
Computers and Fluids 288 (2025) 106498

A
0
n

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Parallel implementation and performance of super-resolution generative
adversarial network turbulence models for large-eddy simulation
Ludovico Nista a,∗, Christoph D.K. Schumann b, Peicho Petkov c,d, Valentin Pavlov c,
Temistocle Grenga e, Jonathan F. MacArt f, Antonio Attili g, Stoyan Markov c, Heinz Pitsch a

a Institute for Combustion Technology, RWTH Aachen University, Aachen, 52056, Germany
b Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
c National Centre for Supercomputing Applications, Sofia, 1113, Bulgaria
d Faculty of Physics, Sofia University St. Kliment Ohridski, Sofia, 1164, Bulgaria
e Department of Aeronautics and Astronautics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
f Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
g School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh, EH93FD, United Kingdom

A R T I C L E I N F O

Keywords:
Super-resolution generative adversarial
networks
Synchronous data-parallel distributed training
Inference-coupled large-eddy simulations
High-performance computing
Turbulence closure modeling

A B S T R A C T

Super-resolution (SR) generative adversarial networks (GANs) are promising for turbulence closure in large-
eddy simulation (LES) due to their ability to accurately reconstruct high-resolution data from low-resolution
fields. Current model training and inference strategies are not sufficiently mature for large-scale, distributed
calculations due to the computational demands and often unstable training of SR-GANs, which limits the
exploration of improved model structures, training strategies, and loss-function definitions. Integrating SR-
GANs into LES solvers for inference-coupled simulations is also necessary to assess their a posteriori accuracy,
stability, and cost. We investigate parallelization strategies for SR-GAN training and inference-coupled LES,
focusing on computational performance and reconstruction accuracy. We examine distributed data-parallel
training strategies for hybrid CPU–GPU node architectures and the associated influence of low-/high-resolution
subbox size, global batch size, and discriminator accuracy. Accurate predictions require training subboxes that
are sufficiently large relative to the Kolmogorov length scale. Care should be placed on the coupled effect of
training batch size, learning rate, number of training subboxes, and discriminator’s learning capabilities. We
introduce a data-parallel SR-GAN training and inference library for heterogeneous architectures that enables
exchange between the LES solver and SR-GAN inference at runtime. We investigate the predictive accuracy
and computational performance of this arrangement with particular focus on the overlap (halo) size required
for accurate SR reconstruction. Similarly, a posteriori parallel scaling for efficient inference-coupled LES is
constrained by the SR subdomain size, GPU utilization, and reconstruction accuracy. Based on these findings,
we establish guidelines and best practices to optimize resource utilization and parallel acceleration of SR-GAN
turbulence model training and inference-coupled LES calculations while maintaining predictive accuracy.
1. Introduction

Direct numerical simulation (DNS) accurately resolves relevant tur-
bulence time and length scales but is prohibitively costly for many
engineering applications. In the large eddy simulation (LES) approach,
spatially filtered equations are solved instead, which results in signifi-
cant computational cost reductions [1] . In LES, we distinguish between
resolved and subfilter-scale (SFS), for which accurate closure models
are crucial to account for the interaction of resolved and unresolved
scales [2]. Closure models must incorporate the unknown SFS fields
into the evolution equations for the filtered fields consistently with the

∗ Corresponding author.
E-mail address: l.nista@itv.rwth-aachen.de (L. Nista).

full-scale fields. Well-known closure models include the Smagorinsky
model [3], dynamic models [4], and scale-similarity models [5], among
others [6].

Given the availability of comprehensive DNS datasets, data-driven
modeling has emerged as a promising method for both developing
novel, and augmenting existing LES closures [7–10]. One prominent
data-driven strategy involves employing a super-resolution (SR) model
within the context of a deconvolution procedure. This approach aims
to approximate the unfiltered field 𝑢𝑖 by a deconvoluted field 𝑢∙𝑖 , ideally
with 𝑢∙𝑖 ≈ 𝑢𝑖, such that the statistical properties of 𝑢∙𝑖 conditioned on the
https://doi.org/10.1016/j.compfluid.2024.106498
Received 19 August 2024; Received in revised form 16 November 2024; Accepted
vailable online 2 December 2024
045-7930/© 2024 The Authors. Published by Elsevier Ltd. This is an open access
c/4.0/).
25 November 2024

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/compfluid
https://www.elsevier.com/locate/compfluid
mailto:l.nista@itv.rwth-aachen.de
https://doi.org/10.1016/j.compfluid.2024.106498
https://doi.org/10.1016/j.compfluid.2024.106498
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2024.106498&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

L. Nista et al.

c

e
n
h
t

(

s
c
(

d
G
t
s
d
i
H
l
d
t
d

e
r
t

t
c

c
e
K
F
K
t

c
w

t

t

D

a

a
t
e
p
w
p
t
d
c

h
c
o
t
m
m
t

p

a
d
h
e
m

Computers and Fluids 288 (2025) 106498
filtered field, 𝑢𝑖, are consistent with those of the ground truth unfiltered
field 𝑢𝑖. The deconvoluted field is obtained from a filtered field by
inverting a filtering operator ,

𝑢𝑖 ≈ 𝑢∙𝑖 = −1𝑙 ∗ 𝑢𝑖 = −1𝑙 ∗  ∗ 𝑢𝑖 , (1)

where −1𝑙 is an l𝑡ℎ-order approximate inverse of , and ∗ denotes a
onvolution. Due to the inherent non-uniqueness of deconvolution, 𝑢∙𝑖

is not expected to exactly match 𝑢𝑖 in a pointwise sense. Instead, the
goal is for the deconvoluted field to reproduce the correct conditional
statistics of the original field given the filtered field 𝑢𝑖. The −1 op-
ration is performed in a data-driven manner using suitable neural
etwork frameworks. These networks must be trained to reconstruct
igh-resolution (HR) fields from low-resolution (LR) fields, thus aiming
o explicitly reconstruct SFS fields on finer auxiliary grids.

The effectiveness of the deconvolution approach depends on the
accuracy of the approximate inverse operator −1. Many initial studies
performed a priori tests using deep convolutional neural networks
CNNs) for SR, showing their improved accuracy over analytical models

for in-sample predictions (i.e., tested on data that statistically matches
the training data) [11–15]. However, SR-CNNs designed for SR recon-
struction usually require large amounts of labeled data (as they can
generally be trained only using fully supervised learning), exhibit lim-
ited generalization to out-of-sample flow conditions, and can generate
unphysical, blurred SR fields [12,16–18].

To overcome the limitations of the conventional SR-CNNs, re-
earchers have turned to the use of implicit generative models in-
luding diffusion models [19] and generative adversarial networks
GANs) [20]. Shu et al. [21] introduced a diffusion model, which

requires only HR data, and exhibits the capability to reconstruct SR
ata from both regular LR samples and sparsely measured samples. In
AN-based SR, the generator network, built upon a CNN, super-resolves

he LR fields (e.g., filtered DNS or LES or experimental data of low
patial resolution) to generate HR counterparts. Simultaneously, the
iscriminator network engages in semisupervised learning, distinguish-
ng between the generated HR field and the authentic, ‘‘ground truth’’
R field (e.g., the DNS itself). Throughout the training, the generator

earns to produce samples that are indistinguishable from genuine HR
ata. The discriminator, in turn, learns to judge the authenticity of
hese samples. As a result, both networks improve their predictions
uring the adversarial training process.

Many researchers have demonstrated the capabilities of such gen-
rative methods for turbulent modeling. The capability to accurately
esolve high-frequency features has made GAN-based networks attrac-
ive for SFS modeling. Hassanaly et al. [22] applied the adversarial

approach to sample conditional high-dimensional distributions to de-
convolute atmospheric turbulence data. Kim et al. [17] addressed the
challenge of reconstructing small-scale turbulence for sparsely paired
LR and HR data, adopting a cycle-consistent GAN (CycleGAN). Bode
et al. [23] proposed a physics-informed SR-GAN (PIESRGAN) for SFS
urbulence reconstruction incorporating a loss function based on the
ontinuity equation residual.

Several works have investigated the out-of-sample generalization
apability of SR-GAN frameworks. In particular, the model’s ability to
xtrapolate to higher and lower Reynolds numbers, as well as different
arlovitz numbers than those used for training has been evaluated.
indings indicated that the ratio between the LES filter width and the
olmogorov length scale must be preserved for adequate generaliza-

ion (i.e., a fixed SR upsampling window) [24–26]. Recently, Nista
et al. [16] investigated filter kernels and sizes inconsistent with the
training and have demonstrated the advantages of adversarial training
on a priori out-of-sample reconstructions.

In general, SR-GANs have been recognized for their superior re-
onstruction performance over conventional supervised SR-CNNs, as
ell as algebraic models [16,17,27–29]. However, current SR-GANs’

frameworks, specifically designed for turbulence modeling, are not suf-
ficiently mature for large-scale applications. Among other challenges,
2
there is a need to explore regularization techniques that embed phys-
ical information, to develop more efficient upsampling layers reduc-
ing memory overhead, to develop novel convolutional blocks to cap-
ure high-frequency turbulence, and to formulate physics-informed loss

functions to ensure physically consistent reconstructed fields. However,
raining SR-GANs is computationally demanding due to the addition of

a discriminator network, its often unstable training, and the balance
needed between generator and discriminator. Therefore, there is a
simultaneous need to drastically accelerate the training process to fa-
cilitate experimentation with diverse model structures, hyperparameter
tuning, training strategies, and loss-function definitions as well as to
ensure physically meaningful predictions.

Distributed training over many nodes has become crucial in this
regard, as it significantly accelerates the training process for deep
learning (DL) models and enables larger training datasets and more-
complex model structures. This is particularly relevant in the context
of graphics processing unit (GPU)-based computing. Pioneering works
by Goyal et al. [30] and Jia et al. [31] demonstrated highly scalable

L training on dense GPU clusters, establishing connections between
fundamental training hyperparameters, such as the learning rate and
the batch size. Similarly, Krizhevsky et al. [32] successfully trained
 CNN-based framework for image classification with more than 60

million parameters and significantly enhanced its performance using
synchronous data transfer over distributed computational resources.

While multiple distributed training approaches (DTAs) have been
proposed for conventional supervised-based CNNs, DTAs’ studies for
GANs remain limited. Moreover, existing DTAs’ studies are predomi-
nantly tailored for image-processing and image-classification applica-
tions. DTA studies of frameworks developed for turbulence modeling
re absent, in particular for SR-GANs. This highlights the need for inves-
igating DTAs tailored specifically for turbulence applications, which
xhibit major differences compared to standard image-processing ap-
lications. Moreover, finding a suitable DTA for SR-GANs’ applications
ould not only focus on assessing the effective utilization of parallel
rocessing to accelerate convergence but also quantify the computa-
ional requirements for obtaining a priori physically meaningful pre-
ictions. In particular, the well-known training instability and mode
ollapse associated with (SR-)GAN models must be considered.

In addition, much of the initial SR-GAN turbulence closure efforts
ave focused on improving a priori in- and out-of-sample reconstruction
apabilities. Several recent studies have acknowledged the importance
f a posteriori evaluation [33–36], which necessarily involves integra-
ion into LES solvers. While a priori tests have demonstrated remarkable
odel-fitting capabilities, they do not guarantee that the proposed
odels will be accurate or even stable in LES calculations, for which

he grid spacing, numerical accuracy and stability, and modeling as-
sumptions may need to be considered directly during the training
hase [33,37]. In this regard, consistency between training and LES

environments is fundamental for stability. This can be achieved, for
instance, with either an SR-GAN framework, which employs precom-
puted LES fields and adversarial training, or with deep reinforcement
learning frameworks, such as the one proposed by Kurz et al. [37],
where the model is trained ‘‘online’’ through direct interaction with the
LES solution dynamics.

A posteriori LES applications of data-driven SR-models can be com-
putationally expensive compared to standard algebraic-based appli-
cations and may also benefit from massive parallel implementation
nd GPU-based acceleration. At the same time, the parallelization and
omain decomposition approach might affect physical accuracy and
ardware efficiency. With the ongoing development of GPU-accelerated
xascale computing platforms, it is desirable to harness the perfor-
ance potential of these powerful node architectures [38–40]. Efficient

utilization of hybrid cluster architectures, equipped with both central
processing units (CPUs) and GPUs, can accelerate computational fluid
dynamics (CFD)-coupled data-driven applications, as recently demon-
strated by the phyDLL library [41]. However, there is a paucity of

L. Nista et al.

t
l

S
i
a
u
n
f
i

b
t
c
m

T

t
c
d
l
T

𝜅
F

𝑡

m

∈

r
t
a

t
T
s

a

t

e

Computers and Fluids 288 (2025) 106498
efficient parallelization strategies for data-driven SR applications and
he integration of both CPUs and GPUs in CFD simulations in the
iterature.

This study investigates various parallelization approaches for an
R-GAN framework designed for turbulent flow reconstruction, focus-
ng on the quantification of computational performance and physical
ccuracy during both the training process and inference-coupled sim-
lations. It is important to note that the methods presented here are
ot specific to this network and could be extended to other SR-GAN
rameworks available in the literature. Different DTAs are introduced
n Section 4 and investigated in Section 6 with special emphasis not

only on standard hardware scalability but also on the effects of DTAs
on in-sample predictive capabilities for three-dimensional turbulence
reconstruction. Different training parameters are considered such as
the node (CPU/GPU) configurations, LR/HR training sizes, global batch
size, and discriminator accuracy. Furthermore, a modular, parallel DL
library called superLES is presented in Section 5. This library enables
on-the-fly field exchange between the LES solver and coupled SR-GAN
inference at runtime. The computational performance, scalability, and
physical accuracy of SR-LES computations are investigated in Section 7
using a heterogeneous cluster architecture.

The overarching goal of this work is to provide guidelines and
est practices for optimizing resource utilization to accelerate both
he GAN-based SR training processes and inference-coupled SR-LES
omputations, while maintaining predictive accuracy in turbulence
odeling.

2. Datasets and preprocessing description

A forced homogeneous isotropic turbulence (HIT) DNS dataset at
aylor-microscale Reynolds number 𝑅𝑒𝜆 ≈ 140, referred to as Re140, is

used for SR training and testing, and for inference-coupled (a posteri-
ori) validation. The DNS dataset was computed using the CIAO code,
which is based on the numerical algorithms developed by Desjardins
et al. [42] and has been used in several DNS and LES studies in
the past (for instance, [43,44]). It solves the Navier–Stokes equations
in a three-dimensional periodic domain using a conservative, semi-
implicit, iterative algorithm for low Mach number flows [45], in which
the momentum equation and a Poisson equation for the hydrody-
namic pressure are updated using a fractional-step scheme [46]. In
he calculations, density 𝜌 and kinematic viscosity 𝜇 are taken to be
onstant. Spatial derivatives are obtained using second-order central
ifferences on a staggered grid, in which velocity components are
ocated at cell faces, and scalar quantities are located at cell centers.
he sharp-spectral forcing proposed by Palmore et al. [47] is applied

with cutoff wavenumber 𝜅𝑐 = 𝜋∕𝛥 = 3. CIAO employs the message-
passing interface (MPI) standard for parallelization. The equations have
been discretized on a grid of 5123. The forced HIT DNS is initialized
with a von Karman–Pao (VKP) spectrum [48], and performed with the
restriction that 𝜅max𝜂 ≥ 1, where 𝜂 is the Kolmogorov length scale and
max is the maximum discrete wavenumber. The maximum Courant–
riedrichs–Lewy (CFL) number is 0.5, and the time step 𝛥𝑡 is fixed.

Table 1 reports the simulation parameters of the dataset.
A statistically stationary state is obtained for the Re140 case after

≈ 10 𝜏𝐿, where 𝜏𝐿 = 𝑘∕𝜖 is the eddy-turnover time, 𝑘 is the turbulent
kinetic energy (TKE), and 𝜖 is the TKE dissipation rate. After the
initial transient, a total of 160 snapshots of the 3D velocity field [𝑢𝑖 =
(𝑈 , 𝑉 , 𝑊)𝑇] were extracted every 0.5 𝜏𝐿. To obtain LR input data, these
instantaneous velocity fields were filtered using explicit filter kernels,
such as box, Gaussian, and spectrally sharp filter kernels, of width
𝛥 = 8 dx, where dx is the DNS grid spacing. To ensure that the LR F-DNS
fields are of the same dimensionality as the corresponding LES fields,
a discrete downsampling operation is applied. This downsampling is
treated independently from the filter kernel. The training, validation,
and testing dataset is composed of HR data, i.e., DNS data, and the
corresponding LR data, i.e., (downsampled) F-DNS data, for each kernel
filter employed.
3
Table 1
Simulation parameters of training and testing DNS dataset. N is the number of

esh points, 𝑅𝑒𝑡 is the turbulent Reynolds number, 𝑙𝑡∕𝐿 is the number of integral
scales within the computational domain, 𝑑 𝑥∕𝜂 is the mesh resolution relative to the
Kolmogorov length scale 𝜂, 𝜅𝑚𝑎𝑥 is the largest wavenumber represented, and 𝜏𝐿 is the
eddy-turnover time is second.

Case N 𝑅𝑒𝜆 𝑅𝑒𝑡 𝑙𝑡∕𝐿 𝑑 𝑥∕𝜂 𝜅max𝜂 𝜏𝐿
Re140 5123 140 3300 5.26 2.00 1.59 120

2.1. Patch-to-patch training strategy

For training, only 120 randomly selected snapshots were utilized.
The remaining 40 snapshots were reserved for validation and testing
purposes. A discussion regarding the optimal amount and the fidelity
of training data is reported in Appendix. The 120 snapshots of 5123

HR data and 643 LR data of the three-dimensional velocity compo-
nents comprise a dataset of approximately 360 GB. The patch-to-patch
training strategy alleviates the computational demand of loading large
datasets into GPU memory. In this strategy, non-overlapping subboxes
(SBs) are randomly extracted from each full-size snapshot. Section 6.1
investigates the effect of LR and HR subbox size on the network’s
predictive capabilities versus optimal computational utilization. During
the SR-GAN training, the following LR SBs sizes are considered 𝑛SB,LR
 [4, 6, 8, 12, 16, 32, 48], where 𝑛SB,LR is number of mesh points per SB

in each direction. The corresponding target nSB,HR size is uniquely
determined by the fixed upsampling factor.

Notably, during the a priori evaluation of test samples, no patch-
based approach is used. Instead, the entire test sample domain is
econstructed continuously without relying on cropped SBs as during
he training. This continuous reconstruction avoids potential artifacts
ssociated with discontinuities between SBs as reported in Section 7.1.

It is made possible by the larger memory pool available for CPU-based
inference. Moreover, the 40 validation/testing snapshots were chosen
o ensure statistical independence between the two sets of samples.
he time separation between training/validation samples and testing
amples spans more than 3 𝜏𝐿, therefore the two sets of samples are

expected to be statistically uncorrelated. Moreover, to optimize the net-
work’s performance, the velocity components of both high-resolution
nd low-resolution data used for training and testing were normalized

using the global maximum and minimum values of the DNS data.

3. Generative adversarial network and loss function definition

The SR-GAN employed in this work is shown in Fig. 1 which is based
on our previous work, where the generator was adapted to include
additional upsampling and dense layers given the employed DNS-to-F-
DNS ratio [24]. This configuration is adapted for small-scale turbulence
reconstruction from the original ESRGAN framework for image recon-
struction [49]. The performance of this framework in reconstructing
urbulent flow fields has been thoroughly assessed in comparison to

a standard supervised CNN-based framework [16]. Comparisons with
some SR-GAN frameworks available in the literature were reported
in [16], while comprehensive assessments of other SR-GAN frameworks
are currently ongoing and beyond the scope of this work.

Our SR-GAN framework employs a conventional GAN framework
(generator and discriminator) for training. The generator is a CNN
derived from the original SRResNet [50]. This framework captures
small-scale features by incorporating skip connections. The generator
employs three-dimensional convolutional layers and leaky rectified
linear unit (LReLU) activation functions. LReLUs are chosen for their
nhanced computational efficiency compared to the standard rectified

linear unit (ReLU) [51].
The residual-in-residual dense block (RRDB) is a key component of

the framework, featuring residual connections and a series of densely

L. Nista et al.

r
a
d
c
g

o

g
f
r
S

Computers and Fluids 288 (2025) 106498
Fig. 1. The generator (above) and discriminator (below) structures employed by the SR-GAN framework employed in this work. In each, 𝜙F is the filtered input field, 𝜙SR is the
super-resolved field, and 𝜙GT is the ground-truth (GT), i.e., DNS field. Each convolutional block contains kernels of size k, n filter maps, and s strides along each spatial dimension
of the convolutional layer.
o
a

i

o
w
s
e
a
e
h
t

connected layer blocks (three in this context). This structure incorpo-
ates a residual-in-residual design [49]. Together, these elements en-
ble the generation of super-resolved data through a deep network. This
epth is crucial for learning complex transformations and represents a
urrent state-of-the-art feature in super-resolution networks [52]. The
enerator further incorporates three upsampling layers, each increas-

ing the input’s spatial resolution by a factor of two in each spatial
dimension. This is achieved through nearest-neighbor interpolation,
replicating adjacent grid points, and a convolution layer to enhance the
operation. The overall number of trainable parameters in the generator
model is approximately 3 million. The discriminator (Fig. 1) is struc-
tured as a deep deconvolutional framework comprising fully connected
layers, including convolutional layers and LReLU activation similar to
the generator, with a binary classification output. The total count of
trainable parameters for the discriminator is approximately 6 million.

The generator’s loss function (GEN), already employed in the
previous work of Bode et al. [23], is defined as a linear combination
f pixel loss (𝐿pixel), pixel gradient loss (𝐿g r adient), continuity loss

(𝐿cont inuit y), and the contribution of the adversarial (discriminator) loss
(𝐿adver sar ial) [53],

GEN = 𝛽1 𝐿pixel + 𝛽2 𝐿g r adient + 𝛽3 𝐿cont inuit y + 𝛽4 𝐿adver sar ial ,
𝐿pixel = MSE(𝜙sr, 𝜙dns) ,

𝐿g r adient = MSE(∇𝜙sr,∇𝜙dns) ,

𝐿cont inuit y = MSE(∇ ⋅ 𝜙sr, 0) ,

𝐿adver sar ial = −E[log(𝜎(𝐷(𝐺(𝜙F)) − E[𝐷(𝜙dns)]))]

− E[log(1 − 𝜎(𝐷(𝜙dns) − E[𝐷(𝐺(𝜙F))]))].

(2)

The coefficients 𝛽 = [0.89, 0.06, 0.05, 6 ⋅ 10−5] were chosen through hy-
perparameter tuning, such that the absolute value of each term in GEN
is of the same order. It is important to note that these 𝛽 parameters
may not be universally applicable and could be case-dependent. The
𝜙sr indicates the super-resolved field, while the 𝜙dns is the ground-truth
(GT), i.e., the DNS field. The mean-squared error (MSE) is computed
between the reconstructed and GT fields and is applied separately to
all elements when tensor quantities are considered. The operator E[⋅]
represents the mathematical expectation, 𝜎(⋅) denotes the sigmoid func-
tion, and 𝐷(𝜙dns) and 𝐺(𝜙F) refer to the outputs of the discriminator and
enerator, respectively. The initial component of the adversarial loss
unction prompts the discriminator to accurately categorize HR fields as
eal, whereas the subsequent term motivates the generator to generate
R fields capable of deceiving the discriminator into categorizing them
4
as genuine HR [53]. The 𝐿pixel loss function is inherently dimensionless
because both the input and output fields are normalized beforehand.
The 𝐿g r adient and 𝐿cont inuit y loss functions are normalized using the
Kolmogorov length scale 𝜂. This normalization ensures that the choice
of grid spacing or velocity magnitude does not affect the loss functions,
enhancing the generalizability and scalability of the nondimensional 𝛽
parameters across comparable setups.

The discriminator’s loss function is given by
disc = E[log(𝜎(𝐷(𝜙dns) − E[𝐷(𝐺(𝜙F))]))]

+ E[log(1 − 𝜎(𝐷(𝐺(𝜙F)) − E[𝐷(𝜙dns)]))],
(3)

which is based on the relativistic average GAN loss function proposed
by Jolicoeur et al. [53].

4. Parallelization of the training process

Training SR-GAN frameworks designed for turbulence modeling
n a single GPU is challenging due to high computational demands
nd memory requirements from the framework itself, compounded

by large dataset sizes. Distributed training, especially via data paral-
lelism, is preferred for its scalability and efficiency in handling large
datasets [54]. In the training framework employed in this work, each
GPU stores clones of the generator and the discriminator. Each clone
handles a separate dataset portion, as illustrated in Fig. 2. Allocat-
ng both the generator and discriminator on the same GPU enhances

communication efficiency during training, as frequent communication
between these components is required for adversarial learning.

During the distributed training process, the entire dataset is initially
divided into portions equally sized (sharded training datasets) based
n available workers and preloaded into memory for fast access. Each
orker trains its copy of the SR-GAN model exclusively on the training

ub-dataset allocated to it. Synchronous data parallelism, chosen for
ase of implementation, synchronizes the forward pass across in time
ll workers, resulting in different loss outputs and gradients because
ach worker operates on distinct training sub-datasets. Once all workers
ave computed their gradients, these gradients are communicated using
he Horovod library [55]. Horovod is an open-access decentralized

framework, with bandwidth-optimal communication protocols over the
MPI for worker communication and NVIDIA collective communications
libraries (NCCLs), where workers (GPUs) exchange parameters without
the need for a parameter server. This enables fast gradient aggregation
and averaging. Once gradients have been synchronized and updated,

L. Nista et al.

b

n

b

f
g
i
b

g
i
l
r
m
s
c

t

s

Computers and Fluids 288 (2025) 106498
Fig. 2. Synchronous data-parallelization strategy based on the Horovod library [55]. The mini-batch size (mini-BS) refers to the number of fields processed in a single iteration
y a worker (GPU) during training. The global batch size refers to the total number of fields considered in each optimization iteration across all workers in a distributed training

framework. Tg r ad indicates the execution time to compute the local gradient estimate, while Tsy nc refers to the execution time required to average the gradient estimations and
synchronize model parameters across all workers (GPUs).
o
t
n
s

t

p

t
t
d

each worker independently conducts backpropagation to update its
model weights for subsequent forward passes. Synchronous data paral-
lelism ensures that all workers are training on a consistent model state
(i.e., same model’s weights) and contributes to the overall convergence
of the model during training.

The Horovod library exhibits exceptional scalability performance.
However, a central challenge remains in the optimization of the neural
etworks themselves. Most optimization methods are variations of

stochastic gradient descent (SDG) that approximate gradients within a
atch of fields extracted from the entire training dataset. As training

is distributed across numerous workers, the global BS increases, ne-
cessitating the parallelization of the SDG operation. Consequently, the
total amount of training data processed increases with the number of
workers, thereby accelerating training and enhancing gradient update
effectiveness. These local batches per worker are termed mini-batch
sizes (mini-BSs).

The most common synchronous data-parallelism distributed train-
ing approach, and specifically considered in this work, is to maintain a
ixed mini-BS per worker as in the single-training approach. Thus, the
lobal BS scales with the number of workers employed. This approach
s preferred in the literature not only to improve GPU utilization [30]
ut also to reduce the number of parameter updates, thus increasing

scalability [56]. Following Goyal et al. [30], a linear scaling rule is
applied that increases the learning rate proportionally to mini-BS in-
crements. This enhances computational performance and enables larger
radient-descent steps, which can accelerate convergence. However,
ncreasing the global BS might have a considerable impact on the
earning and generalization capabilities of the model, as SDG optimizers
equire a certain amount of noise produced by the rather small sizes of
ini-BS [57]. This is particularly relevant for SR-GANs where adver-

arial training plays a crucial role in enhancing image super-resolution
apabilities.

Experiments using various mini-BS and inter-GPU communicators,
different combinations of LR and HR training subboxes, and effec-
ive approaches to accelerate the training convergence across multiple

computing nodes reported in Section 6 were conducted using the
DEEP-ESB partition1 of the Jülich supercomputing center (JSC). This
partition is tailored for intensive applications and code parts with
regular control and data structures, with a particular focus on efficient
parallel scalability. Details of the hardware are outlined in Table 2. The
GPUs employed achieve a peak HBM2 memory bandwidth of 900 GB/s
per GPU. The ADAM optimizer is initialized with a learning rate of

1 https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_
ystem
5
Table 2
Hardware details of the Jülich supercomputing center’s DEEP-
ESB partition used for distributed training and interference-
coupled LES.
Partition DEEP-ESB

Total Nodes 75
Network IB-EDR (100 Gb/s)

CPU Cores/Node 8x Intel Cascade Lake (2.5 GHz)
Accelerators/Node 1x NVIDIA V100 (32 GB)
RAM/Node 48 GB

10−4 for every single GPU training conducted and was selected based
n prior successful implementations [24,26]. Single-precision (FP32)
raining was employed to mitigate potential rounding errors, ensuring
umerical stability throughout the computations, as shown in recent
tudies [16,58].

Due to its adversarial nature, GAN training is challenging and
convergence can be inhibited by parameter oscillations and destabiliza-
ion [20]. Therefore, the generator is pre-trained in a fully supervised

manner, utilizing only the pixel-loss contribution in Eq. (2), which is
similar to training a fully-supervised SR-CNN. This initial pre-training
phase is conducted for a sufficient number of epochs, after which the
loss function and statistics computed on the reconstructed field do not
change substantially. Hence, the pre-training is considered converged.
The pre-trained generator serves as a starting point for the subsequent
GAN training process, and it is ensured that each training investigation
begins with identical generator configuration weights obtained from
pre-training. The GAN discriminator is not pre-trained during this
hase. Additional details are reported in Appendix.

To improve the SR-GAN framework’s performance and generaliz-
ability to out-of-sample inputs obtained from implicit (unknown) filter
kernels (e.g., to genuine LES data), an additional partially unsuper-
vised training phase is executed [16]. In this phase, both labeled
data (F-DNS/DNS fields) and precomputed LES fields (i.e., without the
corresponding HR fields) with and without SFS closure were provided
as LR training inputs. The discriminator network has been pre-trained
o recognize authentic DNS fields and, in this phase, provides feedback
o the generator to learn how to accurately reconstruct high-frequency
etails and small-scale structures similar to DNS. This additional train-

ing phase enables the SR-GAN framework to significantly improve its
extrapolative capabilities and robustness compared to traditional SR-
GAN training approaches for turbulence closure and is particularly

relevant for the inference-coupled SR-LES investigations.

https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system

L. Nista et al. Computers and Fluids 288 (2025) 106498
Fig. 3. Qualitative representation of the operations performed by the superLES library and its coupling with the CIAO solver.
5. superLES library for inference-coupled SR-LES simulations de-
ployment

An SR DL framework has been developed that embeds an in-situ
coupling mechanism between CFD solver and SR model through a
modular implementation. This framework is used to conduct inference-
coupled (a posteriori) LES computations. Here, a posteriori tests are
conducted by coupling CIAO to a novel SR library, called superLES,
that implements the SR-GAN framework introduced in Section 3. How-
ever, superLES is designed to be model agnostic, and the various SR-
GAN frameworks proposed in the literature can be implemented into
superLES.

5.1. Hybrid coupling between CIAO CFD solver and superles library

A high-performance hybrid coupling between the CIAO solver and
the superLES library is developed. As both CIAO and superLES frame-
works share the same data structure, the interface is designed to take
advantage of the computing capabilities of hybrid (heterogeneous)
architectures (CPUs-GPUs) of modern clusters, enabling direct MPI
communication between CPU and GPU resources. The coupling in-
cludes different communication paradigms (shared, split, etc.), which
align with the requirements of CFD solvers. These allow for data
transfer and processing between massively parallel CFD solvers and
distributed DL inference. The superLES provides interfaces in FORTRAN
2003 and C++ to be accessible to a wide variety of CFD solvers and
DL frameworks such as TensorFlow [51] and PyTorch [59], using the
open neural network exchange (ONNX) format and runtime environ-
ment [60]. MPI communication management, function wrappers, and
user-defined inputs (e.g., weight configuration, upsampling ratio, etc.)
are included. Moreover, the library is model-agnostic, meaning that the
settings of neural network models and simulations are passed directly
from the input file. This allows for a high degree of flexibility in experi-
menting with different neural network models without recompiling the
CFD code.

As sketched in Fig. 3, at every CIAO iteration, the resolved three-
dimensional velocity components are transferred to the superLES li-
brary. Ghost cells (or halo regions) and boundary information are
also included. The domain decomposition and resources employed
determine which MPI rank the information is sent to. At this stage,
the three-dimensional velocity components are stored in the system
memory. After the inference performed by the superLES library on
GPUs (described in Section 5.2), each component of the 𝜏SR𝑖𝑗 tensor is
explicitly offloaded from the GPUs to the CPUs and transferred back to
the CFD solver.
6
5.2. SR inference and Reynolds stress tensor computation

Based on the separation of concerns principle of software engi-
neering, the DL inference performed using the superLES library is
encapsulated in a generic C++ library. This library is based on the
well-known machine learning framework TensorFlow [51], ensuring
modularization and abstraction of DL processes, thereby enhancing
maintainability and scalability. Moreover, the library supports the de-
coupling of various DL model structures and different computational
grid sizes. This is fundamental as it allows predictions with arbitrary
DL model shapes. These can be tailored to the memory configuration
of the available hardware platform without constraining simulation
computational domain sizes.

At every time step, a LES (LR) field, originally stored in the CIAO
code, is transferred to the superLES library. The field is normalized using
the same normalization algorithm and values used for the training. The
generator configuration weights of the SR-GAN model are stored in
the native format of ONNX. This ecosystem establishes open standards
for implementing DL applications and software tools. After loading
the generator model structure and its configuration weights, the LES
field is super-resolved up to the SR size, defined by the number of
upsampling layers inside the SR-GAN model. In this work, the mesh size
is increased by a factor of eight in each direction. The SR field, 𝑢𝑖,SR,
is stored in an auxiliary, finer computational grid defined only by the
C++ environments and is denormalized as described in Section 2. The
Reynolds stress tensor based on the SR velocity field, 𝜏SR𝑖𝑗 , is evaluated
as

𝜏SR𝑖𝑗 = ̂𝑢𝑖,SR ⊙ 𝑢𝑗 ,SR − 𝑢̂𝑖,SR ⊙ ̂𝑢𝑗 ,SR (4)

where the ⋅̂ operator indicates a combination of box-filtering and down-
sampling that is consistent with the upsampling factor. This filtering
operation differs from the classical dynamic approach proposed by
Germano et al. [4], as it involves both filtering and downsampling of
the SR field to match the original resolution of the LES. The ⊙ denotes
element-by-element multiplication, performed with MPI/OpenMP for
CPU-based platforms and MPI/CUDA (for NVIDIA GPU only) for hybrid
CPU–GPU cluster architectures. This process is described in more detail
in Section 5.3. The same applies to the filtering and algebra operations.
Following the computation of the 𝜏SR𝑖𝑗 tensor, the residual kinetic en-
ergy, kr , is evaluated, and the trace-free 𝜏𝑟𝑖𝑗 tensor is returned to the CFD
solver. The source term, 𝜕 𝜏SR𝑖𝑗 ∕𝜕 𝑥𝑖, is computed directly by the CIAO
solver to preserve the numerical accuracy of gradient calculations.

5.3. Hybrid parallelization for heterogeneous cluster architectures

The multiple programs–multiple data implementation enables exe-
cution of the coupling of the CIAO solver to SR inference with superLES
in a parallel environment. The coupling with the ONNX runtime envi-
ronment allows SR model inference to be executed using either CPUs or

L. Nista et al. Computers and Fluids 288 (2025) 106498
Fig. 4. Hierarchical domain decomposition between CIAO solver (CPU-level partitioning) and the superLES library library (GPU-level partitioning) (left) and qualitative representation
of the SR domain chunk per node, highlighting the ghost cells (or halo regions) employed (right).
GPUs, depending on the allocated resources. The hierarchical domain
decomposition between the CIAO solver (CPU-level partitioning) and
the superLES library (GPU-level partitioning) is shown in Fig. 4.

The superLES library is developed to be easily integrated into various
parallel CFD solvers. Two operation modes are supported according to
the users’ hardware configuration. These are referred to as shared and
split. In the shared mode, the superLES library is integrated into the CFD
code operation space, e.g., the same node(s), where the SR inference is
performed. This mode is particularly suitable for heterogeneous archi-
tectures in which computing nodes include GPUs with ONNX runtime
support. In this way, the CFD solver executes on the CPUs while the
superLES library operates on the corresponding GPUs available to the
same node. As both tasks happen within the same rank, the bottleneck
introduced by the data transfer is reduced. This mode is employed for
the inference-coupled SR-LES investigations carried out in Section 7.

On the other hand, split mode divides the MPI communicator ranks
into two halves: one for the main CFD code and the other for the
DL inference. This mode suits modular supercomputing architectures
like cluster/booster frameworks, where clusters have powerful CPUs
and boosters have dedicated accelerators. The main CFD code runs on
cluster nodes, while DL inference operates on corresponding booster
nodes. This mode also offers two process affinities: scatter and compact.
Scatter mode overlaps the execution of native CFD and DL inference on
the same booster node (also equipped with CPUs), useful for parallel
execution. Compact mode allows executing CFD code on one subset
of nodes and DL inference on another, accommodating different hard-
ware architectures within the same parallel environment. These modes
provide flexibility for optimizing performance based on hardware and
computational needs.

5.4. Domain decomposition

The computational complexity associated with SR methods necessi-
tates the decomposition of the LES velocity field into chunks. Decom-
position enables the parallel computation on each chunk, leveraging
available computing resources to accelerate the solution process. The
superLES library can operate in two modes: single mode maintains a
one-to-one correspondence between CFD-domain decomposition and
SR-domain decomposition, ensuring identical decomposition between
CPUs and GPUs. Conversely, in aggregate mode shown in Fig. 4, CPU-
level subdomains are merged and sent to the GPU, allowing for flexibil-
ity in the number of CPUs and GPUs utilized. This mode is employed for
the inference-coupled SR-LES investigations carried out in Section 7.

Moreover, padding and stride operations during convolutional in-
ference can significantly affect smoothness requirements, potentially
generating spurious solutions at the boundaries between SR domain
chunks across diverse computational resources. The size of ghost cells,
7
known as halo regions and depicted as an additional black border
surrounding a computational domain in Fig. 4 (right), is crucial in
SR-GAN applications. These halo regions serve as tunable parameters
to mitigate boundary effects, ensuring smoother and more accurate
reconstructions.

6. Performance analysis of distributed training approach

The computational performance of the distributed training approach
is investigated next. The Re140 dataset is used for the analysis. The
evaluation focuses on three key indicators: (1) physical accuracy, which
quantifies computational requirements for obtaining physically mean-
ingful predictions, (2) hardware efficiency, which measures the raw
number of training SBs processed per wall-clock time by the GPUs, and
(3) processing efficiency, that assesses the effective utilization of paral-
lel processing to accelerate convergence across distributed computing
nodes.

6.1. Physical accuracy

Physically meaningful predictions can only be obtained if the model
learns effectively during the training. In the context of large computa-
tional domains, patch-to-patch training is commonly adopted, which
may lead to variations in model performance. Table 3 summarizes the
different combinations of LR and HR SBs used for SR-GAN training
given the GPUs’ memory limitation. Depending on the input LR SBs
size, the corresponding target HR SBs size is uniquely determined by
the fixed upsampling factor. The size of the LR/HR pair 𝑙SB is non-
dimensionalized using the Kolmogorov length scale 𝜂. Due to network
framework, it is usually advantageous to scale the maximum mini-BS
as a power of two. Moreover, with decreasing SB size, the total number
of SBs extracted over the entire computational domain increases.

Each LR/HR pair configuration represented in the table is trained
individually on a single GPU. This choice follows insights from Sec-
tion 6.3, which suggest that using multiple GPUs for training might
negatively affect predictive performance [61]. Therefore, hyperparam-
eter tuning for learning rates and implementing an adaptive mini-BS
scheduler are considered to mitigate any influence from specific train-
ing parameters [57,62]. Training iterations continue until no further
improvement is observed in the averaged pointwise cross-correlation
between 𝜏SR12 and 𝜏DNS12 , referenced to ⟨𝜏SR12 ⟩.

Fig. 5 presents the ⟨𝜏SR12 ⟩, alongside the root-mean-squared error
(RMSE) of the reconstructed velocity field, as assessed in-sample on the
same testing dataset with the network trained on the various LR/HR
SBs pairs detailed in Table 3. The use of a consistent box filter kernel
and size between training and testing samples is maintained through-
out. Both metrics exhibit an asymptotic behavior. When the LR/HR

L. Nista et al. Computers and Fluids 288 (2025) 106498
Fig. 5. Averaged pointwise cross-correlation between 𝜏SR12 and 𝜏DNS12 , indicated as ⟨𝜏SR12 ⟩ (blue line), and RMSE of the reconstructed velocity field (orange line) for each LR/HR SBs
pairs (referred to as 𝑙SB∕𝜂) indicated in Table 3 evaluated on the testing dataset. 2D centerline slices of the absolute error of the SR fields versus DNS are shown in the center.
The normalized absolute error is computed as 𝐸̂ = 𝐸∕ max(𝐸DNS,SR128

, 𝐸DNS,SR256
), where 𝐸 = |

|

|

𝑢DNS − 𝑢SR128,256

|

|

|

, and the subscripts 128 and 256 indicate the corresponding 𝑙SB∕𝜂 ratio.
Table 3
Overview of patch-to-patch training parameters used for training: HR and LR SBs
training sizes, number of Kolmogorov length scales 𝜂 per 𝑙SB (𝑙SB∕𝜂), number of SBs
extracted from the entire dataset, maximum mini-BS (multiple of 2), and time per
epoch for training on a single GPU. OOM refers to out-of-memory. The configurations
considered for the analyses conducted in Section 6.3 are highlighted in bold.
𝑁SB,HR 𝑁SB,LR 𝑙SB∕𝜂 # of SB Max mini-BS Time/epoch [mins]

5123 643 1024 120 OOM N/A
𝟑𝟖𝟒𝟑 𝟒𝟖𝟑 768 284 1 75.87
𝟐𝟓𝟔𝟑 𝟑𝟐𝟑 512 960 2 76.32
𝟏𝟐𝟖𝟑 𝟏𝟔𝟑 256 7680 16 77.58
𝟗𝟔𝟑 𝟏𝟐𝟑 192 18204 64 78.06
643 83 128 61 440 128 79.83
483 63 96 145 635 512 81.63
323 43 64 491 420 1024 82.03

SBs encompass at least roughly 192𝜂, the RMSE of the reconstructed
velocity field diminishes, and consequently, higher ⟨𝜏SR12 ⟩ are achieved.
Conversely, as the SB size decreases below 192𝜂, the reconstructed field
deviates notably from the DNS field. This suggests that the model’s
performance varies significantly based on the LR and HR SB combina-
tions used for training, contingent upon the number of 𝜂 contained in
each training SB. This qualitative trend is further demonstrated through
centerline slices of the normalized absolute error, demonstrating that
errors are introduced predominantly at the small scales, as shown in
Fig. 5 (center).

To further understand the impact of training SB size on the model’s
learning capability, Fig. 6 compares the instantaneous TKE spectra (left)
and the probability density function (PDF) of the normalized velocity
gradients (right) for the F-DNS, DNS, and SR fields. The comparison
is performed using two of the previous training configurations, specif-
ically 𝑙SB∕𝜂 = 128 and 𝑙SB∕𝜂 = 256. Notably, the model trained with
SBs smaller than 192𝜂 fails in recovering the correct TKE. This leads
to significant deviations in the SFS ranges, resulting in both over-
and under-prediction. This is also seen for turbulence intermittency,
through the PDF of the normalized velocity gradients, corroborating
the findings. Smaller LR/HR SB pairs tend to underestimate large
negative gradients, as shown in the inset of Fig. 6 (right), and slightly
overestimate large positive gradients, while larger LR/HR SB pairs
exhibit only marginal deviations from the DNS solution. It is important
to note that the threshold value of 𝑙 ∕𝜂 ≈ 192 may be specific to this
SB

8
particular configuration, characterized by Reynolds number, and filter
size, and it should not be assumed to hold universally without further
verification across different conditions.

This demonstrates that varying the input and output patch sizes
exclusively results in significant differences in predictive accuracy and,
consequently, in the model’s learning capability. These differences
occur despite a consistent training dataset and equal filter kernel and
size between training and testing datasets. Larger patch sizes prove
advantageous for training deep SR-GAN frameworks as they enable
a larger receptive field. This increased field size allows the network
to capture a broader range of scales, crucial for effectively modeling
both large and small-scale structures. When the integral length scale 𝑙𝑡
is considered as a reference length scale per SB, accurate predictions
require training SB to encompass at least one 𝑙𝑡, which may also not be
universal. Additionally, larger patch sizes might affect the resilience of
the network to overfit, resulting in more robust and generated fields
with less distortion. Additionally, given the significant influence of
the discriminator on SFS structure reconstruction [16], larger output
patch sizes might not only enhance the generator’s performance but
also enables the discriminator to better evaluate the generated field,
providing more accurate feedback to the generator, which leads to
a higher correlation between the reconstructed fields and the ground
truth.

6.2. Hardware efficiency

To enhance the model’s learning capability, careful attention must
be given to the LR/HR training SBs configuration. Equally important in
a distributed training approach is hardware efficiency, which is primar-
ily influenced by GPU architectures, memory bandwidth, and inter-GPU
communication. In synchronous data parallelism, an iteration during
the training runtime involves two main operations: computing the local
gradient estimate (Tg r ad) and averaging the gradient estimation and
synchronizing model parameters across all GPUs (Tsy nc), as depicted in
Fig. 2.

The hardware efficiency is investigated by using a LR/HR pair of
training SBs of 163 (input) and 1283 (output), respectively (compare
Table 3). Fig. 7 (left) shows the number of training SBs processed per
minute with a growing mini-BS as a function of the number of GPUs. It
can be seen that maximizing mini-BS enhances system throughput by

L. Nista et al. Computers and Fluids 288 (2025) 106498
Fig. 6. In-sample instantaneous TKE spectra (right) and PDFs of the normalized velocity gradients (left) for two different LR/HR training SB configurations, specifically for 𝑙SB∕𝜂
= 128 and 𝑙SB∕𝜂 = 256. The orange line represents Kolmogorov’s −5/3 power law. The inset highlights the models’ performance in reconstructing the large negative gradients.
Fig. 7. Number of training SBs processed per minute as a function of growing mini-BS (left) and using various inter-GPU collective communicators (right) as the number of utilized
GPUs increases. The mini-BS is fixed to 16 for the communicators’ variation.
m

a
l
𝑁

t
t
l
i

t
t
r

w

l
T

more effective usage of computational resources. This is explained by
the fact that Tg r ad depends on many factors, such as input/output patch
size, network size, GPU performance, and number of training fields,
while Tsy nc is influenced by gradient size, network performance (band-
width), and is typically shorter when the GPUs are co-located within the
same physical node. As the mini-BS increases, Tg r ad also increases due
to the higher number of fields processed for each iteration’s runtime,
while Tsy nc is typically independent on the mini-BS. Consequently, each
iteration’s runtime is constrained by the Tsy nc. Maximizing the mini-
BS improves scalability yielding a higher Tg r ad/Tsy nc ratio. A higher
ratio indicates that a larger proportion of the iteration’s runtime is
dedicated to gradient computation, rather than waiting for synchro-
nization, meaning that computational resources are more efficiently
utilized, with less idle time spent waiting for synchronization across
GPUs.

Minimizing Tsy nc is crucial for ensuring optimal scalability, as it
increases with the number of GPUs. This can be achieved by opti-
mal topology-aware inter-GPU communication primitives seamlessly
integrated into applications. Fig. 7 (right) depicts the number of SBs
processed per minute for various GPU-node connections using a fixed
mini-BS of 16 and different collective communicators. CPUs are em-
ployed with MPI communication, while GPUs are employed with NCCL
2 and NCCL 2 with GPUDirect RDMA in the Horovod library. The
GPUDirect tool with RDMA communicators enables direct reading and
writing to/from GPU memory, thereby reducing redundant memory
copies, CPU overheads, and latency. This leads to a significant per-
formance uplift, especially with multiple GPUs across several nodes,
as is demonstrated by the nearly linear scalability of up to 64 GPUs.
Conversely, using the MPI standard leads to substantial performance
drops compared to NCCL-based setups. In this case, the speed up
notably declines beyond 8 GPUs as T nearly approaches T .
sy nc g r ad m

9
6.3. Processing efficiency

Maximizing mini-BS and implementing efficient GPU-to-GPU com-
unication protocols have been shown to significantly improve GPU

performance and hardware efficiency. On the other hand, based on the
nalysis performed in Section 6.1, the LR/HR pair combinations are
imited to the ranges 𝑁SB,LR ∈ [123, 163, 323, 483] and corresponding
SB,HR ∈ [963, 1283, 2563, 3843], as highlighted in Table 3. These con-

figurations result in a varying number of the training SBs and mini-BSs
per GPU (thereby affecting global BSs for distributed training). While
models trained with these pairs demonstrate comparable predictive
capabilities on a single worker, single-GPU training is undesirable due
to its lengthy duration of approximately a week per training run (
Table 3). Therefore, it is crucial to evaluate an effective approach
to accelerate training convergence across distributed computing nodes
without compromising the inherent predictive accuracy. Synchronous
data parallelism, as described in Section 4, is investigated here, where
he mini-BS per GPU is constant, while the global mini-BS scales with
he number of GPUs employed. We employ a linear scaling rule for the
earning rate and a warm-up scheme. This distributed training strategy
s referred to as scaling.

Fig. 8 (left) shows the training wall time required by the SR-GAN
o achieve ⟨𝜏SR12 ⟩ above 90% on the testing dataset when employing
he scaling approach. This metric ensures that the statistics of the
econstructed fields closely match those presented in Figs. 5 and 6.

All four LR/HR training configurations exhibit comparable training
all times when using up to 8 GPUs. However, performance signifi-

cantly deteriorates with the addition of more GPUs when employing
arger LR/HR configurations, such as 323 → 2563 and 483 → 3843.
his results in either divergence, where the generator fails to produce

eaningful physical predictions, or longer training times, making the

L. Nista et al.

t

r

f
t
s
t
t
i
t
t

d
w

Computers and Fluids 288 (2025) 106498
Fig. 8. Left: Training wall time required to achieve the target ⟨𝜏SR12 ⟩ above 90%. The bold highlighted LR/HR training SB configurations from Table 3 were utilized. The global
batch size is increased corresponding to the number of GPUs, keeping the mini-BS fixed. The linear scaling rule for the generator’s and discriminator’s learning rate and a warm-up
scheme are applied. If no wall time is reported, it indicates training divergence. Right: Normalized validation accuracy of the discriminator across epochs during the training with
32 GPUs. The initial 2 epochs are excluded since the discriminator is not pre-trained.
a
t
g
p
t

i
s
m

a

t

c

o
v
m
c

w
a

DTA inefficient. On the other hand, when smaller LR/HR training
configurations are employed, for example, 163 → 1283, the training
process remains stable and demonstrates almost linear scalability. This
is evidenced by the wall training time decreasing nearly in direct
proportion to the number of GPUs used. Interestingly, for the smallest
LR/HR configuration, i.e., 123 → 963, utilizing more than 16 GPUs does
not yield further reductions in wall training time. In fact, beyond this
point, the training time using 64 GPUs is comparable to that using only
8 GPUs, negating any possible acceleration from additional workers.

The size of the LR/HR SBs not only influences the number of
SBs extracted from the entire training dataset but also determines the
maximum mini-BS. There appears to be a global BS threshold beyond
which model quality deteriorates. Utilizing a large number of GPUs
implies a large global BS, which, as recent studies have shown, can
lead to poor generalization properties and overfitting [57]. This is
particularly relevant when the training dataset size is limited compared
o a standard image-processing training dataset size, as the model’s

updates might be too frequent, causing it to overfit to the limited
data. Despite the application of the linear scaling and warm-up rules
for the learning rate to mitigate this issue, as suggested by recent
esearch [30], managing this balance remains challenging.

Furthermore, the GAN’s optimization process depends on the in-
teraction between the generator and discriminator, which is funda-
mentally different from standard supervised CNN-based SR methods.
In the context of distributed training, this interaction might introduce
additional complexities, for which is crucial to understand how the
failure of one network affects the overall performance and how this
interaction behaves under distributed training conditions.

The SR-GAN models’ performance is strongly related to how well the
discriminator is performing its task of distinguishing real fields from
ake ones, referred to as discriminator accuracy. Fig. 8 (right) shows
he discriminator accuracy obtained on the validation dataset for the
ame LR/HR training configurations when 32 GPUs are employed for
he training. High discriminator accuracy (close to 1) indicates that
he discriminator successfully distinguishes between real and generated
mages, which consequently puts pressure on the generator to improve
he generated field. Conversely, when the discriminator accuracy is
oo low for too long, the discriminator is not learning effectively, thus

providing inaccurate feedback to the generator. Optimal behavior is
achieved when the discriminator accuracy slowly diminishes as the
number of epochs increases, reaching a value of roughly 0.5. In this
scenario, the discriminator has an equal probability of classifying im-
ages as real or fake, indicating a balanced but challenging environment
for the generator.

For the larger LR/HR configurations, the discriminator accuracy
rops dramatically after the first few epochs, leading to a scenario
here the discriminator quickly becomes unable to distinguish between
10
real and generated images. This sudden drop suggests that the gener-
ator is overwhelming the discriminator early in the training, resulting
in the generator producing images that still contain artifacts or lack
finer details. In such cases, the limited amount of training data per GPU
s well as the small global batch size might cause the discriminator
o overfit to the training dataset, leading to memorization rather than
eneralization on the training dataset. Consequently, the discriminator
rovides unhelpful and unrealistic feedback to the generator, causing
he generator training to diverge.

With the smaller LR/HR configurations, the discriminator accuracy
s initially very high as it provides feedback to the generator. Accuracy
lowly diminishes over the training, meaning that the discriminator
aintains its ability to distinguish real from generated images for a

longer period (epochs). This gradual decline indicates a more bal-
nced training process where both the generator and discriminator

are improving concurrently. The slower reduction in accuracy allows
he generator to learn more effectively from the feedback provided by

the discriminator, resulting in higher-quality generated fields over the
training. In this scenario, the larger number of training fields per GPU
leads to more diverse training data, helping the discriminator gener-
alize better. However, when the global batch size exceeds a certain
threshold, such as in the 123 → 963 configuration, the discriminator’s
learning capacity diminishes, as indicated by a four times smaller mean
discriminator accuracy slope compared to the 163 → 1283 LR/HR
onfiguration, which might be related to the optimizer employed.

The analysis suggests that the distributed training approach is sig-
nificantly influenced by the number of GPUs employed, even with suf-
ficiently large LR/HR training configurations to ensure physical accu-
racy, maximized mini-BS and inter-GPU connections to enhance hard-
ware performance. This is due to the indirect impact on the stochastic
ptimization, affected by both mini-BS and number of training SBs
ariations. It is evident that there is a coupled interaction between
ini-BS, learning rate, and number of training SBs. Additionally, in the

ontext of SR-GAN distributed training, these three linked optimization
parameters not only influence generator learning but also significantly
impact the discriminator, thereby affecting overall generator perfor-
mance. It is therefore particularly relevant to consider these factors

hen employing the synchronous data-parallelism distributed training
pproach to SR-GANs.

7. Performance analysis for in-sample a posteriori LES

Integrating SR-GAN inference into a high-performance CFD solver
presents challenges including efficient data exchange, synchronizing
the model across multiple ranks, and ensuring parallel scalability. We
examine the computational performance and predictive accuracy of the
coupled CIAO solver and superLES library for LES of forced HIT with

L. Nista et al.

f

4
c
s
A
c
b
G
n
S
g
t
c
f
S
t
o
s

r
c
f
d
g
h
h
a
a
c

s
t
s
c
i
s
u
i

t

d
T
l
(
s
a
t
e

Computers and Fluids 288 (2025) 106498
Table 4
Influence of input chunk size 𝑁in on a priori SR-GAN inference. Bold
input sizes are used for subsequent inference-coupled LES.
𝑁in 𝑁out 𝑙SB∕𝜂 RMSE ⟨𝜏SR12 ⟩

𝟔𝟒𝟑 𝟓𝟏𝟐𝟑 1024 2.38 92.2%
𝟑𝟐𝟑 𝟐𝟓𝟔𝟑 512 2.98 91.9%
𝟏𝟔𝟑 𝟏𝟐𝟖𝟑 256 3.14 91.1%
83 643 128 36.76 64.3%
43 323 64 138.49 32.7%

𝛥 = 8 dx (LES mesh size 𝑁 = 643), initialized with the VKP spectrum,
and using spectrally sharp forcing. The superLES library embeds the SR-
GAN generator pretrained using 𝑙SB∕𝜂 = 256 and 64 GPUs, given that
this configuration exhibits the best trade-off in accuracy, hardware, and
processing efficiency (Section 6).

7.1. Influence of domain and halo size on a posteriori accuracy

Optimal performance of the superLES framework is obtained in
aggregate-shared mode (Section 5), for which the input GPU chunk
size decreases with increasing compute node count. This influences the
model’s predictive accuracy by reducing the number of SBs available
or inference.

Table 4 reports the a priori in-sample RMSE and ⟨𝜏SR12 ⟩ of the
reconstructed field for different input chunk sizes, 𝑁in, using the same
SR-GAN model. As shown in the table, accurate predictions require
a certain domain size — input domains smaller than this (83 and
3) cause the SR-GAN to produce inaccurate SR fields. This trend is
orroborated a posteriori in Fig. 10, which presents the averaged TKE
pectra (left) and the PDF of normalized velocity gradients (right).
n input chunk size of 43 results in significant accuracy degradation
ompared to a chunk size of 163, as the SR-GAN model effectively
ehaves as though no SFS modeling is applied. Additionally, the SR-
AN model tends to overestimate the occurrence of large positive and
egative gradients. Conversely, when the input chunk size is 163, the
R-GAN model yields good predictions, with both the TKE and velocity
radient PDFs aligning more closely with the F-DNS. This highlights
he SR-GAN model’s sensitivity to input chunk size, confirming its
ritical role in maintaining accuracy which is consistent with the a priori
indings. However, since the parallel decomposition sets the per-GPU
R subdomain size (for fixed LES domain size and upsampling ratio),
he size of the SR input domain (input chunk size) sets an upper bound
n the number of GPUs that may be employed for a given LES domain
ize.

The size of the halo regions, 𝑛halo, needed for domain decomposition
also influences reconstruction accuracy. Table 5 shows the RMSE of
econstructed velocity fields for different halo sizes, normalized by the
orresponding RMSE without halo regions (no domain decomposition),
or the 𝑁in = 163 and 𝑁in = 323 cases. (The 𝑁in = 643 case does not use
omain decomposition.) Larger domains have fewer halo regions and
enerally give better results: for each halo size, the 𝑁in = 323 domains
ave smaller reconstruction errors than 𝑁in = 163. Similarly, larger
alo regions generally improve predictive accuracy, with the greatest
ccuracy achieved when fully half of the input chunk size is provided
s a halo region—which of course significantly increases reconstruction
ost.

Fig. 9 shows 2D slices of the absolute error of the SR fields recon-
tructed using the default halo size of the CIAO solver, 𝑛halo = 2, and
he best balance for SR inference 𝑛halo = 8. The minimum input chunk
ize 𝑁in = 163 is employed to maximize the number of GPU-to-GPU
hunk boundaries in the domain. When 𝑛halo∕𝑛in = 1∕8 (𝑛halo = 2)
s employed, discontinuities appear at the chunk boundaries, which
ignificantly reduce the accuracy of the SR reconstruction. Conversely,
sing the larger 𝑛halo∕𝑛in = 1∕2 (𝑛halo = 8) virtually eliminates these
nterface errors. This behavior is further highlighted in Fig. 10, where
 o

11
Table 5
RMSE of reconstructed velocity fields for different halo
sizes, normalized by the error for continuous recon-
struction (no halos). The directional number of input
points is 𝑛in, such that 𝑁in = 𝑛3in, and 𝑛halo is the number
of points per halo region. For example, for 𝑛in = 32, a
normalized halo of 1∕16 corresponds to 𝑛halo = 2.

𝑁in

𝑛halo∕𝑛in 1/16 1/8 1/4 1/2

323 1.77 1.52 1.09 1.00
163 N/A 2.63 2.00 1.00

Table 6
Resources employed for strong scaling tests on DEEP-ESB.
nodes # CPUs CPU chunk size # GPUs Input GPU chunk size

1 8 323 1 643

2 16 32 × 32 × 16 2 64 × 64 × 32
4 32 16 × 16 × 32 4 32 × 32 × 64
8 64 163 8 323

16 128 8 × 16 × 16 16 16 × 32 × 32
32 256 8 × 8 × 16 32 16 × 16 × 32
64 512 83 64 163

a smaller halo region significantly diminishes predictive capabilities.
Specifically, adopting a ratio of 𝑛halo∕𝑛in = 1∕8 leads to more dissipative
dynamics compared to 𝑛halo∕𝑛in = 1∕2. This is evident in the stronger
decay of TKE relative to the F-DNS and the reduced frequency of
high-magnitude velocity gradients.

7.2. Computational performance of the superLES library

We next evaluate the strong-scaling performance of the SR-LES and
the hybrid CFD–SR-GAN coupling. On each node of the DEEP-ESB
partition, we allocate eight CPUs to the CIAO solver and one GPU to
the superLES library. The relationships between the number of allocated
nodes, CPUs, GPUs, and CPU and GPU chunk sizes are tabulated in
Table 6. We limit our analysis to 64 nodes based on our findings in
Section 7.1 and note that performance conclusions could be limited to
the particular CFD solver and SR implementation. This section employs
halo regions of size 𝑛halo∕𝑛in = 1∕2 and a minimum input SR size
of 𝑁in = 163. Strong scaling is evaluated by comparing the speed-up
against the execution time on a single node.

Fig. 11 depicts the computational time of the superLES library’s
operations for the a posteriori LES. The superLES library achieves good
scalability up to 16 nodes, with averaged speed-up of around 90%
across all operations with increasing node count. SR-GAN inference is
he primary computational cost driver, followed by the evaluation of
𝜏SR𝑖𝑗 . The CPU–GPU data transfer time is about two orders of magnitude
lower. As these operations are not runtime limiting, their influence
on scalability can be considered negligible. Notably, memory transfer
to CPUs takes approximately twice as long as that to GPUs due to
additional CPU-domain decomposition overhead. Moreover, there is a
slight reduction in performance attributed to increased halo-transfer
overhead with node increments between 2 and 4 nodes.

However, the performance significantly diminishes, dropping by
50% when utilizing more than 16 nodes, as shown in Fig. 11. This
is caused primarily by the diminishing input SR-chunk size with in-
creasing resources, which reduces GPU utilization. This results in a
higher halo-to-SR-chunk size ratio and increases the time needed for
ata transfer relative to inference, making the use of GPUs less efficient.
herefore, careful balancing of CPU (CIAO solver) and GPU (superLES

ibrary) operations is crucial for maximizing computational efficiency
in addition to producing physically accurate predictions). The present
oftware architecture favors hybrid CPU–GPU nodes with more CPUs
nd fewer GPUs per node but with relatively large memory pools. This
ype of node would limit domain decomposition, thus reducing the data
xchange of the halo regions, while ensuring physical accuracy and

ptimizing GPU utilization.

L. Nista et al. Computers and Fluids 288 (2025) 106498
Fig. 9. Influence of halo size: CIAO solver default (left) and best balance for SR inference (right). This analysis is conducted using an input GPU chuck size 𝑁in = 163.
Fig. 10. In-sample a posteriori averaged TKE spectra (right) and PDFs of the normalized velocity gradients (left) across varying computational setups, including different GPU
chunk sizes (Table 6) and halo region sizes‘ (Table 5). The orange line represents Kolmogorov’s -5/3 power law.
Fig. 11. Computational time of superLES library operations (bars) and strong scaling speed-up (lines) for increasing DEEP-ESB node counts. The execution time does not consider
the CIAO solver.
8. Conclusion

We have examined the computational performance and accuracy
requirements of distributed, hybrid CPU–GPU SR-GAN training and
inference-coupled SR-LES. The analysis is conducted using an SR-GAN
framework adapted for small-scale turbulence reconstruction and cov-
ers model training requirements, including input subbox size and mini-
batch size for distributed training, and a posteriori testing consider-
ations, including model-input overlap (halo) size requirements, hy-
brid CPU–GPU parallel scalability, and CPU/GPU load balancing. The
12
methods introduced here are applicable to other SR-GAN frameworks
employing similar training strategies.

The patch-to-patch model-training strategy extracts randomly lo-
cated, nonoverlapping subboxes from a full-domain snapshot to alle-
viate storage requirements on limited GPU memory. The influence of
training subbox size relative to 𝜂 is considered, which affects both
predictive accuracy and computational cost. In-sample tests reveal that
training SBs need to be at least 192𝜂 in size to minimize errors in
the reconstructed velocity field and hence the modeled subgrid stress.
Models trained with smaller subboxes fail to accurately recover the

L. Nista et al.

T
s
t
t

R
r
w
p

p

t

G

i

i

d
e

L
o

i
a

W
s
r
W
s
S
r
t
t

Computers and Fluids 288 (2025) 106498
correct TKE, leading to significant deviations in the unclosed terms.
his demonstrates that the input and output patch sizes are crucial for
uper-resolution predictive accuracy. Larger patches are overall advan-
ageous, as they provide a larger receptive field and can enhance the
wo networks’ (generator and discriminator) resilience to overfitting.

However, the threshold value of 𝑙SB∕𝜂 ≈ 192𝜂 may be specific to the
eynolds number, and filter size used in this study. It is therefore
ecommended that this value not be generalized to other conditions
ithout additional verification across varying configurations and flow
arameters.

Equally crucial is the need for DTAs to optimize GPU utilization,
rioritizing computation time for local gradient estimation over the

time allocated to gradient averaging and synchronizing model parame-
ters across all GPUs. It is shown that larger minibatch sizes improve
scalability, with larger proportions of runtime dedicated to gradient
computations than model synchronization overhead. The synchroniza-
tion time is further reduced using a GPU-based communicator (NCCL)
hat reduces memory copies and the associated latency.

It is likewise important to assess the influence of GPU resource
allocation on training wall-time required to achieve convergence. We
consider LR/HR subbox configurations that ensure physical accuracy
while fixing the maximum mini-BS. Hence, the global batch size scales
proportionally with the number of GPUs utilized. The wall time re-
quired for training convergence is accelerated when using up to 8
GPUs, but performance significantly deteriorates when the number of

PUs is further increased. In distributed training, the upper boundary
for the LR/HR training configuration that can effectively be utilized
s decreased compared to serial training. Beyond this boundary, train-

ing configurations fail to produce meaningful predictions or require
ncreased training times. This is due to the LR/HR subbox size de-

termining both the number of subboxes extracted and the maximum
minibatch size. Beyond a certain global batch-size threshold, the model
quality deteriorates, as the model’s updates are too frequent relative to
the number of subboxes, leading to local overfitting.

The SR-GAN model’s performance is also strongly related to the dis-
criminator’s ability to distinguish real fields from generated ones. The
discriminator’s accuracy drops dramatically for larger subboxes. This
is also caused by overfitting to the (local) training dataset due to the
limited training data per GPU. The analysis underscores the significant
influence of the number of GPUs employed by the DTA, impacting the
stochastic optimization through variations in minibatch sizes and the
number of training subboxes. Additionally, the discriminator’s learning
capacity plays a crucial role in indirectly affecting the generator’s over-
all performance. It is therefore essential to consider the discriminator’s
behavior when implementing synchronous, distributed-data SR-GAN
training for turbulence modeling.

Finally, we present inference-coupled, a posteriori tests of SR-GAN
model accuracy, stability, and cost for realistic LES calculations. Im-
portantly, this requires integrating the SR-GAN library with the LES
solver. The superLES library introduces a modular coupling strategy for
istributed, hybrid CPU–GPU parallelism. This allows the LES solver to
xchange fields on-the-fly with the SR-GAN inference engine at runtime

on heterogeneous cluster architectures. The library is developed to
be easily integrated into different parallel CFD solvers, allowing for
various operation modes depending on the user’s hardware config-
uration. For the hardware we tested, the SR-chunk size varies with
the allocation size. Similarly to the a priori investigations, the SR-
GAN model’s performance varies significantly with the SR-chunk size.
To achieve meaningful results, accurate predictions require a certain
domain size, similar to the findings of the a priori in-sample analysis.
This presents an upper bound to the computational resources that
may be employed. Additionally, domain decomposition in parallel SR-
LES computations introduces boundary effects, which are particularly
relevant to the convolutional operations performed by the generator.
arger SR-chunk sizes are preferable because they reduce the number
f boundaries between boxes: by allocating half of the SR-chunk size
13
to halo regions — significantly more than the default halo size in
a typical CFD solver — discontinuities can be effectively prevented.
Those findings are corroborated through a posteriori analysis in terms
of averaged TKE spectra and PDF of the normalized velocity gradients.

A strong scaling study of the superLES library demonstrates good
scalability for 16 hybrid CPU–GPU nodes. Profiling indicates that the
SR-inference operation is runtime-limiting, followed by the computa-
tion of the 𝜏SR𝑖𝑗 . Scalability heavily deteriorates beyond 16 nodes as
the input SR chunk size decreases with increasing number of resources.
This results in a higher halo-to-SR size ratio, which increases the time
required for data transfer relative to inference, thus limiting GPU uti-
lization. Therefore, careful consideration of the hardware configuration
and its implications for DTA is crucial not only for achieving accurate
physical predictions but also for maximizing computational efficiency.

In conclusion, SR-GAN training can be successfully accelerated us-
ng a synchronous, distributed-data approach. However, a careful bal-
nce of training subbox sizes, global batch sizes, and discriminator

feedback is essential to ensure meaningful predictions and maintain the
model’s learning capability. The use of modular libraries is essential to
integrate with existing CFD solvers. DL modeling approaches impose
additional computational requirements compared to traditional LES
modeling, as physical constraints potentially impose limitations on the
maximum number of computational resources that can be effectively
employed.

In future work, we aim to extend these analyses to more com-
plex configurations and different SR-GAN frameworks, higher Reynolds
numbers, and larger filter sizes, and enhance the adaptability of SR-
LES across diverse compute architectures. This includes optimizing for
various operational modes, integrating with GPU-capable CFD solvers,
and conducting a comprehensive assessment of the SR-GAN model’s
performance in comparison to other modeling strategies.

In order to enhance the reproducibility of this study, provide clarity
on technical aspects, and facilitate faster development, access to our
GIT repository will be granted upon request.

CRediT authorship contribution statement

Ludovico Nista: Writing – review & editing, Writing – original
draft, Visualization, Validation, Methodology, Investigation, Concep-
tualization. Christoph D.K. Schumann: Writing – review & editing,

riting – original draft, Methodology, Investigation, Formal analy-
is. Peicho Petkov: Software, Methodology, Investigation, Data cu-
ation. Valentin Pavlov: Software, Resources. Temistocle Grenga:
riting – review & editing, Supervision, Methodology, Formal analy-

is. Jonathan F. MacArt: Writing – review & editing, Visualization,
upervision, Methodology, Formal analysis. Antonio Attili: Writing –
eview & editing, Supervision, Methodology, Formal analysis, Concep-
ualization. Stoyan Markov: Supervision, Resources, Project adminis-
ration, Funding acquisition. Heinz Pitsch: Writing – review & editing,

Supervision, Resources, Project administration, Funding acquisition.

Funding

The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation program
under the Center of Excellence in Combustion (CoEC) project, Grant
Agreement No. 952181, and from the German Federal Ministry of Ed-
ucation and Research (BMBF) and the state of North Rhine-Westphalia
for supporting this work as part of the NHR funding.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

L. Nista et al.

t
U
A
f
t
R

t
T
t
p
i
i
t
a
t
t
S
t
s

p
d

i
c
t
c
o
t
i

Computers and Fluids 288 (2025) 106498
Acknowledgments

The authors gratefully acknowledge the computing resources from
he DEEP-EST project, which received funding from the European
nion’s Horizon 2020 research and innovation program under Grant
greement No. 754304. We thank Dr. R. Sedona and Dr. G. Cavallaro

or their support in the porting of the application to DEEP-EST. Part of
he computations were performed with computing resources granted by
WTH Aachen University under project rwth1480.

The authors thank F. Fröde and F. Orland for their exceptional
support and contributions to this research project.

Appendix. Training data requirements for SR-GAN

For successful SR-GAN training, a high-quality and well-balanced
dataset is crucial. In this context, using genuine DNS fields as a refer-
ence is instrumental for accurately reconstructing small-scale features,
as the discriminator must learn to distinguish these authentic HR
fields from SR fields resulting from the generator. The ability of the
discriminator to distinguish between these two fields is especially
significant during the partially unsupervised training phase, where the
discriminator’s feedback guides the generator by assessing the quality
of SR fields based solely on its capacity to identify genuine DNS fields
which is acquired during pre-training.

Sufficiency depends on the quantity of training data is critical
o enhance reconstruction accuracy and prevent training divergence.
he required volume of data depends on several factors, including
he model architecture, upsampling factor, and the complexity of the
hysics embedded within the data. Complex physical phenomena often
nvolve intricate interactions and fine-scale structures that are challeng-
ng to capture accurately. When such complex physics is present in
he training data, as is the case in turbulent flows, the model requires
 large dataset to reproduce (generator) or identify (discriminator)
hese nuanced features. Deep architectures, with their higher number of
rainable parameters, also require extensive data to prevent overfitting.
imilarly, the demand for data scales with the upsampling factor, as
he learning process becomes increasingly challenging the smaller the
cales to be generated relative to the input field provided.

Supervised pre-training of the generator before adversarial train-
ing is beneficial, as mode collapse is prevented and a baseline level
of performance established. This pre-training phase is especially im-
ortant when training data is limited, as the discriminator learns to
istinguish between SR and DNS more quickly than the generator is

able to make adjustments, which upsets the balance of the inherent
competition of the two networks in GAN training, leading to poor
convergence [63]. Identifying an adequate amount of training data
to initialize the generator is crucial for balanced training dynamics.
Training stability and reconstruction accuracy are balanced by choosing
the right amount of training data. In this work, the number of snapshots
used was carefully chosen based on prior studies [26,63]. However,
this specific amount may not universally apply across different data
configurations, architectures, or physical complexities.

Furthermore, the availability of highly-resolved DNS data for train-
ng is constrained to relatively low Reynolds numbers due to the high
omputational costs associated with DNS. Without robust generaliza-
ion capabilities, the SR-GAN framework remains limited to physical
onditions for which DNS data exists. The SR-GAN framework’s extrap-
lation potential at higher Reynolds numbers in both forced HIT and
urbulent premixed reacting flow configurations has been demonstrated
n previous works [16,24]. These a priori predictive capabilities are

successful when the ratio between the filter size and the Kolmogorov
length scale is consistent across training and testing conditions [16,
24]. However, further research is needed to explore the framework’s
extrapolation capabilities to different geometric configurations.
14
Data availability

Data will be made available on request.

References

[1] Durbin PA. Some recent developments in turbulence closure modeling. Annu
Rev Fluid Mech 2018;50(Volume 50, 2018):77–103. http://dx.doi.org/10.1146/
annurev-fluid-122316-045020.

[2] Sagaut P, Meneveau C. Large eddy simulation for incompressible flows: An
introduction. In: Scientific computation, (7). Springer; 2006, http://dx.doi.org/
10.1007/b137536.

[3] Smagorinsky J. General circulation experiments with the primitive equations: I.
The basic experiment. Mon Weather Rev 1963;91(3):99–164. http://dx.doi.org/
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

[4] Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid-scale eddy
viscosity model. Phys Fluids A Fluid Dyn 1991;3(7):1760–5. http://dx.doi.org/
10.1063/1.857955.

[5] Bardina J. Improved turbulence models based on large eddy simulation of
homogeneous, incompressible, turbulent flows. Stanford University; 1983.

[6] Pitsch H. Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech
2006;38:453–82. http://dx.doi.org/10.1146/annurev.fluid.38.050304.092133.

[7] Kutz JN. Deep learning in fluid dynamics. J Fluid Mech 2017;814:1–4. http:
//dx.doi.org/10.1017/jfm.2016.803.

[8] Duraisamy K, Iaccarino G, Xiao H. Turbulence modeling in the age of data.
Annu Rev Fluid Mech 2019;51:357–77. http://dx.doi.org/10.1146/annurev-
fluid-010518-040547.

[9] Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics.
Annu Rev Fluid Mech 2020;52:477–508. http://dx.doi.org/10.1146/annurev-
fluid-010719-060214.

[10] Ihme M, Chung WT, Mishra AA. Combustion machine learning: Principles,
progress and prospects. Prog Energy Combust Sci 2022;91:101010. http://dx.
doi.org/10.1016/j.pecs.2022.101010.

[11] Fukami K, Fukagata K, Taira K. Assessment of supervised machine learning
methods for fluid flows. Theor Comput Fluid Dyn 2020;34(4):497–519. http:
//dx.doi.org/10.1007/s00162-020-00518-y.

[12] Fukami K, Fukagata K, Taira K. Super-resolution reconstruction of turbulent flows
with machine learning. J Fluid Mech 2019;870:106–20. http://dx.doi.org/10.
1017/jfm.2019.238.

[13] Zhou Z, Li B, Yang X, Yang Z. A robust super-resolution reconstruction model
of turbulent flow data based on deep learning. Comput Fluids 2022;239:105382.
http://dx.doi.org/10.1016/j.compfluid.2022.105382.

[14] Pant P, Farimani AB. Deep learning for efficient reconstruction of high-resolution
turbulent DNS data. 2020, http://dx.doi.org/10.48550/arXiv.2010.11348, arXiv
preprint arXiv:2010.11348.

[15] Zhao Q, Jin G, Zhou Z. Deep learning method for the super-resolution
reconstruction of small-scale motions in large-eddy simulation. AIP Adv
2022;12(12):125304. http://dx.doi.org/10.1063/5.0127808.

[16] Nista L, Pitsch H, Schumann CDK, Bode M, Grenga T, MacArt JF, et al. Influence
of adversarial training on super-resolution turbulence reconstruction. Phys Rev
Fluids 2024;9:064601. http://dx.doi.org/10.1103/PhysRevFluids.9.064601.

[17] Kim H, Kim J, Won S, Lee C. Unsupervised deep learning for super-resolution
reconstruction of turbulence. J Fluid Mech 2021;910:A29. http://dx.doi.org/10.
1017/jfm.2020.1028.

[18] Fukami K, Fukagata K, Taira K. Super-resolution analysis via machine learning:
a survey for fluid flows. Theor Comput Fluid Dyn 2023.

[19] Yang L, Zhang Z, Song Y, Hong S, Xu R, Zhao Y, et al. Diffusion models:
A comprehensive survey of methods and applications. ACM Comput Surv
2023;56(4):1–39. http://dx.doi.org/10.1145/3626235.

[20] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et
al. Generative adversarial networks. Commun ACM 2020;63(11):139–44. http:
//dx.doi.org/10.1145/3422622.

[21] Shu D, Li Z, Barati Farimani A. A physics-informed diffusion model for high-
fidelity flow field reconstruction. J Comput Phys 2023;478:111972. http://dx.
doi.org/10.1016/j.jcp.2023.111972.

[22] Hassanaly M, Glaws A, Stengel K, King RN. Adversarial sampling of unknown and
high-dimensional conditional distributions. J Comput Phys 2022;450:110853.
http://dx.doi.org/10.1016/j.jcp.2021.110853.

[23] Bode M, Gauding M, Lian Z, Denker D, Davidovic M, Kleinheinz K, et al.
Using physics-informed enhanced super-resolution generative adversarial net-
works for subfilter modeling in turbulent reactive flows. Proc Combust Inst
2021;38(2):2617–25. http://dx.doi.org/10.1016/j.proci.2020.06.022.

[24] Nista L, Schumann CDK, Grenga T, Attili A, Pitsch H. Investigation of the general-
ization capability of a generative adversarial network for large eddy simulation
of turbulent premixed reacting flows. Proc Combust Inst 2023;39(4):5279–88.
http://dx.doi.org/10.1016/j.proci.2022.07.244.

http://dx.doi.org/10.1146/annurev-fluid-122316-045020
http://dx.doi.org/10.1146/annurev-fluid-122316-045020
http://dx.doi.org/10.1146/annurev-fluid-122316-045020
http://dx.doi.org/10.1007/b137536
http://dx.doi.org/10.1007/b137536
http://dx.doi.org/10.1007/b137536
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.857955
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb5
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb5
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb5
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092133
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1016/j.pecs.2022.101010
http://dx.doi.org/10.1016/j.pecs.2022.101010
http://dx.doi.org/10.1016/j.pecs.2022.101010
http://dx.doi.org/10.1007/s00162-020-00518-y
http://dx.doi.org/10.1007/s00162-020-00518-y
http://dx.doi.org/10.1007/s00162-020-00518-y
http://dx.doi.org/10.1017/jfm.2019.238
http://dx.doi.org/10.1017/jfm.2019.238
http://dx.doi.org/10.1017/jfm.2019.238
http://dx.doi.org/10.1016/j.compfluid.2022.105382
http://dx.doi.org/10.48550/arXiv.2010.11348
http://arxiv.org/abs/2010.11348
http://dx.doi.org/10.1063/5.0127808
http://dx.doi.org/10.1103/PhysRevFluids.9.064601
http://dx.doi.org/10.1017/jfm.2020.1028
http://dx.doi.org/10.1017/jfm.2020.1028
http://dx.doi.org/10.1017/jfm.2020.1028
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb18
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb18
http://refhub.elsevier.com/S0045-7930(24)00329-3/sb18
http://dx.doi.org/10.1145/3626235
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1016/j.jcp.2023.111972
http://dx.doi.org/10.1016/j.jcp.2023.111972
http://dx.doi.org/10.1016/j.jcp.2023.111972
http://dx.doi.org/10.1016/j.jcp.2021.110853
http://dx.doi.org/10.1016/j.proci.2020.06.022
http://dx.doi.org/10.1016/j.proci.2022.07.244

L. Nista et al. Computers and Fluids 288 (2025) 106498
[25] Grenga T, Nista L, Schumann CKD, Karimi A, Scialabba G, Attili A, et al. Predic-
tive data-driven model based on generative adversarial network for premixed
turbulence-combustion regimes. Combust Sci Technol 2023;195(15):3923–46.
http://dx.doi.org/10.1080/00102202.2022.2041624.

[26] Nista L, Schumann C, Grenga T, Karimi AN, Scialabba G, Bode M, et al. Turbulent
mixing predictive model with physics-based generative adversarial network.
In: 10th European combustion meeting. 2021, p. 460–5. http://dx.doi.org/10.
18154/RWTH-2021-07028.

[27] Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for
image restoration. In: 2017 IEEE conference on computer vision and pattern
recognition. 2017, p. 2808–17. http://dx.doi.org/10.1109/CVPR.2017.300.

[28] Lee S, You D. Data-driven prediction of unsteady flow over a circular cylinder
using deep learning. J Fluid Mech 2019;879:217–54. http://dx.doi.org/10.1017/
jfm.2019.700.

[29] Subramaniam A, Wong ML, Borker RD, Nimmagadda S, Lele SK. Turbulence
enrichment using physics-informed generative adversarial networks. 2020, arXiv
e-prints, arXiv–2003 https://arxiv.org/pdf/2003.01907.

[30] Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, et al.
Accurate, large minibatch SGD: Training ImageNet in 1 hour. 2017, arXiv
preprint arXiv:1706.02677 https://arxiv.org/pdf/1706.02677.

[31] Jia X, Song S, He W, Wang Y, Rong H, Zhou F, et al. Highly scalable deep learn-
ing training system with mixed-precision: Training ImageNet in four minutes.
2018, arXiv preprint arXiv:1807.11205 https://arxiv.org/pdf/1807.11205.

[32] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolu-
tional neural networks. In: Pereira F, Burges C, Bottou L, Weinberger K, editors.
Advances in neural information processing systems, vol. 25. Curran Associates,
Inc.; 2012, p. 1097–105. http://dx.doi.org/10.1145/3065386.

[33] Sirignano J, MacArt JF, Freund JB. DPM: A deep learning PDE augmen-
tation method with application to large-eddy simulation. J Comput Phys
2020;423:109811. http://dx.doi.org/10.1016/j.jcp.2020.109811.

[34] Duraisamy K. Perspectives on machine learning-augmented Reynolds-
averaged and large eddy simulation models of turbulence. Phys Rev Fluids
2021;6(5):050504. http://dx.doi.org/10.1103/PhysRevFluids.6.050504.

[35] MacArt JF, Sirignano J, Freund JB. Embedded training of neural-network
subgrid-scale turbulence models. Phys Rev Fluids 2021;6(5):050502. http://dx.
doi.org/10.1103/PhysRevFluids.6.050502.

[36] Sirignano J, MacArt JF. Deep learning closure models for large-eddy simulation
of flows around bluff bodies. J Fluid Mech 2023;966:A26. http://dx.doi.org/10.
1017/jfm.2023.446.

[37] Kurz M, Offenhäuser P, Beck A. Deep reinforcement learning for turbulence
modeling in large eddy simulations. Int J Heat Fluid Flow 2023;99:109094.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2022.109094.

[38] Fischer P, Kerkemeier S, Min M, Lan Y-H, Phillips M, Rathnayake T, et al.
NekRS, a GPU-accelerated spectral element Navier–Stokes solver. Parallel Comput
2022;114:102982. http://dx.doi.org/10.1016/j.parco.2022.102982.

[39] Owen LD, Ge W, Rieth M, Arienti M, Esclapez L, Soriano BS, et al. PeleMP:
The multiphysics solver for the combustion Pele adaptive mesh refinement code
suite. J Fluids Eng 2024;146(4):041103. http://dx.doi.org/10.1115/1.4064494.

[40] Dupuy D, Odier N, Lapeyre C. Data-driven wall modeling for turbulent separated
flows. J Comput Phys 2023;487:112173. http://dx.doi.org/10.1016/j.jcp.2023.
112173.

[41] Serhani A, Xing V, Dupuy D, Lapeyre C, Staffelbach G. Graph and convolutional
neural network coupling with a high-performance large-eddy simulation solver.
Comput Fluids 2024;278:106306. http://dx.doi.org/10.1016/j.compfluid.2024.
106306.

[42] Desjardins O, Blanquart G, Balarac G, Pitsch H. High order conservative finite
difference scheme for variable density low mach number turbulent flows. J
Comput Phys 2008;227(15):7125–59. http://dx.doi.org/10.1016/j.jcp.2008.03.
027.

[43] Attili A, Bisetti F, Mueller ME, Pitsch H. Formation, growth, and transport of
soot in a three-dimensional turbulent non-premixed jet flame. Combust Flame
2014;161(7):1849–65. http://dx.doi.org/10.1016/j.combustflame.2014.01.008.

[44] Davidovic M, Pitsch H. Scalar mass conservation in turbulent mixture fraction-
based combustion models through consistent local flow parameters. Com-
bust Flame 2024;262:113329. http://dx.doi.org/10.1016/j.combustflame.2024.
113329.
15
[45] Tomboulides A, Lee J, Orszag S. Numerical simulation of low mach number
reactive flows. J Sci Comput 1997;12:139–67. http://dx.doi.org/10.1023/A:
1025669715376.

[46] Kim J, Moin P. Application of a fractional-step method to incompressible Navier-
Stokes equations. J Comput Phys 1985;59(2):308–23. http://dx.doi.org/10.1016/
0021-9991(85)90148-2.

[47] Palmore JA, Desjardins O. Technique for forcing high Reynolds number isotropic
turbulence in physical space. Phys Rev Fluids 2018;034605. http://dx.doi.org/
10.1103/PhysRevFluids.3.034605.

[48] Bailly C, Juve D. A stochastic approach to compute subsonic noise using
linearized Euler’s equations. In: 5th AIAA/CEAS aeroacoustics conference and
exhibit. 1999, p. 1872. http://dx.doi.org/10.2514/6.1999-1872.

[49] Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, et al. ESRGAN: Enhanced super-
resolution generative adversarial networks. In: Leal-Taixé L, Roth S, editors.
Proceedings of the European conference on computer vision. Cham: Springer
International Publishing; 2019, p. 63–79. http://dx.doi.org/10.1007/978-3-030-
11021-5_5.

[50] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: 2016 IEEE conference on computer vision and pattern recognition. 2016, p.
770–8. http://dx.doi.org/10.1109/CVPR.2016.90.

[51] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems. 2015, URL https://www.
tensorflow.org/.

[52] Li K, Yang S, Dong R, Wang X, Huang J. Survey of single image super-resolution
reconstruction. IET Image Process 2020;14(11):2273–90. http://dx.doi.org/10.
1049/iet-ipr.2019.1438.

[53] Jolicoeur-Martineau A. The relativistic discriminator: A key element missing
from standard GAN. 2018, http://dx.doi.org/10.48550/arXiv.1807.00734, arXiv
preprint arXiv:1807.00734.

[54] Ben-Nun T, Hoefler T. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Comput Surv 2019;52(4):1–43. http:
//dx.doi.org/10.1145/3320060.

[55] Sergeev A, Del Balso M. Horovod: fast and easy distributed deep learning in
TensorFlow. 2018, http://dx.doi.org/10.48550/arXiv.1802.05799, arXiv preprint
arXiv:1802.05799.

[56] Smith SL, Kindermans P-J, Ying C, Le QV. Don’t decay the learning rate,
increase the batch size. 2017, http://dx.doi.org/10.48550/arXiv.1711.00489,
arXiv preprint arXiv:1711.00489.

[57] Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP. On large-batch
training for deep learning: Generalization gap and sharp minima. 2016, http:
//dx.doi.org/10.48550/arXiv.1609.04836, arXiv preprint arXiv:1609.04836.

[58] Hrycej T, Bermeitinger B, Handschuh S. Training neural networks in sin-
gle vs. double precision. In: Proceedings of the 14th international joint
conference on knowledge discovery, knowledge engineering and knowledge
management. SciTePress, INSTICC; 2022, p. 307–14. http://dx.doi.org/10.5220/
0011577900003335.

[59] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
An imperative style, high-performance deep learning library. In: Proceedings
of the 33rd international conference on neural information processing systems,
vol. 32. Red Hook, NY, USA: Curran Associates, Inc.; 2019, p. 1–12. http:
//dx.doi.org/10.48550/arXiv.1912.01703.

[60] Bai J, Lu F, Zhang K, et al. ONNX: Open neural network exchange. 2019, GitHub
repository, GitHub, https://github.com/onnx/onnx.

[61] Cardoso R, Golubovic D, Lozada IP, Rocha R, Fernandes J, Vallecorsa S.
Accelerating GAN training using highly parallel hardware on public cloud. In:
EPJ web of conferences, vol. 251, EDP Sciences; 2021, p. 02073. http://dx.doi.
org/10.1051/epjconf/202125102073.

[62] Hoffer E, Hubara I, Soudry D. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In: Guyon I,
Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R,
editors. Proceedings of the 31st international conference on neural information
processing systems, vol. 30. Red Hook, NY, USA: Curran Associates, Inc.; 2017,
p. 1729–39. http://dx.doi.org/10.48550/arXiv.1705.08741.

[63] Nista L, Schumann CKD, Scialabba G, Grenga T, Attili A, Pitsch H. The influence
of adversarial training on turbulence closure modeling. In: AIAA SCITECH 2022
forum. 2022, p. 1–9. http://dx.doi.org/10.2514/6.2022-0185.

http://dx.doi.org/10.1080/00102202.2022.2041624
http://dx.doi.org/10.18154/RWTH-2021-07028
http://dx.doi.org/10.18154/RWTH-2021-07028
http://dx.doi.org/10.18154/RWTH-2021-07028
http://dx.doi.org/10.1109/CVPR.2017.300
http://dx.doi.org/10.1017/jfm.2019.700
http://dx.doi.org/10.1017/jfm.2019.700
http://dx.doi.org/10.1017/jfm.2019.700
https://arxiv.org/pdf/2003.01907
http://arxiv.org/abs/1706.02677
https://arxiv.org/pdf/1706.02677
http://arxiv.org/abs/1807.11205
https://arxiv.org/pdf/1807.11205
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.jcp.2020.109811
http://dx.doi.org/10.1103/PhysRevFluids.6.050504
http://dx.doi.org/10.1103/PhysRevFluids.6.050502
http://dx.doi.org/10.1103/PhysRevFluids.6.050502
http://dx.doi.org/10.1103/PhysRevFluids.6.050502
http://dx.doi.org/10.1017/jfm.2023.446
http://dx.doi.org/10.1017/jfm.2023.446
http://dx.doi.org/10.1017/jfm.2023.446
http://dx.doi.org/10.1016/j.ijheatfluidflow.2022.109094
http://dx.doi.org/10.1016/j.parco.2022.102982
http://dx.doi.org/10.1115/1.4064494
http://dx.doi.org/10.1016/j.jcp.2023.112173
http://dx.doi.org/10.1016/j.jcp.2023.112173
http://dx.doi.org/10.1016/j.jcp.2023.112173
http://dx.doi.org/10.1016/j.compfluid.2024.106306
http://dx.doi.org/10.1016/j.compfluid.2024.106306
http://dx.doi.org/10.1016/j.compfluid.2024.106306
http://dx.doi.org/10.1016/j.jcp.2008.03.027
http://dx.doi.org/10.1016/j.jcp.2008.03.027
http://dx.doi.org/10.1016/j.jcp.2008.03.027
http://dx.doi.org/10.1016/j.combustflame.2014.01.008
http://dx.doi.org/10.1016/j.combustflame.2024.113329
http://dx.doi.org/10.1016/j.combustflame.2024.113329
http://dx.doi.org/10.1016/j.combustflame.2024.113329
http://dx.doi.org/10.1023/A:1025669715376
http://dx.doi.org/10.1023/A:1025669715376
http://dx.doi.org/10.1023/A:1025669715376
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1103/PhysRevFluids.3.034605
http://dx.doi.org/10.1103/PhysRevFluids.3.034605
http://dx.doi.org/10.1103/PhysRevFluids.3.034605
http://dx.doi.org/10.2514/6.1999-1872
http://dx.doi.org/10.1007/978-3-030-11021-5_5
http://dx.doi.org/10.1007/978-3-030-11021-5_5
http://dx.doi.org/10.1007/978-3-030-11021-5_5
http://dx.doi.org/10.1109/CVPR.2016.90
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://dx.doi.org/10.1049/iet-ipr.2019.1438
http://dx.doi.org/10.1049/iet-ipr.2019.1438
http://dx.doi.org/10.1049/iet-ipr.2019.1438
http://dx.doi.org/10.48550/arXiv.1807.00734
http://arxiv.org/abs/1807.00734
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.48550/arXiv.1802.05799
http://arxiv.org/abs/1802.05799
http://dx.doi.org/10.48550/arXiv.1711.00489
http://arxiv.org/abs/1711.00489
http://dx.doi.org/10.48550/arXiv.1609.04836
http://dx.doi.org/10.48550/arXiv.1609.04836
http://dx.doi.org/10.48550/arXiv.1609.04836
http://arxiv.org/abs/1609.04836
http://dx.doi.org/10.5220/0011577900003335
http://dx.doi.org/10.5220/0011577900003335
http://dx.doi.org/10.5220/0011577900003335
http://dx.doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/10.48550/arXiv.1912.01703
https://github.com/onnx/onnx
http://dx.doi.org/10.1051/epjconf/202125102073
http://dx.doi.org/10.1051/epjconf/202125102073
http://dx.doi.org/10.1051/epjconf/202125102073
http://dx.doi.org/10.48550/arXiv.1705.08741
http://dx.doi.org/10.2514/6.2022-0185

	Parallel implementation and performance of super-resolution generative adversarial network turbulence models for large-eddy simulation
	Introduction
	Datasets and preprocessing description
	Patch-to-patch training strategy

	Generative adversarial network and loss function definition
	Parallelization of the training process
	superLES library for inference-coupled SR-LES simulations deployment
	Hybrid coupling between CIAO CFD solver and superLES library
	SR inference and Reynolds stress tensor computation
	Hybrid parallelization for heterogeneous cluster architectures
	Domain decomposition

	Performance analysis of distributed training approach
	Physical accuracy
	Hardware efficiency
	Processing efficiency

	Performance analysis for in-sample a posteriori LES
	Influence of domain and halo size on a posteriori accuracy
	Computational performance of the superLES library

	Conclusion
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgments
	Training data requirements for SR-GAN
	Appendix. Training data requirements for SR-GAN
	Data availability
	Appendix . Data availability
	References

