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A B S T R A C T 

Eclipse mapping uses the shape of the eclipse of an exoplanet to measure its two-dimensional structure. Light curves are mostly 

composed of longitudinal information, with the latitudinal information only contained in the brief ingress and egress of the 
eclipse. This imbalance can lead to a spuriously confident map, where the longitudinal structure is constrained by out-of-eclipse 
data and the latitudinal structure is wrongly determined by the priors on the map. We present a new method to address this issue. 
The method tests for the presence of an eclipse mapping signal using k-fold cross-validation to compare the performance of a 
simple mapping model to the null hypothesis of a uniform disc. If a signal is found, the method fits a map with more degrees of 
freedom, optimizing its information content. The information content is varied by penalizing the model likelihood by a factor 
proportional to the spatial entropy of the map, optimized by cross-validation. We demonstrate this method for simulated data sets 
then apply it to three observational data sets. The method identifies an eclipse mapping signal for JWST MIRI/LRS observations 
of WASP-43b but does not identify a signal for JWST NIRISS/SOSS observations of WASP-18b or Spitzer Space Telescope 
observations of HD 189733b. It is possible to fit eclipse maps to these data sets, but we suggest that these maps are o v erfitting 

the eclipse shape. We fit a new map with more spatial freedom to the WASP-43b data set and show a flatter east–west structure 
than previously derived. 

K ey words: methods: observ ational – planets and satellites: atmospheres. 
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 I N T RO D U C T I O N  

lanetary atmospheres are controlled by multidimensional processes.
bservations of transiting exoplanets are generally limited to mea-

urements of point sources, where the flux from the entire stellar
nd planetary system is observed at once. For such a system, eclipse
apping is currently the only method by which both two-dimensional

ongitudinal (east–west) and latitudinal (north–south) information
an be measured o v er the surface of an exoplanet. This information
s derived from the shape of the eclipse of an exoplanet by its star.
he eclipse shape is a function of the spatial distribution of flux from
 E-mail: mark.hammond@physics.ox.ac.uk 
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he planet and of the geometry of the co v erage of the planet by its
tar. If we know the geometry of the eclipse co v erage, or can fit a
odel of it, we can derive a map of the flux from the planet. 
Eclipse mapping has been used in other contexts to derive images

f the surface brightness of accretion discs (Horne 1985 ) and maps
f the single-scattering albedo of Pluto and Charon (Buie, Tholen &
orne 1992 ). Rauscher et al. ( 2007 ) showed the possibility of
apping exoplanets with sufficiently high-precision observations,

ighlighting the suitability of JWST in particular. Eclipse mapping
as previously been applied to observations of three ‘hot Jupiter’
xoplanets: HD 189733b with the Spitzer Space Telescope (de
it et al. 2012 ; Majeau, Agol & Cowan 2012 ), WASP-18b with

WST NIRISS/SOSS (Coulombe et al. 2023 ), and WASP-43b with
WST MIRI/LRS (Hammond et al. 2024 ). Majeau et al. ( 2012 ) used
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pherical harmonics up to first order to map HD 189733b. They found
hat the brightest part of the planet was shifted slightly eastwards, 
nd that its latitudinal position was consistent with the equator. 
it et al. ( 2012 ) used more flexible mapping functions to derive

 more localized hot-spot from this same data set and highlighted 
egeneracies between this map and the orbital parameters of the 
lanet. Coulombe et al. ( 2023 ) derived a map of WASP-18b with
 notably uniform longitudinal structure near the substellar point, 
ut they could not find evidence for latitudinal information in the 
ata set. Hammond et al. ( 2024 ) detected latitudinal information in
he eclipse shape of WASP-43b and found an eastward longitudinal 
ot-spot shift. 
Deriving reliable eclipse maps from observational data sets has 

wo intrinsic issues. First, the problem is ill-posed – one spatial 
attern can produce the same flux time-series as another, or even 
o flux at all (Cowan & Agol 2008 ; Challener & Rauscher 2023 ).
longside the uncertainty inherent in observational data, this means 

hat an observed light curve implies a range of possible maps instead
f a single unique solution. Secondly, the data that contain two- 
imensional information are normally a very small part of an overall 
ime-series observation – the ingress and egress of an eclipse being 
ypically at least an order of magnitude shorter than the whole orbit
f a planet. These issues lead to two statistical challenges. 
The first challenge is to identify when it is justifiable to fit an

clipse map to a particular observation. In general, an eclipse map 
odel has more degrees of freedom than a model of a planet with

niform emission. It will therefore normally produce a better fit to 
he data in an eclipse, even when the deviations from the shape of
 uniform eclipse are driven by random noise, or when unresolved 
ystematic errors produce an eclipse shape that does not depend on 
he true emission map. This means that it is easy to fit spurious eclipse
aps to noisy or inaccurate data sets. Section 2 therefore presents
 statistical test using k-fold cross-validation to determine when 
n ‘eclipse mapping signal’ is present. This statistical test a v oids
oth underfitting (where the model cannot match the observations), 
nd o v erfitting (where the model deriv es spurious information from
oise). Welbanks et al. ( 2023 ) show a similar method for fitting
pectroscopic models to exoplanet observations using leave-one-out 
ross-validation. Challener, Welbanks & McGill ( 2023 ) showed the 
pplication of leave-one-out cross-validation to eclipse mapping, but 
e chose not to use the leave-one-out method as we seek to test

he predictive power of a model for a longer duration of omitted
ata. 
The second statistical challenge is how much complexity to 

llow in the fitted map, if an eclipse mapping signal is indeed
resent. Fitting with a high degree of spatial freedom results in 
ighly uncertain maps with spurious small-scale features due to 
ncertainty and de generac y in the observational data. Wit et al.
 2012 ) investigated this issue, showing how fitting an eclipse map
ith a model with more small-scale freedom (a single hot-spot of
ariable size) resulted in greater uncertainty than a model with only 
arge-scale freedom (a low-order spherical harmonic map). Rauscher, 
uri & Cowan ( 2018 ) developed the method of ‘eigenmapping’ to
ddress this issue, orthogonalizing the light curves used to fit an 
bservation, and then determining the number of corresponding maps 
sed to fit the data by optimizing the Bayesian Information Criterion
BIC). In Section 2 we present a new eclipse mapping method to
erive the appropriate spatial complexity of the fitted map, again 
sing k-fold cross-validation. This method is based on the pixel 
ampling and entropy maximization methods presented in Horne 
 1985 ) and Chen et al. (in preparation) for mapping of accretion
iscs and brown dwarfs. 
We demonstrate these methods with simulated data in Section 3 ,
howing that they correctly identify when fitting a simple low- 
rder eclipse map is justified. We show that the method can then
dentify the appropriate information content for a map composed 
f higher order spherical harmonics, depending on the spatial scale 
f the true map and the precision of the data. We then demonstrate
his method for real observational data in Section 4 , applying it
o observations of WASP-43b with JWST MIRI/LRS, WASP-18b 
ith JWST NIRISS/SOSS, and HD 189733b with the Spitzer Space 

elescope . The method identifies a clear eclipse mapping signal for
bservations of WASP-43b with JWST MIRI/LRS, consistent with 
he findings of Hammond et al. ( 2024 ), and fits a new map optimized
y our new method. Our method does not identify a significant eclipse
apping signal for observations of WASP-18b with NIRISS SOSS 

r the Spitzer Space Telescope observations of HD 189733b; this 
iffers from the conclusions of Coulombe et al. ( 2023 ), Majeau et al.
 2012 ), and Wit et al. ( 2012 ). 

We conclude that our proposed method can reliably determine the 
resence of an eclipse mapping signal in observational data, and then
etermine the appropriate spatial scale of the map to fit to these data,
ddressing the two statistical issues presented abo v e. 

 M E T H O D S  

his section describes the methods we use to simulate and retrieve
clipse mapping data. It lists the models used to simulate observations
f thermal emission light curves, our sources of real observational 
ight curves, the models used to fit these light curves with eclipse

aps, and the cross-validation metric we propose to compare the 
uality of different models. 

.1 Simulated time-series thermal emission 

e simulate time-series thermal emission to represent the typical 
recision and cadence of observations suitable for eclipse mapping 
ith JWST . We set up our simulation to emulate observations of

he hot Jupiter WASP-43b (Hellier et al. 2011 ) with the MIRI/LRS
nstrument on JWST (Bell et al. 2024 ). Our conclusions do not depend
n this particular choice, and we vary our model choices later. WASP-
3b orbits a K7, 0.717 M � star with an orbital period of 19.2 h, a
ass of 2.034 M J , and a semimajor axis of 0.0153 au (Gillon et al.

012 ). It has an estimated equilibrium temperature of 1440 K (Blecic
t al. 2014 ). 

We use a simulation from the General Circulation Model (GCM) 
HOR (Mendon c ¸a et al. 2016 ; Deitrick et al. 2020 ) of a cloudless
tmosphere on WASP-43b to model observations. This simulation 
as previously used to study the atmospheric temperature structure, 

loud co v er, and chemistry of WASP-43b (Mendon c ¸a et al. 2018a , b ).
HOR is based on a dynamical core that solves the non-hydrostatic
ompressible Euler equations on an icosahedral grid. The simulation 
ses a simple two-band formulation of radiative transfer calibrated to 
eproduce the results from more comple x non-gre y models of WASP-
3b (Kataria et al. 2015 ; Malik et al. 2017 ). More details about the
odel configuration can be found in Mendon c ¸a et al. ( 2018a ). We are

ot concerned about the time-varying behaviour of the atmosphere 
which is small in any case) as we are using this as an e x emplar
ase, so we post-process a single snapshot of the GCM temperature
eld. 
To simulate the observed thermal emission in the MIRI/LRS 

andpass, the GCM simulation was post-processed using the HELIOS 

ode (Malik et al. 2017 ) to produce a map of the planetary thermal
ux av eraged o v er the entire bandpass, normalized by a stellar
MNRAS 532, 4350–4368 (2024) 
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M

Figure 1. First panel: the emission map from the THOR GCM used to simulate the time-series observations in Figs 2 and 3 . Second panel: the true map 
represented by � max = 2 spherical harmonics, showing how these are not sufficient to capture its spatial structure. Third panel: the true map represented by 
� max = 4 spherical harmonics, showing how this captures most of the true structure. The brightest point of the true map is at 40 ◦ east of the substellar point. The 
brightest point of the � max = 2 representation is incorrect, at 24 ◦ east. The � max = 4 representation is more accurate, with its brightest point at 43 ◦ east. 
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pectrum from the PHOENIX model data base (Allard & Hauschildt
995 ; Husser et al. 2013 ) as described in Mendon c ¸a et al. ( 2018b ).
e do not represent limb darkening for this latitude–longitude map,

s we fit a two-dimensional map that varies only due to the rotation
nd occultation of the planet. 

This simulation results in the map of thermal emission shown in
he left-hand panel of Fig. 1 . The figure also shows representations
f this ‘true map’ using spherical harmonics up to a given order
 max , calculated using starry (Luger et al. 2019 ). This shows
ow an � max = 2 representation fails to capture the spatial structure
f the map; its brightest point is on the equator 24 ◦ east of the
ubstellar point, compared to the position of the brightest point in
he original map at 40 ◦ east. This offset is due to the low-order
epresentation omitting many of the higher order structures in the
rue map (Hammond et al. 2024 ). 

The � max = 4 representation in Fig. 1 captures most of the spatial
tructure, with its brightest point at 43 ◦ east, more closely matching
he brightest point of the original map. This implies that fitting an
clipse map composed of � max = 2 harmonics would not produce an
ccurate fit to the real structure, while the � max = 4 representation
ould in theory be able to match the real structure closely. For real
bservations where we do not know the spatial structure in advance,
t is desirable to use a high degree of spatial freedom, constrained
nly by observational precision. 
To simulate the light curve with starry (Luger et al. 2019 ), we

se the full map represented precisely by harmonics up to � max = 10.
ASP-43b is assumed to be tidally locked to its star, based on its short

rbital period and consistent thermal phase curve amplitude (Hellier
t al. 2011 ), so the fitted eclipse map corresponds to its permanent
ayside. The simulated time series runs from orbital phase −0.6
o 0.4, co v ering a single orbit with an eclipse and a transit. It has
000 data points, giving a cadence of 10.04 s per point, similar to
he cadence of the JWST observations of WASP-43b in Bell et al.
 2024 ). 

We add Gaussian noise with a standard deviation σ , testing data
ith σ = 150, 250, and 2000 ppm. We chose the value of 250 ppm

o be comparable to the precision achieved by averaging the two
clipses of WASP-43b observed with JWST MIRI/LRS in Bell et al.
 2024 ) and mapped in Hammond et al. ( 2024 ). The value of 150 ppm
epresents a best-case scenario that could be achieved by averaging
ve such eclipses. The value of 2000 ppm represents low-precision
ata where there is no discernible mapping signal in the eclipse
hape, but the rest of the phase curve can be resolved. 
NRAS 532, 4350–4368 (2024) 
.2 Obser v ed time-series thermal emission 

e also apply our method to three different observational data sets,
lotted later in Section 4 . They are all time-series observations of
hermal emission from hot Jupiters. The first is a JWST MIRI/LRS
bservation of WASP-43b, averaged from 5 to 10.5 μm (Bell et al.
024 ). The second is a JWST NIRISS/SOSS observation of WASP-
8b, averaged from 0.85 to 2.85 μm (Coulombe et al. 2023 ). The
nal is a Spitzer Space Telescope observation of HD 189733b at
 μm, compiled from seven separate eclipse observations (Majeau
t al. 2012 ). Although the JWST data sets contain spectroscopic
nformation, we av erage o v er all a vailable wa v elengths to achiev e
he highest possible precision. 

A systematic model of instrumental effects and an astrophysical
odel of the system parameters was fitted to each data set in each

f the original studies to produce the final light curves (Majeau
t al. 2012 ; Coulombe et al. 2023 ; Hammond et al. 2024 ). In
his study, we do not explore the possibility of degeneracies be-
ween the systematic model, the astrophysical model, and the map

odel that we fit. Instead, we assume that the first two models
re correctly known in advance, and only fit for the map (or a
ourier series model). In reality, there may be degeneracies between

hese models (Wit et al. 2012 ; Hammond et al. 2024 ). The JWST
IRI/LRS light curve we use for WASP-43b had its systematic

nd astrophysical model fitted alongside an � max = 2 eclipse map,
hich should at least partially mitigate such degeneracies (Hammond

t al. 2024 ). 

.3 Fitting thermal emission with a Fourier series 

he simplest model of a light curve of a planetary system uses
 Fourier series for the variation in flux with time, multiplied
y the eclipse and transit shapes of a planet emitting uniformly
rom its surface. We refer to this as a ‘Fourier series model’ with
ux F ( t): 

 ( t) = 

(
A 0 + 

n max ∑ 

n = 1 

[
A n sin (2 πn ( t − t 0 ) /P ) 

+ B n cos (2 πn ( t − t 0 ) /P ) 

])
F p, 0 ( t) + F s ( t) , (1) 

here t 0 is the transit time, P is the orbital period, A n and B n are the
tted parameters up to order n max , F p, 0 is the time-series flux from
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 planet with uniform emission, and F s is the stellar flux including
he transit model. We refer to a Fourier series model by its maximum
rder, so a model with maximum order n max = 2 is M ( n max = 2). 
This fits the out-of-eclipse light curve as well as any eclipse 
apping model. Ho we ver, it does not represent the effect of non-

niform planetary flux on the eclipse ingress and egress shapes. 
trictly speaking, the eclipse shape in this model is slightly mod- 

fied from the eclipse shape of a uniform planet by the small
hange in the Fourier series model over the short duration of the
clipse. 

We will use this Fourier series as our null hypothesis when fitting
ata sets. To justify fitting an eclipse map, the map must fit the
ata set better than this null hypothesis. Crucially, the map must not
chieve this better fit by o v erfitting to noise in the eclipse shape and
ust actually be a better model of the true eclipse shape. We use an
 ( n max = 2) Fourier series model as our null hypothesis as this is

ufficient to capture almost all the out-of-eclipse variation of a phase 
urve, due to the rapidly decreasing contribution to a light curve from
igher order modes (Cowan & Agol 2008 ). 

.4 Fitting eclipse maps 

or data of sufficient precision, we can fit an eclipse map model
f the two-dimensional flux from the dayside of the planet using
he information encoded in the shape of the eclipse. We refer to
n ‘eclipse map model’ by its maximum spherical harmonic degree 
 max , so an eclipse map model with maximum degree � max = 2 is
eferred to as M ( � max = 2). 

We define the map in terms of pixels evenly spaced in planetary
urface area, known as a Mollweide projection (Snyder 1987 ). These 
ixels uniquely define a spherical harmonic representation which 
ontinuously co v ers the mapped surface. starry uses this spherical 
armonic representation to calculate the time-series emission from 

he map. Two-dimensional information is only accessible in the part 
f the surface eclipsed in both ingress and egress; this approximately 
orresponds to the dayside, corrected slightly for planetary rotation 
uring the eclipse. We simplify this by plotting the posterior distri-
ution of the fitted map on the dayside only, and plot the median
tted map globally for completeness. 
The pixel representation and spherical harmonic representation of 

he map are interchangeable. Sampling the pixels makes it easier to 
equire positive emission from the planet, as we simply place positive 
ognormal priors on the brightness of each pixel. These have a mean
alue of the peak brightness of the light curve divided by π , and a
cale factor of 0.1 to set a very wide prior spanning multiple orders of
agnitude in planetary flux (see the documentation of PyMC3 for the 

recise form of this prior (Salvatier , W iecki & Fonnesbeck 2016 ).
his enforces positivity at the pixel locations only, so sometimes 

eads to the fitting of small areas of ne gativ e emission between
ixels. 
If we sampled the spherical harmonics directly instead, we could 

ot impose positivity as a prior, and would need to measure the
ositivity of the map at each step while it is sampled, which we
ound to be computationally intensive. We also found qualitatively 
hat sampling pixels detected small-scale features more ef fecti vely 
han sampling the spherical harmonics. We suggest that this could 
e because each parameter in the pixel representation corresponds 
irectly to a spatial region, so a small localized feature can be added
y varying one parameter only (or a small number of parameters). On
he other hand, introducing a new small-scale feature when sampling 
he spherical harmonic basis may require the sampler to adjust the 
alues of all the spherical harmonic coefficients, as each one affects 
he entire map. The dense mass matrix approach available in PyMC3
Salvatier et al. 2016 ) (first implemented in F oreman-Macke y et al.
021 ) allows us to efficiently sample the degeneracies in the posterior
istribution of the brightness of the pixels. 
The number of mapped pixels is defined by the maximum spherical 

armonic order, increased by an o v ersampling factor that adds
dditional pixels to better cover the planetary surface. Increasing 
he spherical harmonic order increases the complexity of the features 
epresented by the modelled light curve, while increasing the o v er-
ampling factor impro v es the accuracy of the measurement of map
ntropy in Section 2.7 . Increasing both of these factors is desirable
ut requires more computation time. 

For our high-order maps, designed to have high spatial freedom, 
e found that a spherical harmonic basis of � max = 4 and an
 v ersampling factor of 3 (resulting in 62 pixels to sample) produced a
ood compromise between spatial freedom and computational time. 
or our low-order maps, designed to compare directly to the null
ypothesis of an n max = 2 Fourier series, we use a basis of � max = 2
nd an o v ersampling factor of 3 (corresponding to 16 pixels). The
argest scale eclipse mapping signals may be approximately fitted 
ith an � max = 1 map, but such a map would not in general be

apable of fitting the phase curve outside eclipse. This is because
he n = 2 modes are still significant for the phase curve of a generic
ap (Cowan & Agol 2008 ), so we choose to use the � max = 2 map

o capture these. 
We define the pixels for a given map as a vector of brightness

alues p . The sampled pixel values p define the vector c of the
oefficients c i of the spherical harmonic representation via a matrix 
 : 

 = M · p . (2) 

he matrix M is pre-calculated for our method by starry as it
s unique to each combination of spherical harmonic order � max 

nd degree of oversampling. The 2D eclipse map Z( θ, φ) is then
onstructed as a sum of the spherical harmonic basis maps z i ( θ, φ)
where θ and φ are longitude and latitude), weighted by the 
oefficients c i of the vector c : 

( θ, φ) = 

∑ 

i 

c i z i ( θ, φ) . (3) 

The time-series emission F ( t) from the map defined by the
oefficients c i is then a sum of the time-series emission f i ( t) from
ach individual harmonic z i ( θ, φ) (see Luger et al. 2019 for their
orms) weighted by its corresponding coefficient: 

 ( t) = 

∑ 

i 

c i f i ( t) . (4) 

he modelled light curve F ( t) is therefore ultimately a function of
he vector of the pixel brightness values p , which are the parameters
hat we sample. 

We fit a model M to the data points D in the light curve using
yMC3 (Salvatier et al. 2016 ). We sample the posterior distribution
f the brightness values of the pixels p with 250 samples in eight
hains, thinned by a factor of 4. This ensured that the Gelman–Rubin
tatistic was below 1.1 for our fitted maps. It would be possible to fit
he orbital and instrumental parameters at the same time as this map
Hammond et al. 2024 ), but in this study we assume these parameters
re known in advance. The sampling process for one map took around
5 min for an � max = 4 map with 62 pixels using eight cores on a
ecent Intel-based HPC server. Calculating the optimal information 
ontent of the map with cross-validation requires refitting the model 
round 300 times, resulting in a total runtime of several days. We
MNRAS 532, 4350–4368 (2024) 
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ettled on this number of samples as we did not find a noticeable
mpro v ement in mapping performance with more samples. 

The � max = 4 is intended to be the highest order map that is
omputationally possible, as we aim for the most degrees of spatial
reedom. This is why we do not consider � max = 3 maps, as we only
eed a ‘simplest model’ ( � max = 2) to detect a signal, and then a ‘most
omplex model’ ( � max = 4) to fit the most accurate map. We chose
he � max = 4 map based on the sampling time, as using � max = 5 maps
ook several times the sampling time, and sometimes did not sample
he posterior fully. Using � max = 5 maps also produced no noticeable
mpro v ement in the optimized map as any small-scale variation due
o the � = 5 modes was smoothed out when the information content
as optimized. 

.5 Model comparison with AIC and BIC 

clipse maps with more parameters (more surface pixels or a higher
pherical harmonic order) can fit smaller scale features. This lets them
t an observed time series more closely, but they may use this freedom

o o v erfit to the observational noise, mapping spurious small-scale
eatures that do not really exist and increasing the uncertainty of the
ap. On the other hand, maps with too few parameters may not be

ble to fit the observed eclipse shape. Comparing models by their
ik elihood will al w ays prefer more complex models that may o v erfit
he data. We therefore need statistical metrics that penalize using too
any parameters to overfit the data. 
The BIC (Schwarz 1978 ) and the Akaike Information Criterion

AIC) (Akaike 1981 ) are metrics that address this issue, as they
enalize the model likelihood by a function of the number of model
arameters. Previous studies have used the BIC to address issues
ith eclipse map models o v erfitting small-scale features to eclipse

hapes (Rauscher et al. 2018 ; Mansfield et al. 2020 ; Challener &
auscher 2022 ). The BIC is 

IC = k ln ( N ) − 2 ln p, (5) 

here k is the number of model parameters, N is the number of data
oints, and p is the model likelihood: 

ln p = −1 

2 

N ∑ 

i 

(M i − D i 

σ

)2 

− N ln σ − N 

2 
ln (2 π ) , (6) 

or a sum o v er all N data points D i with uncertainty σ , fitted by a
odel M with values M i . A smaller BIC implies a better model,

ither through a good fit to the data or a small number of parameters.
he BIC allows comparison of nested models where it is assumed

hat the true model is inside the set of tested models (Burnham &
nderson 2004 ). We also consider the AIC of each model, which is 

IC = 2 k − 2 ln p. (7) 

nlike the BIC, the AIC assumes that the true model is only
pproximated by the set of tested models (Burnham & Anderson
004 ). This is essentially a philosophical difference to the BIC, and
here is not a clear answer about which metric is more appropriate
or our case. This is part of our moti v ation for using the data-driven
ross-validation approach instead. 

.6 Model comparison with cross-validation 

e propose the use of k-fold cross-validation to compare models of
ime-series thermal emission from exoplanet eclipses, as it penalizes
oth underfitting and o v erfitting. Cross-validation is a metric of the
bility of a model to predict data outside the data set it is fitted
NRAS 532, 4350–4368 (2024) 
o. In our case, the method remo v es a section of observed data
ith size k, refits the model, and tests how well the refitted model
redicts the omitted data (Hastie et al. 2009 ). We found that k-
old cross-validation was better suited to tuning a regularization
arameter (details of which are below), compared to leave-one-out
ross-validation (Challener & Rauscher 2023 ). We suggest this is
ecause omitting a k-fold (with a longer duration than a single point)
roduces a stronger test of the predictive ability of a model due to
he local autocorrelation in the time-series data. 

There is no objectively correct way to choose the size of a k-fold,
lthough 10 per cent of the size of a data set is often used (Hastie
t al. 2009 ). We chose a k-fold size of 20 per cent of the size of the
ngress of an eclipse (i.e. 10 per cent of the total data set containing
wo-dimensional information) which we found to be a good test of
he predictive ability of a model. For the typical cadence and eclipse
uration of our data sets, this results in k-folds containing roughly
0 data points each, in line with Arlot & Lerasle ( 2016 ). 
This choice of the width of the k-folds will limit the size of the

patial features that can be resolved with our mapping method. Each
old omits a stripe approximately 36 ◦ wide from either ingress or
gress, and tests the ability of the model to predict the brightness
f this stripe. This width is not a hard limit in itself, as the stripe is
till measured across a different angle by the other ingress or egress,
nd the model still has access to the magnitude and gradient of the
rightness either side of the omitted stripe. Ho we ver, it must place
ome upper limit on the precision of the map and so this choice could
e varied in future work. 
Measuring the k-fold cross-validation score is a time-consuming

rocess as the eclipse map must be refitted every time a new k-fold
s remo v ed. We greatly speed up this process by only testing k-folds
n the ingress and egress of the eclipses, as well as sections of the
ight curve on either side of the eclipse with durations equal to the
clipse ingress and egress. This omits most of the out-of-eclipse
hase curve from the test, but we found that this makes no practical
ifference. For typical data sets, the model only fails to fit the phase
ure if it has far too few degrees of freedom, which our small test set
asily identifies. For data sets with multiple eclipses, we apply these
-folds periodically, removing the same section of each eclipse (or
ither side of it). This is the same as stacking the eclipses (averaging
hem together) and removing the k-fold from the averaged eclipse.

e already ef fecti vely stack the eclipses by fitting a periodic model
hat cannot vary from one eclipse to another. 

We split the tested part of the data set (the eclipse ingress and
gress, and sections of the phase curve of equal duration either side
f the eclipse) into K = 20 sets, each of length N points. When
eaving out the k th fold, we label the data set as D −k , and the model
s M 

−k . The cross-validation score for the k th fold is 

V 

k = 

1 

N 

N ∑ 

i= 0 

log 

( 

1 

S 

S ∑ 

s= 1 

p( D i | M 

−k ) 

) 

, (8) 

here p( D i | M 

−k ) is the likelihood of each point D i in the k-fold,
iven the model M 

−k fitted to the data set D −k . For each data point,
e sum o v er the S samples dra wn from the posterior distribution as

n Vehtari, Gelman & Gabry ( 2017 ), and then sum o v er each of the
 data points in the k th fold. CV 

k therefore tests the ability of the
odel to predict the points in the k th fold when it is fitted without

ccess to these points. In the context of eclipse mapping, it tests the
bility of a model to predict the brightness of a small slice across the
lanetary disc when the contribution of that slice to the eclipse shape
s remo v ed. When we use this method to optimize a fitted map, we
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l w ays plot the map fitted to the full data set and never explicitly plot
aps fitted to data sets with data remo v ed from k-folds. 
We find the o v erall cross-validation score CV M 

for a model M
y averaging over all K folds: 

 V M 

= 

1 

K 

K ∑ 

k= 1 

C V 

k . (9) 

he cross-validation score penalizes underfitting (when the model 
annot fit the data) as the predictive likelihood p( D i | M 

−k ) is low
or a poorly fitting model. Importantly, it also penalizes o v erfitting
ecause a model M 

−k with too many degrees of freedom will 
roduce a posterior distribution in the k th fold that is much wider
han the true spread of the omitted data D k . This means that the
v erage predictiv e likelihood p( D i | M 

−k ) will be low when summed
 v er all S samples, resulting in a low cross-validation score. 
Conversely, a well-fitting model will predict the omitted data 

oints accurately and precisely as it is fitting the underlying physical 
ystem (instead of o v erfitting to noise), so the data points in one
articular k-fold are implied by those in the others. This will result
n a model M 

−k with a posterior distribution with a similar mean
nd standard deviation to the real omitted data D k , producing a high
redictive likelihood p( D i | M 

−k ) and a high cross-validation score. 
To compare the cross-validation score for two competing models 
 1 and M 2 , we take the difference between them: 

C V M 1 M 2 = C V M 1 − C V M 2 . (10) 

he standard deviation of this estimate is calculated from the variance
 of the difference in the scores in each k-fold (Chen & Yang 2021 ;
elbanks et al. 2023 ): 

D ( �CV M 1 M 2 ) = 

√ 

V 

K 

k= 1 ( CV 

k 
M 1 

− CV 

k 
M 2 

) , (11) 

here CV 

k 
M 1 

and CV 

k 
M 1 

are calculated from equation ( 8 ) for each
ndividual k-fold. The standard error is then calculated from the 
tandard deviation (Chen & Yang 2021 ): 

E ( �C V M 1 M 2 ) = 

SD ( �C V M 1 M 2 ) √ 

K 

(12) 

ue to the assumptions made in deriving this standard error estimate, 
e caution against using it as an ‘multiple-sigma’ preference for 
ne model o v er another, and restrict its use to identifying a simple
reference one way or the other. The standard error of the difference
n cross-validation score between two models tells us if the difference 
s significant or not. If two models have consistent cross-validation 
cores within this standard error estimate, we assess that they are as
ood as each other (and therefore we prefer the simpler model). 
The exception to this is when we later tune a regularization 

arameter to find the best cross-validation score; in that case, we 
elect the model with the highest cross-validation score as the best-
erforming, even though other nearby values of the regularization 
arameter will necessarily be within one standard error. We chose 
ot to use the ‘one standard error’ rule (Chen & Yang 2021 ) in this
ase, as we have no a priori tendency to prefer a higher or lower
egularization parameter. 

.7 Optimizing the spatial scale of fitted maps 

he eclipse maps fitted with the method in Section 2.4 have a
patial scale determined by their number of pixels (corrected for 
 v ersampling). Maps with a small number of pixels (or low-order
pherical harmonics) can only fit very large-scale features with 
imilarities to the shapes of the low-order spherical harmonics. 
ig. 1 shows how a low-order spherical harmonic representation may 
ot be able to fit the true shape of a map. Maps with large numbers
f pixels (or high-order spherical harmonics) can fit spatial features 
ore accurately, as shown in Fig. 1 . Howev er, the y may also produce

purious small-scale features due to the noise and de generac y in the
bserved light curve. To address this issue, we use a large number
f pixels to allow freedom in fitting small-scale features, but apply
he method of Horne ( 1985 ) (applied to brown dwarfs in Chen et al.
n preparation) to select maps with an appropriate spatial scale given
he precision of the data. 

We measure the information content of a map from the spatial
ntropy of its pixels (Gull & Daniell 1978 ). We seek to match the
nformation content of the map to the information content of the data
et. A map with more information than the data set will o v erfit, and a
ap with less information than the data set will underfit. We follow
orne ( 1985 ) and consider the entropy S of the pixels defining a map
 composed of pixels denoted by j : 

 = −
∑ 

j 

I ( j ) ln 

[
I ( j ) 

D( j ) 

]
, (13) 

here D is the ‘default image’ defined by Horne ( 1985 ). This default
mage depends on a weighting function w( k, j ) which defines the
elation of all pixels j to an individual pixel k: 

 ( k ) = 

∑ 

j w( k , j ) I ( j ) ∑ 

j w( k , j ) 
. (14) 

e use a weighting function w( k, j ) = 1 so that the entropy tracks
eviations from a uniform map. This matches our null hypothesis, 
hich is the eclipse shape of a uniformly bright planetary disc as
efined in Section 2.3 . 
We include the information content of the map in the fitting process 

y penalizing the model likelihood p by a factor 2 αS. This provides
 functional that balances the model likelihood against the mapped 
omplexity, with the balance set by the free parameter α, as originally
sed in Vogt, Penrod & Hatzes ( 1987 ). We follow the notation in Chen
t al. (in preparation) and formulate the functional as the likelihood
enalized by the entropy: 

ˆ  = p − 2 αS, (15) 

here α is a regularization parameter. A large value of α promotes 
aps with low entropy and large-scale features, which may underfit 

he data. A small value of α allows maps with high entropy and
mall-scale features, which may o v erfit the data. We aim to find an
ptimal value of α, which achieves the best k-fold cross-validation 
core. We therefore vary α until we find the value that results in the
est cross-validation score. We expect that this will produce a map
ith an appropriate information content given the precision of the 
ata. This method is analogous to fitting a spline to a one- or two-
imensional data set, where there is a single regularization parameter 
hat gives an optimal cross-validation score (Wahba 1990 ). 

 SIMULATED  RESULTS  

n this section, we apply the methods from Section 2 to simulated
ata. We first demonstrate the process of identifying eclipse mapping 
ignals in simulated data using cross-validation. We then show how 

tting an eclipse map with spherical harmonics alone can lead 
o underfitting or o v erfitting. To remedy this, we sho w ho w we
an optimize the information content (smoothness) of a high-order 
pherical harmonic map using cross-validation, and derive an optimal 
ap for this simulated data set. Note that in Sections 3.1 and 3.2 we
MNRAS 532, 4350–4368 (2024) 
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M

Figure 2. Two simulated data sets with clear eclipse mapping signals. First row: a simulated observation (with precision σ = 150 ppm) of time-series thermal 
emission from the simulation of WASP-43b in the THOR GCM. The left-hand panel shows the data set fitted by an eclipse map model M ( � max = 2). The right- 
hand panel shows the residual eclipse mapping signal, which is the data (binned every 10 points) subtracted by a fit with a Fourier series model M ( n max = 2) 
that assumes a uniform planetary disc. There is a clear residual signal (dashed red line) that the data (black points) resolve, which the eclipse map model (blue 
region) fits better than the Fourier series model (dashed black line). The blue region showing the map model contains two shaded regions showing the first and 
second quantiles, containing 68.27 per cent and 95.45 per cent of the posterior distribution. Second row: a simulated observation (with precision σ = 250 ppm) 
of time-series thermal emission from the simulation of WASP-43b in the THOR GCM. As in the first row, there is a clear eclipse mapping signal which the 
eclipse mapping model fits better than the Fourier series model, although with slightly less certainty due to the lower precision data. 
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o not apply a penalty to the likelihood based on the entropy of the
tted map (ef fecti vely, we keep α = 0 until Section 3.3 ). 

.1 Identifying eclipse mapping signals in simulated data 

s described in Section 2.6 , it is possible to fit spurious eclipse
aps to data sets that are not accurate enough to support them. In

his section, we therefore show how the cross-validation method
escribed in Section 2.6 can quantitatively identify the presence or
bsence of an eclipse mapping signal in a data set. 

Figs 2 and 3 show light curves produced from the GCM simulation
f WASP-43b as described in Section 2.1 . Their left-hand panels
how the time-series thermal emission. Their right-hand panels show
he same data, binned every 10 points, and subtracted by a model
f a planet with a uniform dayside emission. This leaves a residual
ignal which corresponds to the deviation of the eclipse shape from
he eclipse shape of a uniform disc – the ‘eclipse mapping signal’,
s discussed in Hammond et al. ( 2024 ). A consistent deviation in
he data points from the zero line implies an eclipse mapping signal.
NRAS 532, 4350–4368 (2024) 
he dashed red lines show the true residual signal in eclipse before
he Gaussian noise is added. A positive residual signal implies that
he strip across the planetary disc co v ered by the stellar edge at that
oment is brighter than a uniform disc producing the same total

clipse depth and vice versa. 
The first row of Fig. 2 shows the simulated data for σ = 150 ppm.

his represents a best-case scenario for observations with JWST ,
orresponding to an average of five eclipses of WASP-43b with
IRI/LRS (Bell et al. 2024 ). There is a clear eclipse mapping signal,

hown by the large residual in the data in the right-hand panel, fitted
ell by the � max = 2 eclipse map model. 
Table 1 shows that the eclipse mapping model M ( � max = 2)

chieves a significantly better χ2 value for the σ = 150 ppm data
han the Fourier series model M ( n max = 2), due to its better fit to the
clipse shape in the first row of Fig. 2 . This does not necessarily
emonstrate the presence of two-dimensional information in the
clipse shape, as the eclipse mapping model has more degrees of
reedom so may achieve a better χ2 score by o v erfitting to noise
n the eclipse. Both models fit the out-of-eclipse phase curve as
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Figure 3. Two simulated data sets that are too inaccurate or too imprecise to fit an eclipse map. First row: a simulated observation (with precision σ = 150 
ppm) of time-series thermal emission from the simulation of WASP-43b in the THOR GCM, where the map is fitted with an incorrect value for the transit time 
of t ′ 0 = t 0 + 10s. The layout of the panels is the same as in Fig. 2 . The incorrect astrophysical model means that the longitudinal structure imposed by the 
phase curve produces an incorrect fit to the data in the eclipse, shown by the mismatch between the black data points and the blue fitted model. Second row: a 
simulated observation (with precision σ = 2000 ppm) of time-series thermal emission from the simulation of WASP-43b in the THOR GCM. The low precision 
of the data means that it does not resolve the eclipse mapping signal, so the � max = 2 model does not fit this signal any better than the n max = 2 Fourier series 
model (the dashed black zero line). The red dashed lines showing the true eclipse mapping signals are identical to those in Fig. 2 . 

Table 1. Statistical metrics for the eclipse map models M ( � max = 2) fitted to the data sets in Figs 2 and 3 , relative to the 
metrics for the Fourier series model M ( n max = 2) (the null hypothesis). The χ2 value is the lowest χ2 value in the posterior 
of the fitted model, which is also used to derive the BIC and the AIC. A positive value for a metric means that the eclipse 
mapping model is preferred o v er the Fourier series model. 

Data set �χ2 � BIC � AIC � CV 

WASP-43b GCM Simulation ( σ = 150) + 126 .04 + 81 .77 + 116.04 + 0 . 148 ± 0 . 016 
WASP-43b GCM Simulation ( σ = 250) + 73 .37 + 29 .1 + 63.37 + 0 . 076 ± 0 . 007 
WASP-43b GCM Simulation ( σ = 150, t ′ 0 = t 0 + 10s) + 54 .79 + 10 .52 + 44.79 −0 . 002 ± 0 . 013 
WASP-43b GCM Simulation ( σ = 2000) −0 .31 −44 .58 −10.31 −0 . 004 ± 0 . 001 
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ell as each other, as the � max = 2 spherical harmonics produce the
ame out-of-eclipse phase curve components as the n max = 2 Fourier 
omponents, apart from a small correction for inclination. 

Fig. 4 shows the eclipse map model M ( � max = 2) fitted to the σ =
50 ppm data set in Fig. 2 . The first panel shows the median of the
osterior distribution of fitted maps (note that the two-dimensional 
tructure is only constrained on the dayside). We plot the median 
t every point because we sample the pixels composing the map;
his plot therefore shows the median value of the sampled posterior
istrib ution. We confirmed (b ut do not plot) that this median map
s very similar to the maximum likelihood map from the posterior
istribution, as discussed in Hammond et al. ( 2024 ) This is the case
n general for all of the maps in this paper with relatively narrow
osterior distributions. This is not the case for high-order maps with
MNRAS 532, 4350–4368 (2024) 
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M

Figure 4. An eclipse map model M ( � max = 2) fitted to the 150 ppm simulated data in Fig. 2 . The first panel shows a map defined by the median values of the 
sampled distribution at every location. The second and third panels show the fitted map as a function of latitude and longitude through the substellar point, with 
two shaded regions showing the first and second quantiles, containing 68.27 per cent and 95.45 per cent of the posterior distribution. The limited freedom of the 
� max = 2 map means that it cannot exactly fit the true map from the GCM simulation (the dashed black lines, shown in full in Fig. 1 ) which has more complex 
structures composed of higher order harmonics. This results in the brightest point on the equator being measured at (24 + 0 −0 ) 

◦ east, compared to the true value of 
40 ◦ east shown in Fig. 1 . The lack of uncertainty on this measurement is due to the strong constraint from the full phase curve on the longitudinal structure of 
the fitted low-order spherical harmonics. 
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ery wide posterior distributions, where the maximum likelihood
ap can be very different to the median map, as it is o v erfitting to

oise and derives a particular set of spurious small-scale features that
appen to fit the noise best. 
The next two panels of Fig. 4 show slices of the posterior distri-

ution of the fitted maps on the dayside through the substellar point,
s functions of longitude and latitude. The true map is composed
f many high-order spherical harmonic components beyond � = 2,
o this fitted � max = 2 map cannot match the shape of the true map
ery closely. It does, at least, fit the residual signal accurately, so
e suggest that this map is statistically supported, if not especially

ccurate. 
Hammond et al. ( 2024 ) considered the ‘observable’ and ‘null’

paces of eclipse maps of GCM simulations as defined by Chal-
ener & Rauscher ( 2023 ), which are the components of the map that
o and do not contribute to the mapping signal, respectively. We do
ot consider the observable space in this study as we want to instead
ighlight the loss of information from fitting a map with a specific
et of spherical harmonics, as well as the ability of our optimization
ethod to access the true spatial scale of the GCM. Ho we ver, it

hould be remembered that the black dashed lines showing the ‘true’
CM maps in Fig. 4 and onwards are not exactly accessible by the

onversion from light curve to spatial map; see Challener & Rauscher
 2023 ) for more discussion. 

The second row of Fig. 2 shows the simulated data for σ =
50 ppm. This represents a typical scenario for observations with
WST , corresponding to an average of two eclipses of WASP-43b
ith MIRI/LRS (Bell et al. 2024 ). The large residual shows an

clipse mapping signal, although resolved less clearly than in the first
ow of Fig. 2 . Table 1 again shows that the eclipse mapping model

 ( � max = 2) achieves a much better χ2 value than the Fourier series
odel M ( n max = 2) for this data set. 
The first row of Fig. 3 shows the simulated data for σ = 150 ppm,

ith the Fourier series and eclipse map models fitted using an
ncorrect value for the transit time t ′ 0 = t 0 + 10s. As we assume a
ircular orbit, this produces the same offset of + 10s in the assumed
clipse time. This simple change produces a systematic error in the
strophysical model, which means that the eclipse mapping signal
nd the eclipse map are fitted poorly regardless of the precision of the
NRAS 532, 4350–4368 (2024) 
ata. An error in assumed eclipse time could also arise in other ways,
uch as a slightly eccentric orbit producing an offset in eclipse timing
elative to a measured transit time. Fitting the model with this delayed
clipse timing results in an eclipse ingress that is too high, and an
clipse egress that is too low. The model wrongly adjusts the eclipse
ap to compensate for this error. Williams et al. ( 2006 ) showed how
 timing error can produce a spurious longitudinal offset in a map
rom an isolated eclipse. We suggest that a longitudinal offset is not
ntroduced in this case because the low-order longitudinal structure
s strongly constrained by the out-of-eclipse phase curve (which
s not significantly affected by the small timing error). The model
herefore adjust the latitudinal structure instead to attempt to better
t the residual signal in the eclipse shape. 
This example is intended to represent any source of systematic

rror in the fit of the model to the data, such as instrumental
ystematic effects or other incorrect orbital parameters. Both of these
an produce significant deviations in the modelled eclipse shape (Wit
t al. 2012 ; Hammond et al. 2024 ). The modelled eclipse map residual
n the first row of Fig. 3 fails to match the eclipse data accurately
ue to the systematic error in the astrophysical model caused by the
ncorrect eclipse timing. This is a distinctive signature of a map fitted
ith a systematic error – the longitudinal structure imposed by the
hase curve produces a residual shape that is not consistent with the
bserved residual; the latitudinal structure of the map is then wrongly
djusted to try to compensate for this error. The first row of Fig. 5
hows the eclipse map fitted to this data set, which fails to match the
rue map, especially in its latitudinal structure. 

Table 1 shows that the eclipse mapping model still achieves a
etter χ2 value than the Fourier series model for this data set. This
s despite the highly inaccurate map and despite the fact that its
osterior distribution is highly statistically different from the true
esidual signal (compare the blue posterior distribution to the red
ashed line in the first row of Fig. 3 ). The better χ2 value is due to
he fact that the eclipse map model has increased freedom to fit the
clipse shape, even though this does not correctly correspond to a
apping signal. 
The second row of Fig. 3 shows the simulated data for σ =

000 ppm. This represents a light curve that is too imprecise for
clipse mapping. The posterior distribution of the eclipse mapping
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Figure 5. Eclipse map models M ( � max = 2) fitted to the simulated data sets in Fig. 3 , with low accuracy and low precision, respectively. First row: the map 
fitted to the inaccurate simulated data in the first row of Fig. 3 with an incorrect transit time t ′ 0 = t 0 + 10s. The layout of the panels is the same as Fig. 4 . The 
systematic error on the eclipse timing means that the fitted map does not match the true map (the dashed black lines, shown in full in Fig. 1 ) but has spuriously 
high confidence. Second row: the map fitted to the imprecise data in the second row of Fig. 3 . The fitted map has very high uncertainty but does include the true 
map inside its posterior distribution as it has no systematic errors like the error in eclipse time present in the map in the first row. Neither data set is suitable for 
fitting an eclipse map, shown by the cross-validation score in Table 1 and Fig. 6 . 
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odel M ( � max = 2) does not match the true residual shape (the
ashed red line). The second row of Fig. 5 shows the eclipse map
tted to this data set, which is very uncertain due to the low precision
f the data. Table 1 shows that the mapping model achieves almost the 
ame χ2 value as the M ( n max = 2) model (actually a slightly worse
alue). Fig. 3 shows how the two models fit the data essentially as
ell as each other as the precision of the data is too low to reveal the

ffect of the two-dimensional structure on the eclipse shape. 
These simulated data sets show different pitfalls that could be 

ncountered when fitting eclipse maps. We need statistical metrics 
hat will strongly penalize mapping models that use too many 
arameters to fit the eclipse shape of inaccurate or imprecise data. 

.2 Model comparison in simulated data 

e need a model comparison metric to identify the presence of an
clipse mapping signal. We define that the metric must quantitatively 
refer the simplest eclipse mapping model M ( � max = 2) o v er the
implest Fourier series model M ( n max = 2). We want the metric to
dentify an eclipse mapping signal in the simulated data sets in Fig.
 , but not in the simulated data sets in Fig. 3 . Section 2.5 describes
he BIC, which has been used previously for eclipse mapping model 
omparison (Challener & Rauscher 2022 ), and the AIC, which is
n alternative metric (Burnham & Anderson 2004 ). These metrics 
enalize the fit likelihood by a function of the number of model
arameters to penalize both o v erfitting and underfitting. 
Table 1 lists the difference in AIC and BIC between an eclipse
ap model M ( � max = 2) and a Fourier series model M ( n max = 2)
tted to the four simulated data sets. A positive � AIC or � BIC
eans that the metric prefers the eclipse mapping model. This table

hows that both the AIC and the BIC correctly identify an eclipse
apping signal in the 150 and 250 ppm simulated data in Fig. 2 .
his is because the advantage in χ2 for the eclipse mapping model is
o high for each data set that it outweighs the penalty for its increased
umber of parameters in each case. 
Both the AIC and BIC also correctly identify the lack of an eclipse
apping signal in the imprecise 2000 ppm data in Fig. 3 , which is
tted just as well by the Fourier series model. In this case, the χ2 

alue is essentially the same for the eclipse mapping model and
he Fourier series model (the best value is actually slightly better
or the Fourier series model, but the difference is not significant).
he penalty for the increased number of parameters in the eclipse
apping model then gives it much worse BIC and AIC scores. 
The picture is more complex for the 150 ppm data fitted with

n incorrect value of t 0 in Fig. 3 . The eclipse map model does
t the observed data more closely than the Fourier series model,
ecause there are elements of the eclipse shape that it models
orrectly. Ho we ver, it also incorrectly adjusts its latitudinal structure
o compensate for the error in the eclipse timing, producing a highly
ncorrect eclipse map with spuriously high confidence. We suggest 
hat a model comparison metric should not prefer the eclipse mapping 

odel in this case, but both the BIC and the AIC strongly prefer the
MNRAS 532, 4350–4368 (2024) 
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Figure 6. Left-hand panel: the relati ve cross-v alidation scores (equation 10 ) for eclipse map models M ( � max = 2) fitted to the simulated data sets in Figs 2 and 
3 , compared to the scores for Fourier series models M ( n max = 2). The scores are normalized by their standard errors (equation 12 ). The eclipse map models 
M ( � max = 2) fitted to the higher precision data in Fig. 2 have significantly better cross-validation scores than the Fourier series models, indicating the presence 
of eclipse mapping signals. The eclipse map models M ( � max = 2) fitted to the inaccurate and imprecise data in Fig. 3 achieve cross-validation scores that are 
lower than (or consistent with) the Fourier series model, indicating the absence of eclipse mapping signals. Right-hand panel: the difference in cross-validation 
score for eclipse map models M ( α, � max = 4) fitted to the simulated data sets in Fig. 2 , with their likelihood penalized by the regularization parameter α as 
described in Section 2.7 . This identifies an optimal information content (spatial scale) for the map in each case. The cross-validation scores are plotted relative 
to the optimal cross-validation score for each data set, so the maximum value of each curve is zero. 
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clipse mapping model. This is because they cannot distinguish when
 model achieves a good fit by an incorrect route. The penalty for the
ncreased number of parameters is then not sufficient to outweigh
he spuriously impro v ed χ2 score. We suggest that this is a strength
f the cross-validation score (see below), which identifies the fact
hat the eclipse map model is not fitting a robust and consistent
ignal. 

The BIC and AIC also produce different answers for the relative
eighting of models, and there is no clear answer about which metric

s more appropriate a priori as discussed in Section 2.5 . Despite
hese issues, the AIC and BIC are useful impro v ements on the

2 metric as they do attempt to penalize for o v erfitting. Ho we ver,
rucially for our purposes, the AIC and BIC cannot be used for
he regularization approach described in Section 2.7 . We therefore
urn to model comparison by cross-v alidation. Cross-v alidation lets
s calculate the predictive power of the model, which applies a
enalty for o v erfitting without needing to specify a number of
odel parameters. We calculate the k-fold cross-validation score

s described in Section 2.6 for the simulated data sets in Figs 2 and
 , for the simplest eclipse mapping model M ( � max = 2) compared to
he simplest Fourier series model M ( n max = 2). For this test, we do
ot penalize the model likelihood by the map entropy as described
n Section 2.7 (i.e. α = 0 here). 

The left-hand panel of Fig. 6 compares the cross-validation score
ifference between the eclipse mapping model and the Fourier series
odel for these three data sets. We normalize each relative cross-

alidation score by its standard error, so that a difference greater
han 1 is significant. This shows that the eclipse map models achieve
ignificantly better cross-validation scores for the data sets with
recisions of σ = 150 ppm and σ = 250 ppm (Fig. 2 ). As expected,
his shows that the fitted eclipse map models are much better at
redicting out-of-sample data than the Fourier series models, so they
re not achieving better χ2 values by o v erfitting to noise. 

Fig. 6 shows that an eclipse map model fitted to the data set in Fig.
 with an incorrect value of t ′ 0 = t 0 + 10s achieves a lower cross-
alidation score than a Fourier series model. The standard error
f the difference between the two scores shows that their scores
re statistically consistent with each other, so the eclipse mapping
NRAS 532, 4350–4368 (2024) 
odel is no better or worse at predicting out-of-sample data than the
ourier series model. This means that there is no statistically robust
clipse mapping signal. This is an impro v ement on the BIC and
he AIC, which preferred the eclipse mapping model in this case in
able 1 . 
The eclipse mapping model also achieves a significantly worse

ross-validation score than the Fourier series model for the data set
ith precision σ = 2000 ppm in the second row of Fig. 3 . This is
ecause the mapping model predicts a wide range of implausible
olutions that can be very different to the omitted data, while the
ourier series model is restricted to a small range of solutions
atching the shape of a uniform eclipse. 
We conclude that, for these simulated data sets, the cross-

alidation score correctly identifies if the fitted model is tracking the
rue eclipse mapping signal, instead of o v erfitting to any imprecise
r inaccurate data points. The BIC and AIC perform less well
t identifying the presence or absence of eclipse mapping signals
nd – unlike the cross-validation score – cannot be used with a
egularization parameter to optimize information content. 

.3 Optimizing the information content of fitted maps 

aving used a simple eclipse mapping model M ( � max = 2) to
stablish the presence of an eclipse mapping signal in the data set
ith σ = 150 ppm in Fig. 2 , we can now fit a map with more complex

tructure. Fig. 7 shows an eclipse map model M ( � max = 4) fitted to
his data set using spherical harmonics up to order � max = 4. This
igh-order map is able to fit the true map in theory, but in practice
t o v erfits a wide range of solutions, resulting in an impractically
arge uncertainty. The large uncertainty on the fitted position of the
rightest point, at (56 + 65 

−58 ) 
◦, reflects the range of different small-

cale peaks fitted with the high-order harmonics, and shows the
imitation of using this metric for anything but the largest scale

aps. 
So, while there is a clear eclipse mapping signal, both the low-

rder map (Fig. 4 ) and the high-order map (Fig. 7 ) fail to match the
rue map. This issue is even worse for real data as we do not know the
rue map in advance, so do not kno w ho w many spherical harmonic
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Figure 7. A high-order eclipse map model M ( � max = 4) fitted to the 150 ppm simulated data in Fig. 2 . The layout of the panels is the same as Fig. 4 . The 
higher degree of spatial freedom means that it is possible in theory for the fitted map to closely match the true map. Ho we ver, in practice the increased spatial 
freedom allows too large a range of solutions, making the uncertainty on the map very large. This makes the measurement of the brightest point on the equator 
very imprecise at (56 + 65 

−58 ) 
◦ east, compared to the true value of 40 ◦ east shown in Fig. 1 . 
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rders are enough to fit accurately. This is the moti v ation behind the
ethod to fit a high-order map with optimized information content 

escribed in Section 2.7 . The right-hand panel of Fig. 6 shows how
he cross-validation score for an eclipse map model M ( α, � max = 4)
aries as the regularization parameter α in equation ( 15 ) is varied.
or both data sets, there is a significant difference between the cross-
alidation scores of the lowest value of α (which tends towards the 
core for α = 0) and the optimal value of α. 

When α is very small, the fitted map is not strongly penalized 
or a high entropy (high spatial variability), so the very imprecise 
ap in the first row of Fig. 8 produces the best likelihood (see

quation 15 ), and the data are o v erfitted so the cross-validation score
s low. When α is very large, spatial variation is strongly penalized 
o the fit in the third row of Fig. 8 produces the best likelihood,
nd the data are underfitted so the cross-validation score is low. 
or the optimal value of α, the second row of Fig. 8 produces the
est likelihood, achieving the best cross-validation score as it has an 
ppropriate information content. The fitted map matches the data and 
lso allows an appropriate amount of variation as well as appropriate 
verage gradients and feature sizes for the true map. Therefore, cross-
 alidation gi ves us a data-dri ven method to find the optimal v alue
f α, and the corresponding optimal information content for the 
ap, with no prior knowledge of the true map. We suggest that as
 shortcut, choosing and applying a ‘reasonable’ value of α is a 
uick way to produce a better result than a M ( n max = 4) model,
specially if the reasonable value is derived from a previous similar
bserv ation. Ho we ver, deri ving the optimal value of α manually
sing cross-validation for each data set will be best, although time- 
onsuming. 

 OBSERVATIONA L  RESULTS  

n this section, we take the method demonstrated on simulated data in
ection 3 , and apply it to three observational data sets. These data sets
re the JWST MIRI/LRS observations of WASP-43b in Fig. 9 (Bell
t al. 2024 ), the JWST NIRISS/SOSS observations of WASP-18b 
n Fig. 10 (Coulombe et al. 2023 ), and the Spitzer Space Telescope
bservations of HD 189733b in Fig. 11 (Majeau et al. 2012 ). The
eft-hand panel of these plots shows the raw observations, fitted by 
n eclipse map model M ( � max = 2). The right-hand panel of these
lots shows the residual signal in ingress and egress. 
.1 Identifying eclipse mapping signals in obser v ed data 

e apply our statistical method defined in Section 2 to determine if
here is quantitative evidence for an eclipse map in each data set. The
eft-hand panel of Fig. 12 shows the difference in cross-validation 
core for an eclipse map model M ( � max = 2) compared to a Fourier
eries model M ( n max = 2), for each of the observational data sets
n Figs 9 , 10 , and 11 . We do not apply a penalty to the likelihood
f a fitted map based on its entropy for these M ( � max = 2) models;
e only later consider a non-zero α once we have established the
resence of a mapping signal with this initial test. The WASP-43b
ata set has a positive � CV value, showing significant evidence 
or an eclipse mapping signal, matching the clear fit to the large
esidual in the data in Fig. 9 . Fig. 13 shows an eclipse map model

 ( � max = 2) fitted to this data set. The posterior distribution of this
tted map is slightly different to the � max = 2 map in Hammond
t al. ( 2024 ) because the prior placed on the brightness of each pixel
s wider in Fig. 13 . 

On the other hand, the WASP-18b data set has a ne gativ e � CV
alue in Fig. 12 , suggesting that there is no statistical evidence for an
clipse mapping signal by this metric. The WASP-18b data set has
 comparable signal-to-noise ratio to the WASP-43b data set, so we
ould expect that it would be possible to resolve a mapping signal.
he mismatch between the fitted and observed residual signal in 
ig. 10 implies that the longitudinal structure imposed by the out-of-
clipse phase curve is inconsistent with the structure implied by the
clipse shape. This may indicate an unresolved systematic error in 
he astrophysical model or the instrumental model, like the inaccurate 
imulated data in the top row of Fig. 3 . It is also possible that the
ayside has a complex structure that produces a smoothly varying 
hase curve but a largely flat structure that requires higher order
armonics than � max = 2 to resolve. The eclipse mapping model
 ( � max = 2) (shown in Supplementary Fig. 1 ) actually achieves a

orse χ2 score than the Fourier series model M ( n max = 2) in Table 2
or this data set. 

The HD 189733b data set also has a ne gativ e � CV values in Fig.
2 , again suggesting that there is no statistical evidence for an eclipse
apping signal by this metric. This conclusion matches the visual 

vidence in Figs 10 and 11 , where there is no clear fit to a residual
ignal. We suggest that the precision of the HD 189733b data set may
e too low to identify an eclipse mapping signal, like the imprecise
imulated data set in Fig. 3 . Table 2 shows that the eclipse mapping
MNRAS 532, 4350–4368 (2024) 
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Figure 8. Three eclipse map models M ( α, � max = 4) fitted to the simulated σ = 150 ppm data in Fig. 2 with variable values of α. First row: an eclipse map 
model M ( α = 2154 , � max = 4). This lo w v alue of α weakly penalizes the likelihood of maps with a high information content (equation 15 ), producing an 
uncertain map with a low cross-validation score in Fig. 6 . The fitted equatorial brightness maximum is (49 + 11 

−36 ) 
◦ east, compared to the true value of 40 ◦ shown 

in Fig. 1 . Second row: a model M ( α = 21544 , � max = 4) fitted to the same data. This allows an appropriate information content in the map given the precision 
of the input data, giving the optimal cross-validation score in Fig. 6 . This results in an accurate and precise measurement of the equatorial brightness maximum 

at (45 + 7 −7 ) 
◦ east, compared to the true value of 40 ◦. Third row: a model M ( α = 215443 , � max = 4) fitted to the same data. This high value of α strongly 

penalizes the likelihood of maps with high information content, which allows too little information in the map and achieves a poor cross-validation score in 
Fig. 6 . It still achieves an accurate but o v erly precise measurement of the position of maximum brightness on the equator, of (38 + 7 −4 ) 

◦ east, compared to the true 
value of 40 ◦. 
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odel M ( � max = 2) (shown in Supplementary Fig. 2 ) achieves a
lightly better χ2 score for the HD 189733b data than the Fourier
eries model M ( n max = 2). We suggest this is due to o v erfitting
o noise in the eclipse shape, rather than matching an underlying
ignal. This o v erfitting is penalized by the cross-validation score,
hich prefers the simpler Fourier series model. This suggests that

he two-dimensional structure implied by this map is due to a
ombination of the out-of-eclipse phase curv e pro viding longitudinal
NRAS 532, 4350–4368 (2024) 
tructure and limits on the latitudinal structure due to the priors
including the need for positive brightness) placed on the sampled
arameters. 
The signs of the relative cross-validation scores in Table 2 match

he signs of the BIC and AIC scores and are consistent with the
resence or absence of visual signals in Figs 9 , 10 , and 11 . We
onclude that the � CV score provides strong statistical evidence for
n eclipse mapping signal in the WASP-43b data set only. We now
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Figure 9. The thermal emission from 5 to 10.5 μm from the hot Jupiter WASP-43b observed by JWST MIRI/LRS (Bell et al. 2024 ). The layout of panels 
is the same as Fig. 2 . The black points show the first eclipse and the green points show the second eclipse, binned every 10 points. The eclipse map model 
M ( � max = 2) fits the eclipse shape much better than the Fourier series model M ( n max = 2). This is confirmed by the higher cross-validation score for the 
eclipse map model for this data set shown in Fig. 12 and listed in Table 2 . The data points in the right-hand panel appear slightly different to the data points in 
Hammond et al. ( 2024 ) because here we bin them with a slightly longer time cadence. 

Figure 10. The thermal emission from 0.8 to 2.8 μm from the hot Jupiter WASP-18b observed by JWST NIRISS/SOSS (Coulombe et al. 2023 ). The data in 
the right-hand panel are binned every 10 points. There is some residual deviation in the data from the Fourier series model M ( n max = 2), but it is not fitted well 
by the eclipse mapping model M ( � max = 2). Fig. 12 suggests there is no significant eclipse mapping signal for this data set, as the eclipse mapping model is no 
better than the Fourier series model at predicting out-of-sample sections of the eclipse. 

Figure 11. The observed thermal emission at 8 μm from the hot Jupiter HD 189733b observed by the Spitzer Space Telescope (Majeau et al. 2012 ). The data 
in the right-hand panel are binned every 5 points. There is some residual deviation from the Fourier series model M ( n max = 2), but it is not fitted well by the 
eclipse mapping model M ( � max = 2). Fig. 12 suggests there is no significant eclipse mapping signal for this data set, as the eclipse mapping model is no better 
than the Fourier series model at predicting out-of-sample sections of the eclipse. 
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Figure 12. Left-hand panel: the difference in cross-validation score (equation 10 ) for each data set for the eclipse map model M ( � max = 2) compared to the 
Fourier series model M ( n max = 2). Each score is normalized by its standard error (equation 12 ). Of the three observational data sets, only the JWST MIRI/LRS 
observations of WASP-43b in Fig. 9 achieves a better cross-validation score with the eclipse map model. Right-hand panel: the cross-validation score of the 
eclipse map model M ( α, � max = 4) fitted to the JWST MIRI/LRS observations of WASP-43b in Fig. 9 , with its likelihood penalized by the entropy scaled by α
as described in Section 2.7 . The best cross-validation score is achieved by setting α = 4641 . 6, which produces the map in Fig. 14 . 

Figure 13. An eclipse map fitted to the data in Fig. 9 , using a model M ( � max = 2). Table 2 and Fig. 12 show how this model is strongly preferred o v er the 
Fourier series model (the null hypothesis) by the cross-validation metric. Hammond et al. ( 2024 ) discussed how the structure of this � max = 2 map is limited by 
its limited spatial freedom. 

Table 2. Statistical metrics comparing eclipse mapping models M ( � max = 2) to Fourier series models M ( n max = 2), for 
the observational data sets in Figs 9 , 10 , and 11 . We propose that � CV is the best metric for identifying an eclipse mapping 
signal, as discussed in Section 3 . Only the JWST MIRI/LRS WASP-43b data set in Fig. 9 has statistical evidence for an eclipse 
mapping signal by this metric. Note that the BIC and AIC values for the WASP-43b data set are slightly different to the 
equi v alent models fitted in Hammond et al. ( 2024 ) because here we do not discard the data in the transit, and do not include 
an additional parameter to fit the baseline of the eclipses. The WASP-18b data set prefers the Fourier series model (the null 
hypothesis, with no mapping information) by all metrics. The HD 189733b data set prefers the Fourier series model by all 
metrics except �χ2 , but we suggest this is due to overfitting. 

Data set �χ2 � BIC � AIC � CV 

WASP-43b ( JWST MIRI/LRS) + 103 .4 + 58.2 + 93 .4 + 0 . 060 ± 0 . 008 
WASP-18b ( JWST NIRISS SOSS) −18 .2 −57.69 −28 .2 −0 . 054 ± 0 . 006 
HD 189733b ( Spitzer ) + 0 .92 −32.98 −9 .08 −0 . 067 ± 0 . 008 
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roceed to the second part of our method for this data set, fitting
n M ( α, � max = 4) model with its information content optimized by
he method described in Section 2.7 . 

.2 An optimized map fitted to obser v ations of WASP-43b 

s discussed in Section 3 , spherical harmonics up to � max = 2 have
imited spatial freedom and may not be able to fit the true map
NRAS 532, 4350–4368 (2024) 
or the observed WASP-43b data set. We therefore fit a new model
 ( α, � max = 4) with spherical harmonics up to � max = 4, with its

nformation content determined by a regularization parameter α
equation 15 ). The right-hand panel of Fig. 12 sho ws ho w the cross-
alidation score for this eclipse map varies as a function of α. There
s a peak at α = 4641 . 6, corresponding to the optimal amount of map
nformation that allows an accurate fit to the data without o v erfitting
o the noise. 
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Figure 14. An eclipse map fitted to the data in Fig. 9 using a model M ( α = 4641 . 6 , � max = 4). This v alue of α gi ves the optimal cross-v alidation score in 
Fig. 12 . We suggest that this value imposes an information content which reflects a combination of the spatial scale of the true map and the level of mapping 
precision achie v able gi ven the precision of the data itself. 
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Fig. 14 shows the resulting � max = 4 map with α = 4641 . 6. The
ap has a flatter emission structure near the substellar point in 

ongitude than the � max = 2 map. Its location of maximum brightness
s at (15 + 27 

−38 ) 
◦ longitude and ( −3 + 13 

−13 ) 
◦ latitude, relative to the substellar

oint. There appear to be two peaks in the dayside brightness
istribution in the median map in Fig. 14 , but we suggest that
he posterior distribution shows this is not a significant feature. 
he large uncertainty of the longitudinal position of the brightness 
axima reflects the flat emission structure along the equator near 

he substellar point, rather than a range of distinct peaks, so the
ssumed Gaussian distribution that leads to the large uncertainty may 
ot be a good assumption here. The latitudinal structure contributes 
ignificantly to the eclipse shape, as identified in Hammond et al. 
 2024 ), and is consistent with a brightness maximum on the equator.
here is a small asymmetry in the latitudinal structure which is not
tatistically significant, given the width of the posterior distribution. 
he latitudinal structure varies more smoothly than the longitudinal 
tructure, which transitions from a low gradient near the substellar 
oint to sharp gradients near the terminators. 
Hammond et al. ( 2024 ) suggested that a uniform longitudinal 

tructure near the substellar point could be caused by dayside 
tationary Rossby waves. These waves appear in some of the GCM
imulations in Hammond et al. ( 2024 ) and produce a less sharply
eaked longitudinal structure (Lewis & Hammond 2022 ). Ho we ver, 
hey also produce a tw o-peak ed latitudinal structure with maxima 
orth and south of the equator (Matsuno 1966 ), but the data are not
ufficiently precise to resolve or rule out a tw o-peak ed structure in
ig. 14 . More observations might constrain the dayside structure 
trongly enough to detect such structures. We note that some of the
observable’ GCM maps in Hammond et al. ( 2024 ) have their two-
eaked structures and their chevron-shaped structures suppressed 
ompared to the original GCM simulation, making them more similar 
o the optimized map we derive here. 

.3 Comparison to theoretical expectations 

o put these results in context, we compare them to the precision
redicted by the analytic ‘Eclipse Mapping Metric’ in Boone, 
rant & Hammond ( 2024 ). To calculate the predicted EMM for the
ost precise simulated WASP-43b data in Fig. 2 , we set the error per

oint to σ = 150 ppm (note that Boone et al. 2024 denote the error
er point as σ1 ), the number of points to N points = 7000, the peak flux
s F 0 = 7000 ppm, the inclination to i = 82 . 106 ◦, the semimajor axis
o a = 4 . 859 R ∗, and the planetary radius to R p = 0 . 15839 R ∗. This
esults in an eclipse mapping metric of EMM = 23 ◦, which predicts
he smallest scale resolvable by an eclipse map. This is consistent
ith Fig. 8 , where the map can resolve variations in latitude and

ongitude on the scale of tens of degrees. 
We use the same set of parameters to calculate the EMM for the

eal WASP-43b data in Fig. 9 , except for the precision per point
hich we change to be σ = 250 ppm, representing the accuracy 

chiev ed by av eraging two eclipses (the precision of a single point is
≈ 370 ppm; Bell et al. 2024 ). This gives EMM = 27 ◦, implying

hat the map in Fig. 14 should also be able to resolve variations on the
cale of tens of degrees, although with less precision than the best-
ase simulated map. To achieve the same eclipse mapping metric, 
e would need to observe five such eclipses of WASP-43b. 
To estimate the EMM for the WASP-18b data set in Fig. 10 , we set

he error per point to σ = 121 ppm, the number of points for a full
hase curve to N points = 9184, the peak flux as F 0 = 1000 ppm, the
nclination to i = 84 . 39 ◦, the semimajor axis to a = 3 . 483 R ∗, and
he planetary radius to R p = 0 . 0943 R ∗. This results in EMM = 62 ◦,
hich is significantly hampered by the low impact parameter of the

clipse. Note that this is a less precise EMM than the predicted value
f EMM = 47 ◦ for WASP-18b in Boone et al. ( 2024 ), which used an
stimated value for the precision of NIRISS observations of WASP- 
8b that was more precise than the actual observations. The eclipse
apping metric for the longitudinal direction on WASP-18b is 
MM x = 21 ◦, predicting that the effect of the longitudinal structure
n the eclipse shape should be resolvable in this case. The mismatch
etween the longitudinal structure implied by the phase curve, and 
he observed eclipse shape, implies that there may be unresolved 
ystematic errors affecting the eclipse shape, or that the dayside 
ay have a structure that is very uniform and is poorly represented

y � max = 2 harmonics. Observing a full phase curve including a
ransit would help in fitting astrophysical and instrumental models 
or an observation of WASP-18b, as separating time-correlated noise 
rom physical phase variations is difficult without a full phase curve
onstrained by periodicity. 

We also estimate the EMM for the HD 189733b data in Fig. 11 . We
et the error per point to σ = 252 ppm, the number of points for a full
hase curve to N points = 7160 (calculated from the higher cadence 
ata which co v er the eclipse), the peak flux to F 0 = 3500 ppm, the
nclination to i = 85 . 68 ◦, the semimajor axis to a = 8 . 863 R ∗, and
he planetary radius to R p = 0 . 153 R ∗. This results in EMM = 36 ◦,
hich is lower than the WASP-43b data set but still implies that
MNRAS 532, 4350–4368 (2024) 
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apping may be possible. The lack of a discernible residual shape
n Fig. 11 and the related lack of a detection of a mapping signal via
ross-validation implies that the precision of the data is too low or
here are unresolved systematic errors. 

Based on these results, we suggest that the eclipse mapping metric
efined by Boone et al. ( 2024 ) should be at least EMM = 30 ◦ to
esolve an eclipse map. Observing three additional eclipses of WASP-
3b would make its potential resolution comparable to our highest
recision simulated data. 

 C O N C L U S I O N S  

n this study, we have presented a new method for fitting eclipse
aps to observations of exoplanets. This method provides two

mpro v ements on previous work. First, it provides a data-driven
ethod to assess when an eclipse mapping signal is resolvable in
 data set. Secondly, it provides a data-driven method to assess the
ppropriate amount of spatial information to include when fitting a
ap to this signal. The method has two stages: 

(i) Test for the presence of an eclipse mapping signal by fitting a
ow-order Fourier series model M ( n max = 2) and a low-order eclipse
ap model M ( � max = 2), and comparing their cross-validation

cores. There is an eclipse mapping signal if the eclipse map model
as a better cross-validation score. The residual signal in ingress
nd egress should confirm this. We suggest an � max = 2 eclipse map
odel and an n max = 2 Fourier series model because these are simple

nough to fit alongside instrumental systematics and have the same
reedom to fit the light curve outside the eclipse. 

(ii) Once an eclipse mapping signal is identified, refit the map
ith as much spatial freedom as possible and prevent overfitting by
enalizing the likelihood by a factor proportional to the entropy of the
ap. The scale of this factor is tuned to optimize the cross-validation

core of the fitted map, which identifies the correct penalty size
hat preserves an appropriate amount of information content given
he precision of the data. An eclipse map model M ( α, � max = 4),
 v ersampled in pix el space by a factor of 3 (Luger et al. 2019 ),
alances sampling time and spatial freedom. 

We used k-fold cross-validation to calculate the cross-validation
core, using folds with a duration of one-fifth of the eclipse ingress
r egress, to test the ability of the fitted maps to predict an
ppropriate amount of spatial information. This metric penalized
oth underfitting with too few degrees of freedom and o v erfitting with
oo many degrees of freedom. To measure this score in a reasonable
ime, we restricted the sampled folds to co v er the eclipse ingress and
gress as well as an equally long section of the out-of-eclipse phase
urve on either side of the eclipse. 

We conclude that this method is an impro v ement on fitting
clipse maps using spherical harmonics alone without entropy-based
egularization. Our approach is, we hope, a complementary method
o the widely used eigenmapping fitting method (Rauscher et al.
018 ). The eigenmapping method adjusts the number of functions
sed to fit the light curve to optimize a statistical metric, while our
ew method adjusts the information content of the map to optimize a
ifferent statistical metric. We showed that our new method correctly
dentified the presence of an eclipse mapping signal in accurate and
recise simulated data sets and the absence of an eclipse mapping
ignal in inaccurate or imprecise simulated data sets. We then fitted
 map of appropriate precision to the data sets containing eclipse
apping signals. 
We applied our method to three observational data sets – WASP-

3b, WASP-18b, and HD 189733b. The cross-validation test sug-
ested that there was only a robust eclipse mapping signal in the
NRAS 532, 4350–4368 (2024) 
ASP-43b data set. We used this to deri ve a ne w eclipse map
f WASP-43b, which uses the increased degrees of freedom of
 higher order eclipse map model M ( α, � max = 4) to fit a flatter
rightness structure near the substellar point compared to previous
ow-order maps (Hammond et al. 2024 ). This flat brightness structure
ould be consistent with stationary wave structures seen in previous
CM simulations. Ho we ver, the lack of a double-peaked latitudinal

tructure is inconsistent with the structure of these waves in the
imulations. We conclude that there is evidence for a small eastward
ynamical hot-spot shift, a longitudinally broad and uniform hot-
pot, and a smoothly varying latitude structure with a robustly
etected equator-pole brightness difference. 

The lo wer cross-v alidation scores for the eclipse mapping models
or the WASP-18b and HD 189733b data sets suggest that there is no
clipse mapping signal in these data sets. Specifically, they show that
he mapping models have lower predictive ability for left-out data
han the Fourier series model. We suggest that the HD 189733b data
et has too low precision to resolve a mapping signal. The WASP-
8b data set may have unresolved systematic effects that prevent an
ccurate map being fitted to its sufficiently high-precision data, or
ay have a complex dayside structure with largely uniform regions

hat are not represented well by low-order spherical harmonics. 
We conclude that eclipse mapping requires data of comparable

uality to the WASP-43b data set and that care should be taken
hen fitting maps to future data sets. Future work could impro v e

he sampling method to allow fitting with more pixels and more
egrees of spatial freedom. An alternative model comparison metric
ould be the Bayesian Evidence as estimated by nested sampling

lgorithms, which would be prohibitively slow to calculate with our
ethod but could be used in future work. The k-fold cross-validation
ethod could also be varied to see if there is an alternative cross-

alidation metric that is even better suited to comparing models of
clipse shape. 
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PPENDI X  A :  A D D I T I O NA L  DEMONSTRATIO N  

F  OPTI MI ZI NG  MAPPI NG  I N F O R M AT I O N  

O N T E N T  

ection 3.3 showed how to fit a map with optimized information
ontent to a simulated data set from a numerical model of WASP-
3b. In this appendix, we demonstrate the model for a different input
ap, sho wing ho w it selects a dif ferent spatial scale for the fitted
ap. We define an artificial flux map F p /F S that is entirely uniform

xcept for a Gaussian perturbation: 

 p /F S = F 0 (1 + 2e ( −( r/r 0 ) 2 ) ) , (A1) 

here F 0 = 3000 ppm is the magnitude of the map, r is the angular
istance along the surface away from a point which we choose to be
0 ◦ east and 30 ◦ north of the substellar point, and r 0 = 60 ◦ is the
cale of the perturbation. Fig. A1 shows this map, as well as � max =
 and � max = 4 representations of it. The � max = 2 representation
an capture the approximate shape of the true map, but fails to
apture the magnitude of the perturbation correctly, while the � max =
 representation better matches the magnitude. 
We generate simulated light curves following the methodology in 

ection 2.1 , assuming the system parameters of WASP-43b again, 
nd applying Gaussian noise with standard deviations of 150 and 
50 ppm. Fig. A2 shows our mapping method applied to the two
esulting data sets. The left-hand panel shows their cross-validation 
cores as defined in Section 2.6 for eclipse map models M ( � max = 2),
elative to the scores for Fourier series models M ( n max = 2). The
clipse mapping models have significantly better cross-validation 
cores, confirming the strong eclipse mapping signal in both data sets.

The right-hand panel of Fig. A2 shows the cross-validation 
core for M ( � max = 2) eclipse map models fitted as described in
MNRAS 532, 4350–4368 (2024) 

ond panel: the map represented by � max = 2 spherical harmonics, showing 
by � max = 4 spherical harmonics, sho wing ho w they can capture most of its 
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M

Figure A2. Left-hand panel: the cross-validation scores (equation 10 ) for eclipse map models M ( � max = 2) fitted to the simulated data sets defined by equation 
( A1 ), relative to Fourier series models M ( n max = 2). Both data sets have strong eclipse mapping signals, identified by the better cross-validation scores for the 
eclipse mapping models M ( � max = 2). The relative scores are normalized by their standard errors (equation 12 ). Right-hand panel: the relative cross-validation 
scores for eclipse map models M ( � α, max = 4), as a function of α (equation 15 ). The optimal value of α for both maps is smaller than in Fig. 6 . 

Figure A3. First row: an eclipse map model M ( � max = 4) fitted to a light curve simulated from equation ( A1 ) with precision 150 ppm as described in 
Appendix A . The crosses on the maps show the position of the peak of the Gaussian perturbation defined in equation ( A1 ). Fitting the spherical harmonics alone 
results in a highly imprecise map. Second row: an eclipse map model M ( α = 4642 , � max = 4) with the parameter α optimized according to the cross-validation 
score shown in Fig. A2 . 
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ection 2.7 , as a function of the regularization parameter α described
n equation ( 15 ). The optimal value of α = 4641 . 6 is the same for
oth data sets, and smaller than the optimal values in Fig. 6 for
he data simulated from the GCM. The optimal value of α depends
on-trivially on the spatial scale and precision of the data set. We
ound that simulating these data sets again with different randomly
enerated Gaussian noise could result in different optimal values of
NRAS 532, 4350–4368 (2024) 
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, as the mapping residuals have relatively short durations and low
ignal-to-noise ratios. The optimized map in the second row of Fig.
3 is a much more precise fit to the true map than the map in the first

ow which was fitted without optimizing the information content. 
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