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Abstract—Pareto optimal solutions are conceived for radar
beamforming error (RBE) and sum rate maximization in short-
packet (SP) millimeter-wave (mmWave) integrated sensing and
communication (ISAC). Our ultimate goal is to realize ultra-
reliable low-latency communication (uRLLC) and real-time sens-
ing capabilities for 6G applications. The ISAC base station (BS)
transmits short packets in the downlink (DL) to serve multiple
communication users (CUs) and detect multiple radar targets
(RTs). We investigate the performance trade-off between the
sensing and communication capabilities by optimizing both the
radio frequency (RF) and the baseband (BB) transmit precoder
(TPC), together with the block lengths. The optimization problem
considers the minimum rate requirements of the CUs, the
maximum tolerable radar beamforming error (RBE) for the
RTs, the unit modulus (UM) elements of the RF TPC, and the
finite transmit power as the constraints for SP transmission. The
resultant problem is highly non-convex due to the intractable
rate expression of the SP regime coupled with the non-convex
rate and UM constraints. To solve this problem, we propose an
innovative two-layer bisection search (TLBS) algorithm, wherein
the RF and BB TPCs are optimized in the inner layer, followed
by the block length in the outer layer. Furthermore, a pair
of novel methods, namely a bisection search-based majorizer
and minimizer (BMM) as well as exact penalty-based manifold
optimization (EPMO) are harnessed for optimizing the RF TPC
in the inner layer. Subsequently, the BB TPC and the block
length are derived via second-order cone programming (SOCP)
and mixed integer programming methods, respectively. Finally,
our exhaustive simulation results reveal the effect of system
parameters for various settings on the RBE-rate region of the SP
mmWave ISAC system and demonstrate a significantly enhanced
performance compared to the benchmarks.

Index Terms—Ultra-reliable low latency communication, inte-
grated sensing and communication, hybrid beamforming, short
packet communication, Pareto boundary.

I. INTRODUCTION

NEXT-generation (NG) wireless networks aim for provid-
ing ultra-reliable low-latency connectivity (uRLLC) with
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high data rate and precise sensing. This supports demanding
applications such as smart grids, industrial automation, au-
tonomous vehicles, and mission-critical communication [1],
[2]. Short packet communication (SPC) is a key enabler
for realizing uRLLC. However, the intractable expression of
the achievable rate corresponding to the finite block length
and the decoding error probability requirements in the SPC
regime complicates the analysis. As a result, beamforming
optimization problems (OPs) in SPC-aided wireless systems
become intractable [3], [4].

Recently, integrated sensing and communication (ISAC)
in conjunction with millimeter wave (mmWave) technology
has gained significant attention due to its excellent ability
to provide sensing and communication (SC) capabilities in
NG networks [5], [6]. The similarity between the channel
characteristics and signal processing tasks encountered both in
sensing and communication pave the way for their integration
in the existing cellular infrastructure while necessitating only
moderate hardware changes [7], [8]. Moreover, the conven-
tional architecture demands a dedicated radio frequency (RF)
chain (RFC) for each antenna element, which is a prohibitive
requirement. In contrast, the hybrid beamforming (HBF) ap-
proach, requiring significantly fewer RFCs, provides a prac-
tical and viable solution for the implementation of mmWave
multiple-input and multiple-output (MIMO) systems [9], [10].
More specifically, in the HBF scheme, the transmit precoder
(TPC) is split into baseband (BB) and RF TPCs, with the RF
TPC implemented using digitally controllable phase shifters.
A large number of phase shifters enable high-dimensional RF
TPCs to counter severe path loss at mmWave bands, while a
small number of RFCs support low-dimensional BB TPC for
advanced multiplexing and multiuser techniques. Moreover,
to study the SC trade-off in ISAC mmWave systems, Pareto
optimization-based beamformer design is the ideal method of
analyzing the optimal boundary of the SC performance [11]–
[13].

However, SPC transmission must be harnessed for sup-
porting uRLLC services in industrial automation, autonomous
vehicles, and mission-critical communication, where real-time
communication and sensing play a vital role. In a similar
fashion, smart cities can leverage uRLLC and ISAC to opti-
mize traffic management systems, ensuring prompt responses
to fluctuating traffic conditions and thus enhancing overall
urban mobility. Therefore, ISAC requires an additional layer
of intelligence for combining the sensing capabilities with
uRLLC services via mmWave communication. Thus, the large
number of compelling applications gives rise to an increased
number of systems requiring uRLLC communications com-
bined with accurate and robust sensing capabilities [14], [15].
Inspired by these trends, we investigate SPC-enabled mmWave



ISAC, which has the potential of significantly improving the
overall performance of wireless networks. The optimization of
the hybrid beamformer, along with the block length, plays a
crucial role in supporting uRLLC services for communication
users (CUs) and sensing for the radar targets (RTs) in SPC-
enabled mmWave ISAC systems. Specifically, we characterize
the trade-off between the sensing and communication tasks
via the Pareto optimization of hybrid beamformers and the
block length of an SPC-aided mmWave system. To the best of
our knowledge, this is the first paper exploring the paradigm
of SPC in an mmWave MIMO system, which optimizes the
HBF and block length to meet the uRLLC requirements of
multiple CUs, while also reliably sensing multiple RTs. The
next subsection presents a comprehensive literature survey in
the area of SPC-aided mmWave systems.

A. Literature review

The authors of the seminal papers [16]–[25] investigated
the trade-off between the performance of SC by exploring
the Pareto region of latency-agnostic ISAC-aided systems.
Specifically, the authors of [16], [17] conceived cutting-edge
techniques for the optimization of the transmit waveform to
characterize the trade-off between the SC performance in an
ISAC-enabled MIMO system, while considering both shared
and separated antenna scenarios. Cao, in the treatise [18],
proposed a beamforming strategy for determining the Pareto
boundary of ISAC-aided MIMO systems, while considering
the sensing- and communication- signal-to-interference-plus-
noise ratios (SINRs) as the metrics for the SC trade-off. The
authors of [19] developed a revolutionary framework for Pareto
optimal beamforming optimization of MIMO ISAC systems
with the aim of analyzing the trade-off between the sensing
and communication rates. As a further advance, Zou et al. [20]
explored the Pareto boundary for maximization of the energy
efficiency (EE) in ISAC systems. The framework of [20]
presented a novel constrained Pareto OP for the maximization
of the EE of the CUs, while constraining the sensing-centric
EE. To solve this non-convex problem, an iterative successive
convex approximation (SCA)-based algorithm is proposed to
obtain the approximate Pareto boundary by evaluating a se-
quence of constrained problems subject to sensing-centric EE
thresholds. Furthermore, Yu et al., [21] proposed a majoriza-
tion and minimization (MM)-based algorithm for optimizing
the beamforming in an ISAC-aided wireless system. The
authors [23]–[25] proposed various beamforming frameworks
for ISAC systems, which are robust to imperfect knowledge
of the channel state information (CSI)

It is important to note that the fully-digital beamforming
schemes discussed in [16]–[25] are inefficient for ISAC-aided
mmWave MIMO systems, since they require an excessive
number of RFCs. To this end, the related expositions [26]–[33]
conceived HBF designs for ISAC-aided mmWave MIMO sys-
tems, which significantly reduces the number of RFCs and yet
performs close to the fully-digital schemes. However, the main
challenge in designing the HBF lies in the practical constraints
of the RF TPC, particularly the need to implement the RF TPC

using unit modulus (UM) phase shifters [26]. To this end, the
authors of [27] proposed an innovative orthogonal matching
pursuit (OMP)-based algorithm for optimizing the BB and
RF TPCs for the mmWave MIMO systems. Along similar
lines, Yu et al. [28] proposed the HBF schemes for the ISAC-
aided mmWave MIMO systems that employed the Riemannian
conjugate gradient (RCG) method to handle the UM constraint
for RF TPC. The simulation results therein [28] demonstrated
that proposed HBF schemes having fewer RFCs approached
the performance of the optimal FDB scheme. As a further
advance, the authors of [29] consider a partially connected
hybrid architecture for ISAC-aided mmWave MIMO systems,
where they focused on the dual objectives of minimizing the
Cramér-Rao bound (CRB) for the estimation of the direction
of arrival (DOA) and maximizing the SINR of the received
radar echos. Furthermore, Liu et al. [30] present innovative
techniques for minimizing the weighted radar beamforming
error (RBE) and communication beamforming error (CBE)
to optimize both the RF and BB TPCs of the HBF scheme.
Furthermore, the terms RBE and CBE are defined as the error
between the optimal radar-only and transmit beamformer as
well as between the communication-only beamformers and
the transmit beamformer, respectively. Moreover, Xiao et al.
[31] proposed multi-beam sweeping schemes for beamforming
optimization in mmWave MIMO ISAC systems, which rely
only on the RF TPC. Although the proposed schemes [31]
are cost-effective, the performance degrades upon increasing
the number of RTs and CUs in the system. To handle these
issues, our recent work [32] proposed the HBF scheme for
multi-beam framework, which maximizes the sensing beam-
pattern gain of the RTs while considering the minimum SINR
requirement of the CUs. In this work [32], we adopted the
block coordinate descent (BCD) method for decoupling the
optimization variables and employed the second-order cone
programming (SOCP) and RCG algorithms for optimizing
the BB and RF TPCs, respectively. Furthermore, the authors
of [33] proposed the hybrid transceiver design for mmWave
MIMO full-duplex ISAC systems, wherein they mitigate the
self-interference caused in the mono-static radars via the signal
processing in the RF domain.

The transmission models underlying a large fraction of the
literature surveyed above, namely [16]–[33] are based on com-
munication with infinite block lengths (IBLs), hence they rely
on the conventional Shannon capacity formula. While their
analyses are ingenious and immensely useful in their specific
settings, these models are agnostic of the stringent reliability
and latency requirements of uRLLC applications. More specif-
ically, the classical Shannon capacity formula that considers
IBL transmission, is inapplicable in the SPC regime due to the
finite block length and non-zero code word error probability
specifications. Thus, following the innovative rate expression
provided by [3], the authors of [34]–[37] proposed inspiring
beamforming designs for SPC-enabled systems. Specifically,
Huang et al. [34] investigated the rate region of the SPC-
enabled multiple-input and single-output (MISO) interference
channel. The authors therein [34] optimized the beamformer



weights and block length to maximize the sum rate of the
system, considering the resource allocation and block length
as constraints. He et al. [35] derived novel beamforming
techniques for the SPC-enabled multi-CU MISO downlink,
where they addressed the optimization of multiple objectives
including the weighted sum rate, EE, and CU fairness, while
also considering the minimum CU-rate and transmission power
constraints. On the other hand, the authors of [36] designed
efficient resource allocation and beamforming algorithms for
SPC-enabled multi-CU MISO systems that achieve transmit
power minimization, while constraining the decoding-error
probability of SPC transmission. Furthermore, the authors
of [37] presented state-of-the-art beamformer designs for an
SPC-enabled MIMO system using alternating optimization
and fractional programming. Their innovative beamforming
techniques maximize the achievable data rate for a given
transmit power budget.

Following the above discussion of ISAC and SPC in sep-
arate contexts, we now move our focus to the literature that
explored their integration. The authors of the path-breaking
works [38]–[42] proposed a transmit beamforming paradigm
for SPC-enabled ISAC systems, wherein the base station (BS)
performs detection of an RT and provides uRLLC services
for the CUs. The pioneering research in [38] presents a
framework for transmit power minimization, while meeting
the critical radar sensing and uRLLC latency requirements.
The authors of [38] proposed a creative quadratic transform-
based fractional programming approach in conjunction with
an interior point method to solve the pertinent OP. To explore
the trade-off between uRLLC data transmission and target
localization in SPC-aided ISAC systems, Zabini et al. derived
a novel beamforming scheme for minimizing the CRB of RT
localization under constraints on the block error probability
for the CUs in [39]. Along similar lines, in the avant-grade
investigation of [42], the researchers succeeded in developing a
joint beamforming and scheduling scheme for an SPC-enabled
ISAC system that meets the stringent uRLLC requirements of
the CUs.

The authors of [40] explored the SC trade-off for an SPC-
enable ISAC system with single input and single output
(SISO) configuration, wherein they characterized the Pareto
boundary of the rate and error metrics for the communication
and sensing, respectively. As a further advance, Huang et al.
[41] investigated SPC-aided ISAC for mobile edge computing,
wherein multiple ISAC devices adopt SPC for offloading their
sensed radar data to an edge server.

Moreover, considering the strong possibility that next-
generation networks may harness mmWave technology in view
of the imminent spectrum crunch in the sub-6 GHz band, it is
crucial to explore the SC trade-off in SPC-enabled mmWave
ISAC systems. Exploring the Pareto boundary of such systems
holds the key for SPC. Clearly, there is a paucity of SPC-
enabled mmWave ISAC system studies in the open literature.
Explicitly, in the complex face of challenges, such as the
complex rate expression of SPC transmission, integration of
sensing and communication tasks, coupled with the hybrid

design of the TPC, the associated beamforming optimization
is not well documented. Inspired by this knowledge-gap, we
conceive a novel HBF scheme to achieve Pareto optimal SC
trade-offs in SPC-enabled mmWave ISAC systems. Further-
more, a systematic contrasting of our novel contributions to
the existing literature is shown in Table I, and the main
contributions of this paper are enumerated next.

B. Contributions of this work

1) Explicitly, this is the first paper to investigate SPC in
the context of mmWave ISAC systems where an ISAC
BS transmits SPC-encoded signals to multiple CUs and
detects several RTs, determining the RBE-rate region to
reveal the trade-off between sensing and communication.
To this end, we formulate the OP for the Pareto boundary
of the RBE-rate region, incorporating constraints for min-
imum CU rates, maximum tolerable RBE for RTs, and
additional limitations from hybrid MIMO architecture,
transmit power, and SPC block length, resulting in a
highly non-convex problem.

2) To solve the above problem, we propose an iterative two-
layer bisection search (TLBS) algorithm, where the inner
layer minimizes the RBE of the system by optimizing the
BB and RF TPCs for a fixed sum rate, and subsequently,
the outer layer optimizes the block length and updates
the achievable rate via the bisection search method.

3) More specifically, in the inner layer, we reformulate the
rate expression to transform the intractable QoS con-
straint into a tractable SINR constraint and, subsequently,
adopt the BCD principle for iteratively optimizing the BB
and RF TPCs. For the optimization of the RF TPC, we
formulate the quadratically constrained quadratic program
(QCQP) OP with an extra UM constraint. To solve this,
we propose two novel methods: bisection-based majoriza-
tion and minimization (BMM) as well as exact penalty-
based manifold optimization (EPMO). Following this, the
SOCP method is employed to optimize the BB TPC.
Furthermore, we update the block length and sum rate
via mixed integer programming and a bisection search in
the outer layer.

4) Finally, we evaluate the performance of the proposed
scheme by evaluating the Pareto boundaries for SC trade-
off, achievable sum rates, and beam patterns for a variety
of settings and compare them to the benchmarks for
verifying the effectiveness of our proposed algorithm.

C. Organization and Notation

The rest of this paper is organized as follows. Section II
presents the system model of our SPC-aided mmWave ISAC
system, where we discuss the performance metric of interest
and formulate the design problem. Next, we introduce the
proposed algorithms to jointly optimize the RF and BB TPCs,
together with the block lengths in Section III. Section IV
presents numerical results to characterize the performance of
our proposed approach and its effectiveness. Finally, Section
V concludes the paper.



Table I: Contrasting our novel contributions to the literature of short-packet mmWave ISAC systems
[18] [19] [21] [28] [29] [30] [32] [34] [35] [37] [38] [39] [40] [41] Proposed

ISAC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mmWave MIMO ✓ ✓ ✓ ✓ ✓
Short packet communication (SPC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hybrid beamforming ✓ ✓ ✓ ✓ ✓
Multi-users ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-targets ✓ ✓ ✓ ✓ ✓
Pareto boundary ✓ ✓ ✓ ✓ ✓
Sum rate ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Radar beamforming error ✓ ✓ ✓
SOCP ✓ ✓ ✓ ✓
Mixed integer program ✓ ✓
SPC-aided mmWave ISAC ✓
Layer-based bisection search ✓
Bisection-based MM method ✓
Penalty-based manifold optimization ✓

Notations: We use the following notations throughout the
paper: A, a, and a represent a matrix, a vector, and a scalar
quantities, respectively. The (i, j)th element, and Hermitian
of matrix A are denoted by A(i, j), and AH , respectively.
The trace, Frobenius norm and vectorization of a matrix A
are represented as tr (·), ||A||F and vec (·). The expectation
operator is represented as E{·}; the real part of a quantity
is denoted by Re (·). IM denotes an M × M identity ma-
trix; the symmetric complex Gaussian distribution of mean
µ and covariance matrix σ2 is represented as CN (µ, σ2).
The operators ⊙ and ⊗ denote the Hadamard product and
Kronecker product respectively, whileW (·, ·; ·) represents the
generalized Lambert function. The elements in arg[z] are the
phases of the input complex vectors. Furthermore ⌊a⌋ denotes
the largest integer less than or equal to a and ⌈a⌉ denotes the
smallest integer greater than or equal to a.

II. SYSTEM MODEL AND PROBLEM FORMULATION OF
SPC-AIDED MMWAVE ISAC SYSTEMS

As shown in Fig. 1a, we consider an SPC-enabled ISAC
downlink operating in the mmWave band, where an ISAC
BS communicates with M uRLLC CUs and detects Ntar

RTs, simultaneously. The ISAC BS relies on a fully-connected
hybrid MIMO architecture [32], [43] having Nt transmit
antennas and NRF ≤ Nt RFCs, where each RF chain is
connected to each antenna via phase shifters, as shown in
Fig. 1b. In addition, we assume the phase synchronization of
RFCs via following [44] Moreover, each CU is equipped with
a single antenna. Therefore, to support simultaneous service
for M single antenna CUs while detecting Ntar RTs through
SPC transmission at the angles of interest, one has to follow
the condition M ≤ NRF << Nt.

A. mmWave channel model

This paper employs the popular Saleh-Valenzuela channel
model [18]–[22] to capture the geometric properties of the
mmWave channel, which includes complex-valued path losses,
angles-of-arrival (AoAs), and angles-of-departure (AoDs) aris-
ing due to the paths scattered by a finite number of dominant
clusters. Mathematically, the frequency-flat mmWave MISO
channel hH

m ∈ CNt×1 between the ISAC BS and the mth CU

(a) (b)
Figure 1: (a) Illustration of an uRLLC mmWave ISAC system. (b)
Block diagram of hybrid beamforming architecture at the ISAC BS.

is expressed as

hH
m =

√
Nt

NcluNray

Nclu∑
i=1

Nray∑
j=1

αm
i,ja

H
BS(ϕ

m
i,j), (1)

where Nclu and Nray are the number of scattering clus-
ters and scattered rays per cluster, respectively. The quan-
tity αm

i,j in (1) is the multipath channel gain that is dis-
tributed as CN (0, 10−0.1PL(dm)),∀i = {1, . . . , Nclu}, and
j = {1, . . . , Nray} where PL(dm) is the path loss in dB that
depends on the distance dm associated with the corresponding
link. Moreover, we consider that the ISAC BS is employed
with a uniform linear array (ULA), owing to the array response
vector aBS(ϕ

m
i,j) ∈ CNt×1 as [32]

aBS(ϕ
m
i,j) =

1√
Nt

[
1, ej

2πd̄
λ sin(ϕm

i,j), . . . , ej(Nt−1) 2πd̄
λ sin(ϕm

i,j)
]T
,

(2)
where ϕmi,j denotes the AoD, λ is the carrier wavelength, and
d is the spacing between adjacent antennas, which is set as
d = λ/2. Based on this channel model, let us describe the
signal-, radar- and communication models in the subsequent
subsections.

B. Signal model

Let us consider that the data of each CU is encoded with an
individual encoder of finite block length βm,m = 1, . . . ,M
at the ISAC BS. Thus, the information bits of the uRLLC
CUs are transmitted via packets. In a similar fashion, each
CU decodes its data independently, considering a non-zero
decoding error probability of ϵm,m = 1, . . . ,M . Furthermore,



the encoded symbols of all the CUs at the ISAC BS are ini-
tially processed by the BB TPC FBB = [fBB,1, . . . , fBB,M ] ∈
CNRF×M , followed by the RF TPC FRF ∈ CNt×NRF . Thus,
the downlink transmitted signal x ∈ CNt×1 from the ISAC
BS is given by [28], [29]

x = FRFFBBs = FRF

M∑
m=1

fBB,msm, (3)

where s = [s1, s2, . . . , sM ]T ∈ CM×1 is the encoded signal,
which serves as a combined signal for the radar detection
as well as downlink communication transmission [28]. More-
over, the encoded symbols are assumed to be statistically
independent and identically distributed (i.i.d), which satisfy
E{s} = 0 and E{ssH} = IM . Consequently, the covariance
matrix Cx ∈ CNt×Nt of the transmitted signal x is given by
[28]

Cx = E{xxH} = FRFFBBF
H
BBF

H
RF. (4)

C. Radar model

This paper considers the mono-static MIMO radar used at
the ISAC BS for target detection, where the same antenna
arrays are used for transmitting and receiving radar signals.
However, this leads to a signal leakage problem in such
an architecture, which can be efficiently mitigated via RF
and baseband cancellers, as discussed in [45]. Therefore,
we assume that the noise term includes the residual self-
interference, and the echo signal yrad ∈ CNt×1 received at
the ISAC BS, which can be written as [28]

yrad =

Ntar∑
t=1

ζtart aBS(θ
tar
t )aHBS(θ

tar
t )x

+

Nct∑
c=1

ζctc aBS(θ
ct
c )aHBS(θ

ct
c )x+ nrad,

(5)

where the first and second terms in (5) are the desired target
signal and the echo signal due to clutter, respectively, and
nrad ∈ CNt×1 is the noise encountered in the radar sensing
environment. The quantities ζtart and ζctc are the complex-
valued path loss reflection coefficients of the RTs and clutters
located at angles θtart and at θctc , respectively [28], [29].
Note that here we ignore the echo signal reflected by the
CUs, which is in line with the seminal literature [28]–[32].
Furthermore, based on the received signal (5), one can estimate
the angles of the RTs by employing various schemes, such
as the multiple signal classification (MUSIC) algorithm [5]
and the affine-precoded superimposed pilot (AP-SIP) [46].
For the target-tracking mode of the radar system, we assume
perfect estimation of the target angle θ [7], [9], [28]–[32].
Consequently, the transmit beampattern gains G(θ) can be
expressed as

G(θ) = aHBS(θ)CxaBS(θ), (6)

where G(θ) is the spatial beam pattern, which has to be
synthesized for the target sensing environment. Observe that
designing G(θ) is equivalent to designing the covariance
matrix Cx. Hence, one has to design FRF and FBB, that meet

the sensing requirements of the RTs. Therefore, to optimize
the radar sensing performance, we design Cx to approach the
ideal desired radar covariance matrix Cd = FrF

H
r , where

Fr ∈ CNt×Ntar is the ideal radar beamformer used for the
RTs [30], which is given by

Fr =
[
aBS(θ

tar
1 ),aBS(θ

tar
2 ), . . . ,aBS(θ

tar
Ntar

)
]
. (7)

To evaluate the performance of the sensing, we consider the
radar beamforming error (RBE) of the RTs denoted by E [28],
[30], which is given by

E (FRF,FBB,U) = ∥FRFFBB − FrU∥2F , (8)

where U ∈ CNtr×M is an auxiliary unitary matrix obeying
UUH = INtar

. Specifically, the RBE metric E quantifies the
error between the optimal radar beamformer and the transmit
beamformer. Therefore, based on the potential directions of
the desired RTs, one can maximize the transmit beamforming
gain towards the RTs by minimizing the RBE E .

D. Communication model

Based on the mmWave MISO channel (1) and the transmis-
sion signal model (3), the received signal ym at the mth CU
can be written as [28], [29]

ym =hH
mFRFFBBs+ nm (9a)

=hH
mFRFfBB,msm +

M∑
n=1,n̸=m

hH
mFRFfBB,nsn + nm,

(9b)

where nm is the i.i.d. complex additive white Gaussian noise
(AWGN) having the distribution nm ∼ CN (0, No). It is
assumed that the channel state information (CSI) is perfectly
known at all CUs [7]–[10], [28]–[30], noting that both the
accurate channel estimation and the robust TPC design relying
on partial CSI constitute rather different problems in ISAC
systems [23]–[25]. Given the strict length-limitation, these
have to be set aside for future research. Then, the widely
adopted metric in wireless communication, namely, SINR γm
of the mth CU, is evaluated as [8]

γm =

∣∣hH
mFRFfBB,m

∣∣2∑M
n=1,n̸=m |hH

mFRFfBB,n|2 +No

. (10)

Following Shannon’s capacity formula, the maximum achiev-
able transmission rate Sm of this CU, in nats/s/Hz/channel, is
given by

Sm = ln (1 + γm),∀m. (11)

However, the conventional Shannon capacity relation holds
true only for IBL transmission, wherein the error probability
tends to zero. Since this paper considers practical SPC, the
achievable rate given by (11) is not a realistic model. In
this context, thanks to the results in [3], [4], [35], [36], the
achievable rate Rm of the mth uRLLC CU owing to the SPC



transmission with a finite block length of βm and transmission
error probability ϵm is given by

Rm = ln (1 + γm)−

√
Vm
βm

Q−1 (ϵm) ,∀m, (12)

where Q−1(.) is the inverse of the Gaussian Q-function and
Vm

1 represents the channel dispersion of the uRLLC CU m,
which is given by

Vm (γm) = 1− 1

(1 + γm)
2 . (13)

Consequently, the achievable sum rate of the CUs is given by

R =

M∑
m=1

Rm. (14)

E. Problem Formulation

This paper aims for jointly optimizing the Pareto optimal
RF TPC FRF, BB TPC FBB and the block lengths {βm}Mm=1

to characterize the RBE-rate region of an SPC-enabled ISAC
mmWave system. Specifically, the RBE-rate region of the
system under consideration is defined as the collection of all
the feasible twin tuples (E ,R) that can be simultaneously
achieved, where E and R are sensing and communication
metrics, respectively. Therefore, we are interested in evalu-
ating the Pareto front [11], [12] constituted by all optimal
twin tuples (E ,R) in the boundary of the RBE-rate region.
Typically, the Pareto front consists of (E ,R) pairs at which
it is impossible to simultaneously improve the communication
and sensing performance without a compromise between them.
More specifically, for a given SPC-aided mmWave ISAC
system, any (E ,R) twin tuple located on the Pareto boundary
of the rate-RBE region is formulated as

P0 : max
FRF,FBB,U,{βm}M

m=1

R, (15a)

s. t. Rm ≥ ηmR,∀m, (15b)
E ≤ Emax, (15c)

UUH = INtar
, (15d)

|FRF(i, j)| = 1,∀i, j, (15e)

∥FRFFBB∥2F ≤ Pmax (15f)∑M

m=1
βm ≤ N, (15g)

βm ∈ Z+,∀m, (15h)

where (15b) denotes the QoS constraint for the CUs with
ηm ∈ (0, 1) denoting the ratio between the achievable rate
of the mth CU and the sum rate R, such that

∑M
m=1 ηm = 1.

Furthermore, the constraint (15c) is the RBE required for
the RTs, while (15e) is the UM constraint due to the phase
shifters of the hybrid architecture, and (15f) is the maximum
transmit power budget constraint. Moreover, the last two
constraints (15g) and (15h) are due to the SPC regime, where

1It gauges the variability of the channel relative to a deterministic bit pipe
with the same capacity.

all the uRLLC CU symbols are transmitted within a maximum
of N symbols and the block length βm must be a non-
negative integer. Since the calculation of RBE depends on
Fr, the problem formulated is also applicable for tracking the
mobile RTs, where the sensing beam is formed towards the
estimated/predicted direction to track the movement of the RTs
[22]. By minimizing the RBE for a specific direction, one
can improve the sensing capabilities in this desired sensing
direction.

The complete Pareto boundaries of the achievable RBE-rate
region of the SPC-enabled mmWave ISAC system above can
be characterized by solving the OP P0, which is however,
challenging due to the non-convex constraints (15b) and (15e)
and tightly coupled variables in the objective function and
the constraints. Moreover, the rate expression defined by
(12) is more decimate than the traditional Shannon formula,
which exacerbates the challenge. Therefore, the next section
proposes a novel TLBS method that overcomes this obstacle
by intelligently exploiting a bisection search.

III. TWO LAYER BISECTION SEARCH FOR JOINT
OPTIMIZATION

In the proposed TLBS method, the inner layer evaluates
FRF,FBB and U to minimize the RBE E = ∥FRFFBB −
FrU∥2F for the SPC parameters βm,∀m, whereas the outer
layer updates the achievable rateR by employing the bisection
search. Specifically, in the inner layer, we obtain FRF,FBB

and U for feasible values of R and subsequently update the
sum rate R and {βm}Mm=1 in the outer layer. For any given
sum rate R ≥ 0 and βm, the equivalent feasible problem of
P0 in the inner layer is the minimization of the RBE, which
is given by

P1 : min
FRF,FBB,U

E (FRF,FBB,U) = ∥FRFFBB − FrU∥2F

s.t. (15b), (15d), (15e), and (15f).
(16)

To obtain the optimal solution {F∗
RF,F

∗
BB,U

∗} in the inner
layer, we solve the above OP (16). Subsequently, if the OP
(16) is feasible for the given {FRF,FBB,U}, we perform a
bisection search by solving a sequence of feasibility problems
corresponding to the problem P0 to update the optimal value
of the rate R∗ and the block length {β∗

m}Mm=1 in the outer
layer. Moreover, upon denoting the optimal solutions of P1

as F∗
RF,F

∗
BB and U∗, it is evident that the OP P1 is feasible

if ||F∗
RFF

∗
BB − FrU

∗∥2F ≤ Emax, and ∥F∗
RFF

∗
BB∥2F ≤ Pmax,

otherwise, it is considered infeasible.

A. Inner layer: BCD algorithm for solving P1

Because of the finite block length βm and the transmission
error probability ϵm in the rate expression, the constraint
(15b) is highly non-convex. Therefore, to solve P1, we first
transform the non-convex constraint (15b) into a tractable form
by using the following proposition:

Proposition 1. Given βm ≥ 0 and ϵm ≥ 0,∀m, the constraint
Rm ≥ ηmR is equivalent to γm ≥ Γm,∀m, where Γm is given



by

Γm = eηmR+κm
2 − 1, (17)

and κm is the generalized LambertW function, which is given
by [34]

κm =W

(
2Q−1(ϵm)√

βm
,
−2Q−1(ϵm)√

βm ;−4δ2m
(
Q−1 (ϵm)√

βm

)2
)
,

(18)
where δm = e−ηmR.

Proof. Please refer to Appendix A of [47] for the detailed
proof.

Upon employing the above proposition, the OP P1 can be
recast as follows

min
FRF,FBB,U

∥FRFFBB − FrU∥2F (19a)

s. t. γm ≥ Γm,∀m, (19b)
(15d),(15e), and (15f) . (19c)

Since the optimization variables FRF,FBB and U are coupled
in both the objective function and the constraints of (19),
we adopt the BCD method to decouple the optimization
variables FRF, FBB, and U in (19). It is worth noting that
the BCD method renders it easier to break down the intricate
problem into distinct sub-problems, each of which is focused
on maximizing a particular block of variables [32].

1) Sub-problem for FRF: For fixed FBB and U, the equiv-
alent OP for the design of FRF is given by

min
FRF

∥FRFFBB − FrU∥2F , (20a)

s. t. γm ≥ Γm,∀m, (15e), and (15f) . (20b)

The OP (20) above is still non-convex due to the non-convex
SINR constraints (19b) and UM constraint (15e). To handle
this issue, let us rewrite the SINR γm of the mth CU as follows

γm =
tr
(
FH

RFHmFRFBm

)
M∑

n=1,n̸=m

tr
(
FH

RFHmFRFBn

)
+No

,
(21)

where the quantities Hm ∈ CNt×Nt and Bm ∈ CNRF×NRF are
given by Hm = hmhH

m and Bm = fBB,mfHBB,m, respectively.
Consequently, one can reformulate the SINR constraint (19b)
as follows

tr
(
FH

RFHmFRFBm

)
M∑

n=1
n̸=m

tr
(
FH

RFHmFRFBn

)
+No

≥ Γm,∀m, (22a)

⇒
M∑

n=1
n ̸=m

tr(FH
RFHmFRFBn)−

1

Γm
tr
(
FH

RFHmFRFBm

)
+No ≤ 0,∀m. (22b)

Upon employing the vec(·) operation to (22b), one can rewrite
it as follows

M∑
n=1
n ̸=m

vec(FRF)
H
(
BT

n ⊗Hm

)
vec(FRF)

− 1

Γm
vec(FRF)

H
(
BT

m ⊗Hm

)
vec(FRF) +No ≤ 0.

(23)

Furthermore, we define d = vec(FRF) ∈ CNtNRF×1, where
d(l) = 1,∀l and Υn,m = BT

n ⊗Hm ∈ CNtNRF×NtNRF . Then
(23) is equivalently written as

gm(d) ≜ dH∆md+No ≤ 0, (24)

where ∆m =

 M∑
n=1
n ̸=m

Υn,m − 1
Γm

Υm,m

 ∈ CNtNRF×NtNRF .

In a similar fashion, let us define T = FBBF
H
BB ∈ CNRF×NRF .

Consequently, we express the total power constraint (15f) as

||FRFFBB∥2F =tr
(
FH

BBF
H
RFFRFFBB

)
(25a)

=tr
(
FH

RFINtFRFT
)
. (25b)

Subsequently, by employing d = vec(FRF) in the above
equation, (15f) can be redefined as

ωp(d) ≜ dHΩpd− Pmax ≤ 0, (26)

where Ωp =
(
TT ⊗ INt

)
∈ CCNtNRF×NtNRF . In addition, we

express the objective function RBE of (20) using the vec(·)
operation as follows

||FRFFBB − FrU∥2F =||vec (FRFFBB)− vec (FrU) ∥22
(27a)

=||
(
FT

BB ⊗ INt

)
d− vec (FrU) ∥22.

(27b)

Subsequently, the RBE can be expressed in terms of d as
follows

ωr(d) = ||Ωrd− fr∥22, (28)

where the quantities fr ∈ CNtM×1 and Ωr ∈ CNtM×NtNRF

are defined as fr = vec (FrU) and Ωr =
(
FT

BB ⊗ INt

)
,

respectively. As a further advance, (28) is translated into a
quadratic expression as follows

ωr(d) ≜||Ωrd− fr∥22 (29a)

=(Ωrd− fr)
H(Ωrd− fr) (29b)

=dHΞrd− 2Re
(
aHr d

)
+ er, (29c)

where Ξr = ΩH
r Ωr ∈ CNtNRF×NtNRF , ar = ΩH

r fr ∈
CNtNRF×1 and er = fHr fr. Therefore, following the above
mathematical manipulations spanning from (21) to (29), the
OP (20) can be recast as follows

min
d

ωr(d), (30a)

s.t. gm(d) ≤ 0,∀m, (30b)
ωp(d) ≤ 0, (30c)
|d(l)| = 1,∀l. (30d)



The above problem (30) is a quadratically constrained
quadratic program (QCQP) with an extra UM constraint,
which is a highly non-convex problem. The semi-definite
relaxation with randomization (SDR) framework can also
be used to solve (30), but it may not guarantee a feasible
solution with a fixed randomization number and involves
high computational cost due to the non-convex UM constraint
[10]. To handle these issues, we propose low-complex two
innovative methods, namely the bisection-based majorization-
minimization (BMM) method and the exact penalty manifold
optimization (EPMO), which are discussed next.

BMM optimization: Let us assume d(κ) to be the feasible
point for the problem (30) that is found from the (κ − 1)th
iteration. Following the inequalities (72), (73) of Appendix
B of [47], the respective majorizer functions for (30a), (30b)
and (30c) are given by (31), (32) and (33), respectively, where

D = NtNRF and cr = tr (Ξr) , cm = tr

 M∑
n=1
n̸=m

Υn,m

, and

cp = tr (Ωp). Thus, to generate the next feasible point d(κ+1),
we solve the following MM OP in the κth iteration

min
d

ω(κ)
r (d) (34a)

s.t. g(κ)m (d) ≤ 0,∀m, (34b)

ω(κ)
p (d) ≤ 0, (34c)

|d(l)| = 1,∀l. (34d)

To solve the OP (34), we adopt the Lagrange dual optimization
by applying the Karush-Kuhn-Tucker (KKT) framework [10].
To this end, the Lagrange function associated with the problem
(34) is given by

L(κ)(d,λ(κ), ϑ(κ)) = ω(κ)
r (d)+

M∑
m=1

λ(κ)m g(κ)m (d)+ϑ(κ)ω(κ)
p (d),

(35)
where λ(κ) = [λ

(κ)
1 , . . . , λ

(κ)
M ]T ∈ CM×1. Moreover, λ(κ)m ≥ 0

and ϑ(κ) ≥ 0 denote the Lagrange dual multiplier associated
with g

(κ)
m and ω

(κ)
p , respectively, in the κth iteration. Subse-

quently, the Lagrange dual function D(κ)
d (λ(κ), ϑ(κ)) over the

variable d is expressed as

D(κ)
d (λ(κ), ϑ(κ)) = min

|d(l)|=1,∀l∈L
L(κ)(d, λ(κ), ϑ(κ)). (36)

Since the Lagrange function L(κ)(d,λ(κ), ϑ(κ)) is linear with
respect to the variable d, the primal optimal point of (36) can
be written as a function of the dual multipliers as follows

d(κ)(λ(κ), ϑ(κ)) = exp

(
j arg

[
(crID −Ξr)d

(κ)+ar

+

M∑
m=1

[
(cmID −∆m)d(κ)

]
λ(κ)m +

[
(cpID −Ωp)d

(κ)
]
ϑ(κ)

])
.

(37)

Furthermore, the optimal solution for the Lagrange Dual
problem (36) is obtained as follows

{λ(κ+1), ϑ(κ+1)}
= arg sup

{λ(κ)
m ≥0}M

m=1,ϑ
(κ)≥0

D(κ)
d (λ(κ), ϑ(κ))|d=d(κ)(λ(κ),ϑ(κ)).

(38)
Due to the strong duality between the primal problem (34) and
its dual (38), the primal optimal point d(κ+1) can be obtained
by employing the KKT conditions as follows

d(κ+1)
(
λ(κ), ϑ(κ)

)
= exp

(
j arg

[
(crID −Ξr)d

(κ)+ar

+

M∑
m=1

[
(cmID −∆m)d(κ)

]
λ(κ)m +

[
(cpID −Ωp)d

(κ)
]
ϑ(κ)

])
,

(39a)

0 ≤ λ(κ)m ≤ ∞, g(κ)m

(
d(κ)

(
λ(κ)

))
≤ 0, ∀m (39b)

0 ≤ ϑ(κ) ≤ ∞, ω(κ)
p

(
d(κ)

(
ϑ(κ)

))
≤ 0, (39c)

λ(κ)m g(κ)m

(
d(κ)

(
λ(κ)

))
= 0 ∀m, (39d)

ϑ(κ)ω(κ)
p

(
d(κ)

(
ϑ(κ)

))
= 0, (39e)

where (39b) and (39c) are the dual and primal feasibility
for g(κ)m and ω(κ)

p , respectively. Furthermore, (39d) and (39e)
indicate the complementary slackness of the functions g(κ)m

and ω
(κ)
p , respectively. Therefore, one can compute the next

feasible point of the dual multipliers λ(κ+1) and ϑ(κ+1) by
solving (38) with the aid of the KKT conditions (39) for
the given feasible primal point d(κ) and dual multipliers
λ(κ), ϑ(κ) in the κth iteration. We adopt the coordinate ascent
technique to compute the next feasible point of the dual
multipliers λ(κ+1) and ϑ(κ+1). In addition, for the given
{λ(κ)n ≥ 0}Mn=1,n̸=m and ϑ(κ), if g(κ)m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =0

≤
0, we set λ(κ+1)

m = 0 by following (39d). Otherwise, there
exists a non-zero g

(κ)
m

(
d(κ)

(
λ(κ)

))
|λ(κ+1)

m ≈ 0. Similarly,
for a given ϑ(κ) ≥ 0, if ϑ(κ)ωp

(
d(κ)

(
ϑ(κ)

))
|ϑ(κ)=0 ≤ 0, then

we set ϑ(κ+1) = 0 by following (39e). Otherwise, there exists
a non-zero ϑ(κ)ωp

(
d(κ)

(
ϑ(κ)

))
|ϑ(κ+1) ≈ 0. To obtain such

non-zero dual multipliers within a limited number of iterations,
we employ the bisection method. Finally, if {λ(κ)m }Mm=1 and
ϑ(κ) satisfy all the constraints, then the next feasible point of
the primal OP is found as

d(κ+1) = exp
(
arg

[
(crID −Ξr)d

(κ)+ar

])
. (40)

Algorithm 1 summarizes the computational procedure of
the BMM method harnessed for solving the problem (30).
Note that the next feasible point for the dual multipliers
{λ(κ+1)

m , ϑ(κ+1)} of the problem (38) is obtained by opti-
mizing a single dual multiplier at a time, while keeping the
other dual multipliers fixed, until the Lagrange function (35)
converges at the corresponding primal optimal point d(κ+1).



ωr(d) ≤ ω(κ)
r (d) ≜2Re

(
dH
[
(Ξr−crID)d(κ)−ar

])
− (d(κ))HΞrd

(κ) +2Dcr+Er, (31)

gm(d) ≤ g(κ)m (d) ≜2Re
(
dH(∆m − cmID)d(κ)

)
− (d(κ))H∆md(κ) +2Dcm +No,∀m, (32)

ωp(d) ≤ ω(κ)
p (d) ≜2Re

(
dH(Ωp − cpID)d(κ)

)
− (d(κ))HΩpd

(κ) +2Dcp − Pmax, (33)

Algorithm 1 BMM algorithm for solving (30)
Input: Feasible FRF, FBB, and stopping parameters τ1, τ2
Output: Optimal RF TPC F∗

RF

1: Initialize: κ = 0, ν = 0, d(κ) = vec(FRF), and dual
multipliers {λ(κ)m }Mm=1 = 0 and ϑ(κ) = 0

2: repeat
3: for m = 1 to K
4: if g(κ)m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =0

≤ 0, then λm = 0
5: else
6: λLm = 0 and λUm = 1

7: if g(κ)m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =1

≤ 0 , then λUm = 1
8: else
9: while g

(κ)
m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =λU

m
≥ 0 do

10: λUm = 2λUm
11: end while
12: λLm = λUm/2
13: end if
14: λm = (λLm + λUm)/2

15: while |g(κ)m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =λm

+ τ1
2 | ≥

τ1
2 do

16: if g(κ)m

(
d(κ)

(
λ(κ)

))
|
λ
(κ)
m =λm

≥ 0, set λLm =
λm

17: else λUm = λm
18: end if
19: end while
20: end if
21: end for
22: follow steps from (4) to (20) to get ϑ using function

ω
(κ)
p

(
d(κ)

(
λ(κ)

))
for given {λm}Mm=1

23: set ν ← ν+1, λ(κ)[ν] = [λ1, . . . , λM ]T and ϑκ[ν] = ϑ,
24: compute L[ν] = L(κ)

(
d,λ(κ), ϑ(κ)

) ∣∣
d=d(κ)(λ(κ)[ν],ϑ(κ)[ν])

25: until |(L[ν]− L[ν − 1]) /L[ν]| ≤ τ1
26: set κ← κ+ 1 and d(κ+1) = d(κ)

(
λ(κ)[ν], ϑ(κ)[ν]

)
27: evaluate ωr(d) using (29) and set ω(κ)

r = ωr

(
d(κ+1)

)
28: if

∣∣∣(ω(κ)
r − ω(κ−1)

r )/ω
(κ)
r

∣∣∣ ≤ τ2, then d∗ = d(κ+1) stop
29: else go to step 2
30: end if
31: return: F∗

RF = reshape(d∗) to Nt ×NRF matrix.

Moreover, observe that the following conditions hold

ωr

(
d(κ+1)

)
≤ ω(κ)

r

(
d(κ+1)

)
< ω(κ)

r

(
d(κ)

)
= ωr

(
d(κ)

)
,

(41)
which shows that d(κ+1) is an improved feasible point over
d(κ) for problem (30). Thus, Algorithm 1 generates a sequence
of upgraded feasible points by iteratively solving the problem

(30) until it converges to its locally optimal solution. It is worth
noting that the solution given by Algorithm 1 is an optimal
solution of the sub-problem (34), since strong duality holds
between the problems (38) and (34), and its optimal solution
is obtained from the limit solution of the bisection method.
In the theoretical analysis, the optimal solution is obtained by
setting the termination threshold to τ2 = 0 in Algorithm 1 for
zero numerical error.

EPMO method: The BMM algorithm requires a bisection
search for M+1 dual multipliers, which renders it highly com-
plex. Therefore, we propose a low-complexity exact penalty-
based manifold optimization (EPMO) method to solve (30).
To relax the SINR constraint (30b) and TPC constraint (30c),
we add them into the objective function as a penalty term and
subsequently, the problem is solved by employing manifold
optimization. To this end, let us redefine the SINR constraint
(30b) as ψm (d) ≜ (max (0, gm (d)))

2
,∀m and (30c) as

χp(d) ≜ (max (0, ωp (d)))
2. Consequently, the equivalent OP

for (30) can be expressed as

min
d

f(d) = ωr (d) + µ

(
M∑

m=1

ψm (d) + χp (d)

)
s.t. (30d),

(42)

where µ > 1 is a penalty factor. Specifically, µ is obtained
by adopting sequential optimization, wherein the penalty pa-
rameter µ is increased successively, followed by solving the
problem (42) until the solutions eventually converge to that of
the original problem (30). Observe that the constraint (30d)
represents a complex circle Riemannian manifold M = {d ∈
CNtNRF×1 : |d(l)| = 1,∀1 ≤ l ≤ NtNRF}. Therefore, (42)
can be solved by using the manifold optimization method.
Specifically, for µ > 1, we adopt the Riemannian conjugate
gradient (RCG) optimization method to find a near-optimal
solution. Note that the RCG algorithm relies on computing
the Riemannian gradient to obtain the steepest direction in
the decreasing objective function. However, computing the
Riemannian gradient differs from obtaining the traditional
gradient in the Euclidean space. Toward this, let us evaluate the
Euclidean gradient of the objective function f(d) as follows

∇f(d) = 2Ξrd− 2ar + µ

(
M∑

m=1

ξm + ξp

)
, (43)



where ξm and ξp are given by

ξm =

{
4gm(d)∆md, if gm(d) ≥ 0,

0, otherwise,
(44a)

ξp =

{
4ωp(d)Ωpd, if ωp(d) ≥ 0

0, otherwise.
(44b)

Furthermore, computing the Riemannian gradient involves the
tangent space, which comprises the vectors that are tangential
to any smooth curves on the manifold M. In addition, the
tangent space at a point d on the complex circle manifold M
is defined as

TdM = {z ∈ CNtNRF×1|Re (z⊙ d∗) = 0NtNRF×1}. (45)

Thereby, the Riemannian gradient ∇Mf(d) can be obtained
by projecting ∇f(d) onto the tangent space of the manifold
M using a projection operator, which is given by

∇Mf(d) = Projd∇f(d)
= ∇f(d)−Re{∇f(d)⊙ d∗} ⊙ d.

(46)

Employing the Riemannian gradient, one can follow the same
steps as that of the Euclidean space for optimization. Thus,
the steepest search direction in the (κ+1)th iteration is given
by

ζ(κ+1) = −∇Mf
(
d(κ+1)

)
+ ρ Td(κ) 7→d(κ+1)

(
ζ(κ)

)
, (47)

where ζ(κ) is the search direction at d(κ), ρ is Polak-
Ribiére’s conjugate parameter [28] and Td(κ)→d(κ+1)

(
ζ(κ)

)
is

the transport operation used to map the search direction from
its original tangent space to the current tangent space. The
transport operation is expressed as

T (κ)
d M→Td(κ+1)M :

Td(κ) 7→d(κ+1)

(
ζ(κ)

)
=

ζ(κ) − Re
{
ζ(κ) ⊙

(
d(κ+1)

)∗}
⊙ d(κ+1).

(48)

Moreover, in the Euclidean gradient, the next point is com-
puted as d(κ+1) = d(κ) + δ(κ)ζ(κ) with δ(κ) as step size,
which lies on the tangent space TdM. Therefore, to project
the point to the manifold M, we perform retraction mapping
[16], which is given by

Retrd : TdM→M :

d(κ+1) =

[
(d(κ)+δ(κ)ζ(κ))1
|(d(κ)+δ(κ)ζ(κ))|1

, . . . ,
(d(κ)+δ(κ)ζ(κ))D
|(d(κ)+δ(κ)ζ(κ))|D

]T
,

(49)
where δ(κ) is the step size at the κth iteration, which is
obtained by Armijo’s backtracking line search algorithm [16].
Furthermore, Algorithm 2 summarizes the complete procedure
of solving (30) using the EPMO method, which involves up-
dating the penalty parameter µ until the measures of violating
the constraints (30b) and (30c) satisfy the condition

ωr(d1)|µ1 ≥ ωr(d2)|µ2 , ∀m, (50)

Algorithm 2 EPMO algorithm for solving (30)
Input: FBB and thresholds τ3 > 0 ,τ4 > 0, 0 < c < 1
Output: Optimal RF TPC F∗

RF

1: Initialize: FRF, κ = 0, d(κ) = vec(FRF), ζ(κ) =
−∇Mf(d(κ))

2: while
(
∥∇Mf(dκ)∥2 ≥ τ3

)
do

3: find Armijo backtracking line search step size δ(κ)

4: obtain the next point d(κ+1) using the retraction (49)
5: compute the Riemannian gradient ∇Mf

(
d(κ+1)

)
us-

ing (46).
6: evaluate the transport Td(κ) 7→d(κ+1)

(
ζ(κ)

)
using (48)

7: determine the steepest direction ζ(κ+1) according to
(47)

8: set κ← κ+ 1

9: end while
10: if

(∑M
m=1

ψm

(
d(κ)

)
+ χp

(
d(κ)

))
≤ τ4,

11: return d∗ = d(κ) stop
12: else
13: update µ = µ

c and go to step 2
14: end if
15: return: F∗

RF = reshape(d∗) to Nt ×NRF matrix

where d1 and d2 are the optimal solutions of problem (42)
for given µ1 < µ2, respectively. Hence, the penalty factor µ is
initialized to be a small number to find a good starting point,
then gradually increased to tighten the penalty. Specifically,

µ =
µ

c
, 0 < c < 1, (51)

where c is a constant scaling parameter. A larger c may lead
to a more precise solution with a longer running time.

2) Sub-problem for FBB: For the given FRF and U, the
resultant OP for FBB is given by

min
FBB

∥FRFFBB − FrU∥2F s. t. (19b) and (15f) . (52)

To solve the problem (52), we reformulate the non-convex
SINR constraint as a second-order cone (SOC) constraint by
introducing a common phase shift for FRFfBB,m. Thus, the
equivalent second-order cone programming (SOCP) problem
constructed for (52) is given by

min
FBB

∥FRFFBB − FrU∥2F

s.t.

∥∥∥∥ AHe√
No

∥∥∥∥
2

≤
√
1 +

1

Γm
Re (tm,n) ,

∥FRFFBB∥F ≤
√
Pmax,

(53)

where tm,n = hH
mFRFfBB,n, A(m,n) = tm,n, and e ∈ CM×1

is the vector with one in its mth position and zero elsewhere.
The OP (53) above is a widely known SOCP convex OP
[32], which can be efficiently solved using a standard convex
optimization tool package.

3) Sub-Problem for U: For the given FRF and FBB, the
OP constructed for U is given by

min
U

∥FRFFBB − FrU∥2F s. t. (15d). (54)



Problem (54) is the orthogonal Procrustes problem (OPP) [30],
which is the least-squares problem associated with a non-
convex UM [30]. Interestingly, its optimal solution can be
obtained via the singular value decomposition (SVD), which
is given by

U = ŨINtar×MṼH , (55)

where INtar×M is constructed by concatenating the [Ntar ×
Ntar] identity matrix and the [Ntar×(M−Ntar)] zero matrix,
while the matrices Ũ and Ṽ are derived from the following
equation

SVD
(
FH

r FRFFBB

)
= ŨΣṼH . (56)

B. Outer layer: update {βm}Mm=1 and R
For the fixed RBE, E = ∥FRFFBB−FrU∥2F , the next step

is to optimize the block length {βm}Mm=1 in the outer layer.
The equivalent sub-problem is constructed for addressing the
blocklength {βm}Mm=1 as follows

max
{βm}M

m=1

R

s. t. (15b), (15g), and (15h).
(57)

Proposition 2. To find a point on the Pareto boundary for the
given RBE E , the block length constraint must be met with
equality, i.e.,

M∑
m=1

βm = N. (58)

Proof. This is proved by considering two CUs in the system.
For the given BB and RF TPC, the corresponding rates R1

and R2 of the two CUs for the system under consideration
are given, for the block lengths of β1 and β2, as well as for
the decoding error probabilities of ϵ1 and ϵ2, respectively, as:

R1 = ln (1 + γ1)−

√
V1
β1
Q−1 (ϵ1) (59a)

R2 = ln (1 + γ2)−

√
V2
β2
Q−1 (ϵ2) , (59b)

where β1+β2 = N . Let us assume that there exists a positive
value N̂ such that N̂ < N . Based on this assumption, the
corresponding point on the RBE-rate region should adhere to
β1 + β2 = N̂ . Let us fix the block length of CU 1 to β1.
Hence, the block length of CU 2 is given by β̂2 = N̂−β1. As
a result, the achievable rate of CU 2 R̂2 for the block length
of β̂2 is modified as follows

R̂2 = ln (1 + γ2)−

√
V2

β̂2
Q−1 (ϵ2) . (60)

Note that the achievable rate of the SPC regime monotonically
increases with block length [3]. For the given N̂ < N , it
follows that β̂2 = N̂ −β1 < N −β1. Hence, R̂2 < R2, which
reduces the achievable sum rate of the system. Therefore, for
any achievable sum rate point on the Pareto boundary of the
RBE-rate region, N̂ must be equal to N . This holds for more
than two CUs.

Algorithm 3 Two layer bisection search (TLBS) algorithm for
solving (15)
Input: Fr, {ηm}Mm=1, {ϵm}Mm=1, RL = 0, RU, Emax, Pmax,
N , and thresholds τ5 > 0, τ6 > 0

1: initialize: FRF,FBB,U, {βm}Mm=1, and E(U,FBB,FRF)
2: repeat
3: R = (RL +RU)/2
4: evaluate Γm,∀m using (17)
5: repeat
6: set κ = 0, E(κ) =∞
7: given F

(κ)
BB and U(κ), obtain F

(κ+1)
RF by solving

(20)
8: given F

(κ+1)
RF and U(κ), evaluate F(κ+1)

BB by solving
(53)

9: given F
(κ+1)
RF and F

(κ+1)
BB , calculate U(κ+1) by

solving (54)
10: compute E(κ+1) = E(U(κ+1),F

(κ+1)
BB ,F

(κ+1)
RF )

11: set κ← κ+ 1
12: until |(E(κ) − E(κ−1))/E(κ)| ≤ τ5
13: if E(κ) ≤ Emax and ∥F(κ)

RFF
(κ)
BB∥2F ≤ Pmax

14: obtain {βm}Mm=1 using (62)
15: if (62) is feasible
16: set RL = R.
17: else set RU = R.
18: end if
19: else set RU = R.
20: end if
21: until RU −RL ≤ τ6
22: output: FRF, FBB, {βm}Mm=1 and RBE-rate tuple (E ,R)

Moreover, for any target rate R ≥ 0, the constraint (15b)
can be modified as follows

βm ≥
( √

VmQ
−1 (ϵm)

ln (1 + γm)− ηmR

)2

. (61)

Consequently, following Proposition 2 and (61), the modified
block length optimization is given by

Find : [β1, . . . , βM ] s. t. (61), (58), and (15h), (62)

where (62) is a mixed integer program for fixed FRF,FBB

and U [26]. In order to solve (62), we first relax βm,∀m into
a continuous value, solve the resulting problem for β̃m, and
finally round each optimal continuous value β̃⋆

m to the nearest
integer. To determine the best integer quantization block length
and efficiently control the quantization error, we employ the
following criterion for ∀m:

β⋆
m =

{
⌊β̃⋆

m⌋, if β̃⋆
m − ⌊β̃⋆

m⌋ ≤ ς,
⌈β̃⋆

m⌉, otherwise,
(63)

where ς ∈ [0, 1] is chosen so that
∑M

m=1 β
⋆
m = N is satisfied.

Finally, for a fixed BB TPC FBB, RF TPC FRF, and block
length {βm}Mm=1, we update the achievable sum rate R via
the bisection search method [34].



C. Summary

This subsection describes the overall algorithm. Since the
proposed algorithm relies on the BCD algorithm, we iteratively
optimize the RF TPC FRF, BB TPC FBB and the block length
βm,∀m, until convergence is achieved. Now let us discuss
the initialization of F

(0)
RF,F

(0)
BB,U

(0) and β
(0)
m ,∀m, for the

proposed TLBS algorithm.
1) F

(0)
RF: we initialize the each element of F

(0)
RF as ejνi,j

with νi,j denoting random phases chosen from [−π, π],∀i ∈
Nt,∀j ∈ NRF.

2) U(0): recalling (55), the auxiliary matrix U(0) is ini-
tialized as U(0) = Ũ(0)INtar×M (Ṽ(0))H , where we generate
unitary matrices Ũ(0) and Ṽ(0) via the SVD of a random
matrix.

3) F
(0)
BB: for a given Fr, F

(0)
BB is initialized by em-

ploying the least squares method [8], [27] as F
(0)
BB =

√
Pmax

((
F

(0)
RF

)H
F

(0)
RF

)−1(
F

(0)
RF

)H
FrU

(0)∣∣∣∣∣∣∣∣((
F

(0)
RF

)H
F

(0)
RF

)−1(
F

(0)
RF

)H
FrU(0)

∣∣∣∣∣∣∣∣2
F

, which satisfies the

power constraint at the ISAC BS.
4) β(0)

m : for the given total block length N and number
of CUs M , we set β(0)

m as β
(0)
m = N

M ,∀m. Furthermore,
the complete procedure of the proposed TLBS-based joint
optimization is summarized in Algorithm 3.

IV. SIMULATION RESULTS

In this section, we present simulation results that charac-
terize the Pareto boundaries of the RBE-rate region across
various scenarios, along with the beam pattern, for an SPC-
enabled mmWave ISAC system. The ISAC BS is assumed to
be equipped with a ULA consisting of Nt transmit antennas
and NRF RFCs. Each CU and RT is assumed to be within a
range of 100 meters from the ISAC BS, with the path loss for
the mmWave channel modeled as PL(dm), given by [8], [9],
[13], [32]

PL(dm) [dB] = ε+ 10φ log10(dm) +ϖ, (64)

where ϖ follows a distribution CN (0, σ2
ϖ) with σϖ = 5.8dB,

ε = 61.4 and φ = 2 [32]. For the propagation environment,
we set Nclu = 5 and Nray = 10 per cluster, with an angular
spread of 10 degrees [8]. Furthermore, the AoDs ϕi,j ,∀i, j
are generated from a Laplacian distribution and uniformly
distributed within the range [−90◦, 90◦] [8]. We consider a
scenario with two RTs and two CUs, and the system operates
at a frequency of 28 GHz with a bandwidth of 251.1886 MHz.
Consequently, the noise variance N0 at each CU is set to
N0 = −174 + 10 log10B = −90 dBm [32]. Unless stated
otherwise, the key simulation parameters are those listed in
Table II. Moreover, all the simulation results are averaged over
100 channel realizations.

A. Convergence behavior of the proposed algorithms

In this subsection, we characterize the convergence behavior
of the proposed TLBS-based joint optimization Algorithm 3
to solve (16). Observe that the inner layer of the proposed

Table II: Simulation Parameters and Corresponding Values

Parameter Value
Maximum allowable power budget Pmax 30 dBm
Number of transmit antennas, Nt 128
Number of RF chains, NRF {4, 6}
Maximum allowable block length, N {128, 256}
Decoding error probability of each CU , ϵ {10−5, 10−6}
Number of uRLLC CUs 2
Number of RTs 2
Radar beam pattern error, E {0.15, 0.45}
Noise power, No −90 dBm
Target rate ratio of each CU, {η1, η2} (0.5, 0.5)

algorithm employs the BCD method for iteratively updating
FRF,FBB and U to minimize the RBE E , in the (κ + 1)th
iteration, we have

E(F(κ+1)
RF ,F

(κ+1)
BB ,U(κ+1)) ≤ E(F(κ+1)

RF ,F
(κ+1)
BB ,U(κ))

≤ E(F(κ+1)
RF ,F

(κ)
BB,U

(κ)) ≤ E(F(κ)
RF,F

(κ)
BB,U

(κ)),
(65)

where the RF TPC F
(κ)
RF is optimized via the BMM and EPMO

methods. Moreover, the BMM method returns progressively
improved feasibility points with lower values of the objec-
tive function, while the EPMO method determines descent
directions within the feasible region of the complex circle
Riemannian manifold to achieve the same goal. Furthermore,
for the BB and RF TPCs designed, the outer layer subse-
quently optimizes the block length {βm}Mm=1 via solving (62)
and updates the achievable sum rate via the bisection search
method, until convergence is achieved.
Furthermore, Fig. 2a and Fig. 2b present the convergence
of RBE E in the inner layer of the proposed algorithms
with respect to the block length N , the number of RFCs,
NRF, respectively, for a fixed sum rate of R = 10 bps/Hz.
We compare the convergence performance of the proposed
TLBS-BMM and TLBS-EPMO. One can observe from both
figures that the RBE of the TLBS-BMM and TLBS-EPMO
methods decreases monotonically, verifying the convergence
of Algorithm 3 in the inner layer. Moreover, the RBE of the
TLBS-EPMO method is much lower than that of the TLBS-
BMM method for a fixed sum rate R. This is due to the
fact that the TLBS-BMM involves the approximation of the
majorizer functions, which increases the RBE. However, the
TLBS-EPMO method does not require such approximations,
which reduces the gap between the optimal radar beamformer
and the HBF designed. Furthermore, the RBE corresponding
to N = 256 is lower than that of N = 128 since, upon
increasing the block length, the SPC rate approaches the
Shannon capacity, and hence for the given target rate, an
increased quantum of transmit power is available towards
the RTs. In a similar fashion, the RBE of NRF = 6 is
much lower than that of NRF = 4, which is due to the fact
that increasing NRF improves the approximation of HBF for
the ideal radar beamformer. Fig. 2c shows the convergence
of the proposed algorithm in the outer layer comprising a
binary search approach, for R = {8, 10} bps/Hz. Observe
that the proposed algorithm converges within 10 iterations for
both the BMM and EPMO techniques, which evidences the
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Figure 2: Convergence of RBE in the inner layer for fixed R = 10 bps/Hz (a) with N ; (b) with NRF; (c) convergence of RBE in the outer
layer with N = 128 and NRF = 4.

convergence of the proposed TLBS algorithm. Moreover, the
RBE is higher for R = 10 bps/Hz than R = 8 bps/Hz, which
is due to the fact that a large sum rate requirement for the
CUs reduces the power radiated towards the RTs.

Furthermore, to demonstrate the efficiency of the proposed
algorithms and to glean interesting design insights, we com-
pare the proposed method to the following schemes.

• Scheme 1 (Optimal IBL-FDB): For this scheme, IBL is
employed at the ISAC BS, which follows the Shanon ca-
pacity (SC) (11). Furthermore, FDB is used for designing
the beamformer.

• Scheme 2 (TLBS-FDB): This scheme corresponds to SPC
transmission along with the FDB scheme to design the
beamformer, where the TLBS algorithm is employed for
optimizing the FDB and block length.

• Scheme 3 (TLBS-OMP): In this scheme, we employ the
orthogonal matching pursuit (OMP) [27] in the inner
layer of the TLBS algorithm to optimize the RF and BB
TPCs.

We compare the performance by evaluating the RBE-rate
region and the sum rate versus several important parameters,
which are discussed in the subsequent subsections.

B. Pareto boundary of the RBE-rate region

In this subsection, we investigate the behavior of the Pareto
boundary of the RBE-rate region in SPC-enabled mmWave
MIMO ISAC systems by varying some important parameters.

1) Pareto boundary of RBE-rate region for different block
lengths N : In Fig. 3a, we plot the Pareto boundary of the
RBE-rate region for block lengths of N = 128 and 256 at
a fixed decoding error probability2 of ϵ = 10−5 when the
number of RFCs is NRF = 4. As seen from the figure, the
Pareto boundary of the RBE-rate region increases with N ,
since a larger N results in a higher sum rate, which reveals
the impact of the block length on the system due to the SPC
transmission. Moreover, the IBL-FDB scheme serves as the
global upper bound for the RBE-rate region due to the resultant
gain of the IBL transmission coupled with the FDB scheme.
Meanwhile, TLBS-FDB acts as the local upper bound for the

2Note that ϵ represents the decoding error probability due to SPC, whereas
E is the RBE.

proposed schemes in the SPC regime for both N = 128
and N = 256 due to the FDB scheme. Furthermore, the
TLBS-EPMO scheme yields improved performance over the
TLBS-BMM scheme and it is close to the locally optimal
curve of the TLBS-FDB for both N = 128 and 256, which
shows the efficacy of the RCG approach in the context of the
EPMO technique. Moreover, both the proposed TLBS-EPMO
and TLBS-BMM schemes are clearly superior to the TLBS-
OMP method, which shows the effectiveness of the EPMO
and BMM methods in optimizing the RF TPC.

2) Pareto boundary of the RBE-rate region for different
decoding error probabilities ϵ: Fig. 3b investigates the impact
of decoding error probability on the Pareto boundary of the
RBE-rate region. As seen from the figure, the gap in the
RBE-rate region increases as the decoding error probability
decreases from ϵ = 10−5 to 10−6 dB since a reduction in
the decoding error probability of the SPC regime results in
an increase in the achievable rate. Thus, upon decreasing the
decoding error probability, the power available for the RTs
increases for a given sum rate, leading to an RBE reduction.
Furthermore, the Pareto boundary of the proposed schemes is
superior to that of the TLBS-OMP method for both ϵ = 10−5

and 10−6 dB, which shows the efficacy of the MM and
RCG steps employed in the BMM and EPMO algorithms,
respectively.

3) Pareto boundary of the RBE-rate region for different
RFCs NRF: Fig. 3c reveals the Pareto boundary of the RBE-
rate region for NRF = {4, 6} along with N = 128 and
ϵ = 10−5. It can be observed from the figure that the Pareto
boundary of the RBE-rate region expands upon increasing the
values of NRF. This can be explained by the fact that the error
between the ideal radar beamformer and the HBF designed
decreases upon increasing NRF, which therefore results in a
reduced RBE. Consequently, more power is available for the
CUs for a given RBE, which in turn leads to an increase in the
sum rate. Furthermore, the Pareto boundary of the proposed
TLBS-BMM and TLBS-EPMO methods approaches that of
the locally optimal TLBS-FDB for both NRF = 4 and 6. This
shows that our proposed methods in the SPC regime achieve
optimal performance with fewer RFCs. Hence, the proposed
schemes save power and cost by employing the HBF scheme,
while still achieving a performance that is close to that of
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Figure 3: Pareto boundary of RBE-rate region for different (a) block length N ; (b) decoding error probabilities ϵ; (c) number of RFCs NRF.
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Figure 4: Achievable sum rate versus (a) block length N ; (b) rate profile η; (c) transmit power Pmax.

the optimal FDB scheme. Moreover, the Pareto boundary of
the proposed TLBS-EPMO scheme is very close to that of
the globally optimal IBL-FDB technique. Therefore, one can
approach the Shannon capacity of the SPC-enabled mmWave
MIMO ISAC system at a fixed block length and decoding
error probability by increasing the number of RFCs NRF in
the TLBS-EPMO approach. It is worth noting that the radar
sensing capabilities and SINR of the system are proportional
to 1

E and R, respectively. Therefore, one can also corroborate
the Pareto boundary of the RBE-rate region by underlining the
radar sensing and SINR trade-off.

C. Achievable sum rate of the SPC-enabled mmWave MIMO
ISAC systems

1) Achievable sum rate versus block length N : In Fig.
4a, we plot the achievable sum rate versus the block length
for different RBEs E = {0.15, 0.45}. It can be seen from
the figure that the IBL-FDB scheme is independent of the
block length and acts as the global optimum. Moreover, the
achievable sum rate increases upon increasing the block length
N due to the influence of the block length on the rate
expression. Furthermore, the sum rates of the proposed TLBS-
EPMO and TLBS-BMM schemes approach that of the locally
optimal TLBS-FDB, are seen to be improved over the TLBS-
OMP scheme for increasing N , which shows the efficacy of
the proposed designs. In addition, one can observe from the
figure that reducing the RBE from E = 0.45 to 0.15 results
in a decrease in the achievable sum rate. This is due to the
fact that reducing the RBE results in an increased focus on the
RTs, leading to a reduced sum rate, as expected. Moreover, the

TLBS-EPMO scheme has a performance edge over its TLBS-
BMM counterpart for both E = 0.15 and E = 0.45, which is
due to the RCG step involved in the TLBS-EPMO approach
conceived for the design of the RF beamformer.

2) Achievable sum rate versus the rate profile vector η:
Fig. 4b investigates the impact of the rate profile vector η3

on the achievable sum rate of the system for the RBEs of
E = {0.15, 0.45}. As discussed, the elements of η denote
the target ratio of the mth CU rate and to the sum rate of the
system and satisfy the constraint

∑M
m=1 ηm = 1 as associated

with ηm ∈ (0, 1). Therefore, in pair of the uRLLC CUs, we
set η as η = [η, 1−η] and vary η from 0 to 1 with increments
of 0.1. As seen from the figure, the achievable sum rate of
the system is quasi-concave in nature with respect to the rate
profile vector. Therefore, an optimal value of the rate profile
vector exists at which the achievable rate is maximum.

3) Achievable sum rate versus transmit power Pmax: We
plot the achievable sum rate versus the transmit power in Fig.
4c for the fixed RBEs of E = {0.05, 0.15, 0.45}. For a fixed
RBE, the transmit power is a feasibility parameter for the
TLBS algorithm. Therefore, as seen from the figure, for the
RBE values of E = 0.05 and E = 0.15, the TLBS algorithm
is infeasible for Pt < 28 dBm and Pt < 26 dBm, respectively.
However, a large RBE of E = 0.45 is always feasible for the
TLBS algorithm. This trend is due to the fact that a small RBE
leads to focusing a large fraction of the available power for the
RTs. Hence, the power radiated towards the CUs is low, which

3In case of two CUs, rate profile vector η is given by η = [η1, η2], where
η1 and η2 represents the target rate ratio of CU 1 and 2, respectively, with
η1 + η2 = 1.
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Figure 5: Beam pattern for fixed R = 10 bps/Hz (a) with radar and
communication only; (b) with HBF.

renders the problem infeasible due to the inability of achieving
their QoS requirement. Moreover, the achievable sum rate of
the system increases with the transmit power, and the proposed
schemes yield an improved sum rate in comparison to the
TLBS-OMP method.

D. Beampattern of the SPC-enabled mmWave MIMO ISAC
system

For this scenario, we consider the RTs and uRLLC CUs
to be located at [−60◦,−20◦] and [30◦, 60◦], respectively.
Therefore, the desired beampattern is given by

Gd(θl) =

{
1, θl ∈ (θi ± σθ), i = 1, 2,

0, otherwise,
(66)

where θ is the direction of the target and σθ denotes a constant
angular spread of σθ, which is assumed to be 1√

2
. Fig. 5a

shows the ideal beam pattern of the radar- and communication-
only beamformer. As seen from the figure, the main lobes of
the beam pattern are directed towards the location of the RTs
and the communicating CUs. Furthermore, Fig. 5b plots the
beam pattern of the proposed HBF schemes and compares it
to the baseline for block lengths of N = 128 and 256 for a
fixed RBE of E = 0.15 and sum rate of R = 10 bps/Hz. As
seen from the figure, the main lobes of the HBF beampattern
are directed toward the RTs and the CUs. Moreover, the
beamforming gain of the system toward the RTs is higher
for N = 256 than N = 128. This is due to the fact that a
large N increases the sum rate. As a result of this, higher
power is available for the target at a given sum rate and RBE.
Additionally, the gain of the proposed schemes is higher than
that of the TLBS-OMP method, which once again vindicates
the efficacy of the EPMO and BMM algorithms conceived.

E. Complexity analysis

We now evaluate the overall computational complexity
of the proposed TLBS algorithm. In the inner layer, the
complexity of computing the RF TPC FRF via the BMM
and EPMO methods is O(IbKN2

t N
2
RF ) and O(IeN2

t N
2
RF ),

respectively, where Ib and Ie are the number of iterations
required to update d in the BMM and EPMO methods.
Furthermore, the complexities involved in obtaining the
BB TPC FBB, the auxiliary matrix U and block length
{βm}Mm=1 are given as O(N3.5

RFM
3.5), O(NtNtarNRF)

and O(IBLM
2), respectively, where IBL is the number of

Table III: Computational Complexity Comparison

Schemes Computational Complexity
IBL-FDB O

(
N4

t

)
TLBS-FDB O

(
N4

t

)
TLBS-BMM O

(
KN2

t N
2
RF

)
TLBS-EPMO O

(
N2

t N
2
RF

)
TLBS-OMP O

(
N3

t NRF

)
bisection iterations. Therefore, the overall complexity of the
TLBS algorithm harnessing the BMM and EPMO methods,
namely TLBS-BMM and TLBS-EPMO, is given by
O
[
IoutIin

(
IbKN2

t N
2
RF +N3.5

RFM
3.5 +NtNtarNRF

) ]
+

O
(
IBLM

2
)

and
O
[
IoutIin

(
IeN2

t N
2
RF +N3.5

RFM
3.5 +NtNtarNRF

) ]
+

O
(
IBLM

2
)
, respectively, where Iout and Iin denote the

number of iterations required in the outer and inner layers.
Observe that a significant fraction of the computational
complexities of the proposed algorithms arise from the
optimization of the RF TPC. For completeness, we compare
the dominant complexities at each iteration for various
schemes by omitting the lower order term in Table III. Since
both the IBL-FDB and TLBS-FDB schemes employ the fully
digital TPCs, which require Nt number of RF chains, they
have higher complexities. It is worth noting that the major
complexity of optimizing the RF TPC via the OMP scheme
originates from calculating the inner product between the
codebook matrix and the residual matrix [27]. Considering
the optimal size of the codebook, the overall complexity
of the TLBS-OMP scheme is given by O

(
N3

t NRF

)
[27].

In summary, the complexity of the proposed schemes is
proportional to N2

t , which is relatively low compared to the
benchmark scheme. This demonstrates the feasibility of the
proposed schemes for real-time implementation in practical
SPC-aided mmWave ISAC systems.

V. CONCLUSION

Pareto-optimal joint HBF and block length designs were
conceived by considering the SPC transmission in the
mmWave ISAC systems to meet the uRLLC requirements
of the CUs, while also accomplishing sensing of the RTs.
To this end, a Pareto-optimal framework was developed for
characterizing the RBE-rate region of the model considered
via the optimization of the RF and BB TPCs, as well as
the block lengths. A novel TLBS algorithm was proposed
for HBF design that comprises two layers. The inner layer
computed the RF and BB TPCs minimizing the RBE of the
RTs for a fixed sum rate of the CUs. Subsequently, the outer
layer achieved block length optimization and evaluated the
sum rate achievable for the given RBE. As a further advance,
a pair of algorithms were proposed to design the RF TPC
for the given system, namely, the BMM and EPMO schemes,
which are based on the MM and RCG principles, respectively.
Finally, simulation results were presented for characterizing
the complete RBE-rate region and the sum rate of the system
achievable for various parameter settings. The results evidence
the fact that, through careful design, the mmWave ISAC
system relying on SPC achieves the performance of an ideal



IBL-aided mmWave ISAC system, despite using substantially
fewer RFCs and a finite block length. Thus, the proposed
design is cost- and power-efficient, while supporting uRLLC
services in 6G ISAC mmWave systems. Furthermore, future
research should focus on the extension of this work to more
practical scenarios with imperfect channel state information
(CSI) that may degrade the communication and sensing perfor-
mance, necessitating the development of robust beamforming
techniques that account for channel uncertainties.
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