The University of Southampton
University of Southampton Institutional Repository

The effect of female breast surface area on cutaneous thermal sensation, wetness perception and epidermal properties

The effect of female breast surface area on cutaneous thermal sensation, wetness perception and epidermal properties
The effect of female breast surface area on cutaneous thermal sensation, wetness perception and epidermal properties
Female development includes significant size changes across the breast. Yet, whether differences in breast surface area (BrSA) modify breast sensitivity to warm, cold and wetness, and the associated epidermal properties (skin thickness and surface roughness) remain unclear. We investigated the relationship between BrSA and thermal and wetness perception, as well as epidermal properties, in 21 females (28 ± $\ \pm $ 10 years) of varying breast sizes (BrSA range: 147-502 cm 2), at multiple breast sites (i.e., nipple, above and below the nipple, and bra triangle). Associations between BrSA and the perceptual and epidermal variables were determined via correlation analyses. Differences across test sites were assessed by repeated-measures ANOVA. Our results did not support the hypothesis that larger breasts present reduced thermal and wetness sensitivity, except for the above nipple site, which presented reduced warm sensitivity with increasing BrSA (r = -0.61, P = 0.003). We also found a heterogeneous distribution of cold, but not warm or wetness, sensitivity across the breast, with the above nipple site presenting lower cold sensitivity than any other site (P < 0.015). Our findings did not indicate any association between BrSA and epidermal properties (thickness and roughness), nor any site-dependent variation in these anatomical parameters (P > 0.15). We conclude that, while some skin-site (i.e., above the nipple) and perceptual modality-dependent (i.e., warm sensitivity) differences were observed, BrSA-dependent variations in thermal and wetness sensitivity were not a generalised feature of the skin covering the breast. These observations advance our fundamental understanding of breast sensory function, and they could inform the design of user-centred clothing such as bras.
breast, female, morphology, skin, thermal sensation, wetness perception
0958-0670
Blount, Hannah
18ae3446-5435-4631-b8df-ee957494c304
Valenza, Alessandro
60b629a5-c527-4137-8efb-6670b165d319
Ward, Jade
46e85414-ec11-42f9-bfec-b0f8b85b7abf
Caggiari, Silvia
58f49054-6ca6-429b-b499-49b93357e5ba
Worsley, Peter R.
6d33aee3-ef43-468d-aef6-86d190de6756
Filingeri, Davide
42502a34-e7e6-4b49-b304-ce2ae0bf7b24
Blount, Hannah
18ae3446-5435-4631-b8df-ee957494c304
Valenza, Alessandro
60b629a5-c527-4137-8efb-6670b165d319
Ward, Jade
46e85414-ec11-42f9-bfec-b0f8b85b7abf
Caggiari, Silvia
58f49054-6ca6-429b-b499-49b93357e5ba
Worsley, Peter R.
6d33aee3-ef43-468d-aef6-86d190de6756
Filingeri, Davide
42502a34-e7e6-4b49-b304-ce2ae0bf7b24

Blount, Hannah, Valenza, Alessandro, Ward, Jade, Caggiari, Silvia, Worsley, Peter R. and Filingeri, Davide (2024) The effect of female breast surface area on cutaneous thermal sensation, wetness perception and epidermal properties. Experimental Physiology. (doi:10.1113/EP092158).

Record type: Article

Abstract

Female development includes significant size changes across the breast. Yet, whether differences in breast surface area (BrSA) modify breast sensitivity to warm, cold and wetness, and the associated epidermal properties (skin thickness and surface roughness) remain unclear. We investigated the relationship between BrSA and thermal and wetness perception, as well as epidermal properties, in 21 females (28 ± $\ \pm $ 10 years) of varying breast sizes (BrSA range: 147-502 cm 2), at multiple breast sites (i.e., nipple, above and below the nipple, and bra triangle). Associations between BrSA and the perceptual and epidermal variables were determined via correlation analyses. Differences across test sites were assessed by repeated-measures ANOVA. Our results did not support the hypothesis that larger breasts present reduced thermal and wetness sensitivity, except for the above nipple site, which presented reduced warm sensitivity with increasing BrSA (r = -0.61, P = 0.003). We also found a heterogeneous distribution of cold, but not warm or wetness, sensitivity across the breast, with the above nipple site presenting lower cold sensitivity than any other site (P < 0.015). Our findings did not indicate any association between BrSA and epidermal properties (thickness and roughness), nor any site-dependent variation in these anatomical parameters (P > 0.15). We conclude that, while some skin-site (i.e., above the nipple) and perceptual modality-dependent (i.e., warm sensitivity) differences were observed, BrSA-dependent variations in thermal and wetness sensitivity were not a generalised feature of the skin covering the breast. These observations advance our fundamental understanding of breast sensory function, and they could inform the design of user-centred clothing such as bras.

Text
Experimental Physiology - 2024 - Blount - The effect of female breast surface area on cutaneous thermal sensation wetness - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)
Text
2024_BreastWetness_ExpPhys
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 22 October 2024
e-pub ahead of print date: 29 November 2024
Keywords: breast, female, morphology, skin, thermal sensation, wetness perception

Identifiers

Local EPrints ID: 496729
URI: http://eprints.soton.ac.uk/id/eprint/496729
ISSN: 0958-0670
PURE UUID: d5ae7823-a533-4959-a810-6760098c37da
ORCID for Hannah Blount: ORCID iD orcid.org/0000-0002-2419-1716
ORCID for Jade Ward: ORCID iD orcid.org/0000-0003-2304-1342
ORCID for Silvia Caggiari: ORCID iD orcid.org/0000-0002-8928-2141
ORCID for Peter R. Worsley: ORCID iD orcid.org/0000-0003-0145-5042
ORCID for Davide Filingeri: ORCID iD orcid.org/0000-0001-5652-395X

Catalogue record

Date deposited: 07 Jan 2025 22:08
Last modified: 22 Aug 2025 02:37

Export record

Altmetrics

Contributors

Author: Hannah Blount ORCID iD
Author: Alessandro Valenza
Author: Jade Ward ORCID iD
Author: Silvia Caggiari ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×