion lemma we get

C̃−1 = C̄−1 − C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

= (I − P )C̄−1

where

P = C̄−1k(X ′, X)ΣRk(X,X ′)

ΣR = RΣ−1R⊤

Σ = (CR
m)−1 +R⊤k(X,X ′)C̄−1k(X ′, X)R

We also have

C̃−1k(X ′, X) =
[
C̄−1 − C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

]
k(X ′, X)UU⊤

=
[
C̄−1 − C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

]
k(X ′, X)(RR⊤ +NN⊤)

ΣRk(X,X ′)C̄−1k(X ′, X)RR⊤ = RΣ−1R⊤k(X,X ′)C̄−1k(X ′, X)RR⊤

= RΣ−1R⊤k(X,X ′)C̄−1k(X ′, X)RR⊤

= RΣ−1(Σ− (CR
m)−1)R⊤

= R(I − Σ−1(CR
m)−1)R⊤

So that

C̃−1k(X ′, X)RR⊤ = C̄−1k(X ′, X)
[
RR⊤ −RR⊤ +RΣ−1(CR

m)−1R⊤
]

= C̄−1k(X ′, X)RΣ−1(CR
m)−1R⊤ (15)

Mean Computation. Next we proceed to apply these results to compute the mean and
covariance of Eq. (13). Note that Gaussianity is guaranteed by the fact that Eq. (13) is
an linear transformation of a difference of Gaussian random vectors, since the covariance
is assumed to be independent of y.
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Considering the first term in Eq. (14) we see that

C̃−1(m̄− f) = (I − P )C̄−1(m̄− f) (16)

=⇒ E
(
C̃−1(m̄− f)

)
= (I − P )C̄− 1

2E
(
C̄− 1

2 (m̄− f)
)

= 0

due to the fact that the conditional GP is Bayesian and thus calibrated for the prior, by
(Cockayne et al., 2022, Example 1). For the second term we have that

C̃−1k(X ′, X)(v̄ − v) = C̃−1k(X ′, X)(RR⊤ +NN⊤)(v̄ − v)

= C̃−1k(X ′, X)RR⊤(v̄ − v)

since, because the PLS is calibrated, N⊤(v̄ − v) = 0. Continuing, applying Eq. (15) we
have

C̃−1k(X ′, X)RR⊤(v̄ − v) = C̄−1k(X ′, X)RΣ−1(CR
m)−1R⊤(v̄ − v)

E
(
C̃−1k(X ′, X)(v̄ − v)

)
= C̄−1k(X ′, X)RΣ−1(CR

m)−
1
2E

(
(CR

m)−
1
2R⊤(v̄ − v)

)
= 0

again due to calibratedness of the PLS.

Variance Computation. Next, for the variance, we have that

V(C̃− 1
2 (m̃− f)) = C̃

1
2

[
V
(
C̃−1(m̄− f)

)
︸ ︷︷ ︸

(1)

+V
(
C̃−1k(X ′, X)(v̄ − v)

)
︸ ︷︷ ︸

(2)

− 2Cov
(
C̃−1(m̄− f), C̃−1k(X ′, X)(v̄ − v)

)
︸ ︷︷ ︸

(3)

]
C̃

1
2 .

Starting with (1), from Eq. (16) we obtain

V(C̃−1(m̄− f)) = (I − P )C̄− 1
2 V

[
C̄− 1

2 (m̄− f)
]

︸ ︷︷ ︸
=I

C̄− 1
2 (I − P )⊤

= (I − P )C̄−1(I − P )⊤

where the fact that V
[
C̄− 1

2 (m̄− f)
]
= I is due to calibratedness. Clearly

(I − P )C̄−1(I − P )⊤ = C̄−1 − PC̄−1 − C̄−1P⊤ + PC̄−1P⊤

and

PC̄−1 = C̄−1P⊤ = C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1.
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Furthermore,

PC̄−1P⊤ = C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

= C̄−1k(X ′, X)RΣ−1R⊤k(X,X ′)C̄−1k(X ′, X)RΣ−1R⊤k(X,X ′)C̄−1

= C̄−1k(X ′, X)RΣ−1
[
Σ− (CR

m)−1
]
Σ−1R⊤k(X,X ′)C̄−1

= C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1 − C̄−1k(X ′, X)RΣ−1(CR
m)−1Σ−1R⊤k(X,X ′)C̄−1

and so

V(C̃−1(m− f)) = C̄−1 − C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

− C̄−1k(X ′, X)RΣ−1(CR
m)−1Σ−1R⊤k(X,X ′)C̄−1

= C̃−1 − C̄−1k(X ′, X)RΣ−1(CR
m)−1Σ−1R⊤k(X,X ′)C̄−1. (17)

Now for (2), again applying Eq. (15)

V
(
C̃−1k(X ′, X)(v̄ − v)

)
= V

(
C̃−1k(X ′, X)(RR⊤ +NN⊤)(v̄ − v)

)
= V

(
C̃−1k(X ′, X)RR⊤(v̄ − v)

)
since N⊤(v̄ − v) = 0 due to calibratedness of the PLS. Further we have

V
(
C̃−1k(X ′, X)RR⊤(v̄ − v)

)
= V

(
C̄−1k(X ′, X)RΣ−1(CR

m)−1R⊤(v̄ − v)
)

= C̄−1k(X ′, X)RΣ−1(CR
m)−

1
2V

(
(CR

m)−
1
2R⊤(v̄ − v)

)
(CR

m)−
1
2Σ−1R⊤k(X,X ′)C̄−1

= C̄−1k(X ′, X)RΣ−1(CR
m)−1Σ−1R⊤k(X,X ′)C̄−1

where the inner variance on the second line is I again due to calibratedness. This cancels
with Eq. (17), yielding

V(C̃−1(m− f)) + V(C̃−1k(X ′, X)(v̄ − v)) = C̄−1 − C̄−1k(X ′, X)ΣRk(X,X ′)C̄−1

= C̃−1

so that

C̃
1
2

[
V(C̃−1(m− f)) + V(C̃−1k(X ′, X)(v̄ − v))

]
C̃

1
2 = I (18)

Finally, we examine the cross covariance term (3). Clearly

Cov
(
C̃−1(m̄− f), C̃−1k(X ′, X)(v̄ − v)

)
= C̃−1Cov (m̄− f, v̄ − v) k(X,X ′)C̃−1.

and due to bilinearity of the covariance we have

Cov (m̄− f, v̄ − v) = Cov (m̄− f, v̄)− Cov (m̄, v) + Cov (f, v) .

19



The last two terms can be calculated directly. Since m̄(X ′) = m0(X
′) + k(X ′, X)v and

v = G−1y, we get

Cov (m̄, v) = k(X ′, X)Cov (v, v)

= k(X ′, X)G−1

Cov (f, v) = Cov(f, y)G−1

= k(X ′, X)G−1

and so

Cov (m̄− f, v̄ − v) = Cov (m̄− f, v̄)−G−1k(X ′, X) +G−1k(X ′, X)

= Cov (m̄− f, v̄)

We can also simplify this result again using the expressions for m̄ and f . Since m̄(X ′) =
m0(X

′) +K(X ′, X)G−1y we have

Cov (m̄− f, v̄) = k(X ′, X)G−1Cov(y, v̄)− Cov(f(X ′), v̄)

= 0

by condition Item 2 from the theorem.
Putting this together we obtain that

C̃
1
2

[
V(C̃−1(m̃− f))

]
C̃

1
2 = I

as required.

Proof of Corollary 5. Since v̄ = My + g,

Cov(f(X ′), v̄) = Cov(f(X ′), y)M⊤

= k(X ′, X)M⊤

and

Cov(y, v) = Cov(y,My)

= GM⊤

so that

K(X ′, X)G−1Cov(y, v̄) = K(X ′, X)M⊤,

completing the proof.

Proof of Proposition 6. We first have that C0 = G−1. Therefore,

C1 = MG−1M⊤

= (I − M̃G)G−1(I − M̃G)⊤

= G−1 − M̃ − M̃⊤ + M̃GM̃⊤
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so that C1 = G−1 −D1 where D1 = M̃ + M̃⊤ − M̃GM̃⊤.
Proceeding inductively, suppose that Ci−1 = G−1 −Di−1. Then applying the above,

Ci = (I − M̃G)(G−1 −Di−1)(I − M̃G)⊤

= G−1 − M̃ − M̃⊤ + M̃GM̃⊤

− (I − M̃G)Di−1(I − M̃G)⊤

= G−1 −Di

where
Di = M̃ + M̃⊤ − M̃GM̃⊤ + (I − M̃G)Di−1(I − M̃G)⊤. (19)

We therefore obtain the required structure.

Proof of Proposition 7. Note that since Cm is a Gramian matrix, null(Cm) =

null(G− 1
2 (Mm)⊤) = null((Mm)⊤), since G− 1

2 is positive definite. (This follows from the

fact that if Cmv = 0 then ∥C
1
2
mv∥2 = 0 for any factor C

1
2
m).

For Gauss-Seidel with m = 1 we have that rank(M⊤) = rank(U⊤L−1). From (Ipsen,
2009, Fact 6.3), the range of U⊤L−⊤ is the same as the range of U⊤, which is easily seen
to be span(e2, . . . , ed) thanks to the strict lower triangular structure of U⊤. As a result
the rank of M⊤ is d−1. Using the rank-nullity theorem, we therefore have that the null
space of M⊤ is 1-dimensional, and it is similarly easy to see that the null space must be
span(L⊤ed).

Proceeding to m = 2, we will identify the null space of (M⊤)2. Consider (M⊤)2v for
arbitrary v. Clearly (M⊤)2v = 0 if for some α either:

1. v = αL⊤ed (i.e. v lies in the null space of M⊤).

2. M⊤v = αL⊤ed (i.e. M⊤v lies in the null space of M⊤).

Considering the latter, if M⊤v = L⊤ed then Mv is equal to the last column of L⊤.
However since the last column of L⊤ is dense, it does not lie in the range of U⊤L−⊤

(since the first component is nonzero). Hence, the null space of (M⊤)2 is the same as
the null space of M⊤, and its rank is d − 1 using the rank-nullity theorem. Iterating
this argument shows that the null space of (Mm)⊤ is span(L⊤ed). The statement about
ranks again follows from the rank-nullity theorem. This completes the proof.

B. Simulation-Based Calibration

In this section we outline the simulation-based calibration procedure introduced in Talts
et al. (2018), which can be used to test for calibratedness numerically. The approach op-
erates on similar principles to those described in Section 2.3, but pushes samples through
a test functional to produce samples whose distribution can be more easily evaluated
empirically. As a result, these tests are a necessary condition for strong calibration but
not a sufficient one.
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(a) Varying m. (b) Varying d. (c) Varying dtest.

Figure 4: Timings for the large-scale regression problem from Section 5.2 as a variety of
parameters are varied.

Since we operate in a Gaussian framework we will use a test statistic derived from
projecting the distribution through a vector w⊤, as the required marginal distribution
is then straightforward to derive. In this setting the simulation-based calibration test
reduces to that described in Algorithm 3.

Algorithm 3 Simulation-Based Calibration. Φ denotes the CDF of the standard Gaus-
sian distribution.

Require: Prior µ0 = N (u0,Σ0), data-generating model dgm, learning procedure µ,
number of simulations Nsim, test vector w.

1: for i = 1 to Nsim do
2: u⋆i ∼ µ0

3: yi = dgm(u⋆i )
4: µi = µ(µ0, yi) = N (ūi, Σ̄i)

5: ti = Φ

(
w⊤(ūi−u⋆

i )

(w⊤Σiw)
1
2

)
6: Plot histogram of {ti}Ni=1 and compare to U(0, 1).

Typically, we will choose w to be a random unit vector. Algorithm 3 can then be
used to check whether an arbitrary Gaussian learning procedure is calibrated and, in
particular, to highlight miscalibration of CAGP-CG in Section 5. In the event of miscal-
ibration, the histogram may have a U-shape in the event of an overconfident posterior
(i.e. the truth is typically in the tails of the learned distribution) or an inverted U-shape
for a conservative posterior (i.e. the truth is typically near the modal point), though of
course other shapes are possible.

C. Further Simulation Results

C.1. ERA5 Regression Problem

Fig. 4 reports timings for the ERA5 regression problem from Section 5.2, while Fig. 5
shows results of the calibratedness experiment reported therein.
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(a) CAGP-GS (b) CAGP-CG

Figure 5: Calibration results for the large-scale regression problem from Section 5.2
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