
Computation-Aware Kalman Filtering and Smoothing

Marvin Pförtner1 Jonathan Wenger2 Jon Cockayne3 Philipp Hennig1

1 Tübingen AI Center, University of Tübingen 2 Columbia University 3 University of Southampton

Abstract

Kalman filtering and smoothing are the foun-
dational mechanisms for efficient inference in
Gauss–Markov models. However, their time
and memory complexities scale prohibitively
with the size of the state space. This is par-
ticularly problematic in spatiotemporal re-
gression problems, where the state dimension
scales with the number of spatial observa-
tions. Existing approximate frameworks lever-
age low-rank approximations of the covariance
matrix. But since they do not model the error
introduced by the computational approxima-
tion, their predictive uncertainty estimates
can be overly optimistic. In this work, we
propose a probabilistic numerical method for
inference in high-dimensional Gauss–Markov
models which mitigates these scaling issues.
Our matrix-free iterative algorithm leverages
GPU acceleration and crucially enables a tun-
able trade-off between computational cost and
predictive uncertainty. Finally, we demon-
strate the scalability of our method on a large-
scale climate dataset.

1 INTRODUCTION

From language modeling to robotics to climate science,
many application domains of machine learning generate
data that are correlated in time. By describing the
underlying temporal dynamics via a state-space model
(SSM), the sequential structure can be leveraged to
perform efficient inference. In machine learning, state-
space models are widely used in reinforcement learning
(Hafner et al., 2019), as well as in deep (Gu and Dao,
2023) and probabilistic (Särkkä and Svensson, 2023)

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

sequence modeling. For example, suppose we aim to
forecast temperature as a function of time from a set of
K observations. Standard regression approaches have
cubic cost O(K3) in the number of data points (Ras-
mussen and Williams, 2006). Instead, one can leverage
the temporal structure of the problem by representing
it as a state-space model and performing Bayesian fil-
tering and smoothing, which has linear time complexity
O(K) (Särkkä and Svensson, 2023).

Challenges of a Large State-Space Dimension
However, if the latent state has more than a few di-
mensions, inference in a state-space model can quickly
become prohibitive. The overall computational cost is
linear in time, but cubic in the size of the state space
D with a quadratic memory requirement. Returning
to the example above, suppose temperatures are given
at a set of NX spatial measurement locations around
the globe. Assuming a non-zero correlation in tem-
perature between those locations, the computational
cost O(K ·D3) with D = O(NX) quickly becomes pro-
hibitive. In response, many approximate filtering and
smoothing algorithms have been proposed, e.g., based
on sampling (e.g., Evensen, 1994), Krylov subspace
methods (Bardsley et al., 2011), sketching (Berberidis
and Giannakis, 2017), and dynamical-low-rank approx-
imation (Schmidt et al., 2023). All of these methods
inevitably introduce approximation error, which is not
accounted for in the uncertainty estimates of the re-
sulting posterior distributions.

Computation-Aware Filtering and Smoothing
In this work, we introduce computation-aware Kalman
filters (CAKFs) and smoothers (CAKSs): novel approx-
imate versions of the Kalman filter and Rauch–Tung–
Striebel (RTS) smoother. Approximations are intro-
duced both to reduce the computational cost through
low-dimensional projection of the data (Section 3.1)
and memory burden through covariance truncation
(Section 3.2). Alongside their prediction for the under-
lying dynamics, they return a combined uncertainty
estimate quantifying both epistemic uncertainty and
approximation error. Figure 1 showcases our approach

Computation-Aware Kalman Filtering and Smoothing

(a) D = 14 640

Mean Standard Deviation

(b) D = 231 360

Mean Standard Deviation

Figure 1: Spatio-temporal Gaussian process regression of Earth’s surface temperature using the ERA5 dataset
(Hersbach et al., 2020) via computation-aware filtering and smoothing for two different values of state-space
dimension D. Kalman filtering and RTS smoothing would require in excess of 1.17TiB of memory to generate
Figure 1(b). Our novel algorithms scale to larger state-space dimension D with lower time and memory costs,
resolving finer detail and achieving better predictive performance.

on a large-scale spatiotemporal regression problem.

Contribution We introduce the CAKF and CAKS,
novel filtering and smoothing algorithms that are:

(1) iterative and matrix-free, and can fully leverage
modern parallel hardware (i.e., GPUs);

(2) more efficient both in time and space than their
standard versions (see Section 5.1); and

(3) computation-aware, i.e., they come with theoretical
guarantees for their uncertainty estimates which
capture the inevitable approximation error (Theo-
rem 1).

We demonstrate the scalability of our approach em-
pirically on climate data with up to K · NX ≈ 4M
observations and state-space dimension D ≈ 230k.

2 BACKGROUND

Many temporal processes can be modeled with a linear-
Gaussian state-space model, in which exact Bayesian
inference can be done efficiently using the Kalman filter
and Rauch–Tung–Striebel smoother.

2.1 Bayesian Inference in Linear-Gaussian
State-Space Models

In the following, we want to infer the values of the
states uk ∈ RD of an unobserved discrete-time Gauss–
Markov process {uk}Kk=0 (or a discretized continuous-
time Gauss–Markov process with uk = u(ttraink);
see Appendix B.4) defined by the dynamics model
uk+1 = Akuk + bk + qk with u0 ∼ N (µ0,Σ0) and
qk ∼ N (0,Qk) from a given set of noisy observa-

tions {yk}Kk=1 made through the observation model
yk := Hkuk + ϵk ∈ RNk . with ϵk ∼ N (0,Λk). Col-
lectively, the dynamics and observation models are
referred to as a linear-Gaussian state-space model
(LGSSM). The initial state u0, the process noise
{qk}K−1

k=0 , and the observation noise {ϵk}Kk=1 are pair-
wise independent. One can show that uk ∼ N (µk,Σk)
with µk+1 = Akµk + bk and Σk+1 = AkΣkA

⊤
k +Qk.

The Kalman filter is an algorithm for computing con-
ditional distributions of the form uk | y1:k = y1:k,
k = 1, . . . ,K. It alternates recursively between com-
puting the moments

m−
k := Ak−1mk−1 + bk−1

P−
k := Ak−1Pk−1A

⊤
k−1 +Qk−1

of uk | y1:k−1 = y1:k−1 ∼ N
(
m−

k ,P
−
k

)
in the predict

step and the moments

mk := m−
k + P−

k HkG
−1
k (yk −Hkm

−
k) (2.1a)

Pk := P−
k − P−

k HkG
−1
k H⊤

k P−
k (2.1b)

of uk | y1:k = y1:k ∼ N (mk,Pk) in the update step,
where Gk := HkP

−
k H⊤

k +Λk is the innovation matrix.
The conditional distributions computed by the filter are
mainly useful for forecasting. Interpolation requires the
full Bayesian posterior uk |y1:K = y1:K ∼ N (ms

k,P
s
k).

Its moments can be computed from the filter moments
via the Rauch–Tung–Striebel (RTS) smoother recursion

ms
k := mk +Ks

k(m
s
k+1 −m−

k+1)

P s
k := Pk +Ks

k(P
s
k+1 − P−

k+1)(K
s
k)

⊤

with Ks
k := PkA

⊤
k (P

−
k+1)

−1, ms
K = mK , and P s

K =
PK . See Särkkä and Svensson (2023) for an in-depth
introduction to Kalman filtering and RTS smoothing.

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

2.2 Spatiotemporal Regression

A major application of state-space models is spatiotem-
poral Gaussian Process (GP) regression (Hartikainen
and Särkkä, 2010; Särkkä et al., 2013). Suppose we
aim to learn a function f⋆ : [t0, T]×X→ R from train-
ing data {((ttraink ,Xtrain

k),yk)}Kk=1 with ttraink ∈ [t0, T],
Xtrain

k ∈ XNk , and yk ∈ RNk . We assume a GP
prior f ∼ GP (µ,Σ) for f⋆. If the multi-output GP
f(t,x) := (∂i

tf(t,x))
D′−1
i=0 ∈ RD′

defined by f and D′−1
of its time derivatives is a space-time separable Gauss–
Markov process1(STSGMP), then one can construct
an equivalent linear-Gaussian state-space model (see
Lemma C.2) with uk := f(ttraink ,X) ∈ RD′×NX , where
X ∈ XNX such that Xtrain

k ⊂X for all k = 1, . . . ,K.
Therefore, assuming that Xtrain

k = X and Nk = NX ,
the computational cost of spatiotemporal GP regres-
sion can be reduced from O(K3N3

X) to O(KN3
X) via

Bayesian filtering and smoothing.

3 COMPUTATION-AWARE
KALMAN FILTERING

While filtering and smoothing are efficient in time, they
scale prohibitively with the dimension D of the state
space. Direct implementations of the Kalman filter
incur two major computational challenges that are
addressed with the CAKF:

(C1) The state covariances P−
k ,Pk ∈ RD×D need to be

stored in memory, requiring O(D2) space.

(C2) The inversion of the innovation matrix Gk ∈
RNk×Nk costs O(N3

k) time and O(N2
k) space.

Both of these quickly become prohibitive if D and/or
Nk is large. To mitigate these costs, we apply iterative,
matrix-free linear algebra in the Kalman recursion.

3.1 From Matrix-y to Matrix-Free

We start by noting that the Kalman filter’s update step
at time k conditions the predictive belief uk | y1:k−1 =
y1:k−1 on the observation that yk = yk. To reduce
both the time and memory complexity of the update
step, we project both sides of the observation onto a
low-dimensional subspace: y̌k := Ŝ⊤

k yk = Ŝ⊤
k yk =: y̌k,

where Ŝk ∈ RNk×Ňk with Ňk ≪ Nk. The correspond-
ing modified observation model then reads

y̌k = Ŝ⊤
k Hk

=:Ȟk

uk + Ŝ⊤
k ϵk
=:ϵ̌k

∈ RŇk , (3.1)

1See Appendix C.1. While not every GP prior induces an
STSGMP, a broad class of common spatiotemporal models
do (see Remark C.5 for details).

where ϵ̌k ∼ N
(
0, Λ̌k

)
with Λ̌k := Ŝ⊤

k ΛkŜk. Conse-
quently, the modified filtering equations can be ob-
tained from (2.1) by substituting yk 7→ y̌k, Hk 7→ Ȟk

and Λk 7→ Λ̌k. The inversion of the innovation matrix
Ǧk ∈ RŇ×Ň in the projected update step then costs
O(Ň3

k) time and O(Ň2
k) memory, which solves (C2).

Since Ŝk is not square, the projection results in a loss
of information and the filtering moments {m̂k, P̂k}Kk=0

and {m̂−
k , P̂

−
k }Kk=0 obtained from the Kalman recur-

sion with the modified observation model (3.1) are only
approximations of the corresponding moments from
the unmodified Kalman recursion. We can choose the
columns of Ŝk, the actions, such that they retain the
most informative parts of the observation, keeping the
approximation error small; more on this in Section 3.3.
Moreover, we show in Section 5 that the approxima-
tion error in the state mean will be accounted for by
an increase in the corresponding state covariance and
hence our inference procedure is computation-aware
(in the sense of Wenger et al. (2022)). In essence, this
is because we made the projection onto Ŝk part of
the modified observation model (3.1), i.e., the likeli-
hood accounts for the fact that we do not observe the
data yk in the orthogonal complement of span

(
Ŝk

)
.

The resulting posterior is sometimes called a partial
posterior, and such posteriors are known to provide sen-
sible uncertainty quantification under certain technical
assumptions (Cockayne et al., 2022).

Since Ňk ≪ Nk, one can show that the updated
state covariance P̂k under the modified observation
model differs from the corresponding predictive state
covariance P̂−

k by a low-rank downdate P̂k = P̂−
k −

P̂−
k Ȟ⊤

k V̌k(P̂
−
k Ȟ⊤

k V̌k)
⊤, where V̌k ∈ RŇk×Ňk with

V̌kV̌
⊤
k = Ǧ−1

k . It turns out that the recursion for
the state covariances in the Kalman filter is compatible
with the low-rank downdate structure. More precisely,
in Proposition B.3, we show that

P̂−
k = Σk − M̂−

k (M̂−
k)⊤,

P̂k = Σk − M̂kM̂
⊤
k ,

where M̂−
k = Ak−1M̂k−1 and M̂k =

(M̂−
k P̂−

k Ȟ⊤
k V̌k). Incidentally, this observa-

tion solves (C1): When implementing the CAKF using
the recursions from Proposition B.3, we only need
access to matrix-vector products Σkv, Akv, H⊤

k v,
and Λkv with Ňk + 1 vectors v. In many cases, such
matrix-vector products can be efficiently implemented
or accurately approximated in a “matrix-free” fashion,
i.e., without needing to store the matrix in memory, at
cost (much) less than O(D2) space and sometimes less
than O(D2) time (though matrix-free time complexity
is often higher for dense matrices). For instance,
this is possible if {uk}Kk=0 is a discretization of a

Computation-Aware Kalman Filtering and Smoothing

continuous-time space-time separable Gauss–Markov
process with known covariance function, in which
case an expression for the entries (Σk)ij of the state
covariance is known. We emphasize the matrix-free
implementation of our algorithm by highlighting
matrices that are not instantiated in memory (e.g.,
P̂−

k) in Algorithms 1 to 3. Assuming the rank of the
downdates in Proposition B.3 is small (c.f. Section 3.2),
such a matrix-free implementation of a Kalman filter
incurs linear memory cost per time step.

Pseudocode for the procedure outlined above can be
found in Algorithms 1 and 2. In the algorithm, the
IsMissing line is included to allow a user to make
predictions for intermediate states k for which there
is no associated data. The choice of Ŝk is given by
a state-dependent Policy. In Algorithm 2, Ŝk is
selected in batch through a single call to Policy at
the beginning of each update step. This is mostly
presented for clarity; in practice we implement the
update step as shown in Algorithm B.4. Algorithm B.4
can be derived as successive conditioning of ûf−

k on
the events ⟨ŝ(i)k ,yk⟩2 = ⟨ŝ(i)k ,yk⟩2 for i = 1, . . . , Ňk,
where the actions ŝ

(i)
k form the columns of Ŝk. One

can show that this is equivalent to conditioning on
Ŝ⊤
k yk = Ŝ⊤

k yk. However, such a sequential selection
of the actions through calls to Policy that can access
the current state of the iteration (e.g., through data
residuals) allows the actions to adapt to the problem
more effectively.

Algorithm 1 Computation-Aware Kalman Filter
(CAKF)

fn Filter(m̂0, {Σk,Ak, bk,Hk,Λk,yk}Kk=0)
M̂+

0 ← () ∈ RD×0

for k = 1, . . . ,K do
m̂−

k ← Ak−1[m̂k−1] + bk−1 ▷ Predict
M̂−

k ← Ak−1[M̂
+
k−1]

if ¬IsMissing(yk) then
m̂k,M̂k ← Update(m̂−

k ,M̂
−
k , . . .)

else
m̂k,M̂k ← m̂−

k ,M̂
−
k

M̂+
k ← Truncate(M̂k)

return {m̂k,M̂k}Kk=0

3.2 Downdate Truncation

While the algorithm is matrix-free in the sense of not
needing to compute and store D × D matrices, the
accumulation of the downdate matrices M̂k results
in an O(D

∑k
l=1 Ňl) memory cost at step k, which

can easily exceed O(D2) as k grows. To address this,
we introduce an optimal truncation of the downdate
matrices in the Truncate procedure to control the
memory requirements of the algorithm.

Algorithm 2 CAKF Update Step
fn Update(m̂−,M̂−,Σ,H,Λ,y)

P̂− ← Σ− M̂−(M̂−)⊤

Ŝ ← Policy(m̂−, P̂−, . . .)

Ȟ⊤ ←H⊤[Ŝ]

Λ̌← Ŝ⊤Λ[Ŝ]

y̌ ← Ŝ⊤y

Ǧ← ȞP̂−[Ȟ⊤] + Λ̌
V̌ ← lsqrt(Ǧ†)
ŵ ← Ȟ⊤Ǧ†(y̌ − Ȟm̂−)

Ŵ ← Ȟ⊤V̌
m̂← m̂− + P̂−[ŵ]

M̂ ←
(
M̂− P̂−[Ŵ]

)
return (m̂,M̂)

Consider the square root M̂k ∈ RD×rk of a belief
covariance downdate. We truncate the downdate ma-
trices by selecting r+k ≤ rk (typically r+k ≪ rk), M̂+

k ∈
RD×r+k , and Nk ∈ RD×(rk−r+k) such that M̂kM̂

⊤
k =

M̂+
k (M̂+

k)⊤ +NkN
⊤
k and approximating M̂k ≈ M̂+

k

as well as P̂k ≈ P̂+
k := Σk − M̂+

k (M̂+
k)⊤. Noting that

P̂+
k = P̂k+NkN

⊤
k , we realise that the truncation of the

downdate can be interpreted as the addition of indepen-
dent computational uncertainty (Wenger et al., 2022):
additional noise qcomp

k ∼ N
(
0,NkN

⊤
k

)
added to the

posterior covariance to account for uncertainty due to
incomplete computation, in this case, truncation. To
represent this, we augment the dynamics model with ad-
ditional prior states u+

k ,u
−
k as visualized in Figure B.1,

such that u+
k := uk + qcomp

k , u−
k+1 := Aku

+
k + bk + qk,

and uk := u−
k . Even though the truncation leads to

a further approximation of the state beliefs, this ap-
proximation will be conservative, which directly follows
from the computational noise interpretation above.

We truncate by computing a singular-value decom-
position of M̂kM̂

⊤
k , and dropping the subspace cor-

responding to the smallest singular vectors. By the
Eckart–Young–Mirsky theorem (Mirsky, 1960), this
truncation is optimal with respect to all unitarily in-
variant matrix norms. The effect of rank truncation
is that at most O(dr+k) memory is required to store
the downdate matrices, and that the cost of computing
matrix-vector products with the truncated covariance
P̂+

k is at most O(ρk + dr+k), where ρk is the cost of
computing a matrix-vector product with Σk.

3.3 Choice of Policy

It remains to specify a Policy defining the actions
Ŝk. This can have a significant impact on the algo-
rithm, both from the perspective of how close the
CAKF states are to the states of the true Kalman filter
and in terms of its computational cost. Heuristically,
we would like to make Ňk as small as possible while

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

keeping N
(
m̂k, P̂k

)
close to N (mk,Pk). We discuss

and compare a number of natural policy choices in
more detail in Appendix D.3. In the experiments in
Section 7 we exclusively use Lanczos/CG-based direc-
tions, corresponding to choosing the current residual
r̂
(i)
k as the action in iteration i of Algorithm B.4, i.e.,

Policy(i, . . .) = r̂
(i)
k . We found these to perform well

empirically compared to other choices (see Figure D.3),
and similar policies have been found effective in related
work (Wenger et al., 2022; Cockayne et al., 2019a).

4 COMPUTATION-AWARE RTS
SMOOTHING

Algorithm 3 Computation-Aware RTS Smoother
(CAKS)

fn Smooth({. . . , m̂k,M̂k, ŵk, Ŵk, . . . }Kk=1)
ŵs

K ← ŵK

Ŵ s
K ← ŴK

for k = K − 1, . . . , 0 do
m̂s

k ← m̂k + P̂kA
⊤
k [ŵ

s
k+1]

M̂ s
k ←

(
M̂k P̂kA

⊤
k [Ŵ

s
k+1]

)
ŵs

k ← ŵk + (I − ŴkŴ
⊤
k P̂−

k)A⊤
k [ŵ

s
k+1]

Ŵ s
k ←

(
Ŵk (I − ŴkŴ

⊤
k P̂−

k)A⊤
k [Ŵ

s
k+1]

)
Ŵ s

k ← Truncate(Ŵ s
k)

return {m̂s
k,M̂

s
k}Kk=0

If the state-space dimension D is large, naive imple-
mentations of the RTS smoother face similar chal-
lenges to those outlined for the Kalman filter in Sec-
tion 3. This is due to the smoother gain matri-
ces Ks

k defined in Section 2.1 needing to be stored
and inverted at O(D3) time and O(D2) memory cost.
Fortunately, we can apply a similar strategy to Sec-
tion 3.1 to make the smoother matrix-free. Specifi-
cally, in Proposition B.5 we show that the mean and
covariance of the RTS smoother can be computed
from quantities precomputed in the Kalman filter, i.e.,
without the need to compute any additional inverses:
ms

k = mk+PkA
⊤
k w

s
k and P s

k = Σk−M s
k(M

s
k)

⊤ with
M s

k =
(
Mk PkA

⊤
k W

s
k

)
, where recursive expressions

for ws
k and W s

k are given in Equations (B.1) and (B.2).
Hence, just as for the filtering covariances, the smoother
covariances take the form of a downdated prior covari-
ance. The terms ws

k and W s
k can be efficiently com-

puted from quantities cached in Algorithms 1 and 2
without materializing any O(D2) matrices in memory.
Applying Proposition B.52 in matrix-free form to the
modified state-space model of the CAKF introduced in

2We would like to point out that Proposition B.5 may
be of independent interest since it is (to the best of our
knowledge) a novel result about the RTS smoother that can
be used as an alternative to the standard RTS smoothing
recursions for increased numerical stability.

Section 3 yields Algorithm 3 – the computation-aware
RTS smoother (CAKS).

While the cost of filtering is reduced by the low-
dimensional projection of the data, the same does not
hold for the smoother. Examining Algorithm 2 we see
that P̂−

k only appears in a product with Ȟ, whereas
in Algorithm 3 products with P̂−

k appear directly. It
is also necessary to truncate the directions Ŵ s

k accu-
mulated over the course of the smoother to mitigate
a further O(D

∑K
l=k Ňl) storage cost. This is imple-

mented using the same procedure as in Section 3.2.

In Appendix B.3 we use Matheron’s rule to derive an
algorithm for sampling from the posterior process, i.e.,
the CAKS states ûs

k, pseudocode for which is given
in Algorithm B.1. Counterintuitively, Algorithm B.1
can draw samples from the smoother states without
the requirement to run the CAKS, since all necessary
quantities have already been computed in the CAKF.

In Appendix B.4 we show that both the CAKF and
CAKS can also be applied if the dynamics model is a
continuous-time Gauss–Markov process. In this case,
the CAKS provides efficient access to intermediate
posterior states u(t) |y1:K = y1:K for arbitrary t ∈ T.

5 THEORETICAL ANALYSIS

5.1 Computational Complexity

As mentioned in Section 3, the CAKF and CAKS as-
sume that we can efficiently evaluate matrix-vector
products with Σk, Ak, H⊤

k , and Λk, without synthe-
sizing the matrices in memory. More precisely, we
assume that matrix-vector products with these matri-
ces can be computed with a memory complexity linear
in the larger of their two dimensions and with the same
worst-case time complexity.

Filtering The CAKF predict step at time k costs at
most O(D2r+k−1) time and O(Dr+k−1) memory. The
CAKF update step at time k costs at most O

(
(DNk +

N2
k +D2)Ňk

)
time and O

(
(Nk +D)Ňk

)
memory. The

SVD downdate truncation has a time complexity of at
most O(D(r+k−1 + Ňk)

2).

Smoothing CAKS iteration k costs O
(
D(D +

Ňk)r
+
k+1 +DŇ2

k

)
time and O

(
(D + Ňk)r

+
k+1

)
memory.

Simplified Complexities In practice, especially for
spatiotemporal GP regression, it virtually always holds
that D = O(Nk). With this assumption, the time and
memory complexities of the CAKF update step simplify
to O(D2Ňk) and O(DŇk), respectively. Similarly, iter-
ation k of the smoother then costs O(D2(r+k+1 + Ňk))

time and O(Dr+k+1) memory. It is also sometimes de-
sirable to set r+k ≤ rmax and Ňk ≤ Ňmax, i.e., uniform

Computation-Aware Kalman Filtering and Smoothing

in k, with rmax = O(Ňmax). In this case, running
both CAKF and CAKS for K time steps results in
worst-case time and memory complexities of
O
(
KD2Ňmax

)
and O

(
KDŇmax

)
.

5.2 Error Bound for Spatiotemporal
Regression

It is important to understand the impact of the ap-
proximations made by the CAKF and CAKS on the
resulting predictions. So far we have argued informally,
that the additional uncertainty of the CAKS captures
the approximation error. We will now make this state-
ment rigorous for the case of spatiotemporal regression.

Theorem 1 (Pointwise Worst-Case Prediction Error).
Let Z = [t0, T]× X and define a space-time separable
Gauss–Markov process f ∼ GP (µ,Σ) such that its
first component f := f0 ∼ GP (µ,Σ) defines a prior
for the latent function f⋆ ∈ HΣ generating the data,
assumed to be an element of the RKHS defined by HΣ.
Given observation noise σ2 ≥ 0, let y⋆(·) ∈ HΣσ be the
observed process with Σσ(z, z′) := Σ(z, z′)+σ2δ(z, z′).
Given training inputs Ztrain ∈ ZN and targets ytrain =
y⋆(Ztrain) ∈ RN , let m̂s(z | y⋆) and P̂ s(z) be the mean
and variance of the CAKS for an arbitrary test input
z = (t,x) ∈ Z \Ztrain. Then

sup
y∈HΣσ\{0}

|y(z)− m̂s(z | y)0|
∥y∥HΣσ

=

√
P̂ s(z)0,0 + σ2.

(5.1)
If σ2 = 0, this also holds for training inputs z ∈ Ztrain.

The proof can be found in Appendix C.2. Theorem 1
says that the (relative) worst-case error of the CAKS’s
posterior mean m̂s(· | y⋆)0 computed for data from the
data-generating process y⋆(·) is tightly bounded by its
predictive standard deviation (P̂ s(z)0,0+σ2)1/2 (assum-
ing no truncation). Importantly, this guarantee is of
the same form as the one satisfied by the exact posterior
predictive GP

(
µ̄y⋆

, Σ̄ + σ2δ
)

for the same prior (see
Prop. 3.8 of Kanagawa et al. (2018)), except for the cor-
responding approximations. In this sense, Theorem 1
makes the nomenclature computation-aware rig-
orous, since both the error due to finite data
and the inevitable approximation error incurred
by using m̂s

0 ≈ µ̄y⋆

for prediction is quantified by
its uncertainty estimate. Finally, truncation only
increases the marginal variance of the CAKS, which
leads us to conject that the same guarantee as in Equa-
tion (5.1) holds with inequality for truncation.

6 RELATED WORK

Reducing the cost of Kalman filtering and smoothing in
the high-dimensional regime is a fundamental problem.

A large family of methods accelerates Kalman filtering
by truncating state covariance matrices. This includes
the ensemble Kalman filter (EnKF) (Evensen, 1994)
and its variants, as well as the reduced-rank Kalman
filter (RRKF) (Schmidt et al., 2023). However in con-
trast to this work, these approaches truncate the full
state covariance rather than downdates, which can
lead to overconfident uncertainty estimates (Schmidt
et al., 2023, Appendix E). Some authors also propose di-
mension reduction techniques for the state space (e.g.,
Solonen et al., 2016) with the notable exception of
Berberidis and Giannakis (2017), who focus on data
dimension reduction, as we do here. Bardsley et al.
(2011) use a similar Lanczos-inspired methodology; in
certain settings, this is equivalent to low-dimensional
projections of the data.

The main application of high-dimensional filtering and
smoothing considered in Sections 5 and 7 is to spa-
tiotemporal GP regression. This connection was first
expounded in Hartikainen and Särkkä (2010); Särkkä
et al. (2013) and generalized to a wider class of covari-
ance functions in Todescato et al. (2020). These works
focus on discretizing the GP to obtain a state-space
model. One can also apply the Kalman filter directly in
the infinite-dimensional setting, as proposed by Särkkä
and Hartikainen (2012); Solin and Särkkä (2013).

The CAKF is a probabilistic numerical method (Hen-
nig et al., 2015; Cockayne et al., 2019b; Hennig et al.,
2022). In particular, Algorithm B.4 is closely related to
the literature on probabilistic linear solvers (Cockayne
et al., 2019a; Hennig, 2015; Wenger and Hennig, 2020),
which frequently employ the Lanczos process. The idea
of using such solvers for GP regression was explored in
Wenger et al. (2022), which first proposed the construc-
tion of computation-aware solvers; the sense in which
the CAKF is computation-aware is slightly different,
in that the truncation of the covariance downdates also
plays a role. Tatzel et al. (2023) explore similar ideas
in the context of Bayesian generalized linear models.

7 EXPERIMENTS

To evaluate the computation-aware Kalman filter and
smoother empirically, we apply it to spatiotemporal
regression problems with synthetic data and a large-
scale dataset from the geosciences.

Model All experiments will use Gaussian process priors
f ∼ GP (0,Σ) with space-time separable covariance
functions Σ((t,x), (t′,x′)) = Σt(t, t′)Σx(x,x′), where
Σt is chosen such that the prior can be represented by
an equivalent STSGMP (see Appendix C.1). We will
assume that the data is corrupted by i.i.d. Gaussian
measurement noise with standard deviation λ. See
Appendix D for details on the model hyperparameters

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

M
S

E

2.0

2.5

3.0

3.5

4.0

Wall Time [s]

100 101 102 103

A
ve

ra
g

e
N

L
D

100

105

1010

EnKF

ETKF-S

ETKF-L

CAKF

Figure 2: Comparison of the CAKF, the EnKF, and
two variants of the ETKF on on-model data with state-
space dimension D = 20 000 while varying the rank pa-
rameters that govern the computational budget of the
algorithms. The CAKF significantly outperforms the
other filter variants for high-dimensional state spaces.

for the respective experiments.

Evaluation We measure the performance of each
method via the mean squared error (MSE) (↓) of its
predictive mean as well as via the average negative
log density (NLD) (↓), which additionally takes uncer-
tainty quantification into account. See Appendix D.1
for details on the evaluation metrics.

Implementation A flexible and efficient implemen-
tation of the CAKF and CAKS, including Matheron
sampling and support for spatiotemporal modeling, is
available as an open-source Julia library at

� / marvinpfoertner /
ComputationAwareKalmanExperiments.jl.

When applying the CAKF and CAKS to separable spa-
tiotemporal Gauss–Markov models, the main perfor-
mance bottleneck is the computation of matrix-vector
products with the prior’s state covariance, since this
involves a multiplication with a large kernel Gram ma-
trix Σx(X,X). Our Julia implementation includes a
custom CUDA kernel for multiplying with Gramians
generated by covariance kernels without materializing

the matrix in memory.3

Hardware All experiments were run on a single dedi-
cated machine equipped with an Intel i7-8700K CPU
with 32GB of RAM and an NVIDIA GeForce RTX
2080 Ti GPU with 11GB of VRAM.

7.1 Comparison to Other Methods

We compare the performance of the CAKF/CAKS both
to the standard Kalman filter and RTS smoother, as
well as ensemble Kalman filters.

Data To isolate the effect of the algorithm on the pre-
diction, we sample on-model datasets from the prior.
To this end, we discretize the prior on regular grids
in both time and space and draw a sample from the
resulting discretized Gauss–Markov process. We pick a
random subset of these points as training data which
are subseqently corrupted by additive Gaussian mea-
surement noise.

7.1.1 Comparison to EnKF and ETKF

We start by comparing the CAKF against its main com-
petitors: ensemble Kalman filters. Among those, we
consider the ensemble Kalman filter (EnKF) (Evensen,
1994) and two variants of the ensemble transform
Kalman filter (ETKF) (Bishop et al., 2001). The
variants of the ETKF differ only in their initializa-
tion and prediction steps. Namely, the first variant
(ETKF-S) uses the same sampling-based initialization
and prediction steps as the EnKF, while the second
variant (ETKF-L) uses the Lanczos process for both
(see Appendix D.2.1). We vary the rank parameter
r = 1, 2, 4, 8, . . . , 1024 that governs the computational
budget of the algorithms, starting at r = 2 for the
EnKF and the ETKF-S and at r = 1 for the ETKF-
L and the CAKF (and we only run the latter up to
r = 512). For a fair comparison, we set both the max-
imal number of iterations as well as the truncation
rank of the CAKF to the same constant value, i.e.,
r+k = Ňmax

k = r. Note that the scalability issues of the
EnKF and ETKF-S outlined in Appendix D.4 limit the
state-space dimension of this problem. The results are
visualized in Figures 2 and D.1.

Interpretation The CAKF consistently outperforms
the ensemble methods in terms of MSE and average
NLD across all ranks. While the difference in MSE
is comparatively small, the CAKF achieves a signif-
icantly lower average NLD. This indicates that the
uncertainty quantification of the CAKF is considerably

3For reference, we observed up to a 600-fold speedup
over the default CPU implementation when multiplying
a 9600×9600 kernel Gram matrix of a three-dimensional
Matérn(3/2) kernel with a 9600×128 matrix.

https://github.com/marvinpfoertner/ComputationAwareKalmanExperiments.jl
https://github.com/marvinpfoertner/ComputationAwareKalmanExperiments.jl

Computation-Aware Kalman Filtering and Smoothing

P
re

d
ic

ti
o

n

S
pa

ce

0

1

2

3

U
n

ce
rt

ai
n

ty

S
p

ac
e

0

1

2

3

Time

0.0 0.5 1.0

A
bs

o
lu

te
 E

rr
o

r

Time

0.0 0.5 1.0

Time

0.0 0.5 1.0

Time

0.0 0.5 1.0

S
p

ac
e

0

1

2

3

−0.3
0.0
0.3
0.6
0.9

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

More Iterations →

(a) CAKS

P
re

d
ic

ti
o

n

S
pa

ce

0

1

2

3

U
n

ce
rt

ai
n

ty

S
p

ac
e

0

1

2

3

Time

0.0 0.5 1.0

A
bs

o
lu

te
 E

rr
o

r

Time

0.0 0.5 1.0

Time

0.0 0.5 1.0

Time

0.0 0.5 1.0

S
p

ac
e

0

1

2

3

−0.3
0.0
0.3
0.6
0.9

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

More Iterations →

−0.3
0.0
0.3
0.6
0.9

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

More Iterations →

(b) CAKS + Truncation

Figure 3: Predictive mean, predictive standard deviation, and pointwise absolute error for an increasing maximal
number of iterations Ňmax ≥ Ňk per time step on a synthetic spatiotemporal regression problem.

more accurate than that of the ensemble methods.

7.1.2 Comparison to Kalman Filter and RTS
Smoother

As the CAKF and CAKS are approximations to the
Kalman filter and RTS smoother, respectively, it is im-
portant to assess the approximation error. To this end,
we compute the errors in the mean and covariance esti-
mates provided by the CAKF and CAKS with varying
rank parameters r+k = Ňmax

k ∈ {1, 16, 32, 64} as com-
pared to the respective mean and covariance estimates
produced by the Kalman filter and RTS smoother on a
sufficiently small problem for which we can run these.
The results can be found in Figure D.2.

Interpretation As expected, the error introduced by
the CAKF and CAKS decreases with increasing rank.
Moreover, both the error in the mean and the error in
the covariance are bounded and stable over time.

7.2 Impact of Truncation

To visualize the effect of the downdate truncation,
we consider a synthetic dataset generated by adding
Gaussian measurement noise to the target function
f⋆(t, x) := sin(x) exp(−t). In Figure 3, we illustrate the
predictive mean of the CAKS, its predictive standard
deviation, and the corresponding pointwise (absolute)
error, both with (Figure 3(a)) and without (Figure 3(b))
truncation. Each column corresponds to a larger num-
ber of iterations Ňmax. Here, the truncation rank is
chosen as r+k = min(2Ňk, r

+
k).

Interpretation For an increasing number of itera-
tions, the error in the predictive mean m̂s(z)0 decreases
and its uncertainty P̂ s(z)0,0 reduces correspondingly.
When the belief is (optimally) truncated to save mem-

ory, the uncertainty tends to increase as Figure 3(b)
illustrates. Notice the trade-off between the degree of
truncation and the impact on the prediction. Finally,
Figure 3 also illustrates that the uncertainty bounds
the error in the predictive mean as shown in Theorem 1.

7.3 Large-Scale Climate Dataset

To demonstrate that our approach scales to large, real-
world problems, we use the CAKS to interpolate earth
surface temperature data over time using an STSGMP
prior on the sphere.

Data We consider the “2m-temperature” variable from
the ERA5 global reanalysis dataset (Hersbach et al.,
2020). The data reside on a 1440×721 spatial latitude-
longitude grid with an hourly temporal resolution. For
our experiments, we selected the first 48 h of 2022 with
a temporal stride of 1 h, i.e., K = 48. To show the
effect of different problem sizes on our algorithms, we
downsample the dataset by factors of 3, 6, 12, and 24
along both spatial dimensions using nearest neighbor
downsampling. A regular subgrid consisting of 25% of
the points in the downsampled dataset is used for test-
ing, while the remaining points are used as a training
set. The total number of spatial points and the number
of spatial training points for each downsampled version
of the dataset can be found in Table D.1.

Evaluation We run the CAKF and the CAKS for
the four different problem sizes (spatial downsampling
factors of 3, 6, 12, and 24) corresponding to increasing
state-space dimension (see Table D.1), for a maximum
of ≈ 4 000 000 training datapoints. For each problem
size, we vary the computational budget, defined by the
number of actions Ňk and the rank r+k = min(2Ňk, rk)
of the downdates after truncation. As the Ňk increases,

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

T
ra

in
 M

S
E

10−4

10−3

10−2

10−1

100

101

102

CAKF

Wallclock Time [min]

1 10 100 1000

T
ra

in
 A

ve
ra

g
e

N
L

D

2

4

6

CAKS

observation noise σ²observation noise σ²observation noise σ²observation noise σ²

Wallclock Time [min]

1 10 100 1000

T
es

t
M

S
E

100

101

102

CAKF

Wallclock Time [min]

1 10 100 1000

T
es

t
A

v
er

ag
e

N
L

D

2.5

3.0

3.5

4.0

CAKS

Wallclock Time [min]

1 10 100 1000

State-Space Dimension

3720 14640 58080 231360

Figure 4: Work-precision diagrams for the CAKF and CAKS on the ERA5 climate dataset. The plot shows the
mean squared error (MSE) and average negative log density (NLD) of the computation-aware filter and smoother
for different problem sizes (i.e., state-space dimension) and number of iterations on the train and test set. The
predictive error measured by test MSE decreases with larger problem sizes, while the test NLD increases. This
is because we limit the computational budget and thus run fewer iterations for larger problems, i.e., we trade
reduced computation cost for increased uncertainty.

the CAKF and CAKS approach the standard Kalman
filter and RTS smoother. A comparison to these meth-
ods on this problem is not practically realisable, and
nor is comparison to ensemble Kalman filters; see Ap-
pendix D.4 for a detailed explanation. For the smallest
problem, we use up to Ňk = 210 actions, while for the
largest problem, we use up to Ňk = 26. The experimen-
tal results are visualized in a work-precision diagram
in Figure 4.

Figure 1(b) was generated by running the CAKF and
the CAKS with a spatial downsampling factor of 3,
corresponding to a state-space dimension of 231 360
and ≈ 4 000 000 total training data points. The number
of actions is set to Ňk = 64 and the maximal rank after
truncation is set to 2Ňk = 128 ≥ r+k .

Interpretation As we increase the number of actions,
i.e., the computational budget, the MSE and aver-
age NLD improve for both the CAKF and CAKS. As
the state-space dimension increases, inference becomes
more computationally demanding and the CAKF and
CAKS take longer to compute the posterior marginals.
However, with more data, both improve their gener-
alization performance as measured by the MSE. To
stay within a fixed upper limit on the time and mem-
ory budget, we constrain the number of iterations Ňk

more as the problem size increases, which results in
an increase in average NLD. This is an example of
the aforementioned trade-off between reduced compu-
tational resources and increased uncertainty.

8 CONCLUSION

Kalman filtering and smoothing enable efficient infer-
ence in linear-Gaussian state-space models from a set
of noisy observations. However, in many practical ap-
plications such as spatiotemporal regression, the latent
state is high-dimensional. This results in prohibitive
computational demands. In this work, we introduced
computation-aware versions of the Kalman filter and
smoother, which significantly reduce the time and mem-
ory complexity, while quantifying their inevitable ap-
proximation error via an appropriate increase in pre-
dictive uncertainty. Our experiments show that the
CAKF and CAKS significantly outperform their main
competitors, ensemble Kalman filtering methods, al-
ready on problems with moderately large state-space
dimension. This is mostly due to the fact that, unlike
the ensemble methods, the CAKF and CAKS account
for their inherent approximation error by design. Fur-
ther the CAKF and CAKS scale to significantly larger
problems as evidenced by our benchmark experiment
on a real-world climate dataset. A natural next step
is to extend our approach such that model selection
via evidence maximization becomes possible. Since the
CAKF and CAKS are performing exact inference in a
modified linear Gaussian state-space model, this is in
theory directly possible by exploiting known techniques
for the vanilla filter and smoother (Sec. 16.3.2, Särkkä
and Svensson, 2023), however, the need for truncation
complicates this.

Computation-Aware Kalman Filtering and Smoothing

Acknowledgments

MP and PH gratefully acknowledge financial support
by the European Research Council through ERC StG
Action 757275 / PANAMA and ERC CoG Action
101123955 / ANUBIS; the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”,
EXC 2064/1, project number 390727645; the German
Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039A);
the DFG SPP 2298 (Project HE 7114/5-1); and the
Carl Zeiss Foundation (project "Certification and Foun-
dations of Safe Machine Learning Systems in Health-
care"); as well as funds from the Ministry of Science,
Research and Arts of the State of Baden-Württemberg.
The authors thank the International Max Planck Re-
search School for Intelligent Systems (IMPRS-IS) for
supporting MP. JW was supported by the Gatsby Char-
itable Foundation (GAT3708), the Simons Foundation
(542963), the NSF AI Institute for Artificial and Nat-
ural Intelligence (ARNI: NSF DBI 2229929) and the
Kavli Foundation. JC is supported by EPSRC grant
EP/Y001028/1.

References

Danijar Hafner, Timothy Lillicrap, Ian Fischer,
Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning Latent Dynamics
for Planning from Pixels. In International
Conference on Machine Learning (ICML), 2019.
doi:10.48550/arXiv.1811.04551. URL http://arxiv.
org/abs/1811.04551.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence
Modeling with Selective State Spaces, 2023. URL
http://arxiv.org/abs/2312.00752.

Simo Särkkä and Lennart Svensson. Bayesian Filtering
and Smoothing, volume 17. Cambridge University
Press, 2nd edition, 2023. ISBN 978-1-108-91230-3.

Carl Edward Rasmussen and Christopher K. I.
Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Geir Evensen. Sequential data assimilation with a non-
linear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. Journal of
Geophysical Research: Oceans, 99(C5):10143–10162,
1994. doi:10.1029/94JC00572.

Johnathan M. Bardsley, Albert Parker, Antti Solonen,
and Marylesa Howard. Krylov space approximate
Kalman filtering. Numerical Linear Algebra with
Applications, 20(2):171–184, December 2011. ISSN
1099-1506. doi:10.1002/nla.805. URL http://dx.
doi.org/10.1002/nla.805.

Dimitris Berberidis and Georgios B. Giannakis.
Data sketching for large-scale Kalman filter-
ing. IEEE Transactions on Signal Processing,
65(14):3688–3701, July 2017. ISSN 1941-0476.
doi:10.1109/tsp.2017.2691662. URL http://dx.doi.
org/10.1109/tsp.2017.2691662.

Jonathan Schmidt, Philipp Hennig, Jörg Nick, and
Filip Tronarp. The Rank-Reduced Kalman Fil-
ter: Approximate Dynamical-Low-Rank Filtering
In High Dimensions. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.
doi:10.48550/arXiv.2306.07774. URL http://arxiv.
org/abs/2306.07774.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hi-
rahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Di-
nand Schepers, Adrian Simmons, Cornel Soci, Saleh
Abdalla, Xavier Abellan, Gianpaolo Balsamo, Pe-
ter Bechtold, Gionata Biavati, Jean Bidlot, Mas-
simo Bonavita, Giovanna De Chiara, Per Dahlgren,
Dick Dee, Michail Diamantakis, Rossana Dragani, Jo-
hannes Flemming, Richard Forbes, Manuel Fuentes,
Alan Geer, Leo Haimberger, Sean Healy, Robin J.
Hogan, Elías Hólm, Marta Janisková, Sarah Kee-
ley, Patrick Laloyaux, Philippe Lopez, Cristina
Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna
Rozum, Freja Vamborg, Sebastien Villaume, and
Jean-Noël Thépaut. The ERA5 global reanalysis.
Quarterly Journal of the Royal Meteorological So-
ciety, 146(730):1999–2049, 2020. ISSN 1477-870X.
doi:10.1002/qj.3803. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/qj.3803.

Jouni Hartikainen and Simo Särkkä. Kalman
filtering and smoothing solutions to tempo-
ral Gaussian process regression models. In
IEEE International Workshop on Machine Learn-
ing for Signal Processing, pages 379–384, 2010.
doi:10.1109/MLSP.2010.5589113.

Simo Särkkä, Arno Solin, and Jouni Hartikainen.
Spatiotemporal Learning via Infinite-Dimensional
Bayesian Filtering and Smoothing: A Look at Gaus-
sian Process Regression Through Kalman Filtering.
IEEE Signal Processing Magazine, 30(4):51–61, 2013.
ISSN 1558-0792. doi:10.1109/MSP.2013.2246292.

Jonathan Wenger, Geoff Pleiss, Marvin Pförtner,
Philipp Hennig, and John P. Cunningham. Pos-
terior and computational uncertainty in Gaussian
processes. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Jon Cockayne, Matthew M. Graham, Chris J. Oates,
T. J. Sullivan, and Onur Teymur. Testing whether a
learning procedure is calibrated. Journal of Machine
Learning Research, 23(203):1–36, 2022. URL http:
//jmlr.org/papers/v23/21-1065.html.

https://doi.org/10.48550/arXiv.1811.04551
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/2312.00752
https://doi.org/10.1029/94JC00572
https://doi.org/10.1002/nla.805
http://dx.doi.org/10.1002/nla.805
http://dx.doi.org/10.1002/nla.805
https://doi.org/10.1109/tsp.2017.2691662
http://dx.doi.org/10.1109/tsp.2017.2691662
http://dx.doi.org/10.1109/tsp.2017.2691662
https://doi.org/10.48550/arXiv.2306.07774
http://arxiv.org/abs/2306.07774
http://arxiv.org/abs/2306.07774
https://doi.org/10.1002/qj.3803
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://doi.org/10.1109/MLSP.2010.5589113
https://doi.org/10.1109/MSP.2013.2246292
http://jmlr.org/papers/v23/21-1065.html
http://jmlr.org/papers/v23/21-1065.html

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

L. Mirsky. Symmetric gauge functions and unitar-
ily invariant norms. The Quarterly Journal of
Mathematics, 11(1):50–59, 1960. ISSN 1464-3847.
doi:10.1093/qmath/11.1.50. URL http://dx.doi.
org/10.1093/qmath/11.1.50.

Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, and Mark
Girolami. A Bayesian conjugate gradient method
(with discussion). Bayesian Analysis, 14(3), Septem-
ber 2019a. ISSN 1936-0975. doi:10.1214/19-ba1145.
URL http://dx.doi.org/10.1214/19-BA1145.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic,
and Bharath K. Sriperumbudur. Gaussian Processes
and Kernel Methods: A Review on Connections and
Equivalences, July 2018. URL http://arxiv.org/
abs/1807.02582.

Antti Solonen, Tiangang Cui, Janne Hakkarainen,
and Youssef Marzouk. On dimension reduction in
Gaussian filters. Inverse Problems, 32(4):045003,
March 2016. ISSN 1361-6420. doi:10.1088/0266-
5611/32/4/045003. URL http://dx.doi.org/10.
1088/0266-5611/32/4/045003.

Marco Todescato, Andrea Carron, Ruggero Carli, Gi-
anluigi Pillonetto, and Luca Schenato. Efficient
spatio-temporal Gaussian regression via Kalman fil-
tering. Automatica, 118, 2020. ISSN 0005-1098.
doi:10.1016/j.automatica.2020.109032.

Simo Särkkä and Jouni Hartikainen. Infinite-
Dimensional Kalman Filtering Approach to Spatio-
Temporal Gaussian Process Regression. In
International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pages 993–1001,
2012. URL https://proceedings.mlr.press/
v22/sarkka12.html.

Arno Solin and Simo Särkkä. Infinite-dimensional
Bayesian filtering for detection of quasi-periodic phe-
nomena in spatio-temporal data. Physical Review E,
88(5), November 2013. ISSN 1539-3755, 1550-2376.
doi:10.1103/PhysRevE.88.052909.

Philipp Hennig, Mike A. Osborne, and Mark Girolami.
Probabilistic numerics and uncertainty in computa-
tions. Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences,
471(2179), 2015.

Jon Cockayne, Chris Oates, TJ Sullivan, and Mark
Girolami. Bayesian probabilistic numerical methods.
SIAM Review, 61(4):756–789, 2019b.

Philipp Hennig, Michael A. Osborne, and Hans P.
Kersting. Probabilistic Numerics: Computa-
tion as Machine Learning. Cambridge Uni-
versity Press, 2022. ISBN 978-1-316-68141-1.
doi:10.1017/9781316681411.

Philipp Hennig. Probabilistic interpretation of lin-
ear solvers. SIAM Journal on Optimization,

25(1):234–260, January 2015. ISSN 1095-7189.
doi:10.1137/140955501. URL http://dx.doi.org/
10.1137/140955501.

Jonathan Wenger and Philipp Hennig. Probabilistic lin-
ear solvers for machine learning. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2020.
URL https://github.com/JonathanWenger/
probabilistic-linear-solvers-for-ml.

Lukas Tatzel, Jonathan Wenger, Frank Schneider, and
Philipp Hennig. Accelerating Generalized Linear
Models by Trading off Computation for Uncertainty,
2023. URL http://arxiv.org/abs/2310.20285.
arXiv:2310.20285 [cs, stat].

Craig H Bishop, Brian J Etherton, and Sharanya J
Majumdar. Adaptive sampling with the ensemble
transform Kalman filter. Part I: Theoretical aspects.
Monthly weather review, 129(3):420–436, 2001.

Georges Matheron. Principles of geostatistics. Eco-
nomic geology, 58(8):1246–1266, 1963. Publisher:
Society of Economic Geologists.

James T Wilson, Viacheslav Borovitskiy, Alexander
Terenin, Peter Mostowsky, and Marc Deisenroth.
Efficiently sampling functions from Gaussian process
posteriors. In International Conference on Machine
Learning (ICML), 2020.

Ali Rahimi and Benjamin Recht. Random Features for
Large-Scale Kernel Machines. In Advances in Neural
Information Processing Systems (NeurIPS), 2007.

Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil
Damle, and Jacob Gardner. Fast matrix square
roots with applications to Gaussian processes and
Bayesian optimization. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 22268–22281. Curran
Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/
fcf55a303b71b84d326fb1d06e332a26-Paper.pdf.

Arno Solin. Stochastic differential equation methods for
spatio-temporal Gaussian process regression. PhD
thesis, Aalto University, 2016.

Oliver Hamelijnck, William J. Wilkinson, Niki A.
Loppi, Arno Solin, and Theodoros Damoulas.
Spatio-Temporal Variational Gaussian Processes,
2021. URL http://arxiv.org/abs/2111.01732.
arXiv:2111.01732 [cs, stat].

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, 2006.

Jean-François Le Gall. Brownian Motion, Martingales,
and Stochastic Calculus, volume 274 of Graduate
Texts in Mathematics. Springer International Pub-
lishing, Cham, 2016. doi:10.1007/978-3-319-31089-3.

https://doi.org/10.1093/qmath/11.1.50
http://dx.doi.org/10.1093/qmath/11.1.50
http://dx.doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1214/19-ba1145
http://dx.doi.org/10.1214/19-BA1145
http://arxiv.org/abs/1807.02582
http://arxiv.org/abs/1807.02582
https://doi.org/10.1088/0266-5611/32/4/045003
https://doi.org/10.1088/0266-5611/32/4/045003
http://dx.doi.org/10.1088/0266-5611/32/4/045003
http://dx.doi.org/10.1088/0266-5611/32/4/045003
https://doi.org/10.1016/j.automatica.2020.109032
https://proceedings.mlr.press/v22/sarkka12.html
https://proceedings.mlr.press/v22/sarkka12.html
https://doi.org/10.1103/PhysRevE.88.052909
https://doi.org/10.1017/9781316681411
https://doi.org/10.1137/140955501
http://dx.doi.org/10.1137/140955501
http://dx.doi.org/10.1137/140955501
https://github.com/JonathanWenger/probabilistic-linear-solvers-for-ml
https://github.com/JonathanWenger/probabilistic-linear-solvers-for-ml
http://arxiv.org/abs/2310.20285
https://proceedings.neurips.cc/paper_files/paper/2020/file/fcf55a303b71b84d326fb1d06e332a26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fcf55a303b71b84d326fb1d06e332a26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fcf55a303b71b84d326fb1d06e332a26-Paper.pdf
http://arxiv.org/abs/2111.01732
https://doi.org/10.1007/978-3-319-31089-3

Computation-Aware Kalman Filtering and Smoothing

Nachman Aronszajn. Theory of reproducing kernels.
Transactions of the American Mathematical Society,
68(3):337–404, 1950.

Simo Särkkä. Recursive Bayesian Inference on Stochas-
tic Differential Equations. PhD thesis, Helsinki Uni-
versity of Technology, 2006.

Simo Särkkä and Arno Solin. Applied Stochas-
tic Differential Equations. Cambridge University
Press, 1 edition, 2019. ISBN 978-1-108-18673-5.
doi:10.1017/9781108186735.

Per-Gunnar Martinsson and Joel A. Tropp.
Randomized numerical linear algebra: Foun-
dations and algorithms. Acta Numerica,
29:403–572, May 2020. ISSN 1474-0508.
doi:10.1017/s0962492920000021. URL http:
//dx.doi.org/10.1017/S0962492920000021.

James O. Berger. Statistical Decision Theory.
Springer New York, 1980. ISBN 9781475717273.
doi:10.1007/978-1-4757-1727-3. URL http://dx.
doi.org/10.1007/978-1-4757-1727-3.

Yousef Saad. Iterative Methods for Sparse Lin-
ear Systems. Society for Industrial and Applied
Mathematics, January 2003. ISBN 9780898718003.
doi:10.1137/1.9780898718003. URL http://dx.doi.
org/10.1137/1.9780898718003.

Jorg Liesen and Zdenek Strakos. Krylov subspace meth-
ods. Numerical Mathematics and Scientific Compu-
tation. Oxford University Press, London, England,
December 2012.

Jeffrey L Anderson. An ensemble adjustment Kalman
filter for data assimilation. Monthly weather review,
129(12):2884–2903, 2001.

Gerrit Burgers, Peter Jan van Leeuwen, and Geir
Evensen. Analysis scheme in the ensemble kalman
filter. Monthly weather review, 126(6):1719–1724,
1998.

Michael K Tippett, Jeffrey L Anderson, Craig H Bishop,
Thomas M Hamill, and Jeffrey S Whitaker. Ensemble
square root filters. Monthly weather review, 131(7):
1485–1490, 2003.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes. For instance, see Sections 2 to 5 and 7
and Appendices B to D.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, see Section 5.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, see Section 7.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. Yes, see Section 5 and Ap-
pendices B and C.

(b) Complete proofs of all theoretical results. Yes,
see Appendices B and C.

(c) Clear explanations of any assumptions. Not
Applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes, see Section 7.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes,
see Section 7 and Appendix D.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, see Appendices D.1
and D.2.1.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, see Section 7.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes, see Section 7.

(b) The license information of the assets, if ap-
plicable. Yes, see https://apps.ecmwf.int/
datasets/licences/copernicus/.

(c) New assets either in the supplemental material
or as a URL, if applicable. Not Applicable.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable.

https://doi.org/10.1017/9781108186735
https://doi.org/10.1017/s0962492920000021
http://dx.doi.org/10.1017/S0962492920000021
http://dx.doi.org/10.1017/S0962492920000021
https://doi.org/10.1007/978-1-4757-1727-3
http://dx.doi.org/10.1007/978-1-4757-1727-3
http://dx.doi.org/10.1007/978-1-4757-1727-3
https://doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
https://apps.ecmwf.int/datasets/licences/copernicus/
https://apps.ecmwf.int/datasets/licences/copernicus/

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable.

Computation-Aware Kalman Filtering and Smoothing:
Supplementary Materials

The supplementary materials contain derivations for our theoretical framework and proofs for the mathematical
statements in the main text. We also provide implementation specifics and describe our experimental setup in
more detail.

A NOTATION 15

B DERIVATION OF THE ALGORITHM 18

B.1 Filtering . 18

B.2 Smoothing . 19

B.3 Sampling via Matheron’s Rule . 21

B.4 Temporal Interpolation . 23

B.5 Iterative Version of the CAKF Update Step . 25

C SPACE-TIME SEPARABLE GAUSS–MARKOV PROCESSES 26

C.1 Spatiotemporal GP Regression in State-Space Form . 26

C.2 Pointwise Error Bound . 28

C.2.1 (Iteratively Approximated) Batch Gaussian Process Regression 28

C.2.2 Computation-aware Filtering and Smoothing . 30

D EXPERIMENTS 31

D.1 Metrics . 31

D.2 Experiment Details . 32

D.2.1 Comparison to Other Methods . 32

D.2.2 Impact of Truncation . 33

D.2.3 Large-Scale Climate Dataset . 33

D.3 Policy Choice . 34

D.3.1 Empirical Comparison of Policies . 34

D.4 On Comparison with the EnKF . 34

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

A NOTATION

Dynamics Model

D Dimension of the state space 2, 18
K Total number of states 2, 18
uk Unobserved state at time step k 2, 18
µk Prior mean of the state at time step k 2
Σk Prior covariance of the state at time step k 2
Ak Transition matrix from time step k to time step k + 1 2, 18
bk Transition offset from time step k to time step k + 1 2, 18
qk Process noise from time step k to time step k + 1 2, 18
Qk Process noise covariance matrix from time step k to time step k + 1 2, 18

Observation Model

Nk Number of observations (dimension of the observation vector) at time step k 2, 18
yk Observation vector at time step k 2, 18
yk Random variable encoding the belief about the observations at time step k 2, 18
Hk Observation matrix at time step k 2, 18
ϵk Observation noise at time step k 2, 18
Λk Observation noise covariance matrix at time step k 2, 18

Kalman Filter

m−
k Predictive filter mean at time step k 2, 18

M−
k Left square root of the downdate term in the predictive filter covariance at time step k 19

P−
k Predictive filter covariance at time step k 2, 18

mk Updated filter mean at time step k 2, 18
Mk Left square root of the downdate term in the updated filter covariance at time step k 19
Pk Updated filter covariance at time step k 2, 18
rk Prediction-measurement residual at time step k 19
Gk Innovation matrix at time step k 2, 19
Vk Left square root of the inverse innovation matrix at time step k 19
Wk Filter “covariance message” propagated from time step k to time step k+1 in the inverse-free

RTS smoother
19

Kk Kalman gain at time step k 19

Computation-Aware Kalman Filter

(̂·) “Hatted” quantities are associated with the CAKF/CAKS. Typically, these are counterparts
of quantities in the standard Kalman filter / RTS smoother.

m̂−
k Predictive CAKF mean at time step k 3

M̂−
k Left square root of the low-rank downdate representing the predictive CAKF covariance at

time step k
3

P̂−
k Predictive CAKF covariance at time step k 3

m̂k Updated CAKF mean at time step k 3
M̂k Left square root of the low-rank downdate representing the updated CAKF covariance at

time step k
3

rk Rank of the downdate representing the updated CAKF covariance at time step k 4
P̂k Updated CAKF covariance at time step k 3

Computation-Aware Kalman Filtering and Smoothing

Ňk Dimension of the projected observation vector (or equivalently number of actions) at time
step k

3

Ŝk Action matrix whose columns (the actions) span the low-dimensional subspace onto which
the CAKF projects the observation at time step k

3

ŝ
(i)
k i-th action at time step k given by the i-th column of Ŝk 4

y̌k Projected observation vector at time step k 3
y̌k Random variable modeling the belief about the projected observation vector at time step k 3
Ȟk Projected observation matrix at time step k 3
ϵ̌k Projected observation noise at time step k 3
Λ̌k Projected observation noise covariance matrix at time step k 3
Ǧk Projected innovation matrix at time step k 3
V̌k Left square root of the projected inverse innovation matrix at time step k 3
ŵk CAKF “mean message” propagated from time step k to time step k + 1 in the CAKS 4, 25
Ŵk CAKF “covariance message” propagated from time step k to time step k + 1 in the CAKS 4, 25
M̂+

k Left square root of the truncated low-rank downdate defining the truncated CAKF covari-
ance at time step k

4

r+k Rank of the truncated downdate defining the truncated CAKF covariance at time step k 4
P̂+

k Truncated CAKF covariance at time step k 4
u+
k Additional state in the augmented state-space model of the CAKF modeling computational

noise due to downdate truncation “infinitesimally after” time step k
4

Rauch–Tung–Striebel Smoother

ms
k Smoother mean at time step k 2, 19

P s
k Smoother covariance at time step k 2, 19

ws
k Smoother “mean message” propagated from time step k to time step k−1 in the inverse-free

RTS smoother
20

W s
k Smoother “covariance message” propagated from time step k to time step k − 1 in the

inverse-free RTS smoother
20

Ks
k Smoother gain at time step k 2, 19

Computation-Aware Rauch–Tung–Striebel Smoother

m̂s
k CAKS mean at time step k 5

M̂ s
k Left square root of the low-rank downdate representing the CAKS covariance at time step

k
5

P̂ s
k CAKS covariance at time step k

ŵs
k CAKS “mean message” propagated from time step k to time step k − 1 5

Ŵ s
k (Truncated) CAKS “covariance message” propagated from time step k to time step k − 1 5

Matheron Sampling

uf−
k Random variable with distribution N

(
m−

k ,P
−
k

)
21

yf−
k Random variable with distribution N

(
Hkm

−
k ,Gk

)
21

uf
k Random variable with distribution N (mk,Pk) 21

ws
k Random variable propagating the “smoother message” from time step k to time step k − 1

during inverse-free posterior sampling
22

us
k Random variable with distribution N (ms

k,P
s
k) 21

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

Computation-Aware Matheron Sampling

ûf−
k Random variable with distribution N

(
m̂−

k , P̂
−
k

)
23

ŵk Random variable propagating the “filter message” from time step k to time step k + 1
during CAKF/CAKS sampling

23

ûf
k Random variable with distribution N

(
m̂k, P̂k

)
23

ŵs
k Random variable propagating the “smoother message” from time step k to time step k − 1

during CAKS sampling
23

ûs
k Random variable with distribution N

(
m̂s

k, P̂
s
k

)
23

Spatiotemporal GP Regression

[t0, T] Temporal domain 3, 26
X Spatial domain 3, 26
Z Input domain Z = [t0, T]× X 26
f⋆ Unknown target function 3, 26
y⋆ Noisy observed function 6, 31
ttraink k-th time step at which training data is available 3
Xtrain

k Vector of spatial points xtrain
k,n at which training data is available at time step ttraink 3

Ztrain Vector of ordered pairs (ttraink ,xtrain
k,n) of training input points 6, 31

ytrain Vector containing all training targets 6, 31
N Total number of training data points 6, 31
X Vector containing all (unique) spatial training and test points from all time steps 3
NX Total number of unique spatial training and test points over all time steps 3
f Spatiotemporal Gaussian process prior for the unknown target function f⋆ 3, 26
µ Mean function of f 3, 26
Σ Covariance function of f 3, 26
HΣ Reproducing kernel Hilbert space (RKHS) associated with Σ 6, 31
σ Observation noise scale 6, 31
Σσ Covariance function of the noisy observed process 6, 31
µ̄y⋆

Posterior mean function corresponding to the observed function y⋆ 6
Σ̄ Posterior covariance function 6

Space-Time Separable Gauss(–Markov) Processes

f Space-time separable Gaussian (or Gauss–Markov) process (STSG(M)P). Typically obtained
by combining f and D′ − 1 of its time derivatives in a multi-output GP

3, 26

D′ Output dimension of the STSG(M)P 3, 26
µ Mean function of the STSG(M)P 26
µt Temporal factor of the mean function of the STSG(M)P 26
µx Spatial factor of the mean function of the STSG(M)P 26
Σ Covariance function of the STSG(M)P 26
Σt Temporal factor of the covariance function of the STSG(M)P 26
Σx Spatial factor of the covariance function of the STSG(M)P 26

Iteratively-Approximated Gaussian Process Regression

S Matrix of actions 29
Ň Number of actions 29
y̌train Projected training targets 29

Computation-Aware Kalman Filtering and Smoothing

Observations

Dynamics

Computation

uk−1 uk uk+1

y̌k−1 y̌k y̌k+1∈ RŇk−1 ∈ RŇk ∈ RŇk+1

RD

RD
u−
k−1 u−

k u−
k+1u+

k−1 u+
k u+

k+1

(m̂−
k−1,M̂

−
k−1) (m̂−

t ,M̂
−
t) (m̂−

k+1,M̂
−
k+1)

(m̂k−1,M̂k−1) (m̂k,M̂k) (m̂k+1,M̂k+1)

(m̂k−1,M̂
+
k−1) (m̂k,M̂

+
k)

(ŵs
k+1, Ŵ

s
k+1)(ŵs

k, Ŵ
s
k)

Figure B.1: Probabilistic graphical model for the computation-aware Kalman filter and RTS smoother. Solid
arrows and circles define the joint generative model (i.e., the posterior computed by filter and smoother). Dashed
arrows visualize the information flow between nodes, with the corresponding “messages” in parentheses.

y̌train Random variable modeling the (prior) belief about the projected training targets 29
µ̂y⋆

Approximate posterior mean function corresponding to the observed function y⋆ 29
Σ̂ Approximate posterior covariance function 29

B DERIVATION OF THE ALGORITHM

Definition B.1 (Linear-Gaussian State-Space Model). A linear-Gaussian state-space model (LGSSM) is a pair
({uk}Kk=0, {yk}Kk=1) of discrete-time stochastic processes defined by

uk := Ak−1uk−1 + bk−1 + qk−1 ∈ RD,

yk := Hkuk + ck + ϵk ∈ RNk ,

where

u0 ∼ N (µ0,Σ0)

qk−1 ∼ N (0,Qk−1)

ϵk ∼ N (0,Λk)

are pairwise independent.

B.1 Filtering

Theorem B.2 (Kalman Filter). Let (u,y) be the LGSSM from Definition B.1. Fix {yk}Kk=1 with yk ∈ RNk .
Then

uk | y1:k−1 = y1:k−1 ∼ N
(
m−

k ,P
−
k

)
,

where

m−
k := Ak−1mk−1 + bk−1,

P−
k := Ak−1Pk−1A

⊤
k−1 +Qk−1,

and
uk | y1:k = y1:k ∼ N (mk,Pk),

where m0 = µ0, P0 = Σ0, and

mk := m−
k +Kkrk,

Pk := P−
k −KkGkK

⊤
k ,

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

for k = 1, . . . ,K with

rk := yk −Hkm
−
k − ck,

Gk := HkP
−
k H⊤

k +Λk,

Kk := P−
k H⊤

k G−1
k .

Proposition B.3 (Downdate-Form Kalman Filter). The Kalman state covariances can equivalently be computed
via

P−
k = Σk −M−

k (M−
k)⊤,

Pk = Σk −MkM
⊤
k ,

where M0 :=
()
∈ RD×0 and

M−
k := Ak−1Mk−1,

Mk :=
(
M−

k P−
k Wk

)
with Wk := H⊤

k Vk, and VkV
⊤
k = G−1

k for k = 1, . . . ,K.

Proof. For k = 0, we find that
P0 = Σ0 = Σ0 − 0D×D = Σ0 −M0M

⊤
0 .

Now let 1 ≤ k ≤ K and assume that the statement holds for k − 1. Then

P−
k = Ak−1Pk−1A

⊤
k−1 +Qk−1

= Ak−1Σk−1A
⊤
k−1 +Qk−1 −Ak−1Mk−1M

⊤
k−1A

⊤
k−1

= Σk −Ak−1Mk−1(Ak−1Mk−1)
⊤

= Σk −M−
k (M−

k)⊤,

and

Pk = P−
k − P−

k H⊤
k G−1

k HkP
−
k

= Σk −M−
k (M−

k)⊤ − P−
k H⊤

k VkV
⊤
k HkP

−
k

= Σk −
(
M−

k P−
k H⊤

k Vk

) (
M−

k P−
k H⊤

k Vk

)⊤
= Σk −MkM

⊤
k .

B.2 Smoothing

Theorem B.4 (RTS Smoother). Let (u,y) be the LGSSM from Definition B.1. Then

uk | y1:K = y1:K ∼ N (ms
k,P

s
k),

where ms
K = mK , P s

K = PK , and

ms
k := mk +Ks

k(m
s
k+1 −m−

k+1)

P s
k := Pk +Ks

k(P
s
k+1 − P−

k+1)(K
s
k)

⊤

for k = 1, . . . ,K − 1 with Ks
k := PkA

⊤
k (P

−
k+1)

−1.

Proposition B.5 (Inverse-Free RTS Smoother). The RTS smoother moments can be equivalently computed by
the recursion

ms
k = m−

k + P−
k ws

k

Computation-Aware Kalman Filtering and Smoothing

P s
k = P−

k − P−
k W s

k(P
−
k W s

k)
⊤,

where ws
K = H⊤

KG−1
K rK , W s

K(W s
K)⊤ = H⊤

KG−1
K HK , and

ws
k = H⊤

k G−1
k rk + (I −H⊤

k K⊤
k)A⊤

k w
s
k+1

= H⊤
k G−1

k rk + (I −H⊤
k G−1

k HkP
−
k)A⊤

k w
s
k+1 (B.1)

W s
k(W

s
k)

⊤ = H⊤
k G−1

k Hk + (I −H⊤
k K⊤

k)A⊤
k W

s
k+1

(
(I −H⊤

k K⊤
k)A⊤

k W
s
k+1

)⊤
= H⊤

k G−1
k Hk + (I −H⊤

k G−1
k HkP

−
k)A⊤

k W
s
k+1

(
(I −H⊤

k G−1
k HkP

−
k)A⊤

k W
s
k+1

)⊤ (B.2)

for k = 1, . . . ,K − 1. Moreover,

ms
k = mk + PkA

⊤
k w

s
k+1, (B.3)

P s
k = Pk − PkA

⊤
k W

s
k+1(PkA

⊤
k W

s
k+1)

⊤ (B.4)

for k = 1, . . . ,K − 1.

Proof. For k = K, we have

ms
K = mK = m−

K +KKrK = m−
K + P−

K H⊤
KG−1

K rK
=ws

K

and
P s

K = PK = P−
K −KKGKK⊤

K = P−
K − P−

K H⊤
KG−1

K GKG−1
K HK

=W s
K(W s

K)⊤

P−
K .

Now let 1 ≤ k < K and assume that

ms
k+1 = m−

k+1 + P−
k+1w

s
k+1 ⇔ ms

k+1 −m−
k+1 = P−

k+1w
s
k+1,

P s
k+1 = P−

k+1 − P−
k+1W

s
k+1(P

−
k+1W

s
k+1)

⊤ ⇔ P s
k+1 − P−

k+1 = −P−
k+1W

s
k+1(P

−
k+1W

s
k+1)

⊤.

It follows that

ms
k = mk +Ks

k(m
s
k+1 −m−

k+1)

= mk +Ks
kP

−
k+1w

s
k+1

= mk + PkA
⊤
k w

s
k+1

= m−
k +Kkrk + (P−

k −KkGkK
⊤
k)A⊤

k w
s
k+1

= m−
k + P−

k

(
H⊤

k G−1
k rk + (I −H⊤

k K⊤
k)A⊤

k w
s
k+1

)
= m−

k + P−
k ws

k

and

P s
k = Pk +Ks

k(P
s
k+1 − P−

k+1)(K
s
k)

⊤

= Pk − PkA
⊤
k (P

−
k+1)

−1P−
k+1W

s
k+1(P

−
k+1W

s
k+1)

⊤(P−
k+1)

−1AkPk

= Pk − PkA
⊤
k W

s
k+1

(
PkA

⊤
k W

s
k+1

)⊤
= P−

k −KkGkK
⊤
k − (P−

k −KkGkK
⊤
k)A⊤

k W
s
k+1

(
(P−

k −KkGkK
⊤
k)A⊤

k W
s
k+1

)⊤
= P−

k − P−
k

(
H⊤

k G−1
k Hk + (I −H⊤

k K⊤
k)A⊤

k W
s
k+1

(
(I −H⊤

k K⊤
k)A⊤

k W
s
k+1

)⊤)
P−

k

= P−
k − P−

k WkP
−
k .

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

B.3 Sampling via Matheron’s Rule

The naive approach to sampling from a multivariate normal distribution (e.g., by Cholesky factorization or
eigendecomposition) has cubic cost and requires storing the covariance matrix in memory, which is not possible
for large state-space dimension. We alleviate this by applying Matheron’s rule (Matheron, 1963; Wilson et al.,
2020) to the (computation-aware) Kalman filter and RTS smoother recursions, making it possible to sample the
filtering and smoothing posteriors by transforming samples from the prior.
Lemma B.6 (Matheron’s Rule). Let x ∼ N (µ,Σ), A ∈ RNA×D, B ∈ RNB×D, and β ∈ ran(BΣ). Define

MΣ,A,B,β : RD → RNA , ξ 7→ Ex̃∼N (ξ,Σ) [Ax̃ |Bx̃ = β] .

Then (Ax |Bx = β)
d
= MΣ,A,B,β(x).

Proof. Let a := Ax and b := Bx. Then(
a
b

)
∼ N

((
Aµ
Bµ

)
,

(
AΣA⊤ AΣB⊤

BΣA⊤ BΣB⊤

))
and

MΣ,A,B,β(ξ) = Ex̃∼N (ξ,Σ) [Ax̃ |Bx̃ = β] = Aξ +AΣB⊤(BΣB⊤)−1(β −Bξ).

Hence,
MΣ,A,B,β(x) = Ax︸︷︷︸

=a

+ AΣB⊤︸ ︷︷ ︸
=Cov[a,b]

(BΣB⊤︸ ︷︷ ︸
=Cov[b,b]

)−1(β − Bx︸︷︷︸
=b

)

and thus the statement follows from Wilson et al. (2020, Theorem 1).

To proceed, we assume that it is feasible to obtain an (approximate) sample from the initial state u0 ∼ N (µ0,Σ0),
as well as (approximate) samples from the dynamics and observational noise qk−1 ∼ N (0,Qk−1), ϵk ∼ N (0,Λk),
k = 1, . . . ,K. This assumption is reasonable because the covariance matrices Σ0,Qk−1,Λk are often simple or
highly structured; for example it is common for Λk to be diagonal. Moreover, for discretized spatiotemporal
Gauss–Markov processes one can use function space approximations like random Fourier features (RFF) (Rahimi
and Recht, 2007) to obtain approximate samples from u0 and qk−1 (see also Wilson et al., 2020). Finally, Krylov
methods can be used to approximate matrix square roots of the covariances in a matrix-free fashion (see e.g.,
Pleiss et al., 2020). With these samples, Theorem B.7 shows how Matheron sampling can be implemented for the
standard Kalman filter and RTS smoother, while Proposition B.8 gives an equivalent form of Matheron sampling
for the smoother that circumvents inversion of state covariance matrices.

Each of these approaches can be applied to the modified state-space model used in the CAKF and the CAKS at
low cost, again recycling computed values from the filtering pass in Algorithms 1 and 2. The resulting algorithm
for sampling from the computation-aware posterior process {uk | y̌1:K = y̌1:K}Kk=0 is detailed in Algorithm B.1.
If it is stopped early before Line 9, then it can also be used to compute samples from the CAKF states {uk |
y̌1:k = y̌1:k}Kk=0. Also note that Algorithm B.1 allows us to sample from the full Bayesian posterior without
running the CAKS, since all quantities used above have already been computed by the filter.
Theorem B.7. Let (u,y) be the LGSSM from Definition B.1. Fix yk ∈ RNk for k = 1, . . . ,K and define

uf−
k := Ak−1u

f
k−1 + bk−1 + qk−1

yf−
k := Hku

f−
k + ck + ϵk

uf
k := uf−

k +Kk(yk − yf−
k)

for k = 1, . . . ,K, where uf
0 := u0, as well as

us
k := uf

k +Ks
k(u

s
k+1 − uf−

k+1)

for k = K − 1, . . . , 0, where us
K := uf

K . Then

(us
1, . . . ,u

s
K)

d
=
(
(u1, . . . ,uK) | y1 = y1, . . . ,yK = yK

)
.

Computation-Aware Kalman Filtering and Smoothing

Proof. Let q̃k := qk + bk and ϵ̃k := ϵk + ck. Then x := (u0, q̃0, . . . , q̃K−1, ϵ̃1, . . . , ϵ̃K) is jointly Gaussian with
pairwise independent components and covariance matrix Σ̃.

uk+1 = Akuk + q̃k, and
yk = Hkuk + ϵ̃k

pointwise. Let U and Y be the linear operators defined by

U(u0, q̃0, . . . , q̃K−1, ϵ̃1, . . . , ϵ̃K) = (u1, . . . ,uK), and
Y(u0, q̃0, . . . , q̃K−1, ϵ̃1, . . . , ϵ̃K) = (y1, . . . ,yK).

By Theorems B.2 and B.4, the operator MΣ̃,U ,Y,y1:K
from Lemma B.6 corresponding to this model is given by

MΣ̃,U ,Y,y1:K
(ξ) = (ms

1(ξ), . . . ,m
s
K(ξ)),

where, for ξ = (ξu0 , ξ
q̃
0 , . . . , ξ

q̃
K−1, ξ

ϵ̃
1, . . . , ξ

ϵ̃
K),

m0(ξ) := ξu0 ,

m−
k (ξ) := Ak−1mk−1(ξ) + ξq̃k−1,

mk(ξ) := m−
k (ξ) +Kk(yk − (Hkm

−
k (ξ) + ξϵ̃k)), and

ms
k(ξ) := mk(ξ) +Ks

k(m
s
k+1(ξ)−m−

k+1(ξ)),

Note that m0(x) = u0 and hence

m−
k (x) = Ak−1 mk−1(x)︸ ︷︷ ︸

=uf
k

+q̃k−1 = uf−
k , and

mk(x) = uf−
k +Kk(yk − (Hkm

−
k (x) + ỹk)︸ ︷︷ ︸
=yf−

k

) = uf
k

by induction on k. Moreover, ms
K(x) = mK(x) = uf

K = us
K and thus

ms
k(x) = mk(x)︸ ︷︷ ︸

=uf
k

+Ks
k(m

s
k+1(x)︸ ︷︷ ︸
=us

k+1

−m−
k+1(x)︸ ︷︷ ︸
=uf−

k

) = us
k

by induction on k. Finally, by Lemma B.6, we arrive at

(us
1, . . . ,u

s
K) = MΣ̃,U ,Y,y1:K

(x)
d
=
(
U(x) |Y(x) = y1:K

)
=
(
(u1, . . . ,uK) | y1 = y1, . . . ,yK = yK

)
.

Proposition B.8 (Inverse-Free Posterior Sampling). Samples from the smoothing posterior can be equivalently
computed by means of the recursion

us
k = uf−

k + P−
k ws

k,

where ws
K := H⊤

KG−1
K (yK − yf−

K), and

ws
k := HkG

−1
k (yk − yf−

k) + (I −H⊤
k K⊤

k)A⊤
k w

s
k+1

= HkG
−1
k (yk − yf−

k) + (I −H⊤
k G−1

k HkP
−
k)A⊤

k wk+1

for k = 0, . . . ,K − 1. Moreover,
us
k = uf

k + PkA
⊤
k w

s
k+1

pointwise for k = 0, . . . ,K − 1.

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

Proof.
us
K = uf

K = uf−
K +KK(yK − yf−

K) = uf−
K + P−

K H⊤
KG−1

K (yK − yf−
K)

=ws
K

Now assume that us
k+1 = uf−

k+1 + P−
k+1w

s
k+1, which is equivalent to us

k+1 − uf−
k+1 = P−

k+1w
s
k+1. Then

us
k = uf

k +Ks
k(u

s
k+1 − uf−

k+1)

= uf
k + PkA

⊤
k (P

−
k+1)

−1P−
k+1w

s
k+1

= uf
k + PkA

⊤
k w

s
k+1

= uf−
k +Kk(yk − yf−

k) + PkA
⊤
k (P

−
k+1)

−1P−
k+1w

s
k+1

= uf−
k +Kk(yk − yf−

k) + (P−
k −KkGkK

⊤
k)A⊤

k w
s
k+1

= uf−
k + P−

k

(
H⊤

k G−1
k (yk − yf−

k) + (I −H⊤
k K⊤

k)A⊤
k w

s
k

)
=ws

k

.

Algorithm B.1 CAKF/CAKS Sampler

1: fn Sample({· · · ,M̂k, V̌k, Ŵk, . . . }Kk=0)
2: ûf

0 ∼ N (µ0,Σ0)
3: for k = 1, . . . ,K do
4: qk−1 ∼ N (0,Qk−1)

5: ϵ̌k ∼ N
(
0, Λ̌k

)
6: ûf−

k ← Ak−1[û
f
k−1] + bk−1 + qk−1

7: ŵk ← Ŵk(V̌
⊤
k (y̌k − Ȟkû

f−
k − ϵ̌k))

8: ûf
k ← ûf−

k + P̂−
k [ŵk]

9: ŵs
n = ŵK

10: for k = K − 1, . . . , 0 do
11: ŵs

k ← ŵk + (I − ŴkŴ
⊤
k P̂−

k)A⊤
k [ŵ

s
k+1]

12: return {ûs
k = ûf

k + P̂kA
⊤
k [ŵ

s
k]}Kk=0

B.4 Temporal Interpolation

In practice, we are often interested in interpolating a set of discrete-time measurements. To this end, we need to
exchange the discrete-time dynamics model in Definition B.1 by a continuous-time dynamics model.

Definition B.9 (Continuous-Discrete LGSSM). A continuous-discrete linear-Gaussian state-space model (CD-
LGSSM) is a pair ({u(t)}t∈T, {yk}Kk=1) of a continuous-time Gauss–Markov process u with transition kernels

P(u(t) | u(s) = u(s)) = N (A(t, s)u(s) + b(t, s),Q(t, s))

and a discrete-time Gauss–Markov process {yk}Kk=1 defined by

yk = Hku(t
train
k) + ϵk,

where ϵk ∼ N (0,Λk) for k = 1, . . . ,K and u are pairwise independent.

We write µ(t) := E [u(t)] and Σ(t) := Cov [u(t),u(t)] for the mean and covariance functions of the latent
continuous-time Gauss–Markov process.

In practice, we want to be able to access the interpolant efficiently (i.e., without revisiting all training data) and
on-demand, as we often do not know the query locations in advance. It is well-known that this can be achieved by
running the Kalman filter and RTS smoother on the discretized LGSSM corresponding to uk := u(ttraink) followed
by an interpolation step on the filter and/or smoother states that only involves the neighboring training time
points. The above is formalized in Corollary B.10.

Computation-Aware Kalman Filtering and Smoothing

Algorithm B.2 CAKF Interpolation
fn InterpolateFilter(t,u, {ttraink , m̂k,M̂k}Kk=1)

Find k such that ttraink ≤ t < ttraink+1 , where k = 0 if
t < ttrain1 and k = K if t ≥ ttrainK .
if t = ttraink then

m̂(t)← m̂k

M̂(t)← M̂k

else if k < 1 then
m̂(t)← µ(t)

M̂(t)←
()
∈ RD×0

else
m̂(t)← A(t, ttraink)[m̂k] + b(t, ttraink)

M̂(t)← A(t, ttraink)[M̂+
k]

return m̂(t),M̂(t) ▷ P̂ (t) = Σ(t)− M̂(t)M̂(t)⊤

Algorithm B.3 CAKS Interpolation
fn InterpolateSmoother(t,u, {ttraink , ŵs

k, Ŵ
s
k , . . .}Kk=1)

Find k such that ttraink ≤ t < ttraink+1 , where k = 0 if t < ttrain1

and k = K if t ≥ ttrainK .
if t = ttraink then

return m̂s
k,M̂

s
k ▷ P̂ s(t) = P̂ s

k = Σk − M̂ s
k(M̂

s
k)

⊤

m̂(t),M̂(t)← InterpolateFilter(t,u, {ttraink , . . .}Kk=1)
if k < K then

P̂ (t)← Σ(t)− M̂(t)M̂(t)⊤

m̂s(t)← m̂(t) + P̂ (t)A(ttraink+1 , t)⊤[ŵs
k+1]

M̂ s(t)←
(
M̂(t) P̂ (t)A(ttraink+1 , t)⊤[Ŵ s

k+1]
)

else
m̂s(t)← m̂(t)

M̂ s(t)← M̂(t)

return m̂s(t),M̂ s(t) ▷ P̂ s(t) = Σ(t)− M̂ s(t)M̂ s(t)⊤

Corollary B.10 (Temporal Interpolation in Kalman Filter and RTS Smoother). Let t ∈ T and 0 ≤ k ≤ K.

(i) If ttraink ≤ t < ttraink+1 with 1 ≤ k < K or ttraink ≤ t with k = K, then

uf (t) := (u(t) | y1:k = y1:k) ∼ N (m(t),P (t))

with

m(t) := A(t, ttraink)mk + b(t, ttraink), and

P (t) := A(t, ttraink)PkA(t, ttraink)⊤ +Q(t, ttraink)

= Σ(t)−A(t, ttraink)Mk︸ ︷︷ ︸
=:M(t)

(A(t, ttraink)Mk)
⊤.

For t < ttrain1 , we extend the definition by uf (t) := u(t), i.e., m(t) := µ(t), P (t) := Σ(t), and M(t) ∈ RD×0.

(ii) If ttraink ≤ t < ttraink+1 with 1 ≤ k < K or t < ttraink+1 with k = 0, then

us(t) := (u(t) | y1:K = y1:K) ∼ N (ms(t),P s(t))

with

ms(t) := m(t) +Ks(t)(ms
k+1 −m(t))

= m(t) + P (t)A(ttraink+1 , t)
⊤ws

k+1, and

P s(t) := P s(t) +Ks(t)(P s
k+1 − P (t))Ks(t)⊤

= P (t)− P (t)A(t, ttraink+1)
⊤W s

k+1(P (t)A(t, ttraink+1)
⊤W s

k+1)
⊤,

where Ks(t) := P (t)A(t, ttraink+1)
⊤(P−

k+1)
−1. Again, we extend the definition by us(t) := uf (t) for t > ttrainK ,

i.e., ms(t) := m(t) and P s(t) := P (t).

Proof. This follows from Theorems B.2 and B.4 and Propositions B.3 and B.5.

Corollary B.10 also shows that the efficient interpolation capabilities extend to the downdate-form versions of the
Kalman filter and RTS smoother from Propositions B.3 and B.5 that form the basis of the CAKF and CAKS.
Using this result, we can derive Algorithms B.2 and B.3. An efficient version of Algorithm B.1 that allows for
sampling at intermediate points can be derived analogously.

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

Algorithm B.4 CAKF Update Step (Iterative Version)

1: fn Update(m̂−
k ,M̂

−
k ,Σk,Hk,Λk,yk)

2: P̂−
k ← Σk − M̂−

k (M̂−
k)⊤ ∈ RD×D

3: Ĝk ←HkP̂
−
k H⊤

k +Λk ∈ RNk×Nk

4: v̂
(0)
k ← 0 ∈ RNk

5: V̂
(0)
k ← () ∈ RNk×0

6: r̂
(0)
k ← yk −Hk[m̂

−
k]

7: while ¬StoppingCriterion(i, r̂(i)k , . . .) do
8: ŝ

(i)
k ← Policy(i, r̂(i−1)

k , . . .)

9: r̂
(i)
k ← r̂

(0)
k − Ĝk[v̂

(i−1)
k]

10: α
(i)
k ← ⟨ŝ

(i)
k , r̂

(i)
k ⟩

11: d
(i)
k ← (I − V̂

(i−1)
k (V̂

(i−1)
k)⊤Ĝk)[ŝ

(i)
k]

12: η
(i)
k ← ⟨ŝ

(i)
k , Ĝk[d

(i)
k]⟩

13: v̂
(i)
k ← v̂

(i−1)
k +

α
(i)
k

η
(i)
k

d
(i)
k

14: V̂
(i)
k ←

(
V̂

(i−1)
k

1√
η
(i)
k

d(i)
)
∈ RNk×i

15: ŵk ←H⊤
k v̂

(i)
k

16: Ŵk ←H⊤
k V̂

(i)
k

17: m̂k ← m̂−
k + P−

k [ŵk]

18: M̂k ←
(
M̂−

k P̂−
k [Ŵk]

)
19: return (m̂k,M̂k)

B.5 Iterative Version of the CAKF Update Step

Proposition B.11. When an identical Policy is used, Algorithms 2 and B.4 are equivalent (in exact precision).

Proof. The principal difference between the two algorithms is that the quantities ŵk and Ŵk are calculated
differently. To show that these actually take the same values for the same policy, first note that in Algorithm 2 we
have that ŴkŴ

⊤
k = Ȟ⊤

k Ǧ†
kȞk = H⊤

k Ŝk(Ŝ
⊤
k ĜkŜk)

†Ŝ⊤
k Hk. In Algorithm B.4 the matrix V̂

(Ňk)

k has the same
span as Ŝk, but is orthogonalised to remove the need for the matrix inversion in ŴkŴ

⊤
k . This essentially follows

from the fact that Line 11 implements a version of the Gram-Schmidt procedure with an adjustment to enforce
orthogonality with-respect to ⟨·, ·⟩Ĝk

rather than the standard Euclidean inner product.

To show this we proceed by induction. For the base step we need only show that (V̂
(1)

k)⊤ĜkV̂
(1)

k = I; this follows
from the fact that since V̂

(0)

k is an empty matrix, d
(1)

k = ŝ
(1)

k and therefore

(d
(1)

k)⊤Ĝkd
(1)

k = (ŝ
(1)

k)⊤Ĝkd
(1)

k = η
(1)

k

=⇒

∥∥∥∥∥∥ d
(1)

k√
η

(1)

k

∥∥∥∥∥∥
Ĝk

= 1.

For the induction step suppose that V̂
(i−1)

k is Ĝk-orthonormal. Let z
(i)

=
d
(i)

k√
η
(i)

k

and consider the matrix

(V̂
(i)

k)⊤ĜkV̂
(i)

k =

(
(V̂

(i−1)

k)⊤ĜkV̂
(i−1)

k (V̂
(i−1)

k)⊤Ĝkz
(i)

(z
(i)

)⊤Ĝk(V̂
(i−1)

k) (z
(i)

)⊤Ĝkz
(i)

)
.

It is straightforward to show that (z
(i)

)⊤Ĝk(V̂
(i−1)

k) = 0, since

(d
(i)

k)⊤Ĝk(V̂
(i−1)

k) = (ŝ
(i)

k)⊤(I − ĜkV̂
(i−1)
k (V̂

(i−1)
k)⊤)Ĝk(V̂

(i−1)

k) (B.5)

Computation-Aware Kalman Filtering and Smoothing

= (ŝ
(i)

k)⊤ĜkV̂
(i−1)

k − (ŝ
(i)

k)⊤ĜkV̂
(i−1)
k (V̂

(i−1)
k)⊤Ĝk(V̂

(i−1)

k)

=I

(B.6)

= 0 (B.7)

by the inductive assumption. It remains to show that (z
(i)

)⊤Ĝz
(i)

= 1. This follows from observing that

∥d
(i)

k ∥2Ĝk
= (ŝ

(i)

k)⊤(I − ĜkV̂
(i−1)
k (V̂

(i−1)
k)⊤)Ĝkd

(i)

k

= (ŝ
(i)

k)⊤Ĝkd
(i)

k − (ŝ
(i)

k)⊤ĜkV̂
(i−1)
k (V̂

(i−1)
k)⊤Ĝkd

(i)

k

=0

= η
(i)

k

where equality with zero is from the calculation above. It follows that Ŝk(Ŝ
⊤
k ĜŜk)Ŝ

⊤
k = (V̂

(Ňk)

k)⊤V̂
(Ňk)

k , which
completes the proof.

C SPACE-TIME SEPARABLE GAUSS–MARKOV PROCESSES

Assume we are given a spatiotemporal regression problem over the domain Z = [t0, T]×X and a Gaussian process
prior

f ∼ GP (µ,Σ) (C.1)

for the latent function f⋆ : Z→ R, where µ : Z→ R and Σ : Z× Z→ R. Our goal will be to translate this batch
GP regression problem into state-space form where under suitable assumptions the state dynamics are Markovian,
such that we can perform exact and importantly linear-time inference via Bayesian filtering and smoothing.

C.1 Spatiotemporal GP Regression in State-Space Form

As a first step, we augment the state with a sufficient number of D′ − 1 time derivatives, i.e.,

f(t,x) =

 f0(t,x)
...

fd′−1(t,x)

 :=


f(t,x)
∂
∂t f(t,x)

...
∂(D′−1)

∂t(D′−1) f(t,x)

 ∈ RD′
, (C.2)

and assume the resulting Gaussian process is space-time separable.
Definition C.1 (Space-Time Separable Gaussian Process). A D′-output Gaussian process f ∼ GP (µ,Σ) with
index set [t0, T]× X is called space-time separable if µ(t,x) = µt(t) · µx(x) and

Σ((t1,x1), (t2,x2)) = Σt(t1, t2) · Σx(x1,x2).

Then given that the temporal process f t ∼ GP (µt,Σt) is Markovian, we obtain the desired state-space represen-
tation, which can be computed exactly in closed form under suitable assumptions on the covariance function Σt

(see Remark C.5). The following result formalizing this argument has been presented previously, but without an
explicit proof (Särkkä and Hartikainen, 2012; Solin, 2016; Hamelijnck et al., 2021).
Lemma C.2. Let f ∼ GP (µ,Σ) be a space-time separable D′-output Gaussian process with index
set [t0, T] × X such that f t ∼ GP (µt,Σt) is Markov with transition densities p(f t(t) | f t(s)) =
N
(
f t(t);At(t, s)f t(s) + bt(t, s),Qt(t, s)

)
. Let X ∈ XNX and define

u(t) := f(t,X) =

 f0(t,X)
...

fd′−1(t,X)

 ∈ RD′·NX (C.3)

for all t ∈ [t0, T]. Then u is a Gauss–Markov process with transition densities

p(u(t) | u(s)) = N (u(t);A(t, s)u(s) + b(t, s),Q(t, s)),

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

where

A(t, s) := At(t, s)⊗ INX

b(t, s) := bt(t, s)⊗ µx(X), and

Q(t, s) := Qt(t, s)⊗ Σx(X,X).

Remark C.3. Abusing terminology, we refer to f as a space-time separable Gauss–Markov process if f is space-time
separable and GP (µt,Σt) is Markov.

To prove Lemma C.2, we will need the following intermediate result, which can be found in most standard
textbooks, for example in Appendix B of Bishop (2006). We restate the result here for convenience:

Lemma C.4. Let (
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ⊤

21

Σ21 Σ22

))
.

Then
x2 | x1 ∼ N (Ax1 + b,Q),

where A = Σ21Σ
†
11, b = (µ2 −Aµ1), and Q = Σ22 −AΣ11A

⊤.

We can now use Lemma C.4 to show that every Gauss–Markov process has transition densities of the form
required by Lemma C.2.

Proof of Lemma C.2. By definition, u is a D′ ·NX -output Gaussian process with index set [t0, T], whose mean
and covariance functions are given by

µu(t) := µt(t)⊗ µx(X), and

Σu(t1, t2) := Σt(t1, t2)⊗ Σx(X,X),

respectively. Let t0 ≤ t1 < · · · < tK ≤ T and define

At
k := At(tk+1, tk),

btk := bt(tk+1, tk), and

Qt
k := Qt(tk+1, tk).

We have

µt(tk+1) = At
kµ

t(tk) + btk,

Σt(tk+1, tk+1) = At
kΣ

t(tk, tk)(A
t
k)

⊤ +Qt
k, and

Σt(tk, tk+l) = Σt(tk, tk)

l−1∏
j=0

(At
k+j)

⊤.

It follows that

µu(tk+1) = µt(tk+1)⊗ µx(X)

= (At
kµ

t(tk) + btk)⊗ µx(X)

= (At
k ⊗ In)

=:Ak

(µt(tk)⊗ µx(X)) + btk ⊗ µx(X)

=:bk

= Akµu(tk) + bk,

as well as

Σu(tk, tk) = Σt(tk, tk)⊗ Σx(X,X)

= (At
kΣ

t(tk, tk)(A
t
k)

⊤ +Qt
k)⊗ Σx(X,X)

Computation-Aware Kalman Filtering and Smoothing

= (At
k ⊗ In)(Σ

t(tk, tk)⊗ Σx(X,X))(At
k ⊗ In)

⊤ +Qt
k ⊗ Σx(X,X)

=:Qk

= AkΣu(tk, tk)A
⊤
k +Qk,

and

Σu(tk, tk+l) = Σt(tk, tk+l)⊗ Σx(X,X)

=

Σt(tk, tk)

l−1∏
j=0

(At
k+j)

⊤

⊗ Σx(X,X)

= (Σt(tk, tk)⊗ Σx(X,X))

l−1∏
j=0

(At
k+j ⊗ I)⊤

= Σu(tk, tk)

l−1∏
j=0

A⊤
k+j .

Moreover, by Lemma C.4, we have

p(u(tk+1) | u(tk)) = N (u(tk+1);Aku(tk) + bk,Qk).

All in all, this shows that

p(u(t1), . . . ,u(tK)) = p(u(t1))

K∏
k=2

p(u(tk) | u(tk−1)).

The statement then follows from Le Gall (2016, “Consequences of the definition” below Definition 6.2).

Remark C.5 (Converting Spatiotemporal GP Priors to Space-Time Separable Gauss–Markov Processes). Not
every Gaussian process prior f ∼ GP (µ,Σ) induces a space-time separable Gauss–Markov process, even if both µ
and Σ are separable, such that µ(z) = µt(t)µx(x) and Σ(z, z′) = Σt(t, t′)Σx(x,x′), e.g if Σt is an exponentiated
quadratic kernel. However, if Σt is stationary and the spectral density of Σt is a rational function of the form

St(ω) =
(constant)

(polynomial in ω2)
(C.4)

then a corresponding STSGMP exists. This is the case for example if Σt is a Matérn(ν) kernel with differentiability
parameter p such that ν = p + 1

2 . See Hartikainen and Särkkä (2010, Sec. 4), Särkkä et al. (2013), and Solin
(2016, Sec. 4.3) for details.

C.2 Pointwise Error Bound

Having formalized assumptions under which the (spatiotemporal) batch GP regression problem can be equivalently
formulated in state-space form and thus solved via Bayesian filtering and smoothing, we now aim to give a relative
error bound for the approximate posterior mean computed by the CAKS in terms of its approximate marginal
variance.

C.2.1 (Iteratively Approximated) Batch Gaussian Process Regression

The CAKF and CAKS can be viewed as performing exact inference in an approximate observation model.
Therefore we can analyze its error via the corresponding iterative approximation for the batch GP regression
problem as introduced by Wenger et al. (2022).

Definition C.6 (Iteratively Approximated Batch GP Regression). Let Z be a non-empty set, f ∼ GP (µ,Σ) a
Gaussian process prior for the latent function f⋆ ∈ HΣ assumed to lie in the RKHS induced by Σ. Define the noise
scale σ ≥ 0, the covariance function Σσ(z, z′) := Σ(z, z′) + σ2δ(z, z′) of the observed process (Kanagawa et al.,

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

2018, Eqn. (32)) and let y⋆(·) ∈ HΣσ be the function generating the data4. Assume we’ve observed training
data ytrain = y⋆(Ztrain) = (y⋆(ztrain

1), . . . , y⋆(ztrain
N))⊤ ∈ RN at inputs Ztrain = (ztrain

1 , . . . ,ztrain
N)⊤ ∈ ZN and let

S ∈ RN×Ň be a matrix with linearly independent columns. Following Wenger et al. (2022), define the iteratively
approximated batch GP posterior as (f | S⊤ytrain) ∼ GP

(
µ̂y⋆

, Σ̂
)
, with

µ̂y⋆

(z) = µ(z) + Σ(z,Ztrain)C(ytrain − µ(Ztrain)),

Σ̂(z, z′) = Σ(z, z′)− Σ(z,Ztrain)CΣ(Ztrain, z′),
(C.5)

where C = S(S⊤(Σ(Ztrain,Ztrain) + σ2I)S⊤)
†
S⊤

Lemma C.7 (Iteratively Approximated GP as Exact Inference Given a Modified Observation Model). Given
a Gaussian process prior f ∼ GP (µ,Σ) and training data (Ztrain,ytrain) the iteratively approximated batch
GP posterior (f | S⊤ytrain) ∼ GP

(
µ̂y⋆

, Σ̂
)

(see Definition C.6) is equivalent to an exact batch GP posterior

(f | y̌train) given observations y̌train = S⊤ytrain observed according to the modified likelihood y̌train | f(Ztrain) ∼
N
(
S⊤f(Ztrain), σ2S⊤S

)
.

Proof. By basic properties of Gaussian distributions, we have for arbitrary Z ∈ ZNZ that(
y̌train

f(Z)

)
∼ N

((
S⊤µ(Ztrain)

µ(Z)

)
,

(
S⊤Σ(Ztrain,Ztrain)S + σ2S⊤S S⊤Σ(Ztrain,Z)

Σ(Z,Ztrain)S Σ(Z,Z)

))
is jointly Gaussian. Therefore by Lemma C.4 we have that f(Z) | y̌train ∼ N

(
µ̂y⋆

(Z), Σ̂(Z,Z)
)

where

µ̂y⋆

(Z) = µ(Z) + Σ(Z,Ztrain)S(S⊤(Σ(Ztrain,Ztrain) + σ2I)S⊤)
†
(y̌train − S⊤µ(Ztrain)),

Σ̂(Z,Z) = Σ(Z,Z)− Σ(Z,Ztrain)S(S⊤(Σ(Ztrain,Ztrain) + σ2I)S⊤)
†
S⊤Σ(Ztrain,Z)

which is equivalent to the form of iteratively approximated GP posterior in Definition C.6. This proves the
claim.

The iteratively approximated posterior mean satisfies a pointwise worst-case error bound in a unit ball in the
underlying RKHS, where the bound is given by the approximate standard deviation. Therefore, the output of the
approximate method directly provides an error bound on its prediction error, that includes any error introduced
through approximation.
Theorem C.8 (Worst-Case Error of (Iteratively Approximated) Batch GP Regression (Wenger et al., 2022)).
Consider the (iteratively approximated) GP posterior (f | S⊤ytrain) ∼ GP

(
µ̂y⋆

, Σ̂
)

given in Definition C.6. The

pointwise worst-case error of the (approximate) posterior mean µ̂y⋆

for an arbitrary data-generating function
y⋆ ∈ HKσ such that ∥y⋆∥HΣσ ≤ 1 is given by

sup
y∈HΣσ

∥y∥HΣσ ≤1

|y(z)− µ̂y(z)| =
√
Σ̂(z, z) + σ2. (C.6)

for any z ∈ Z \Ztrain not in the training data. In the absence of observation noise, i.e., σ2 = 0, this holds for all
z ∈ Z. Note that this result also trivially extends to the exact batch GP posterior by choosing S = IN×N .

Proof. This result and its proof are identical to Theorem 2 in Wenger et al. (2022). We give a proof in our
notation for completeness. Let ztrain

0 = z, c0 = 1 and cj = −(CΣσ(Ztrain, z))j for j = 1, . . . , N . Then by Lemma
3.9 of Kanagawa et al. (2018), it holds that sup

y∈HΣσ

∥y∥HΣσ ≤1

|y(z)− µ̂y(z)|


2

=

 sup
y∈HΣσ

∥y∥HΣσ ≤1

N∑
j=0

cjy(zj)


2

=

∥∥∥∥∥∥
N∑
j=0

cjΣ(·, zj)

∥∥∥∥∥∥
2

HΣσ

4By Section 6 of Aronszajn (1950), functions y ∈ HΣσ can be written as a sum y(·) = f(·) + ε(·) of functions f ∈ HΣ

and ε ∈ Hσ2δ.

Computation-Aware Kalman Filtering and Smoothing

=

∥∥∥∥∥∥Σσ(·, ztrain
0)−

N∑
j=1

cjΣ
σ(·, zj)

∥∥∥∥∥∥
2

HΣσ

=
∥∥Σσ(·, z)− Σσ(·,Ztrain)CΣσ(Ztrain, z)

∥∥2
HΣσ

= ⟨Σσ(·, z),Σσ(·, z)⟩HKσ − 2⟨Σσ(·, z),Σσ(·,Ztrain)CΣσ(Ztrain, z)⟩HKσ

+ ⟨Σσ(·,Ztrain)CΣσ(Ztrain, z),Σσ(·,Ztrain)CΣσ(Ztrain, z)⟩HKσ

By the reproducing property it holds that

= Σσ(z, z)− 2Σσ(z,Ztrain)CΣσ(Ztrain, z) + Σσ(z,Ztrain)CΣσ(Ztrain,Ztrain)CΣσ(Ztrain, z)

= Σσ(z, z)− Σσ(z,Ztrain)CΣσ(Ztrain, z)

=: Σ̂σ(z, z)

Now if z /∈ Ztrain or σ2 = 0 it holds that Σσ(z,Ztrain) = Σ(z,Ztrain) and therefore Σ̂σ(z, z) = Σ̂(z, z) + σ2.

C.2.2 Computation-aware Filtering and Smoothing

Having obtained an error bound for the iteratively approximated batch GP posterior, we now aim to show that
the CAKF and CAKS compute precisely the same posterior marginals and thus satisfy the same error bound.
We do so by leveraging Lemma C.2 describing how to translate between a (batch) GP regression problem and an
equivalent state-space formulation under suitable assumptions on the model.

Proposition C.9 (Connecting (Computation-Aware) Batch Spatio-temporal GP Regression and Filtering
and Smoothing). Consider the following spatiotemporal regression problem over the domain Z = [t0, T] × X.
Define a space-time separable Gauss–Markov process f ∼ GP (µ,Σ) such that its first component f := f0 ∼
GP (µ,Σ) defines a Gaussian process prior for the latent function f⋆ ∈ HΣ, where µ(t,x) = µt

0(t)µ
x(x) and

Σ((t,x), (t′,x′)) = Σt
0(t, t

′)Σx(x,x′). Assume we are given a training dataset consisting of N =
∑K

k=1 Nk

inputs Ztrain = ((ttrain1 ,xtrain
1,1), . . . , (ttrain1 ,xtrain

1,N1
), . . . , (ttrainK ,xtrain

K,1), . . . , (ttrainK ,xtrain
K,NK

)) ∈ ZN and targets ytrain ∈
(y1, . . . ,yK) ∈ RN . Then for any test input z = (t,x) ∈ Z the computation-aware smoother computes the mean
µ̂y⋆

(z) and variance Σ̂(z, z) of the marginal distribution of the iteratively approximated batch GP posterior
(f | S⊤ytrain) ∼ GP

(
µ̂y⋆

, Σ̂
)

with

S =

Ŝ1 0
. . .

0 ŜK

 ∈ RN×
∑K

k=1 Ňk (C.7)

evaluated at the given test input z, i.e.

m̂s(z | y⋆)0 = µ̂y⋆

(z), and

P̂ s(z)0,0 = Σ̂(z, z).

If t ≥ ttrainK it suffices to run the computation-aware filter.

Proof. Let X ∈ XNX be a vector containing all (unique) spatial training points and the spatial test point x as
its zeroth component. By Lemma C.2 a space-time separable Gauss–Markov process f evaluated at the spatial
inputs X, i.e., u(t) := f(t,X) ∈ RNXD′

and u0(t) = f(t, x), admits a state-space representation with dynamics

u(t) = A(t, s)u(s) + b(t, s) + q(t, s) (C.8)

where q(t, s) ∼ N (0,Q(t, s)) and the observation model is by assumption given by

y̌k = Ŝ⊤
k f0(t

train
k ,Xtrain

k) + ϵ̌k = Ŝ⊤
k Hku(t

train
k) + ϵ̌k ∈ RŇk (C.9)

where Hk ∈ RNk×D is implicitly defined by Hku(t
train
k) = f0(t

train
k ,Xtrain

k).

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

Now, in a linear Gaussian state-space model as defined by Equation (C.8) and Equation (C.9), the vanilla Kalman
filter and smoother (Särkkä, 2006, Alg. 3.14 & 3.17) compute the posterior marginal

(f(t,X) | y̌1 = y̌1, . . . , y̌K = y̌K) ∼ N
(
µ̂y⋆

(t,X), Σ̂((t,X), (t,X))
)

(C.10)

at an arbitrary timepoint t exactly, and if t ≥ ttrainK , then it suffices to run the filter (Särkkä and Solin, 2019,
Alg. 10.15 & 10.18). By construction, the output of the computation-aware filter and smoother for given
Ŝ1, . . . , ŜK (assuming no truncation) are equivalent to applying the vanilla filter and smoother to the state-space
model defined by Equation (C.8) and Equation (C.9), i.e., m̂s(z | y⋆) = µ̂y⋆

(z) and P̂ s(z) = Σ̂(z, z). By
Lemma C.7, the zeroth components of the CAKS moments (m̂s(z))0, (P̂

s(z))0,0 are hence equal to the marginal
moments of the iteratively approximated batch GP posterior (f | S⊤ytrain) ∼ GP

(
µ̂y⋆

, Σ̂
)

evaluated at the test
point z = (t,x). This completes the proof.

Theorem 1 (Pointwise Worst-Case Prediction Error). Let Z = [t0, T] × X and define a space-time separable
Gauss–Markov process f ∼ GP (µ,Σ) such that its first component f := f0 ∼ GP (µ,Σ) defines a prior for the
latent function f⋆ ∈ HΣ generating the data, assumed to be an element of the RKHS defined by HΣ. Given
observation noise σ2 ≥ 0, let y⋆(·) ∈ HΣσ be the observed process with Σσ(z, z′) := Σ(z, z′) + σ2δ(z, z′). Given
training inputs Ztrain ∈ ZN and targets ytrain = y⋆(Ztrain) ∈ RN , let m̂s(z | y⋆) and P̂ s(z) be the mean and
variance of the CAKS for an arbitrary test input z = (t,x) ∈ Z \Ztrain. Then

sup
y∈HΣσ\{0}

|y(z)− m̂s(z | y)0|
∥y∥HΣσ

=

√
P̂ s(z)0,0 + σ2. (5.1)

If σ2 = 0, this also holds for training inputs z ∈ Ztrain.

Proof. By Proposition C.9 the mean m̂s(z | y⋆)0 and variance P̂ s(z, z)0,0 computed by the computation-aware
filter and smoother for the test input z = (t,x) are equivalent to the marginal posterior mean and variance of an
iteratively approximated batch GP posterior with the induced (space-time separable) prior f := f0 ∼ GP (µ,Σ)
and actions S defined as in Equation (C.7). Therefore by Theorem C.8 it holds that

sup
ỹ∈HΣσ

∥ỹ∥HΣσ ≤1

|ỹ(z)− m̂s(z | ỹ)0| =
√
P̂ s(z, z)0,0 + σ2

Recognizing that the supremum is achieved on the boundary, i.e., where ∥ỹ∥HΣσ = 1, we can equivalently consider
ỹ(·) = y(·)

∥y∥HΣσ
for y ∈ HΣσ \ {0} arbitrary. Then it holds that m̂s(z | ỹ)0 = m̂s(z|y)0

∥y∥HΣσ
and therefore we have

sup
y∈HΣσ\{0}

|y(z)− m̂s(z | y)0|
∥y∥HΣσ

= sup
ỹ∈HΣσ

∥ỹ∥HΣσ =1

|ỹ(z)− m̂s(z | ỹ)0| =
√
P̂ s(z, z)0,0 + σ2

This proves the claim.

D EXPERIMENTS

D.1 Metrics

To assess the predictive performance of the models considered for our experiments in Section 7, we mainly use
two different metrics:

Mean Squared Error To assess the quality of the predictive mean m̃k as a point estimate for the target state
u⋆
k, we use the mean squared error (MSE)

MSE(u⋆
k, m̃k) =

1

D
∥u⋆

k − m̃k∥22.

Computation-Aware Kalman Filtering and Smoothing

Average Negative Log Density All inference algorithms considered in this work provide Gaussian conditional
distributions N

(
m̃k, P̃k

)
as estimates of the unknown target state u⋆

k. Hence, we can use the average negative
log density (NLD)

AvgNLD(u⋆
k | m̃k, P̃k) = −

1

D

D∑
d=1

logN
(
u⋆
k,d; m̃k,d, P̃k,d,d

)
=

1

2D

D∑
d=1

(u⋆
k,d − m̃k,d)

2

P̃k,d,d

+ log(2πP̃k,d,d)

corresponding to this Gaussian distribution as a measure of the quality of the predictive uncertainty. We use
the average NLD as opposed to the “full” NLD, i.e., − logN

(
u⋆
k; m̃k, P̃k

)
, since computation of the latter is

infeasible for high-dimensional state spaces.

For both metrics, we choose (m̃k, P̃k) ∈ {(m̂k, P̂k), (m̂
s
k, P̂

s
k), (mk,Pk), (m

s
k,P

s
k), . . .} as appropriate. We

aggregate the metrics across entire trajectories by averaging. In Figures 4 and D.3, we also marginalize over
the train and test parts of the states before computing the metrics to obtain a more fine-grained view of the
performance of the algorithms.

D.2 Experiment Details

We provide some additional details for the experiments conducted in Section 7 in this section.

D.2.1 Comparison to Other Methods

The domain of the problem is [0, T]× X with X = [0, 20]DX .

Model The temporal and spatial covariance functions are given by Σt = σ2 · Matérn(3/2, ℓt) and Σx =
Matérn(3/2, ℓx) with lengthscales ℓt = ℓx = 0.5 and output scale σ = 1.

Data We discretize the model on regular grids X ∈ XNX and t ∈ [0, T]Nt of NX = 100DX points in space
and Nt = 20 · T points in time. Afterwards, we sample a ground-truth trajectory {u⋆

k}
Nt

k=1 from the resulting
state-space model. Drawing samples from the SSM requires access to (left) square roots of the initial covariance
matrix and the transition noise covariance matrices of the discretized model. As shown in Appendix C.1, these
matrices are Kronecker products of a R2×2 matrices with the matrix Σx(X,X) ∈ RNX×NX . Hence, we can
compute the required (left) square roots by computing a (left) square root of Σx(X,X). Since a (left) square root
of Σx(X,X) is not available in closed form, we compute it by means of an eigendecomposition (on the GPU).
However, this severely limits the number of spatial points NX that can be considered in the experiments. We
pick random subsets ttrain ⊂ t and Xtrain ⊂X of K = Nt/10 temporal and Nk = 20DX spatial points as training
locations Z = ttrain ×Xtrain and perturb the corresponding entries of the ground-truth states u⋆

k with additive
i.i.d. Gaussian measurement noise with standard deviation λ = 0.1.

Evaluation We repeat the data sampling procedure outlined above five times with different random seeds and
evaluate the performance of each inference algorithm independently on each of the resulting datasets. The solid
lines in Figures 2, D.1 and D.2 are obtained by taking the median over the resulting metrics (and the wall-time
in case of Figure 2) across the different runs while the individual values are scattered in the background with
reduced opacity. For the CAKF/CAKS and the ensemble Kalman filters, we study the effect of the computational
budget on the approximation by varying the rank parameter r. For a fair comparison, we fix both the number of
iterations and the maximal rank after truncation in the CAKF/CAKS to the same values used in the ensemble
Kalman filters, i.e., Ňmax

k = rmax
k = r.

Comparison to EnKF and ETKF In this experiment, we consider a two spatial dimensions, i.e., DX = 2, and
set T = 5. This results in a state-space dimension of D = 20 000, Nt = 100 total time steps taken, and Nk = 400
spatial observations made at each of the K = 10 training time points.

The ensemble in the EnKF is initialized by drawing r samples from the initial state u1 of the model. In the
predict step, we draw one new ensemble member from the transition model starting at the corresponding ensemble
member in the previous ensemble. The ETKF-S uses the same sample-based initialization and prediction steps as

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

Table D.1: Total number of spatial points NX = |X|, state-space dimension D, number of spatial training points
per time step Nk = |Xtrain

k |, and total number of training points N =
∑K

k=1 Nk for the ERA5 experiment.

Downsampling factor NX D Nk N

(1/24)2 1860 3720 1440 69 120
(1/12)2 7320 14 640 5580 267 840
(1/6)2 29 040 58 080 21 960 1 054 080
(1/3)2 115 680 231 360 87 120 4 181 760

the EnKF. Both algorithms leverage the (left) square root of Σx(X,X) computed during data generation at
every step, and the wall time duration of its computation is added to the wall time cost of both algorithms in
Figure 2. The ETKF-L uses the Lanczos process to compute a low-rank approximation to the initial covariance
during initialization and to the predictive covariance during the prediction step. The random number generators
in the ensemble Kalman filters is seeded with a deterministic transformation of the data seed.

M
S

E

2.0

2.5

3.0

3.5

4.0

Rank

20 25 210

A
ve

ra
ge

 N
L

D

100

105

1010

EnKF

ETKF-S

ETKF-L

CAKF

Figure D.1: Comparison of the CAKF, the EnKF, and
two variants of the ETKF on on-model data while vary-
ing the rank parameters that govern the computational
budget of the algorithms.

Comparison to Kalman filter and RTS
smoother In this experiment, we consider a one
spatial dimension, i.e., DX = 1, and set T = 50.
This results in a state-space dimension of D = 200,
Nt = 1000 total time steps taken, and Nk = 20
spatial observations made at each of the K = 100
training time points. Moreover, we fix one random
set of training time points that is shared across runs
to make the trajectories comparable.

D.2.2 Impact of Truncation

The temporal domain of the problem is [0, 1], while
the spatial domain is [0, π].

Data We generate the synthetic data on a regular
grid of size 11× 16 (in time and space) and the plots
are generated on a 51× 158 regular grid. The train-
ing data is corrupted by i.i.d. zero-mean Gaussian
measurement noise with standard deviation λ = 0.1.

Model The temporal and spatial covariance func-
tions are given by Σt = σ2 · Matérn(3/2, ℓt) and
Σx = Matérn(5/2, ℓx) with lengthscales ℓt = 0.5 and
ℓx = 2, respectively, and an output scale σ = 1.
The resulting state-space dimension of the spatially
discretized model is D = 348.

D.2.3 Large-Scale Climate Dataset

The domain of the problem is [0 h, 48 h] × S2(r⊕),
where S2(r) denotes the two-dimensional sphere with
radius r ∈ R≥0, and r⊕ ≈ 6371 km is the average
Earth radius.

Model The temporal covariance function is given by Σt = σ2 ·Matérn(3/2, ℓt) with lengthscale ℓt = 3h and output
scale σ = 10 ◦C. The spatial covariance function is chosen as an extrinsic Matérn(3/2, ℓx) covariance function
on S2(r⊕), i.e., a Matérn(3/2, ℓx) covariance function on R3 concatenated with a coordinate transformation from
geographic coordinates to R3 in both arguments. For any given spatial downsampling factor, its lengthscale ℓx
is set to the geodesic distance of the training points at the equator. We assume the data is corrupted by iid
Gaussian noise with standard deviation 0.1 ◦C. These hyperparameters were chosen a priori and not tuned for
the given training data.

Computation-Aware Kalman Filtering and Smoothing

We provide the total number of spatial points, state-space dimension, number of spatial training points per time
step, and total number of training points for every downsampling factor of the ERA5 experiment in Table D.1.

D.3 Policy Choice

In general, the choice of optimal policy may be highly problem-dependent, but some natural choices present
themselves.

Coordinate Actions The simplest choice of policy produces a sequence of unit vectors with all zero entries,
except for a single coordinate j(i), i.e., ŝ(i)k = ej(i). Choosing j(i) = i simply corresponds to sequential conditioning
on a subset of the components of yk, which in the spatiotemporal regression setting correspond to a subset
of spatial locations. When the data has spatial structure, e.g., when it is placed on a grid as in Section 7.3,
this structure can be leveraged by choosing a space-filling sequence of points. Berberidis and Giannakis (2017)
similar to our work explored low-dimensional projections to accelerate Kalman filtering. They propose several
effective policy choices, among them a coordinate policy, which is based on a computable measure of the amount
of information in each component of yk, allowing one to select informative points sequentially while omitting
uninformative data points.

Randomized Actions Berberidis and Giannakis (2017) also proposed using randomized actions inspired by
sketching techniques in randomized numerical linear algebra (Martinsson and Tropp, 2020). For example, a
common choice are actions with i.i.d. sampled entries, e.g., ŝ(i)k ∼ N (0, I).

Bayesian Experimental Design Another choice is to use Bayesian experimental design (see e.g., Berger,
1980). This has been explored before in the context of probabilistic linear solvers (Cockayne et al., 2019a) and
was found to suffer from slow convergence since these are a-priori optimal and therefore do not adapt well to the
specific problem. Furthermore, such optimal actions are not always tractable to compute.

CG/Lanczos Actions Finally, a choice that has been repeatedly proposed in the literature on probabilistic
linear solvers (Wenger et al., 2022; Cockayne et al., 2019a; Hennig, 2015; Wenger and Hennig, 2020) is the
Lanczos/CG algorithm (Saad, 2003, Section 6.6). In this approach, we obtain the vectors ŝ

(1)
k , . . . , ŝ

(Ňk)
k by

appling the Lanczos procedure to the matrix Ĝk = HkP̂
−
k H⊤

k +Λ, with initial vector r̂
(0)
k = yk −Hkm̂

−
k . This

has the effect of ensuring that the residuals r̂
(i)
k → 0 at an exponential rate in i (see e.g., Liesen and Strakos,

2012, Corollary 5.6.7). As shown by Wenger et al. (2022, Cor. S2), this choice is equivalent to directly selecting
the current residual as the next action, i.e., ŝ(i)k = r̂

(i)
k .

D.3.1 Empirical Comparison of Policies

To empirically compare some of the proposed policy choices for the CAKF and CAKS, we rerun the experiment
on the ERA5 climate dataset with a downsampling factor of 12 (D = 14 640, orange line in Figure 4) using three
different policies selected from the above choices. We compare coordinate actions with coordinates corresponding
to spatial locations chosen according to an (approximately) space-filling design, random actions obtained by
drawing independent samples from a standard normal distribution, i.e., ŝ(i)k ∼ N (0, I), and finally CG/Lanczos
actions given by ŝ

(i)
k = r̂

(i)
k . The corresponding work-precision diagrams are shown in Figure D.3. It shows that

CG actions are preferable to the other actions considered in terms of the MSE and average NLD achieved on
both train and test sets. Note that the blue lines in Figure D.3 coincide with the orange lines in Figure 4. In
particular, the exponential convergence rate of CG can be seen in the top-left panel (the CG MSE terminates just
below 10−4 for 28 iterations per time step as can be seen in Figure 4).

D.4 On Comparison with the EnKF

While the ensemble Kalman filter (EnKF) (Evensen, 1994) and variants such as the ensemble adjustment Kalman
filter (EAKF) (Anderson, 2001) and the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001) can
sometimes be used to solve filtering problems with high-dimensional state spaces, they typically make strong
assumptions about the state-space models that are not fulfilled in the setting of this paper. To be precise,

Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig

ensemble Kalman filters often assume that we can sample from the initial state u0 ∼ N (µ0,Σ0) and the process
noise qk ∼ N (0,Qk) in the dynamics model (Burgers et al., 1998, Eqn. 18) and/or that it is feasible to compute
(left) square roots of the respective covariances Σ0 and Qk.

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

103 104 105 106

Matrix Size

100 MB

10 GB

1 TB

M
em

or
y

Figure D.4: Computational time
and memory cost of a Cholesky
decomposition in double precision
as a function of matrix size.

In the data assimilation context, it is common that either:

• Qk = 0

• Qk is diagonal, or

• Qk is low-rank with given left square root.

In separable spatiotemporal GP regression, we have Qk = Qt
k ⊗Σx(X,X),

where Σx(X,X) is a dense kernel Gram matrix, whose (left) square root
is (generally) not available without allocating Σx(X,X) in memory. This
means that most ensemble Kalman filters would still require computing a
Cholesky factorisation of Σx(X,X), and would thus have O(N3

X) time and
O(N2

X) memory complexities, which are precisely the complexities that the
CAKF/S are constructed to avoid. We encounter analogous issues when
considering Σ0.

To make this point more clearly, Figure D.4 shows how time and memory
requirements to compute a Cholesky decomposition of Σx(X,X) scale with
matrix size NX . The solid lines correspond to what decompositions we
are able to compute on our machines for the different problem sizes in
Table D.1, and the dashed lines are extrapolations past the problem sizes
where the decomposition crashed due to memory allocation errors. The
largest problem size we apply our methods to has NX = 115 680 spatial
observations, which is comfortably outside the range where a Cholesky
decomposition can be computed on all but the most specialised hardware; just to allocate this matrix would
require in excess of 100GB of working memory.

An exception to the above is the seemingly seldom-used ETKF-L algorithm described in (Tippett et al., 2003,
Sec. 3(b)) as well as in Section 7.1.1 and Appendix D.2.1. The ETKF-L approximates the required (left) square
roots with the Lanczos method without allocating Σx(X,X) in memory.

Computation-Aware Kalman Filtering and Smoothing

D
−

1 2
⋅‖

m
(t)

−
m̂

(t)
‖ 2

10−15

10−10

10−5

100

Time t

D
−

1
⋅‖

P
(t)

−
P

̂ (t)
‖ F

10−15

10−10

10−5

100

1 16 32 64

(a) Filter

D
−

1 2
⋅‖

m
s (t)

−
m̂

s (t)
‖ 2

10−15

10−10

10−5

100

Time t

D
−

1
⋅‖

P
s (t)

−
P

̂s (t)
‖ F

10−15

10−10

10−5

100

1 16 32 64

(b) Smoother

Figure D.2: Error dynamics of the CAKF and CAKS with varying rank parameter Ňmax
k = rmax

k = 1, 16, 32, 64
compared to the Kalman filter and RTS smoother on on-model data. The time points at which data is observed
are marked by the vertical grid lines.

T
ra

in
 M

S
E

100

101

102

CAKF

Budget [iters/timestep]

20 21 22 23 24 25 26 27 28

T
ra

in
 A

ve
ra

ge
 N

L
D

3

4

5

CAKS

Budget [iters/timestep]

20 21 22 23 24 25 26 27 28

T
es

t
M

S
E

101

102

CAKF

Budget [iters/timestep]

20 21 22 23 24 25 26 27 28

T
es

t
A

v
er

ag
e

N
L

D

3

4

5

CAKS

Budget [iters/timestep]

20 21 22 23 24 25 26 27 28

Policy

CG Random Coordinate

Figure D.3: Comparison of different policies for the CAKF and CAKS on the ERA5 climate dataset. The
work-precision diagrams measuring MSE and average NLD on the train and test set universally show that CG
actions achieve lower error as a function of the budget when compared to either coordinate or random actions.

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Bayesian Inference in Linear-Gaussian State-Space Models
	2.2 Spatiotemporal Regression

	3 COMPUTATION-AWARE KALMAN FILTERING
	3.1 From Matrix-y to Matrix-Free
	3.2 Downdate Truncation
	3.3 Choice of Policy

	4 COMPUTATION-AWARE RTS SMOOTHING
	5 THEORETICAL ANALYSIS
	5.1 Computational Complexity
	5.2 Error Bound for Spatiotemporal Regression

	6 RELATED WORK
	7 EXPERIMENTS
	7.1 Comparison to Other Methods
	7.1.1 Comparison to EnKF and ETKF
	7.1.2 Comparison to Kalman Filter and RTS Smoother

	7.2 Impact of Truncation
	7.3 Large-Scale Climate Dataset

	8 CONCLUSION
	References
	A NOTATION
	B DERIVATION OF THE ALGORITHM
	B.1 Filtering
	B.2 Smoothing
	B.3 Sampling via Matheron's Rule
	B.4 Temporal Interpolation
	B.5 Iterative Version of the CAKF Update Step

	C SPACE-TIME SEPARABLE GAUSS–MARKOV PROCESSES
	C.1 Spatiotemporal GP Regression in State-Space Form
	C.2 Pointwise Error Bound
	C.2.1 (Iteratively Approximated) Batch Gaussian Process Regression
	C.2.2 Computation-aware Filtering and Smoothing

	D EXPERIMENTS
	D.1 Metrics
	D.2 Experiment Details
	D.2.1 Comparison to Other Methods
	D.2.2 Impact of Truncation
	D.2.3 Large-Scale Climate Dataset

	D.3 Policy Choice
	D.3.1 Empirical Comparison of Policies

	D.4 On Comparison with the EnKF

