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Abstract: Many measles endemic countries with suboptimal coverage levels still rely on vaccination 22 
campaigns to fill immunity gaps and boost control efforts. Depending on local epidemiological pat- 23 
terns, national or targeted campaigns are implemented, following which post-campaign coverage 24 
surveys (PCCSs) are conducted to evaluate their performance, particularly in terms of reaching pre- 25 
viously unvaccinated children. Due to limited resources, PCCS surveys are designed to be repre- 26 
sentative at coarse spatial scales, often masking important heterogeneities in coverage that could 27 
enhance the identification of areas of poor performance for follow up via routine immunization 28 
strategies. Here, we undertake geospatial analyses of the 2021 measles PCCS in Nigeria to map in- 29 
dicators of coverage measuring the individual and combined performance of the campaign and 30 
routine immunization (RI) at 1x1 km resolution and the ward and district levels in 13 states. Using 31 
additional geospatial data sets, we also produced estimates of numbers of unvaccinated children 32 
during the campaign and numbers of measles-containing vaccine (MCV) zero-dose children before 33 
and after the campaign at these levels and within health facility catchment areas. Our study revealed 34 
that although the campaign reduced the numbers of MCV zero-dose children in all the districts, 35 
areas of suboptimal campaign and RI performance with considerable numbers of zero-dose children 36 
remained. Our analyses further identified wards and health facility catchment areas with higher 37 
numbers of unvaccinated children within these areas. Our outputs provide a robust evidence base 38 
to plan and implement follow-up RI strategies and to guide future campaigns at flexible and oper- 39 
ationally relevant spatial scales. 40 
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1. Introduction 44 

Vaccination remains one of the most successful public health interventions, averting 45 
an estimated 3.5 to 5 million vaccine-preventable deaths every year [1] - a substantial 46 
improvement since the introduction of the World Health Organization Expanded 47 
Programme on Immunization (WHO EPI) in 1974 [2]. However, vaccination coverage 48 
remains suboptimal in many places [3] - a situation further exacerbated by the Covid-19 49 
pandemic with major disruptions to immunization and other health services [4, 5], 50 
although gradual recovery is being made [6]. Within the past few decades, there have been 51 
concerted efforts to improve global vaccination coverage levels, which have generally 52 
resulted in improved access to vaccines and decreases in various kinds of inequities [7]. 53 
These efforts are shaped and driven by global policy frameworks such as the United 54 
Nations’ Sustainable Development Goals (SDGs) [8], the WHO’s Immunization Agenda 55 
2030 [7], Gavi, the Vaccine Alliance’s Strategy 5.0 [9], the Global Vaccine Action Plan [10] 56 
and Reaching Every District [11, 12]. Together, these initiatives and strategies emphasize 57 
the importance of strengthening immunization systems to reach zero-dose and missed 58 
communities and have set ambitious targets at the global, national and subnational (e.g., 59 
the district level) levels to reduce vaccine preventable diseases. 60 

Indicators of vaccination coverage are crucial to monitor program performance, 61 
understand geographical and other inequities in coverage, and measure the effectiveness 62 
of interventions to increase coverage, such as supplementary immunization activities 63 
(SIAs) or vaccination campaigns. Estimates of indicators of vaccination coverage can be 64 
obtained from administrative/official sources or vaccination coverage surveys, such as a 65 
post-campaign coverage surveys (PCCSs) used to monitor the performance of vaccination 66 
campaigns. Administrative estimates, though available at different levels of the health 67 
system and useful for near real-time monitoring, are often inaccurate in many countries 68 
due to numerator and denominator errors [13, 14]. Vaccination coverage surveys, on the 69 
other hand, are mostly designed to produce estimates at the national and provincial levels 70 
(or administrative level one areas) due to the high cost of more intensive sampling to 71 
produce estimates at more granular levels. Due to the increasing need for more accurate 72 
spatially detailed estimates to support programme planning, implementation and 73 
monitoring, particularly at the district level, geospatial modelling approaches that 74 
leverage existing survey data and spatial relationships between indicators of coverage and 75 
geospatial covariates have now become popular [15-18]. In the context of vaccination 76 
campaigns, geospatial analysis of PCCS data can be used to produce district and ward 77 
level estimates [19, 20] which can be compared with campaign administrative estimates or 78 
tally sheet data to better understand campaign performance and highlight poor 79 
performing areas more precisely. Modelled coverage estimates can be integrated with 80 
other data sets such as gridded population data to highlight areas with relatively higher 81 
numbers of zero-dose children at the end of a campaign to guide the implementation of 82 
follow-up routine immunization (RI) strategies [20].  83 

Measles remains endemic in Nigeria, with 10,649 and 23,983 cases reported to WHO 84 
in 2021 and 2022, respectively [21]. Recent reports also indicate continued occurrence of 85 
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measles cases throughout the country [22], especially among children aged under 5 years. 86 
WHO and UNICEF estimate that the routine coverage of the first and second doses of the 87 
measles vaccine in Nigeria were 60% and 38% in 2021, respectively, and have remained 88 
the same in 2023 [3], although 95% coverage with two doses is required to interrupt 89 
measles transmission [23]. The latest WUENIC estimates also showed that Nigeria is one 90 
of the countries with the highest numbers of MCV zero-dose children [6], i.e. those who 91 
had not received the first dose of MCV. Due to its suboptimal RI program (risk factors for 92 
non-vaccination are well-studied elsewhere [24]), Nigeria implements national follow-up 93 
measles campaigns targeting children aged 9 – 59 months approximately every two years, 94 
following a catch-up measles vaccination campaign in 2005-06. A PCCS is often 95 
implemented at the end of each campaign to estimate the coverage of different indicators 96 
of campaign performance [25]. Some of the recent measles campaigns prior to the 2021 97 
campaign are the 2017-18 national campaign which had a PCCS coverage estimate of 88% 98 
and the 2019 campaign implemented in 20 northern states, where higher risks of outbreaks 99 
were identified, with a PCCS estimate of 89%. The persistence of measles outbreaks despite 100 
these repeated vaccination campaigns is highly indicative of suboptimal performance of 101 
vaccine delivery strategies and calls for more robust scientific evidence to support the 102 
combination of these strategies for more effective disease control.   103 

In previous work [19, 20], we have undertaken geospatial analyses of the 2017-18 and 104 
2019 measles PCCS in Nigeria to map the coverage of indicators of campaign performance. 105 
Our goal in the current work is to analyse the 2021 Nigeria measles PCCS to produce 106 
coverage estimates and corresponding estimates of unvaccinated children at 1x1 km 107 
resolution and the district level. We also aim to produce estimates of numbers of MCV 108 
zero-dose or unvaccinated children within health facility catchment areas and at the ward 109 
level before and after the campaign, to support further evaluation of the impact of the 110 
campaign and the design and implementation of post-campaign vaccination strategies via 111 
the RI program, especially in regards to establishing a linkage between residual zero-dose 112 
cases and the health system.  113 

2. Methods 114 

2.1.  2021 measles post-campaign coverage survey data 115 

As part of its measles control and elimination efforts, Nigeria planned a nationwide 116 
measles campaign in 2021. However, due to logistical challenges, the campaign was 117 
implemented in only 13 states, namely Kaduna, Kano, Kwara, Katsina, Yobe, Taraba, 118 
Borno, Abia, Imo, Ebonyi, Bayelsa, Sokoto and Kebbi – see supplementary Figure 1. These 119 
states were prioritized based on the estimated risk of measles outbreaks as determined by 120 
the estimated herd immunity. The campaign was implemented between November and 121 
December 2021 [25], following which a PCCS was implemented in each of the 13 states 122 
between January and February 2022. A two-stage sampling procedure was used in the 123 
PCCS, which involved the selection of enumeration areas (EAs) (i.e., the survey clusters) 124 
from a national sampling frame and conducting household listing in each selected EA. 125 
During this stage, some areas (e. g., some LGAs in the northeast and southeast) that were 126 
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inaccessible to the survey teams due to insecurity were excluded from the sampling frame. 127 
A systematic random sampling technique was used in the second stage to select 128 
households to be interviewed in each selected EA. 15 households were selected from each 129 
of the 40 EAs in the 13 states and all children in the target age group (i.e., 9-59 months) in 130 
these households were eligible to be enrolled in the survey. This yielded a total of 7,800 131 
households across all the 13 states.  132 

For each child included in the survey, we obtained information on their age (in 133 
months) and the displaced geographical coordinates of the cluster from which they were 134 
sampled, alongside other relevant information. The cluster coordinates were displaced to 135 
protect the confidentiality of the respondents following a similar procedure described in 136 
Perez-Haydrich et al [26]. Data on MCV coverage before the campaign were obtained from 137 
home-based records (HBRs) of routine vaccination or through parental/caregiver recall. 138 
Additionally, for campaign-related coverage, evidence of vaccination included finger- 139 
marks. Based on these data and following the methodology used in previous analyses [19], 140 
we analyzed six indicators (Figure 1) assessing the individual performance of the 141 
campaign and its combined performance with routine immunization for children aged 9- 142 
59 months.  143 

144 
Figure 1: 2021 Measles Post-campaign Coverage Survey cluster-level vaccination cover- 145 
age data for children aged 9-59 months. 146 

These indicators are: (i) coverage before the SIA/campaign, (ii) coverage during the 147 
SIA, (iii) SIA coverage among zero-dose children, (iv) SIA coverage among children 148 
vaccinated previously, (v) coverage before and during the campaign (i.e., coverage with at 149 
least two doses of MCV by the end of the campaign) and (vi) coverage before and/or during 150 
the campaign (i.e., coverage with at least one dose of MCV by the end of the campaign). 151 
Whilst indicators (ii) – (iv) measure the performance of the current campaign, indicators 152 
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(i), (v) and (vi) assess the combined effect of RI and campaigns (including previous 153 
campaigns). Detailed definitions of these indicators are provided in Utazi et al [19]. 154 

The cluster level vaccination coverage data for each of the six indicators are mapped 155 
in Figure 1. A total of 5,528 children aged 9-59 months were sampled during the survey. 156 
Out of these, 5,526 and 5,486 children had complete records (i.e., known vaccination status) 157 
for coverage before the campaign and coverage during the campaign, 4,221 (76%) and 158 
4,532 (83%) of whom were vaccinated, respectively, across the 13 states. For all the 159 
indicators, cluster level sample sizes ranged from 1 to 35 children – see supplementary 160 
Figure 2. The figure shows that cluster level sample sizes are lowest for coverage among 161 
MCV zero-dose children compared to other indicators. As in previous work [19], we 162 
excluded clusters where one child was surveyed during model-fitting as this often results 163 
in higher prediction uncertainty. 164 

 165 
2.2  Geospatial covariate data, population data and covariate selection 166 

Following previous work [17-19, 27, 28], we assembled a suite of geospatial covariate 167 
information for our analysis. This included remoteness (e.g., distance to roads and travel 168 
time to the nearest health facility), socioeconomic (e.g., nightlight intensity, livestock 169 
density) and environmental (e.g., elevation, temperature and precipitation) variables - see, 170 
e.g., supplementary Table 1. These covariates help improve the prediction of vaccination 171 
coverage and their consideration was informed by inclusion in previous studies [17-19, 27, 172 
28] and direct or proximate associations with vaccination coverage. We ensured the 173 
alignment of the temporally varying covariates with the reference period of the survey 174 
wherever possible, and in other cases, we obtained covariate data closest to the survey year. 175 
These covariates were processed as detailed in previous work [18, 28] to produce 1 × 1 km 176 
raster layers and cluster-level data using the (displaced) geographical coordinates from the 177 
2021 PCCS. Furthermore, we also obtained gridded population data for children aged 12- 178 
59 months and under 5 years old in 2021 from WorldPop [29]. These were used in our work 179 
to calculate aggregate estimates of coverage and estimates of numbers of MCV zero-dose 180 
and/or unvaccinated children. 181 

We undertook covariate selection using approaches similar to those outlined in Utazi 182 
et al [19]. For each of the three directly modelled indicators (see modelling section), the 183 
covariate selection process involved checking the relationships between the covariates and 184 
vaccination coverage on the logit scale and applying the log transformation to the 185 
covariates where necessary; fitting of single covariate models and ranking the covariates 186 
based on their predictive ability (e.g., as determiend using predictive R2 values); checking 187 
for multicollinearity and choosing between highly correlated covariates (correlation > 0.8 188 
or variance inflation factor > 4.0) using their ranks; and using stepwise regression 189 
(backward elimination based on Akaike Information Criterion) to select the best 190 
model/combination of covariates for modelling the indicator. The steps described above 191 
were implemented in a non-spatial framework using binomial regression models. We 192 
created a uniform set of covariates for all three modelled indicators from the covariates 193 



Vaccines 2024, 12, x FOR PEER REVIEW 6 of 20 
 

 

selected for each indicator (supplementary Table 1 and supplementary Figure 3). This 194 
mainly included covariates that were significant in at least two of the three best models. 195 

 196 
2.3  Health facility, administrative boundary and building footprint data 197 

Administrative levels one (states) and two (districts) digital boundary files 198 
(shapefiles) for Nigeria were obtained from WHO [30]. We also obtained ward level and 199 
additional administrative boundaries from GRID3 [31], as well as detailed data on the 200 
locations of health facilities for Ebonyi and Kano states. Both states were selected for 201 
illustration purposes only. The health facility data included their geocoordinates, 202 
functional status, category (general hospital, private clinic, maternity home, etc), type 203 
(primary, secondary or tertiary) and ownership (private, public, missions/religious, etc). 204 
For Kano state, the data originally comprised 1613 facilities; whereas for Ebonyi, 1177 205 
facilities were obtained. Upon further validation and consultation with local health 206 
officials in Kano state, the number of facilities was reduced to 260. For Ebonyi, the data 207 
were filtered to include health facilities likely to offer vaccination services based on expert 208 
knowledge, yielding 418 facilities (see supplementary Figure 4). To enable the delineation 209 
of the catchment areas of the health facilities, friction raster layers at walking and 210 
motorized travel scenarios were obtained from https://malariaatlas.org/project- 211 
resources/accessibility-to-healthcare/. These friction raster layers are 1x1 km datasets 212 
produced by Weiss et al. [32] using a combination of geographic factors, with each pixel 213 
representing the cost of movement (that is, time in minutes) required to travel per 1 km.  214 

To demonstrate the utility of our coverage maps and corresponding zero-dose 215 
estimates for developing microplans to support intervention strategies targeting zero-dose 216 
children following vaccination campaigns, we also obtained building footprint data from 217 
Google [33]. 218 

 219 
2.4  Bayesian geostatistical model, model fitting and prediction 220 

To model and predict vaccination coverage at 1x1 km resolution using cluster-level 221 
PCCS data, we employed a Bayesian geostatistical modelling framework. Let 𝑍𝑍(𝒔𝒔𝑖𝑖) 222 
denote the number of children vaccinated at survey location 𝒔𝒔𝑖𝑖 (𝑖𝑖 = 1, … , 𝑛𝑛) and 𝑚𝑚(𝒔𝒔𝑖𝑖) 223 
the number of children sampled at the location. The first level of the geostatistical model 224 
assumes that 225 

 226 
                          𝑍𝑍(𝒔𝒔𝑖𝑖)|𝑝𝑝(𝒔𝒔𝑖𝑖) ∼ Binomial�𝑚𝑚(𝒔𝒔𝑖𝑖), 𝑝𝑝(𝒔𝒔𝑖𝑖)�,                       (1) 227 
 228 

where 𝑝𝑝(𝒔𝒔𝑖𝑖) (0 ≤ 𝑝𝑝(𝒔𝒔𝑖𝑖) ≤ 1) is the true vaccination coverage at location 𝒔𝒔𝑖𝑖. We model 229 
𝑝𝑝(𝒔𝒔𝑖𝑖) using the logistic regression model as  230 
 231 

                    logit(𝑝𝑝(𝒔𝒔𝑖𝑖)) = 𝐱𝐱(𝒔𝒔𝑖𝑖)𝑇𝑇𝜷𝜷 + 𝜔𝜔(𝒔𝒔𝑖𝑖) + 𝛾𝛾(𝒔𝒔𝑖𝑖),                        (2) 232 
 233 

where 𝐱𝐱(𝒔𝒔𝑖𝑖) is the vector of covariate data associated with location 𝒔𝒔𝑖𝑖, 𝜷𝜷 is a vector of 234 
the corresponding regression coefficients, 𝛾𝛾(𝒔𝒔𝑖𝑖)  is an independent and identically 235 

https://malariaatlas.org/project-resources/accessibility-to-healthcare/
https://malariaatlas.org/project-resources/accessibility-to-healthcare/
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distributed (iid) Gaussian random effect with variance, 𝜎𝜎𝛾𝛾2 , used to model non-spatial 236 
residual variation, and 𝜔𝜔(𝒔𝒔𝑖𝑖) is a Gaussian spatial random effect used to capture residual 237 
spatial correlation in the model. That is, 𝝎𝝎 = (𝜔𝜔(𝒔𝒔1), … , 𝜔𝜔(𝒔𝒔𝑛𝑛) )𝑇𝑇 ∼ 𝑁𝑁(0, Σ𝜔𝜔), where  Σ𝜔𝜔 238 
is assumed to follow the Matérn covariance function [34] given by Σ𝜔𝜔(𝒔𝒔𝑖𝑖,  𝒔𝒔𝑗𝑗) = 239 

𝜎𝜎2

2𝜈𝜈−1Γ(𝜈𝜈)
�𝜅𝜅 ∥ 𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑗𝑗 ∥�

𝜈𝜈 𝐾𝐾𝜈𝜈 (𝜅𝜅 ∥ 𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑗𝑗 ∥). The notation ∥. ∥ denotes the Euclidean distance, 240 

𝜎𝜎2 > 0 is the marginal variance of the spatial process, 𝜅𝜅 is a scaling parameter related to 241 

the range 𝑟𝑟(𝑟𝑟 = √8𝜈𝜈
𝜅𝜅

) – the distance at which spatial correlation is close to 0.1, and 𝐾𝐾𝜈𝜈 is 242 

the modified Bessel function of the second kind and order 𝜈𝜈 > 0 . For identifiability 243 
reasons, we set the smoothing parameter, 𝜈𝜈 = 1, see [35]. 244 

We fitted the model for the three indicators (i) coverage before the SIA (ii) SIA 245 
coverage among MCV zero-dose children and (iii) SIA coverage among children 246 
vaccinated previously, to ensure the internal consistency of the six PCCS indicators as 247 
detailed in previous work [19]. The modelled 1x1 km estimates for the remaining three 248 
indicators, namely coverage during the campaign, coverage before and during the 249 
campaign and coverage before and/or during the campaign, were then calculated using 250 
samples from the posterior predictive distributions of these directly modelled indicators. 251 

In each case, the model described in equations (1) and (2) was fitted in a Bayesian 252 
framework using the integrated nested Laplace approximation – stochastic partial 253 
differential equation (INLA-SPDE) approach (INLA-SPDE) approach [35, 36]. Aggregate 254 
(district and state) level predictions were obtained as population-weighted averages taken 255 
over the 1x1 km grid cells falling withing each administrative area. Also, estimates of 256 
numbers of unvaccinated children before and during the campaign were obtained by 257 
integrating the coverage maps with gridded population data as discussed previously and 258 
aggregating these to relevant administrative levels.  259 

Approaches to evaluate the out-of-sample predictive performance of the fitted model 260 
are discussed elsewhere [19, 27]. Here, we rather focus on exploring the patterns seen in 261 
the estimates produced by these models. All analyses were carried out using the R 262 
programming language [37] and the R-INLA package [38].  263 

 264 
2.5  Methodology for health facility catchment area delineation 265 

We delineated the catchment areas of the health facilities in Kano and Ebonyi states 266 
using the r.cost tool in QGIS software [39, 40]. The tool utilized the locations of the health 267 
facilities and cost/friction raster layers at walking and motorized travel scenarios described 268 
previously. Based on these input datasets, it obtained a cumulative cost raster representing 269 
the total cost to reach the nearest health facility from each 1x1 km grid cell. It then 270 
identified grid cells that were within a certain “cost” or travel time of a health facility and 271 
used these to delineate its catchment area. We then overlaid the estimated catchment areas 272 
on the grid level zero-dose estimates to calculate the numbers of zero-dose children living 273 
within these areas. We also demonstrated how areas for fixed and outreach services could 274 
be determined within the catchment areas through using building footprint data.  275 
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3. Results 276 

3.1.  1×1 km and district level estimates of PCCS indicators 277 
We estimated substantial heterogeneities in the spatial distributions of the PCCS in- 278 

dicators as shown in Figure 2 and supplementary Figure 5, although these seemed rela- 279 
tively less pronounced in the southern states of Abia, Ebonyi and Imo, and in the indica- 280 
tors: coverage during the campaign, coverage before and/or during the campaign and 281 
coverage among children vaccinated previously. Areas of lower coverage before the cam- 282 
paign appear to be concentrated in the northeastern and northwestern states of Borno, 283 
Yobe, Kebbi, Sokoto, Katsina and Kano (eastern part of the state), and Ebonyi state in the 284 
southeast. We estimated that, overall, coverage during the campaign, compared to cover- 285 
age before the campaign, was greater in all the states except Imo and Kaduna states (the 286 
direct survey estimates showed similar patterns in both states as well as Borno state [24]). 287 
Coverage during the campaign was also estimated to be relatively lower in all three south- 288 
eastern states (Abia, Ebonyi and Imo), Borno and parts of Kano, Kebbi, Yobe and Sokoto 289 
states.  290 

Our analyses also revealed interesting patterns in the performance of the campaign 291 
in terms of reaching previously vaccinated and zero-dose children. We estimated that in 292 
all 13 states, the campaign generally reached more previously vaccinated children than 293 
zero-dose children. The greatest differences between both indicators were observed in the 294 
more populous states of Kano and Kaduna, whereas the least differences were observed 295 
in Abia, Bayelsa and Ebonyi. Five states with the lowest coverage among zero-dose chil- 296 
dren were Kaduna, Kano, Borno, Kebbi and Sokoto, although there are substantial hetero- 297 
geneities in this indicator in Kwara, Taraba and Yobe states (Figure 2 and supplementary 298 
Figure 5), where apparent areas of low coverage can be seen.   299 

Interestingly, when considering coverage with at least one dose of MCV (i.e., 300 
coverage before and/or during the campaign), we generally observed higher coverage 301 
levels compared to coverage before the campaign. This is particularly evidenced at the 302 
state level where we estimated higher coverage levels for this indicator in all the states 303 
compared to coverage before the campaign (supplementary Table 2). This demonstrates 304 
that although coverage during the campaign did not exceed pre-campaign coverage in all 305 
the states, enough of previously unvaccinated children were reached in many areas to 306 
boost coverage after the campaign beyond the levels seen before the campaign at the state 307 
level. Furthermore, coverage with at least one dose has less spatial heterogeneities than 308 
coverage with two doses. In the latter case, there are substantial areas of low coverage in 309 
all the states except Kwara, Bayelsa and much of Taraba state.  310 

The uncertainties associated with the grid level estimates are very similar across the 311 
indicators, although these are slightly lower for coverage before the campaign. The spatial 312 
distributions of the uncertainty estimates appear to be mostly affected by the distribution 313 
of the corresponding coverage estimates (estimates close to the endpoints on the unit 314 
interval are less uncertain than estimates close to the midpoint – an artefact of the binomial 315 
distribution used to model the data), rather than the spatial coverage/distribution of the 316 
input data.  317 

 318 
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    319 

  320 
Figure 2: 1x1 km modelled estimates of coverage among children aged 9-59 months for six 321 
measles post-campaign coverage survey (PCCS) indicators and associated uncertainty 322 
estimates shown as standard deviations. 323 

 324 
In Figure 3 and supplementary Figure 6, we further explore the distribution of 325 

coverage during the campaign and coverage among zero-dose children at the LGA level, 326 
with a view to highlighting LGAs with particularly lower coverage levels for these 327 
indicators in each state.  For coverage during the campaign, we observe that LGA 328 
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coverage is most variable in Bayelsa state and least variable in Kaduna state. We estimated 329 
that in Kano, 17 LGAs (out of 44) had coverage levels below 80% whereas in Borno, 26 (out 330 
of 27) LGAs had campaign coverage below 70%. In Ebonyi state, LGAs with coverage less 331 
than 72% include Abakaliki, Ebonyi, Ikwo and Izzi. For coverage among zero-dose 332 
children, our analyses revealed that all the LGAs in Kaduna, for example, had <60% 333 
coverage for this indicator, despite having 79%-89% overall campaign coverage. In Abia, a 334 
relatively higher performance was seen, with coverage among MCV zero-dose children 335 
ranging between 63% and 82% at the LGA level. Similar patterns can be observed in the 336 
other states.  337 

 338 

  339 
Figure 3: Local government area (LGA) level estimates of coverage during the campaign 340 
among children aged 9-59 months. 341 

3.2. Estimates of numbers of zero-dose children before and after the campaign at the LGA level 342 

We produced estimates of numbers of zero-dose children before (estimated using 343 
coverage before the campaign) and after (estimated using coverage before and/or during 344 
the campaign) the campaign to further evaluate the impact of the campaign in terms of 345 
reducing the numbers of MCV zero-dose children. Figure 4 shows that the campaign had 346 
the most impact in Kano and Katsina states, both of which had the largest estimated 347 
number of children aged 12-59 months, although considerable numbers of zero-dose 348 
children remained after the campaign in some LGAs in both states.  There are also some 349 
LGAs in Borno, Kebbi, Sokoto and Yobe states which experienced large reductions in 350 
numbers of zero-dose children after the campaign. LGAs with the lowest reductions in the 351 
numbers of zero-dose children are mostly concentrated in Abia and Imo states, both of 352 
which had among the lowest populations of children aged 12-59 months. The figures also 353 
reveal that considerable numbers of zero-dose children remained after the campaign 354 
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particularly in areas where there were relatively higher numbers of zero-dose children 355 
before the campaign. LGAs where > 5,000 MCV zero-dose children aged 12-59 remained 356 
after the campaign are mostly concentrated in the northern states of Borno (e.g., Jere, Bama 357 
and Gwoza), Kaduna (e.g., Igabi, Chikun and Zaria), Kano (e.g., Kumbotso, Ungogo and 358 
Gwale), Kebbi (e.g., Jega, Wasagu-Danko and Birnin Kebbi) and Sokoto (e.g., Dange Shuni, 359 
Tambuwal and Kware). Two LGAs in Ebonyi state (Izzi and Ikwo) also had >5,000 MCV 360 
zero-dose children after the campaign.  361 

 362 
Figure 4: Estimates of numbers of zero-dose children aged 12-59 months before and after 363 

the 2021 measles vaccination campaign at the LGA level. 364 

3.3. Estimates of numbers of unvaccinated children during the campaign at the ward and health 365 
facility catchment area levels 366 

At the ward and health facility catchment area levels, we show the spatial 367 
distribution of estimates of numbers of unvaccinated children during the campaign 368 
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(estimated using coverage during the campaign - includes zero-dose and previously 369 
vaccinated children) in Kano and Ebonyi states in Figure 5, as examples. In Kano state, we 370 
estimated that 98 (out of 484) wards had > 1,200 unvaccinated children, whereas in Ebonyi, 371 
there were 9 of such wards. In Kano, the wards with the most numbers of unvaccinated 372 
children (> 8,000) during the campaign (Dorayi, Rijiyar Zaki, and Kabuga wards) are also 373 
located in LGAs where we had estimated higher numbers of MCV zero-dose children after 374 
the campaign. In Ebonyi, this is also the case in Ndiegwi Inyimegu, Ndiewgu Echara 1 and 375 
Ndietta wards, with >1,500 unvaccinated children during the campaign. 376 

 377 

Figure 5: Estimates of numbers of unvaccinated children aged 12-59 months at the ward 378 
and health facility catchment area levels during the campaign. 379 

At the health facility level, we also highlight catchment areas created using both 380 
walking and motorized travel times where relatively higher numbers of unvaccinated 381 
children during the campaign were estimated. Our results generally show strong 382 
similarities in the spatial distributions of the unvaccinated children obtained through 383 
using both travel time catchment areas (although we found differences in the distributions 384 
of numbers of children living within different travel time bands estimated using both 385 
travel times, see supplementary Figures 7 and 8). We, therefore, focus more on the trends 386 
observed in the walking travel time catchment areas. In Kano, health facilities with 387 
relatively higher numbers of unvaccinated children in their catchment areas (>15,000 388 
children) during the campaign include Kibiya Primary Health Center (PHC), Darki PHC, 389 
Chiranci Basic Health Center and Yarganji Health Post, some of which are located within 390 
LGAs where we had estimated larger numbers of MCV zero-dose children after the 391 
campaign. In Ebonyi state, health facilities with relatively higher numbers of unvaccinated 392 
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children in their catchment areas (>800 children) during the campaign include Onuebonyi 393 
Health Center, Onu Nwakpu Health Center, Echara Health Center, Ebonyi State 394 
University Teaching Hospital and Omege Umuezeokoha Primary Health Center.  395 
Estimates of numbers of MCV zero-dose children living within these catchment areas can 396 
also be straightforwardly estimated if needed. 397 

3.4. Identification of areas for fixed and outreach services within health facility catchment areas 398 
using building footprint data 399 

Identifying, reaching and vaccinating zero-dose children or those missed during a 400 
vaccination campaign require not only spatially detailed data regarding their sizes but also 401 
detailed knowledge of settlements/buildings/households where they reside to enable, for 402 
example, house-to-house delivery of vaccination services or the location of temporary 403 
vaccination posts. Microplans for various interventions are often based on these detailed 404 
datasets. 405 

 406 
Figure 6: (Left panel) Estimates of numbers of unvaccinated children during the campaign 407 
at the health facility catchment area level in Kano state. Insets show locations of the 408 
corresponding health facilities and the buildings identified within the catchment areas 409 
through using Google building footprint data.  (Right panel) Estimates of numbers of 410 
unvaccinated children before and during the campaign within different walking travel 411 
time bands in the state. 412 

In Figure 6, we show the distribution of buildings within the catchment areas of some 413 
health facilities where we estimated some of the highest numbers of unvaccinated children 414 
during the campaign in Kano. We also show areas within the catchment areas of example 415 
health facilities which are within 2 km, 2 – 5 km and > 5 km of the health facilities and are 416 
often designated as areas for fixed, outreach and mobile services during field work [41]. 417 
Within the catchment area of Sabo Bakin Zuwo Maternity Hospital, we identified a total 418 
of 90,636 buildings, of which 65,153 were located within 2 km of the health facility. For 419 
Danbare Health Post and Chiranci Basic Health Centre, we identified 93,139 and 169,085 420 
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buildings, of which 18,547 and 110,746, respectively, were located within 2 km of these 421 
health facilities.  422 

Additionally, when comparing estimates of numbers of unvaccinated children 423 
during the campaign within different walking travel time bands, Figure 6 (right panel) 424 
shows that greater numbers of these children lived closer to the health facilities (potentially 425 
due to their location in more densely populated areas), highlighting their centrality to 426 
reaching zero-dose and under-immunized children within the country. The same pattern 427 
was also seen when using the motorized catchment areas, except that the numbers 428 
declined dramatically with increasing travel times (supplementary Figures 7 and 8). 429 

To further support field activities, the catchment areas and wards shown here can be 430 
further subdivided to create enumeration area type units with manageable numbers of 431 
buildings which can be covered by small-sized field teams within a specified period of 432 
time using, e.g., the preEA tool [42]. Detailed maps of these enumeration areas as shown 433 
in supplementary Figure 10 can also be produced. 434 

4. Discussion 435 

Evaluating the spatial distribution of indicators of vaccination coverage and 436 
corresponding estimates of residual un/under-vaccinated children following a measles 437 
vaccination campaign is crucial to understanding the performance of the campaign and its 438 
combined performance with previous campaigns and routine immunization, particularly 439 
in terms of reaching zero-dose children and ensuring full immunization with the 440 
recommended two doses of the measles vaccine. We mapped six PCCS indicators and 441 
produced estimates of numbers of zero-dose/unvaccinated children before, during and 442 
after the campaign at resolved spatial scales, namely the district, ward and health facility 443 
catchment areas, to provide operational outputs that will help program managers design 444 
and implement effective follow-up RI strategies in all areas of interest. These analyses are 445 
highly relevant considering the geographical inequities that exist in coverage at these 446 
lower levels and the evidence that the campaign did not reach the target coverage of 95% 447 
(with two doses) in all 13 states, which is required to interrupt measles transmission and 448 
prevent outbreaks [23].  449 

As we have noted previously, administrative estimates of campaign coverage, 450 
though available at detailed spatial scales, suffer from some limitations. Our modelled 451 
estimates can therefore be used for data quality checks when compared with these at the 452 
LGA and ward levels to ascertain the likely coverage in these areas where implausible 453 
administrative coverage estimates (e.g., those >100%) had been obtained. This comparison 454 
would not have been possible using the direct survey estimates since the survey was not 455 
designed to be representative at the LGA level. We compared our modelled estimates with 456 
direct survey estimates at the state level and observed strong correlations between these, 457 
with the differences being less than 5% in most cases (supplementary Table 2, 458 
supplementary Figure 9 and [25]). However, in Borno state, we estimated 14% lower and 459 
15% higher coverage before and during the campaign respectively, which is likely due to 460 
poor spatial coverage of the survey clusters in the state as a result of insecurity (Figure 1). 461 
Also, for Imo, we observed a difference of 19% between our modelled estimate and the 462 
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direct survey estimate for coverage during the campaign. We investigated this further and 463 
found that our modelled estimate (77%) was nearly the same as the unweighted estimate 464 
(78.7%) for the state, meaning that the observed difference is likely due to the weighting 465 
used to produce the direct estimate for this indicator for the state. Our modelled outputs 466 
can therefore enhance data quality checks and guarantee the availability of high-quality 467 
data for programming.  468 

Our analyses showed that considerable numbers of zero-dose children (>5,000) aged 469 
12-59 months remained after the campaign in LGAs where there were substantially higher 470 
numbers of zero-dose children before the campaign. These LGAs were mostly located in 471 
the northeast and northwest, corroborating findings in previous studies [16, 20, 43]. The 472 
greatest reductions in the numbers of zero-dose children after the campaign were observed 473 
in states with the largest estimated numbers of children aged 12-59 months as expected, 474 
but there were some areas (e.g., two LGAs in Ebonyi) in less populated states where large 475 
reductions were also observed. We also found that in the example states of Kano and 476 
Ebonyi, wards with relatively higher numbers of unvaccinated children during the 477 
campaign were located in LGAs where we also estimated higher numbers of zero-dose 478 
children after the campaign, highlighting the importance of prioritizing reaching 479 
previously unvaccinated children during campaigns. A similar pattern was also observed 480 
at the health facility catchment area level. The persistence of these clusters of susceptibility 481 
is likely to sustain disease transmission and potentially attenuate the outcome of the 482 
campaign [44]. The analyses presented here should therefore be routinized, particularly 483 
where targeted coverage levels are not reached during vaccination campaigns, to guide 484 
the deployment of effective, targeted follow-up RI strategies in all problematic areas. This 485 
will also make for a more effective combination of both delivery mechanisms to support 486 
measles control efforts in the country and other endemic settings.  487 

Nigeria introduced the second dose of the measles vaccine (MCV2) in late 2019 in the 488 
southern zones and in 2020 in the northern zones. The latest 2023 WUENIC estimates [3] 489 
indicate that MCV2 coverage had remained at 38%, which is the same as the 2020 coverage. 490 
While efforts are being made to reach MCV zero-dose children through campaigns and RI 491 
strategies, some effort should also be dedicated to ensuring that full immunization is 492 
attained in areas where RI coverage has improved consistently. These areas can be 493 
identified by triangulating our map of coverage before the campaign with nationwide 494 
maps of DTP1 and MCV1 coverage produced in previous analyses [24]. For these areas, 495 
our map of coverage before and during the campaign (i.e., coverage with at least two doses 496 
of MCV) can be used for prioritization to identify areas where lower coverage for MCV2 497 
and higher numbers of children who had not received MCV2 exist following the 2021 498 
measles campaign. Updated maps can also be created when data from more recent 499 
campaigns are available. 500 

Considering the ongoing efforts to strengthen the routine immunization program in 501 
Nigeria [45], our analyses can be used to plan, design and implement health facility-based 502 
interventions (noting that these analyses also revealed that greater proportions of 503 
unvaccinated children during the campaign lived closer to health facilities when using 504 
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both walking and motorised travel times). Targeting interventions at the health facility 505 
level may yield additional benefits over focusing on administrative areas through (i) 506 
accounting for the greater variation that exist in the distribution of unvaccinated/zero-dose 507 
children within the catchment areas, (ii) strengthening of health facilities to improve the 508 
last-mile delivery of RI services and (iii) reaching more zero-dose and under-vaccinated 509 
children. Through integration with building footprint data in example catchment areas, 510 
we have further demonstrated that our outputs can help with operational activities to 511 
identify households that may require outreach services through the RI program (e.g., those > 512 
2 km from the health facilities). Nevertheless, the catchment areas estimated in our 513 
analyses are only operational, since health service utilization patterns are dynamic and 514 
will need to be taken into account when defining more robust catchment areas as we 515 
further note below. Also, a hybrid approach to catchment area estimation that will involve 516 
an automatic delineation using the approach described here and an automatic or manual 517 
adjustment of the catchment area boundaries to align with roads and other natural and 518 
manmade features on the ground can be adopted to further refine the catchment areas. 519 

Our analyses are subject to some limitations. Areas affected by conflict (e.g., some 520 
local government areas in Borno state and the south-eastern part of the country) were 521 
excluded from the sampling frame used in the 2021 PCCS [25]; hence the predictions 522 
produced by our models are likely more uncertain in these conflict-affected areas. We 523 
considered evidence of vaccination from both vaccination cards and maternal/caregiver 524 
recall in our work.This could potentially introduce information bias in the analyses. Due 525 
to non-availability of ready-to-use population data for children aged 9-59 months, our 526 
estimates of un/under-vaccinated children were produced for children aged 12-59 months 527 
instead, meaning that we did not include those aged 9-11 months. Also, our zero-dose 528 
estimates may be an underestimation if the 2021 PCCS overestimated coverage before 529 
and/or after the campaign in some areas (e.g., relative to the 2021 MICS-NICS which was 530 
implemented almost at the same time [24, 46]). The methodology we used to delineate the 531 
catchment areas of the health facilities assumes travel time to the nearest facility, which 532 
does not account for bypassing of health facilities, care-seeking behaviour and other user 533 
preferences. Other approaches that can overcome these limitations could be used but will 534 
require additional detailed datasets to define the catchment areas [47]. We did not account 535 
for the uncertainties in the population (and coverage) estimates [48-50] when producing 536 
the zero-dose estimates. Furthermore, the building footprint data used in our work may 537 
be incomplete in some cases. We could not verify whether these were (non-)residential 538 
buildings. These potential limitations can be overcome through ground validation of the 539 
data or the use of accurate and up-to-date settlement data. Lastly, we could not validate 540 
some of the health facilities used in our analyses, particularly in Ebonyi state, to ascertain 541 
whether these facilities actually offered vaccination services.  542 

5. Conclusion 543 

Nigeria requires an optimal combination of routine and campaign strategies in order 544 
to interrupt measles transmission and accelerate progress towards elimination goals. This 545 
is particularly essential considering the continued occurrence of measles outbreaks despite 546 
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repeated vaccination campaigns. Residual zero-dose and under-vaccinated children 547 
should be analysed at the end of vaccination campaigns and all underperforming areas 548 
identified should be followed up via appropriate routine immunization strategies. Also, a 549 
deep-dive analysis should be undertaken in these underperforming areas to unravel the 550 
reasons or risk factors for non-vaccination. 551 

Supplementary Materials: The supplementary file includes additional tables and figures references 552 
in the manuscript. This can be downloaded at: www.mdpi.com/xxx/s1.  553 
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