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ARTICLE INFO ABSTRACT
Keywords: Background: Per- and polyfluoroalkyl substances (PFAS) may impair bone development in adolescence, which
Bone mineral density impacts life-long bone health. No previous studies have examined prospective associations of individual PFAS
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Children
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and their mixture with bone mineral density (BMD) changes in Hispanic young persons, a population at high risk
of osteoporosis in adulthood.

Objectives: To examine associations of individual PFAS and PFAS mixtures with longitudinal changes in BMD in
an adolescent Hispanic cohort and examine generalizability of findings in a mixed-ethnicity young adult cohort
(58.4% Hispanic).

Methods: Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR;
n = 304; mean follow-up = 1.4 years) and young adults from the Southern California Children’s Health Study
(CHS; n = 137; mean follow-up = 4.1 years) were included in this study. Plasma PFAS were measured at baseline
and dual x-ray absorptiometry scans were performed at baseline and follow-up to measure BMD. We estimated
longitudinal associations between BMD and five PFAS via separate covariate-adjusted linear mixed effects
models, and between BMD and the PFAS mixture via quantile g-computation.

Results: In SOLAR adolescents, baseline plasma perfluorooctanesulfonic acid (PFOS) was associated with longi-
tudinal changes in BMD. Each doubling of PFOS was associated with an average —0.003 g/cm? difference in
change in trunk BMD per year over follow-up (95% CI: —0.005, —0.0002). Associations with PFOS persisted in
CHS young adults, where each doubling of plasma PFOS was associated with an average —0.032 g/cm? difference
in total BMD at baseline (95% CI -0.062, —0.003), though longitudinal associations were non-significant. We did
not find associations of other PFAS with BMD; associations of the PFAS mixture with BMD outcomes were pri-
marily negative though non-significant.

Discussion: PFOS exposure was associated with lower BMD in adolescence and young adulthood, important pe-
riods for bone development, which may have implications on future bone health and risk of osteoporosis in

adulthood.
bone mineral density (BMD) (Weaver et al., 2016). Bone mass accrued
1. Introduction during this time predicts peak bone density in early adulthood and de-
termines lifetime bone health (Gordon et al., 2017; Weaver et al., 2016).
Childhood and adolescence are crucial periods for development of ~ Low BMD in early adulthood is a risk factor for future development of
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osteoporosis, the most common bone disease, which affects more than
10 million adults in the US and is projected to become even greater in

Abbreviations

BMD bone mineral density

CHS Children’s Health Study

DAG directed acyclic graph

DXA dual-energy x-ray absorptiometry

FDR false discovery rate

NHANES National Health and Nutrition Examination Survey
LRT likelihood ratio test

PFAS per- and polyfluoroalkyl substances

PFDA perfluorodecanoate

PFHxS  perfluorohexane sulphonic acid

PENA perfluorononanoic acid

PFOA perfluorooctanoate

PFOS perfluorooctane sulfonate

SOLAR  Study of Latino Adolescents at Risk of Type 2 Diabetes
Usc University of Southern California

prevalence as our population ages (Office of the Surgeon General, 2004;
Wright et al., 2014). Individuals with osteoporosis are at higher rates of
bone fracture and other bone-related morbidities (Riggs and Melton,
1995; Ullom-Minnich, 1999). The prevalence of osteoporosis is higher in
Hispanic individuals than in other ethnic groups (Barrett-Connor et al.,
2005; Wright et al., 2014). This may be partially explained by factors
such as increased prevalence of diabetes in this population (Aguayo--
Mazzucato et al., 2019), which may escalate bone loss and increase risk
of osteoporosis (Wongdee and Charoenphandhu, 2011). Further, high
percentages of Hispanic adults report physical inactivity (CDC, 2023), a
modifiable risk factor for osteoporosis (Carter and Hinton, 2014),
possibly due to structural barriers such as lack of access to parks and
outdoor spaces (Ramirez et al., 2019). However, these factors do not
conclusively explain the increased rates of osteoporosis in Hispanic in-
dividuals, and studies on bone health often fail to include this ethnic
group. Because bone accrual predominantly occurs during childhood
and adolescence, it is crucial to identify risk factors that impact bone
health during these life periods, especially in vulnerable populations
such as Hispanic individuals. Identifying factors that hinder bone
accrual in youth can assist in preserving bone health at all ages and
preventing morbidities due to low BMD in adulthood.

Recent research indicates that environmental factors, including per-
and polyfluoroalkyl substances (PFAS), can adversely affect bone health.
PFAS are persistent synthetic chemicals to which most of the US popu-
lation has been exposed due to their historic use in food packaging,
cookware, and other industrial processes (Kannan et al, 2004).
Although use and production of some legacy PFAS has declined over
recent years (Agency for Toxic Substances and Disease Registry, 2022),
the chemicals persist in the environment due to resistance to degrada-
tion, bioaccumulation and their long half-lives (Fromme et al., 2009).
Humans are exposed through a variety of mechanisms, including
exposure to contaminated dust, food, and water (Fromme et al., 2009).
Analyses from the United States National Health and Nutrition Exami-
nation Survey (NHANES) found that several common PFAS are detect-
able in the serum of 97-100% of US individuals (Kato et al., 2011).

PFAS are endocrine-disrupting chemicals (Jensen and Leffers, 2008;
White et al., 2011) that alter hormonal regulation of many processes in
the body, including those involved in bone modeling. Specifically, PFAS
may disrupt pathways involved in formation and differentiation of os-
teoblasts, the cells that build new bone material (Kjeldsen and Bone-
feld-Jgrgensen, 2013; Koskela et al., 2017; Yamamoto et al., 2015).

Environmental Research 244 (2024) 117611

Exposure to PFAS has been linked with worse bone health in multiple
cross-sectional observational analyses in both child and adult pop-
ulations (Banjabi et al., 2020; Carwile et al., 2022; Cluett et al., 2019;
Fan et al., 2023; Khalil et al., 2016, 2018; Lin et al., 2014; Xiong et al.,
2022). In children, negative associations have been observed between
PFAS and bone health measures evaluated via bone quantitative ultra-
sounds (Khalil et al., 2018) and dual-energy x-ray absorptiometry (DXA)
(Carwile et al., 2022; Cluett et al., 2019) in primarily non-Hispanic
White individuals. In NHANES adults and adolescents, higher serum
PFAS concentrations have been associated with lower BMD (Carwile
et al., 2022; Khalil et al., 2016; Lin et al., 2014; Xiong et al., 2022).
Recent analyses in racially homogeneous Faroese and Danish birth co-
horts have demonstrated negative impacts of early childhood PFAS
exposure on BMD (e.g., 12 years old or younger) (Blomberg et al., 2022;
Hgjsager et al., 2022). Emerging studies have also evaluated associations
between PFAS and bone-related outcomes such as osteoporosis and
increased fracture rate (Banjabi et al., 2020; Fan et al., 2023; Xu et al.,
2023). Many existing studies have limitations including: 1)
cross-sectional designs, and thus the inability to establish temporality in
the PFAS—BMD association; 2) analyses that evaluated PFAS individu-
ally, without accounting for their correlation and mixture effect; 3)
study populations that were primarily focused on older adults or young
children, as opposed to the sensitive BMD development periods in
adolescence and young adulthood; and/or 4) inclusion of homogenous
populations with a lack of Hispanic participants, typically focused on
individuals of European ancestry, therefore reducing generalizability of
results to diverse populations.

The present study is the first to examine associations of individual
PFAS and their mixture with longitudinal changes in BMD during
adolescence and early adulthood, a critical period for bone develop-
ment. We focused primarily on Hispanic individuals, a population that is
understudied in this area of research and is at increased risk of low BMD
and osteoporosis later in life. To examine generalizability of findings
across different life periods, we evaluated two independent cohorts:
Hispanic adolescents, and mixed-ethnicity young adults. We hypothe-
sized that PFAS would be associated with lower BMD in adolescence,
and these associations persist into young adulthood.

2. Materials and methods
2.1. Study populations

2.1.1. The SOLAR cohort

As described previously, the study included 328 Hispanic youth from
urban Los Angeles, CA, who were recruited in two waves between 2001
and 2012 (Goodrich et al., 2021, 2023; Goran et al., 2004). Participants
were primarily recruited through local metabolic clinics, as well as via
health fairs, local advertisements, and word of mouth. Subjects were
included if they were between 8 and 13 years old, had self-reported
Hispanic or Latino ancestry of all four grandparents, had a body mass
index (BMI) > the 85th percentile for age and sex based on Centers for
Disease Control and Prevention standards, had a family history of type 2
diabetes in at least one parent, and had an absence of type 1 or type 2
diabetes. Participants were excluded if they were taking medications
known to affect insulin or glucose metabolism.

Participants underwent annual visits at the University of Sothern
California (USC) General Clinic Research Center or Clinical Trials Unit
for an average of 3.4 years. In the current study, analysis was subset to
the participants’ first and second visits only. Of 328 participants, 304
had available measurements of plasma PFAS and bone mineral density
at baseline and were included in the analysis (Fig. S1). Of these, 226 had
complete data from a second visit. This study was approved by the USC
Institutional Review Board. Written informed assent and consent were
obtained from participants and their parents, respectively.



E. Beglarian et al.

2.1.2. The CHS cohort

Between 2014 and 2018, 158 participants between 17 and 22 years
old who participated in the Southern California Children’s Health Study
(McConnell et al., 2015) participated in the Meta-AIR study, as
described previously (Goodrich et al., 2021, 2023; Kim et al., 2019).
Subjects were included if they had a history of overweight or obesity in
early adolescence, had not been diagnosed with type 1 or type 2 dia-
betes, were not taking medications that were known to affect glucose
metabolism, and did not have any other medical conditions. Between
2020 and 2022, participants were invited for a follow-up visit. All study
visits took place at the Diabetes and Obesity Research Institute at USC.

Of 158 participants at baseline, 137 had available measurements of
both plasma PFAS and bone mineral density and provided consent for
future use of biospecimens and were included in the analysis (Fig. S1).
Of these, 79 had complete data from a second visit. This study was
approved by the USC Institutional Review Board. Written informed
consent was obtained from participants.

2.2. PFAS measures

PFAS concentrations were measured from plasma samples collected
at baseline. Details on method parameters for these measurements have
been previously described (Goodrich et al., 2022, 2023). In brief, levels
of 5 PFAS were quantified using liquid chromatography mass spec-
trometry. The PFAS analyzed in the current study included per-
fluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA),
perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and
perfluorohexane sulphonic acid (PFHxS). The limits of detection (LOD)
for PFOS, PFOA, PFNA, PFDA, and PFHxS were 0.02, 0.01, 0.10, 0.20,
and 0.03 pg/L, respectively. Of these PFAS, PFDA was the only substance
that had values below the LOD, and values below the LOD were imputed

as LOD/ V2. Measurement units were pg/L.

2.3. Bone mineral density measurements

Trained technicians performed DXA scans at all visits for both co-
horts. In the SOLAR cohort, a whole-body scan was performed on the
Hologic QDR 4500 W. Outcomes of interest were total body BMD and
trunk BMD, which excludes limb and head BMD measures, at baseline or
follow-up. The CHS cohort utilized the Hologic QDR 4500 W or Horizon
W models at baseline and the Horizon W model at follow-up. Outcomes
of interest were total body BMD and lumbar spine BMD at baseline and
follow-up, following the recommendations of the World Health Orga-
nization for adults (Sozen et al., 2017). Lumbar BMD measures were not
available for the SOLAR cohort. Measurements were expressed in g/cm?.

2.4. Covariates

In both cohorts, participants (and/or their guardians) completed
questionnaires regarding demographic information, as described pre-
viously (Goran et al., 2004; Kim et al., 2019; Weigensberg et al., 2003).
Age, sex, and parental education level (less than high school, high school
graduate, more than high school, or missing) were collected for partic-
ipants in both cohorts. Additionally, CHS participants self-identified
their race, with the categories including non-Hispanic White, Hispan-
ic, and other.

In the SOLAR cohort, a physical examination was performed by a
physician at each annual visit to measure child height and weight and
determine participants’ Tanner stage (Marshall and Tanner, 1969,
1970). In brief, individuals can be categorized into 1 of 5 categories,
from Tanner 1 (prepuberty) to Tanner 5 (post puberty).

2.5. Statistical analysis

Descriptive statistics were calculated for both cohorts’ characteristic

Environmental Research 244 (2024) 117611

at the baseline and follow-up visits; t-tests and chi-squared tests were
utilized to test for differences in continuous and categorical values,
respectively, between visits. Geometric means and standard deviations
of baseline PFAS values were quantified for each cohort, as well as the
10th and 90th percentile of exposure to each PFAS. Distributions of the
BMD outcome variables were calculated within each cohort.

To examine associations of each individual baseline plasma PFAS
with changes in BMD, we utilized linear mixed-effect models with
individual-level random intercepts within each cohort. This modeling
strategy allows for inclusion of data from each participant, despite
missing values or irregularly-spaced measurements (Diggle et al., 1994),
including participants with only one (i.e., baseline) measurement of
BMD. To begin, each PFAS was evaluated in separate models. Each BMD
outcome was modeled as a function of age (centered at 10 years for
SOLAR and 18 years for CHS) and PFAS exposure, with a random
intercept to account for two visits per participant. Specifically, for i =
{1,...,N} individuals and j = {1, 2} visits, we used the following model:

Y=y, + v, PFAS; +y,Age; + ysPFASAge; + w; + &,

where w; ~ N(0,0,) is the random intercept for each participant and
&; ~ N(0,0.) are the residuals. In line with previous analyses (Blomberg
et al., 2022; Cluett et al., 2019; Hgjsager et al., 2022), PFAS were log-2
transformed to aid in interpretation of model parameters. Specifically,
the main effect, or y,, represents the difference in baseline BMD outcome
(in g/cm?) per doubling of baseline PFAS exposure, while the age
interaction effect, or y3, represents the longitudinal change in BMD
outcome (in g/cm?) per year per each doubling of baseline PFAS
exposure.

Covariates included in the models were selected via a directed
acyclic graph (DAG; Fig. S2) and included sex, race/ethnicity (for the
CHS cohort), and parental education (as a proxy of socioeconomic sta-
tus). Additionally, models in the SOLAR cohort were adjusted for study
wave and Tanner stage. Body mass index was not controlled for as it may
be on the causal pathway between PFAS and BMD (Geiger et al., 2021;
Palermo et al., 2016). Based on previous research on PFAS and BMD
(Blomberg et al., 2022; Hgjsager et al., 2022; Khalil et al., 2016; Lin
et al., 2014; Xiong et al., 2022), we hypothesized that associations may
differ by sex and therefore performed secondary sex-stratified analyses
for each chemical. Before modeling, we assessed linearity of associations
using general additive models after log-2 transformation of PFAS.

Significance of associations between total PFAS exposure and BMD
outcomes were assessed using likelihood-ratio tests (LRTs) comparing
the full model (i.e., the model with PFAS exposure and covariates) to the
null model (i.e., the model with only covariates). LRTs had two degrees
of freedom and tested whether the cumulative effects of y; and y4
improved the model compared to the model without these parameters.
Significance threshold for p-values was <0.05. To account for multiple
comparisons, false discovery rate (FDR)-adjusted p-values were calcu-
lated with the Benjamini-Hochberg method (Benjamini and Hochberg,
1995) within each cohort. P-values were adjusted within each BMD
outcome as we hypothesized a priori that both total BMD and
site-specific BMD were important predictors of bone health. We
considered findings to be robust if their adjusted p-value was <0.20.

Estimated marginal means were calculated to compare hypothetical
individuals at the 10th and 90th percentiles for each PFAS exposure. The
marginal means and 95% confidence intervals (CIs) for each BMD site
were calculated at the median age for each visit in both cohorts, while
controlling for the previously mentioned covariates. Differences be-
tween groups were calculated and t-tests evaluated whether the differ-
ences between groups was significantly different from 0 with a p-value
significance threshold of <0.05. Data analysis was performed in R
(version 4.2.2; R Development Core Team).
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2.6. Mixtures analysis

We estimated associations of the cumulative PFAS mixture with
change in BMD outcomes via quantile g-computation, a parametric
approach based on generalized linear models used to estimate mixture
effects (Keil et al., 2020). Quantile g-computation estimates the change
in potential outcome per 1-quantile increase in each component of the
mixture while adjusting for covariates. The mixture included the PFAS
of interest: PFOS, PFOA, PFNA, PFDA, and PFHxS. The outcome vari-
ables of interest within each cohort were change in each BMD outcome
measure per year, calculated as: BMD yisit2) —
BMD (yisit1) /follow — up timeyears). Only participants with information
for both visits were included in the mixtures analysis (n = 226 for
SOLAR and n = 79 for CHS). Covariates included were those used in the
primary analysis, selected via DAG.

Quantile g-computation utilizing linear regression estimated the
following parameters: the overall mixture effect, ¥, interpreted as the
difference in BMD change per year per quartile increase in all PFAS in
the mixture (similar to y5 in the mixed modeling approach); the direc-
tional effect of each PFAS (positive or negative); and the absolute effect
of each PFAS, interpreted as each PFAS’s contribution to . A p-value
significance threshold of <0.05 was used to identify whether each
mixture effect (¥) was significantly different from 0. The mixtures
analysis was performed using the R package “qgcomp”.

2.7. Sensitivity analyses
We conducted two sensitivity analyses to assess the robustness of our
significant findings in the linear mixed modeling and mixtures ap-

proaches and address potential uncertainties in the structure of the DAG.

Table 1
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First, because DXA scans are 2-dimensional and estimate measures may
be affected by bone size (Alawi et al., 2021), and therefore may require
additional adjustment (Crabtree et al., 2014), we further adjusted
models to account for participant height to evaluate whether
height-adjusted estimates remained significant. Second, to ensure that
effect estimates were not being heavily influenced by individuals with
measures from only one visit (i.e. baseline visit with no follow-up), we
constrained the analysis to only individuals with two visits. This step
was not necessary in the mixtures analysis, which only included par-
ticipants with both visits.

3. Results
3.1. Characteristics of study populations

Descriptive statistics of the study populations at baseline and follow-
up are provided in Table 1; outcome variables are further stratified by
sex in Table S2. In SOLAR, participants were (mean + SD) 11.3 + 1.7
years old at baseline and 42.4% male, with the majority (47.4%) having
parents with less than a high school education. There were no significant
differences in demographic characteristics between baseline and the
average 1.4 + 0.9 years of follow-up, excluding age and Tanner stage,
which is expected as participants matured between visits. Both total
BMD and trunk BMD significantly increased between visits (both p <
0.001). The average changes in total BMD and trunk BMD per year were
0.057 =+ 0.040 g/cm? and 0.048 + 0.040 g/cm?, respectively.

In CHS, participants were 19.9 + 1.3 years old at baseline, 58.4%
Hispanic, and 55.5% male, with the majority (66.4%) of participants
having parents with more than a high school education. No significant
differences were found in demographic characteristics between baseline
and the 4.1 + 1.1 years of follow-up, excluding age. Total BMD

Baseline participant characteristics in Hispanic adolescents with overweight and obesity from the SOLAR cohort and young adults with a history of adolescent obesity

from the CHS cohort.

SOLAR

Participant characteristics Baseline (n = 304)

Mean =+ SD or n (%)

Follow-up (n = 226)
Mean =+ SD or n (%)

Age (y) 11.3+1.7 12.7 + 2.0
Sex
Male 129 (42.4) 96 (42.5)
Female 175 (57.6) 130 (57.5)
Ethnicity 304 (100.0) 226 (100.0)
Hispanic
Non-Hispanic
Other
Parent education
Less than high school 144 (47.4) 106 (46.9)
High school grad 88 (28.9) 68 (30.1)
More than high school 41 (13.5) 24 (10.6)
Missing 31 (10.2) 28 (12.4)
Tanner stage
1 (Prepuberty) 93 (30.6) 40 (17.7)
2 (Early puberty) 114 (37.5) 52 (23.0)
3 (Puberty) 39 (12.8) 31(13.7)
4 (Late puberty) 38 (12.5) 59 (26.1)
5 (Post puberty) 20 (6.6) 44 (19.5)
Study wave
First wave 226 (74.3) 183 (81.0)
Second wave 78 (25.7) 43 (19.0)
Follow-up time (y) - 1.4 + 0.9
BMD (g/cm?)
Total body 0.927 + 0.101 1.005 + 0.128
Trunk 0.747 + 0.094 0.812 + 0.118
Lumbar
BMD change/year (g/cm?)” -
Total body 0.057 + 0.040
Trunk 0.048 + 0.040
Lumbar

CHS
p-value® Baseline (n = 137) Follow-up (n = 79) p-value”
Mean =+ SD or n (%) Mean =+ SD or n (%)
<0.001 199+1.3 24.0 £0.7 <0.001
0.99 0.30
76 (55.5) 38 (48.1)
61 (44.5) 41 (51.9)
1.00 0.85
80 (58.4) 44 (55.7)
49 (35.8) 29 (36.7)
8(5.8) 6 (7.6)
0.68 0.99
25 (18.2) 13 (16.5)
17 (12.4) 10 (12.7)
91 (66.4) 54 (68.4)
4(2.9) 2 (2.5)
<0.001 - - -
0.09 - - -
- 41+1.1
<0.001 1.186 + 0.111 1.223 £+ 0.115 0.02
<0.001
1.143 £+ 0.242 1.161 + 0.165 0.50
0.010 + 0.009
0.000 + 0.032

@ p-values calculated with independent t-tests for continuous variables and Pearson’s chi-square tests for categorical variables, respectively.
b Yearly change values calculated as BMDgol1ow-up) — BMD(baseline)/follow-up time (years).
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increased significantly between visits (p = 0.02), with an yearly change
of 0.010 + 0.009 g/cm? Lumbar BMD did not change significant be-
tween visits (p = 0.50), with an yearly change of 0.000 + 0.032 g/cm?2.

Plasma PFAS concentrations at baseline are provided in Table 2.
Concentrations of all PFAS were lower in the CHS cohort than the
SOLAR cohort. In both cohorts, participants had the highest levels of
PFOS, followed by PFOA and PFHxS. Significant positive correlations
were found between multiple PFAS in both cohorts (p < 0.001;
Table S1).

3.2. PFAS—BMD associations in adolescents (SOLAR cohort)

3.2.1. Individual PFAS-BMD associations in adolescents

In the SOLAR cohort, exposure to PFOS was associated with lower
yearly changes in trunk BMD over the follow-up period (LRT y? = 7.52,
p = 0.02, FDR p = 0.12; Table 3). Each doubling of plasma PFOS was
associated with an average —0.003 g/cm? difference in change in trunk
BMD per year (95% CI: —0.005, —0.0002). At baseline, there was no
significant difference in trunk BMD between individuals in the 10th and
90th percentiles of PFOS exposure, but at follow-up, individuals in the
90th percentile differed by —0.043 g/cm? in compared to those in the
10th percentile (p = 0.04; Fig. 1a; Table S3). Total BMD followed a
similar trend, but associations were non-significant as PFOS terms did
not improve the model compared to the null model (LRT y? = 3.23, p =
0.20, FDR p = 0.50; Table 3). Individuals in the 90th exposure percentile
at follow-up differed by —0.042 g/cm? total BMD compared to those in
the 10th percentile, though this association did not reach statistical
significance (p = 0.08; Table S3). No other associations between PFAS
and BMD reached statistical significance (Table 3).

3.2.2. Sex-specific individual PFAS-BMD associations in adolescents

In males in SOLAR, PFOS exposure was associated with lower
changes in trunk BMD after adjusting for multiple comparisons (LRT >
= 8.88, p = 0.01, FDR p = 0.06; Table S4). Each doubling of PFOS was
associated with an average of —0.004 g/cm2 (95% CI: —0.006, —0.001)
yearly change in trunk BMD. Similarly, PFOA demonstrated associations
with lower changes in trunk BMD after adjustment (LRT y? = 7.15, p =
0.03, FDR p = 0.07; Table S4) and each doubling of PFOA was associated
with an average —0.005 g/cm? (95% CI: —0.009, —0.001) change in
trunk BMD per year. No other associations between PFAS and BMD
reached statistical significance in either females or males (Table S4).

3.2.3. Mixture models

In SOLAR, the PFAS mixture was negatively associated with lower
change in BMD per year, though most associations did not reach sta-
tistical significance (Table 4 and S5). In SOLAR males, the PFAS mixture
was significantly associated with lower total BMD change per year: per
each quartile increase in all PFAS, average total yearly BMD change
differed by —0.008 g/cm2 (95% CI -0.016, —0.001; Table 4 and S5).

Table 2

Baseline plasma levels of PFAS (ng/mL) in n = 304 Hispanic adolescents with
overweight and obesity from the SOLAR cohort and n = 137 young adults with a
history of adolescent obesity from the CHS cohort.

SOLAR CHS
PFAS Geometric [10th, 90th Geometric [10th, 90th

mean (SD) percentile] mean (SD) percentile]
PFOS 11.6 (2.2) [3.1, 27.1] 3.3(1.6) [1.9, 6.1]
PFOA 3.3(1.8) [1.5, 6.7] 1.3(1.49) [0.9, 2.1]
PFNA 0.6 (1.4) [0.4, 0.9] 0.5 (1.3) [0.3, 0.7]
PFDA 0.2 (1.6) [0.2, 0.4] 0.2 (1.8) [0.1, 0.3]
PFHxS 1.4 (2.0) [0.6, 3.3] 1.121) [0.5, 3.1]
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3.3. PFAS—BMD associations in young adults (CHS cohort)

3.3.1. Individual PFAS-BMD associations in young adults

PFOS exposure demonstrated an association with lower total BMD at
baseline in the CHS cohort. Each doubling of plasma PFOS was associ-
ated with an average —0.032 g/cm? difference in total BMD (95% CI
-0.062, —0.003), though rates of change over follow-up were non-
significant and the overall model failed to reach significance (LRT y2
=5.00, p = 0.08, FDR p = 0.41; Table 5). At baseline, those in the 90th
percentile of PFOS exposure differed by —0.051 g/cm? total BMD than
those in the 10th percentile (p = 0.043; Fig. 1b; Table S6). At follow-up,
differences between the groups were similar but did not reach the
threshold for statistical significance; those with higher exposure had a
—0.041 g/cm? difference in total BMD than those with lower exposure
(p = 0.10). Associations between PFOS and lumbar BMD were non-
significant and BMD associations with other PFAS did not reach statis-
tical significance (Table 5).

3.3.2. Sex-specific individual PFAS associations in young adults

In CHS females, PFDA exposure was associated with lower changes in
total BMD: females had an average —0.004 g/cm? change in total BMD
per year with each doubling of plasma PFDA (95% CI: —0.007,
—0.0001), though the overall model failed to reach significance (LRT y2
= 5.37, p = 0.068, FDR p = 0.33; Table S7). In CHS males, however,
exposure to PFOS was associated with higher changes in total BMD after
adjustment for multiple comparisons (LRT 42 = 6.58, p = 0.037, FDR p
= 0.19; Table S7). Each doubling of PFOS was associated with an
average increase of 0.005 g/cm2 in total BMD per year (95% CI: 0.0003,
0.011). Associations between other PFAS and BMD in either females or
males were non-significant (Table S7).

3.3.3. PFAS mixture models

The PFAS mixture was not significantly associated with change in
BMD in CHS, though associations were primarily negative (Table 4 and
S8). In CHS females, each quartile increase in all PFAS was associated
with a —0.003 g/cm? difference in total yearly BMD change, though this
association did not reach statistical significance (95% CI -0.006, 00001;
Table 4 and S8).

3.4. Sensitivity analyses

In the sensitivity analysis to examine associations after adjustment
for participant height, results remained largely unchanged in both co-
horts in regards to individual PFAS associations (Tables S9 and S10) and
mixtures associations (Tables S11 and S12). Similarly, in the sensitivity
analysis to examine associations exclusively in participants with two
visits, results of individual PFAS associations remained qualitatively
unchanged in both cohorts (Tables S9 and S10).

4. Discussion

To our knowledge, this is the first study to evaluate the associations
of exposure to individual PFAS and their mixture with longitudinal
changes BMD in adolescence and young adulthood, two important pe-
riods of bone development and accrual that predict life-long bone
health. Additionally, this is the first study to include primarily Hispanic
participants. We found that adolescents with higher PFOS exposure
exhibited lower changes in trunk BMD between visits. In these adoles-
cents, the mixture of all five PFAS was associated with negative, non-
significant changes in BMD per year; in males, the mixture was signifi-
cantly associated with lower change in total BMD per year. Associations
with PFOS were further supported in the young adult cohort, where
PFOS was associated with lower total BMD at baseline, though not
associated with change in total BMD per year. Negative associations
with longitudinal BMD outcomes were also demonstrated by PFOA and
PFDA in sex-specific analyses, and the associations of the PFAS mixture
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Table 3
Adjusted associations between PFAS with changes in BMD outcomes in Hispanic adolescents with overweight and obesity from the SOLAR cohort (n = 304).
Trunk BMD Total BMD

PFAS Main effect” (95% CI) Age Interaction” (95% CI)  z? - FDRp’  Main effect’ (95% CI) Age Interaction” (95% CI) 2 P FDR p‘
PFOS —0.007 (—0.021, 0.007) —0.003 (—0.005, —0.0002) 7.52 0.02 0.12 —0.012 (—0.027, 0.003) —0.000 (—0.003, 0.002) 3.23 0.20 0.50
PFOA —0.002 (—0.015, 0.011) —0.002 (—0.005, 0.001) 2.50 0.29 0.49 —0.007 (—0.021, 0.008) 0.001 (—-0.002, 0.005) 0.93 0.63 0.83
PENA 0.002 (—-0.017, 0.022) 0.001 (—0.005, 0.007) 0.47 0.79 0.82 0.009 (—0.012, 0.030) —0.002 (—0.009, 0.004) 0.82 0.66 0.83
PFDA —0.003 (—0.017, 0.010) 0.003 (—0.001, 0.008) 2.44 0.29 0.49 0.001 (—0.013, 0.016) 0.001 (—0.004, 0.005) 0.21 0.90 0.90
PFHxS 0.003 (—0.006, 0.012) —0.000 (—0.003, 0.002) 0.41 0.82 0.82 0.003 (—0.008, 0.013) 0.003 (—0.000, 0.005) 5.01 0.08 0.41

2 Estimates represent the change in BMD (in g/cm?) per each doubling of the PFAS substance at baseline.
b Interaction term between age (centered on 10) and each PFAS substance; estimates represent the change in BMD (in g/cm?) per year per each doubling of the PFAS

substance.

¢ p-value for likelihood-ratio y? testing nested models. For detailed description of statistical models, see main text.
4 False Discovery Rate (FDR) corrected p-value for likelihood-ratio y2. A value < 0.20 was considered statistically significant.
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Fig. 1. Association between a) plasma PFOS and trunk BMD at the median age for baseline and follow-up visits for n = 226 Hispanic adolescents with overweight and
obesity recruited from Sothern California between 2001 and 2012 (SOLAR cohort); and b) plasma PFOS and total BMD at the median age for baseline and follow-up
visits for n = 79 young adults recruited from the Children’s Health Study between 2014 and 2018 (CHS cohort). Figure represents point estimates and 95% con-
fidence intervals for BMD at each age calculated using linear mixed effect models corrected for a) sex, parental education, Tanner stage, and study wave; and b) sex,
ethnicity, and parental education. * denotes p-values for differences <0.05, calculated using t-statistics to evaluate whether the difference between individuals with
low (10th percentile) vs. high (90th percentile) of PFOS was significantly different from 0.

Table 4

Adjusted associations® between the PFAS mixture” with yearly change in BMD
outcomes (g/cm?/year) in Hispanic adolescents with overweight and obesity
from the SOLAR cohort estimated via quantile g-computation, overall and by
sex, and young adults with a history of adolescent obesity from the CHS cohort,
overall and by sex.

SOLAR CHS

Subset Trunk BMD  Total BMD n Lumbar Total BMD n
(95% CI) (95% CI) BMD (95% 95% CI)

CD

Cohort —0.002 —0.004 226  —0.003 —0.001 79
(-0.010, (-0.011, (-0.013, (—0.004,
0.005) 0.003) 0.006) 0.002)

Females —0.008 —0.007 96 —0.004 —0.003 41
(-0.022, (-0.021, (-0.017, (—0.006,
0.006) 0.007) 0.008) 0.00001)

Males —0.004 —0.008 130 0.001 0.000 38
(-0.012, (-0.016, (-0.016, (—0.004,
0.004) —0.001) 0.019) 0.004)

2 Estimates (95% CI) represent the change in BMD (in g/cm?) per 1-quantile
increase in each component of the mixture while adjusting for covariates. In-
tervals that do not contain 0 are considered statistically significant with p <
0.05.

> PFAS mixture included PFOS, PFOA, PFNA, PFDA, and PFHxS.

with change in BMD per year were primarily negative (though non-
significant). These results support the hypothesis that PFAS impair
bone development and bone mineral density during adolescence, and
these associations persist into adulthood.

Our results demonstrate that PFAS have similar impacts on BMD as
substances with established osteotoxicity that have been associated with

increased likelihood of bone fracture or osteoporosis in later life (Briot
and Roux, 2015; Mortimer et al., 2005; Wang et al., 2019). For example,
one study on corticosteroids, drugs that have been demonstrated to
negatively affect bone health, found that each doubling of inhaled
corticosteroid dose was associated with an average 0.032 lower g/cm?
lumbar BMD in adults with asthma (Wong et al., 2000). We found
similar results for exposure to PFOS in our analysis, where each doubling
of PFOS was associated with an average 0.032 g/cm? baseline lower
total BMD in young adults. Additionally, environmental toxicants such
as lead have demonstrated reductions in BMD in studied populations. In
NHANES children from 2005 to 2010, each 1 mg/dl increase of blood
lead levels was associated with an average 0.011 g/cm? decrease in total
spine BMD (Cui et al., 2022). Our findings imply that PFAS may have
similar harmful impacts on BMD as other established substances,
including exposure to other environmental toxicants. Individuals with
higher PFAS exposure may have lower BMD through childhood and
adolescence, which may lead to higher rates of bone fractures or other
injuries during this time period (Clark et al., 2006). Low BMD in
adolescence may additionally lead to higher rates of osteoporosis and
bone fractures in later adulthood, an important concern for our aging
population (Rowe et al., 2022). PFAS should be considered in addition to
other established osteotoxic substances when developing policies and
interventions to preserve bone health at all ages.

4.1. Previous evidence

Our study contribute longitudinal findings to previous evidence
demonstrating negative relationships between PFAS and bone health
outcomes in both adults and children. In adults, a cross-sectional study
of NHANES individuals from 2005 to 2008 demonstrated an average



E. Beglarian et al.

Environmental Research 244 (2024) 117611

Table 5
Adjusted associations between PFAS with changes in BMD outcomes in young adults with a history of adolescent obesity from the CHS cohort (n = 137).
Lumbar BMD Total BMD

PFAS Main effect” (95% CI) Age Interaction” (95% CI) 2 e FDRp!  Main effect’ (95% CI) Age Interaction” (95% CI) 2 - FDR p
PFOS 0.000 (—0.068, 0.069) 0.001 (-0.009, 0.011) 0.04 0.98 0.98 —0.032 (-0.062, —0.003) 0.001 (—0.001, 0.004) 5.00 0.08 0.41
PFOA 0.011 (—0.073, 0.094) —0.001 (—0.014, 0.012) 0.07 0.97 0.98 —0.017 (-0.053, 0.020) —0.001 (—0.005, 0.003) 1.54 0.46 0.67
PENA —0.077 (—0.189, 0.034) 0.003 (—0.016, 0.023) 2.17 0.34 0.98 —0.042 (—0.090, 0.006) 0.002 (—0.004, 0.008) 3.10 0.21 0.53
PFDA —0.033 (—0.089, 0.023) 0.005 (—0.006, 0.016) 1.43 0.49 0.98 —0.008 (—0.031, 0.015) 0.000 (—0.003, 0.003) 0.50 0.78 0.78
PFHxS 0.003 (—0.037, 0.044) —0.000 (—0.006, 0.006) 0.03 0.98 0.98 —0.009 (-0.027, 0.008) —0.000 (—0.002, 0.002) 1.26 0.53 0.67

2 Estimates represent the change in BMD (in g/cm?) per each doubling of the PFAS substance at baseline.
b Interaction term between age (centered on 10) and each PFAS substance; estimates represent the change in BMD (in g/cm?) per year per each doubling of the PFAS

substance.

¢ p-value for likelihood-ratio y? testing nested models. For detailed description of statistical models, see main text.
4 FDR corrected p-value for likelihood-ratio y2. A value < 0.20 was considered statistically significant.

0.022 g/cm? decrease in lumbar BMD per each unit increase of natural
log-transformed PFOS in premenopausal women (Lin et al., 2014). A
later NHANES analysis of adolescents and adults from 2009 to 2010
demonstrated negative associations between serum PFOS and femoral
neck BMD in men, and between serum PFOS and PFOA and femur BMD
in women (Khalil et al., 2016). A longitudinal analysis of almost 300
overweight/obese adults found PFOS, PFNA, and PFDA to be associated
with greater reductions of BMD in the hip (Hu et al., 2019). In children,
observational findings have also demonstrated negative relationships
between PFAS and BMD. The cross-sectional analysis of participants
aged 6-10 in the Project Viva cohort found that higher concentrations of
serum PFOA, PFOS, and PFDA were associated with lower BMD z-scores
(Cluett et al., 2019). A study of obese 8-12 year old children exhibited a
negative relationship between serum PFNA and bone density assessed by
bone qualitative ultrasounds (Khalil et al., 2018). Few studies have
longitudinally evaluated the PFAS-BMD association in child pop-
ulations, and cohorts typically contain racially-homogenous children. A
study following 366 children in the Faroese Cohort over 9 years iden-
tified a negative relationship between PFNA and BMD z-scores at age 5,
though associations were no longer significant at age 9 (Blomberg et al.,
2022). More recently, early postnatal exposure to PFDA was associated
with lower BMD z-scores at age 7 in the Odense Child Cohort (Hgjsager
et al., 2022). Evidence from our study supports the relationships
established in previous studies and contributes longitudinal findings
from primarily Hispanic adolescents and young adults to the literature.

Experimental evidence supports the hypothesis that PFAS have a
negative effect on BMD. PFAS are endocrine-disrupting chemicals
(White et al., 2011) that alter hormonal regulation of many processes in
the body, including bone modeling. PFAS have been shown to activate
peroxisome proliferator-activated receptor gamma (PPARY), stimulating
mesenchymal stem cell differentiation into adipocytes instead of oste-
oblasts (Lecka-Czernik et al., 2002; Yamamoto et al., 2015). Addition-
ally, PFAS act as antagonists of androgen receptors that regulate
androgen-mediated osteoblastogenesis (the production of osteoblasts),
which may inhibit osteoblast formation (Kjeldsen and Bone-
feld-Jprgensen, 2013). Lower levels of osteoblasts may disrupt the ho-
meostasis of bone remodeling and lead to increased bone resorption by
osteoclasts, resulting in lower BMD. PFAS may also impact BMD by
persisting in bone tissues; human autopsy studies have demonstrated
concentrations of PFAS in bone, implying that the substances accumu-
late in bone tissue and may lead to osteotoxicity (Koskela et al., 2017;
Pérez et al., 2013).

4.2. Sex-specific associations

Sex-specific analyses also demonstrated that both PFOS and PFOA
were negatively associated with yearly change in trunk BMD in males in
the adolescent cohort, and PFDA was negatively associated with yearly
change in total BMD in females in the young adult cohort. Previous
studies have reported sex-specific differences in PFAS-BMD associations

(Blomberg et al., 2022; Hgjsager et al., 2022; Khalil et al., 2016; Lin
et al., 2014; Xiong et al., 2022). Unexpectedly, in the adolescent CHS
population, PFOS demonstrated a significant positive association with
total yearly BMD change in males. These results contradict the general
findings in both the CHS and SOLAR cohorts that PFOS is negatively
associated with BMD at baseline and over time. Due to the small sample
size after stratification (n = 38), it is possible that associations may have
been spurred by participants with high BMD values. Repeated analyses
with a larger sample size are warranted.

4.3. Strengths and limitations

Several limitations are worth noting. First, the small sample sizes in
each cohort likely reduced statistical power to detect associations,
especially after stratifying for sex-specific models. Second, PFAS mea-
sures can change over time, and exposure was only measured at one
timepoint in the current analysis. New research has demonstrated that
prenatal (Buckley et al., 2021; Hgjsager et al., 2022) and early childhood
(Blomberg et al., 2022; Hgjsager et al., 2022) PFAS exposures have been
associated with lower BMD, but we were only able to collect plasma
PFAS values in adolescence/young adulthood. However, PFAS have long
biological half-lives (Fenton et al., 2021), meaning that measurement at
one time is likely sufficient to provide a good estimate of long-time
exposure, and exposure misclassification risk is likely low. A third lim-
itation is related to the different measures of BMD sites between cohorts,
which creates the inability to compare effect estimates across the two
groups. The SOLAR cohort is a historical cohort, and information on
lumbar BMD measurements was not available, though the more general
measure of trunk BMD was. Although both are relevant measures of
BMD that exclude limb measurements, lumbar BMD is preferred for
clinical diagnostics (Sozen et al., 2017). Finally, despite adjustment for
known confounders such as sex, parental education, and race (when
applicable), it is possible that unmeasured factors may have caused re-
sidual confounding and impacted the true relationship between expo-
sure and outcome.

Despite these limitations, strengths of the study should be recog-
nized. Our study is the first to our knowledge to evaluate the relationship
between PFAS and longitudinal changes in BMD in childhood and young
adulthood, two important periods of bone accrual that impact bone
health throughout the lifespan. A primary strength in this analysis is the
repeated measurements of BMD, and the ability to establish temporality
due to measurement of PFAS at baseline and BMD at both baseline and
follow-up. Most of the previous studies on this topic have been cross-
sectional, collecting values of PFAS and BMD at the same time point,
meaning that temporality of the relationship cannot be established, and
reverse causation is impossible to rule out. Additionally, the repeated
BMD measures were collected using dual x-ray absorptiometry, the gold-
standard method for measuring BMD to diagnose osteoporosis (Roux
and Briot, 2017). These measures are preferred over other methods such
as bone qualitative ultrasounds, which have been used in other studies
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on children (Di Nisio et al., 2020; Khalil et al., 2018). Finally, a major
strength of this project was the inclusion of mixed-ethnicity participants.
While most other studies on this topic contain populations that were
non-Hispanic White, the SOLAR and CHS cohorts were 100% and 58.4%
Hispanic, respectively. Due to structural and environmental racism, in-
dividuals of Hispanic/Latino ethnicity may bear the burden of increased
environmental health risks such as poorer air or water quality (Quin-
tero-Somaini et al., 2004). For example, the US Government Account-
ability Office found that “disadvantaged communities” (defined by
percentages of the populations that identified as low income and that
identified as non-White or Hispanic/Latino) were more likely to have
PFAS in their drinking water in some states (U. S. Government
Accountability Office, 2022). Therefore it is of utmost important to
include minority populations in research as opposed to generalize
findings found in non-Hispanic White populations.

5. Conclusions

In two independent cohorts of adolescents and young adults, PFOS
was associated with lower BMD. In a cohort of overweight/obese His-
panic adolescents, PFOS was associated with lower yearly change in
trunk BMD during puberty. In a cohort of mixed-ethnicity young adults,
PFOS was associated with lower total BMD at baseline, though longi-
tudinal associations were not significant. These results suggest that
minimizing PFAS exposure in adolescence may improve adolescent bone
density, thereby preserving bone health at all ages and leading to long-
term reductions in osteoporosis and fractures later in life. Developing
interventions to prevent disturbance of BMD development or treat those
with lower BMD before morbidities develop has the potential to signif-
icantly improve individual quality of life, and is of utmost important in
at-risk ethnic groups such as Hispanic individuals.
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