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Abstract 17 

Estimating foliar dust (FD) is essential in understanding the complex interaction between FD, 18 
vegetation, and the environment. The elevated FD  has a significant impacts on vegetation 19 
physiological processes. The present study aims to explore the potential of multi-sensor optical 20 
satellite datasets (e.g., Landsat-8, 9; Sentinel-2B, and PlanetScope) in conjunction with in-situ 21 
datasets for FD estimation over the Jharsuguda coal mining region in Eastern India. The efficacy 22 
of different spectral bands and various radiometric indices (RIs) was tested using linear 23 
regression models for FD estimation. Furthermore, the study attempts to quantify the impacts 24 
of FD on vegetation's physiological processes (e.g., carbon uptake, transpiration, water use 25 
efficiency, leaf temperature) through proxy datasets. The key findings of the study uncovered 26 
sensor-specific and common trends in vegetation spectral profiles under varying FD 27 
concentrations. A saturation threshold was observed around 50 g/m² of FD concentration, 28 
beyond which additional FD concentration exhibited limited impact on spectral reflectance. On 29 
the other hand, the assessment of FD estimation models revealed distinct performances and 30 
shared trends across various satellite sensors. Notably, near-infrared (NIR) and shortwave 31 
infrared-1 (SWIR1) bands, along with certain RIs, such as the Global Environmental Monitoring 32 
Index (GEMI) and the Non-Linear Index (NLI), emerged as pivotal for accurate FD estimation. 33 
Besides, the study results revealed that vegetation-associated carbon uptake experienced a ~ 2 34 
to 3 gC reduction for every additional gram of FD per square meter. Moreover, the vegetation 35 
transpiration reduction per unit of FD ranged from approximately 0.0005 to 0.0006 36 
mm/m²/day, highlighting a moderate impact on transpiration levels. These findings aid a 37 
significant evidence base to our understanding of FD's impact on vegetation physiological 38 
processes.  39 

 40 

Plain Language Summary 41 

Estimating foliar dust (FD) cover is essential to understand its impact on vegetation and the 42 
environment. Elevated FD levels can reduce photosynthesis, hinder carbon sequestration, and 43 
affect transpiration, thereby altering plant health and ecosystem functions. Accurate FD 44 
estimation helps in assessing these ecological impacts and developing strategies to mitigate 45 
adverse effects. Furthermore, FD can affect remote sensing-based analysis by altering the 46 
spectral reflectance properties of vegetation, potentially leading to inaccuracies in vegetation-47 
related studies (e.g., health assessment, productivity estimation, species identification, etc.). By 48 
understanding these effects, the study shall aid in refining remote sensing models for more 49 
precise vegetation analysis. So, the present study utilizes multi-sensor optical satellite datasets 50 
(Landsat-8, Landsat-9, Sentinel-2B, and PlanetScope) along with in-situ data to estimate FD in 51 
the Jharsuguda coal mining region in Eastern India. Vegetation’s spectral profiles under dusty 52 
and non-dusty conditions are also studied. This study also quantifies the impacts of FD on 53 
vegetation physiological processes, providing critical insights into the ecological consequences 54 
of dust accumulation on plant surfaces. 55 
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1 Introduction 56 

Foliar dust (FD) in mining and other dusty regions negatively affects vegetation function, 57 
affecting its physiology and ecological dynamics. It affects photosynthesis, light interception, 58 
nutrient availability, gas-energy exchange, physical damage, and plant-pathogen interactions (Li 59 
et al., 2023; Naidoo and Chirkoot, 2004; Ranjan et al., 2021). The deposition of dust particles on 60 
leaf surfaces leads to obstruct stomata, the tiny openings through which plants exchange gases 61 
with the atmosphere (Li et al., 2023). This interference reduces the availability of CO2 for 62 
photosynthesis, reduces the plant's ability to convert light energy into chemical energy, and 63 
reduces carbon assimilation and plant productivity (Chaurasia et al., 2022; Singh et al., 2023). 64 
Dust deposition on leaf surfaces negatively affects the uptake of CO2 and the release of oxygen 65 
(O2) through stomatal apertures (Prusty et al., 2005). The obstruction of stomata by dust limits 66 
the efficiency of gas exchange, hampering the diffusion of CO2 into leaves and O2 out of leaves 67 
(Chaurasia et al., 2022).  68 

The consequences of dust deposition extend beyond photosynthesis. Dust settling on 69 
leaves and other plant surfaces hinders moisture exchange between plants and the atmosphere 70 
(Evans et al., 2019). Dust layers on vegetation leaves reduce evaporation rates and increase leaf 71 
temperature, leading to water stress and decreased transpiration (Chaurasia et al., 2022; Singh 72 
et al., 2023). This disturbance in the water cycle may reduce plant growth, especially in arid and 73 
semi-arid regions where water availability is already limited. In addition to the direct 74 
physiological effects, dust particles can cause physical damage to plant tissues (Ackerman and 75 
Finlay, 2019; Li et al., 2023). The abrasive nature of dust particles can lead to physical abrasion 76 
of leaf surfaces, epidermal layers, and cellular structures. This damage can disrupt cellular 77 
functions, alter leaf pigments, compromise plant integrity, and increase vulnerability to other 78 
environmental stresses, such as drought, heat, or pest infestations (Lin et al., 2021a; Rehman et 79 
al., 2023). 80 

In particular, mining and roadside regions are the key hotspots of FD deposition (Kayet 81 
et al., 2019; Subpiramaniyam et al., 2021). Therefore, understanding these impacts is essential 82 
for managing and mitigating the potential ecological implications of dust deposition and 83 
ensuring the health and sustainability of vegetation ecology in these regions. However, 84 
accurate quantification and monitoring of the spatial distribution of FD deposition over large 85 
areas is a tedious and challenging task. In-situ measurement of FDC is time-consuming and 86 
labor-intensive. This makes it difficult to gather comprehensive data over large areas, as it 87 
requires substantial financial, technical, and human resources. In this context, satellite remote 88 
sensing (RS) can capture fine-scale variations, offers wide area coverage, regular monitoring, 89 
non-invasive data collection, multi-spectral capabilities, data integration, and global 90 
accessibility. Hence, integrating satellite RS data with in-situ measurements shall offer a holistic 91 
approach to FD estimation and the ability to upscale to a wider region.  92 

So far, little attention has been given to the study of FD estimation using satellite RS, 93 
despite its significant implications for vegetation health, ecosystem dynamics, and carbon 94 
neutrality (Lin, et al., 2021b; Subpiramaniyam et al., 2021; Yu et al., 2022). Nonetheless, a study 95 
by Ma et al. (2017) focused on estimating FD in China's Changhe River mining area. 96 
Furthermore, Kayet et al. (2019) conducted a similar study over the iron ore mining region in 97 
Jharkhand state, India, using Hyperion and Landsat satellite imagery. Both studies highlighted 98 
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the importance of vegetation indices, particularly the Normalized Difference Vegetation Index 99 
(NDVI), for estimating foliar dust concentration (FDC). Apart from the mining regions, a few 100 
studies were also conducted in city or urban areas for FD mapping (Su et al., 2019; Sun et al., 101 
2021; Yan et al., 2015; Yu et al., 2022). However, earlier studies (Kayet et al., 2019; Ma et al., 102 
2017; Yan et al., 2015; Yu et al., 2022) have tested only a limited range of radiometric indices 103 
(RIs) (e.g., NDVI, Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI), Transformed SAVI 104 
(TSAVI), Perpendicular Vegetation Index (PVI), Non-Linear Index (NLI), Modified SR (MSR), 105 
Tasselled Cap Transformation Greenness) or relied on a single satellite sensor (e.g., Landsat, 106 
Sentinel-2) for foliar dust estimation. The potential of many other useful RIs and satellite sensor 107 
capabilities that could improve FD estimation accuracy has not yet been fully explored.  108 

Besides the FD estimation, Ma et al. (2020) investigated the relationship between dust 109 
amount and canopy spectra in mining areas in China, and Lin et al. (2021a) examined the 110 
impact of dust deposition on pigment concentration in urban areas. In contrast, though a few 111 
past studies (Li et al., 2023; Lin et al., 2021b; Prusty et al., 2005) have discussed the negative 112 
impacts of FD deposition on vegetation biochemical properties, rarely has any study quantified 113 
its effects on vegetation physiological processes (hereafter, VPP) (e.g., carbon uptake, 114 
transpiration, leaf temperature, etc.) using satellite datasets. Long-term exposure to FD can 115 
hinder plant growth, slowing growth rates due to reduced photosynthesis, impaired gas and 116 
water exchange, increased leaf temperature, and nutrient imbalances (Chaurasia et al., 2022; Li 117 
et al., 2023; Prusty et al., 2005; Rehman et al., 2023).  118 

Many research questions remain unanswered in the existing studies. For example, the 119 
effectiveness of different spectral bands of optical satellites, like PlanetScope, Sentinel-2, and 120 
Landsat, in estimating foliar dust concentration based on their spatial resolution, spectral 121 
characteristics, and data quality is poorly understood. Additionally, it is unclear which satellite-122 
derived vegetation and soil radiometric indices perform best in foliar dust estimation. 123 
Moreover, the extent to which foliar dust affects vegetation photosynthesis activity, health, and 124 
productivity needs further investigation. Overall, this underexplored research area lacks 125 
comprehensive studies and methodologies, highlighting the need for further investigation. Such 126 
studies would enhance our understanding of the impacts of foliar dust on vegetation health and 127 
productivity and support effective environmental management and mitigation strategies in 128 
mining and other hotspot regions. This approach may serve as a nature-based solution (NBS) by 129 
leveraging the natural processes of plants to combat climate change while preserving 130 
ecosystem health and biodiversity. Hence, the present study aims: 131 

                                                                                                                                    132 
(1) Characterize the spectral profile of vegetation at varying foliar dust weights using 133 

multi-sensors optical satellite datasets. 134 
(2) Evaluating the efficacy of limited in-situ foliar dust data and different spectral bands 135 

(Landsat-8, Landsat-9, Sentinel-2, PlanetScope) and various radiometric indices for 136 
foliar dust concentration estimation in coal mining regions. 137 

(3) Understanding the impacts of foliar dust on vegetation physiological processes (carbon 138 
uptake, transpiration, water use efficiency, leaf temperature). 139 

(4) Investigating the role of external factors like elevation and distance from mine and 140 
roadways on FD deposition. 141 
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2 Materials and method 142 
2.1 Study area 143 
The present study is carried out over the coal mining region in the Jharsuguda district of Odisha 144 
state, India (Figure 1). The study area comes under the Mahanadi Coalfield Limited, which is a 145 
subsidiary of Coal India Limited, includes various coal mining projects, including the Belpahar 146 
opencast project (OCP), Lajkura OCP, Lilari OCP, Lakhanpur OCP, Samaleswari OCP, Hirakhand 147 
Bundia mines, and Orient Colliery U/G mines 1 and 2. The region also features other land cover 148 
types, such as forests, agricultural lands, built-up areas, and water bodies. The in-situ foliar dust 149 
samples were collected over Lakhanpur (Khairkuni region) and Samaleswari OCP, highlighted as 150 
R1 and R2, respectively, in Figure 1 (zoomed regions). 151 
 152 

 153 
Figure 1. Location map of the Jharsuguda coal mining region in Odisha State, India. Zoomed 154 
regions highlight the sample plots for in-situ FD data collection sites. 155 

 156 
2.2 Data 157 
2.2.1 Multi-sensors optical satellite datasets 158 
The present study employed four optical satellite sensor datasets ( Landsat-8, Landsat-9, 159 
Sentinel-2, and PlanetScope) for FD estimations and comparative evaluation of the efficacy of 160 
different satellite sensors in FD estimations. The scenes of these satellite sensors were acquired 161 
for the nearest available date of field campaigns, as listed in Table 1.  162 
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The Landsat-8 and Landsat-9 surface reflectance datasets (Collection 2 Level-2 Science 163 
Products) were acquired for 13th December and 21st December 2022, respectively, from the 164 
United States Geological Survey Earth Explorer (https://earthexplorer.usgs.gov/). Both satellites 165 
offer 11 spectral bands with a spatial resolution of 30 m and a temporal resolution of 16 days. 166 
One key enhancement in Landsat-9 is the heightened radiometric resolution of 14-bit 167 
quantization from 12-bit in Landsat-8. This improvement empowers the sensors to detect 168 
subtle differences in reflectance, particularly in regions with lower radiance levels, such as 169 
bodies of water or densely vegetated forests. Band 1 to Band 7 of Landsat-8 and Landsat-9 170 
were used in this study. Before utilizing the dataset, all the bands were converted to surface 171 
reflectance using correction factors provided in metadata files. 172 

Sentinel-2B data with 10 m spatial resolution was also used in the study for FD 173 
estimation. Sentinel-2 offers 13 spectral bands in 10-day intervals. Sentinel-2 provides unique 174 
opportunities in the red-edge region (at 705, 740, and 783 nm), which are more sensitive and 175 
valuable in vegetation/crop-related studies. In this study, the Level-2A (S2MSI2A) 176 
atmospherically corrected SR data was acquired for 16th December 2022 from Copernicus Open 177 
Access Hub (https://scihub.copernicus.eu/dhus/#/home). Before utilizing the dataset, all the 178 
bands were resampled to 10 m.   179 

The higher spatial resolution (3 m) data of the PlanetScope satellite was also used in the 180 
study for FD estimation and land use land cover (LULC) classification. The ortho-analytic 8-band 181 
SR (ortho_analytic_8b_sr) scenes for 14th December 2022 and 19th December 2022 were 182 
downloaded from the Planet Explorer website (https://www.planet.com/explorer/#). The 183 
PlanetScope satellite is equipped with SuperDove instruments, which capture data in 8 spectral 184 
bands (visible to NIR spectrum) daily.   185 

2.2.2 Auxiliary satellite/gridded datasets 186 

In this study, multiple types of datasets (satellite and ancillary) were used to investigate the 187 
impacts of FD deposition on VPP. The Moderate Resolution Imaging Spectroradiometer 188 
(MODIS)-based Gross Primary Productivity (GPP) (MOD17A2H, v6.1) and evapotranspiration 189 
(ET) (MOD16A2, v6.1) datasets were used to assess the FD impacts on vegetation carbon 190 
uptake and transpiration, respectively. The spatial and temporal resolutions of the data are 500 191 
m and 16-day, respectively. 192 

The GPP and ET datasets were processed and downloaded from the Google Earth Engine 193 
cloud platform (https://code.earthengine.google.com/) for the period 24th October 2022 to 19th 194 
December 2022 (dust deposition period till the field data collection). There was no rainfall in 195 
the study area from 20th October 2022 till field data collection, so it was presumed that dust 196 
started depositing on vegetation after 20th October 2022. As field visits were conducted on 14th 197 
December and 19th December 2022, the study used the mean of GPP and ET datasets (24th 198 
October 2022 – 19th December 2022), and only the best-quality pixels were considered for the 199 
study.  200 

Additionally, the present study utilized the ECOsystem Spaceborne Thermal Radiometer 201 
Experiment on Space Station (ECOSTRESS)-based Land Surface Temperature (LST) datasets to 202 
analyze the impact of FD on vegetation temperature. ECOSTRESS mission) primarily intended to 203 
measure the plant's temperature at  70 m spatial resolution in the wavelength range 8-12.5 μm 204 
at 1-2 days intervals (https://ecostress.jpl.nasa.gov/). In the present study, atmospherically 205 
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corrected best quality Level 2 (ECO_L2G_LSTE, Version 2) datasets were acquired from NASA 206 
AppEEARS geoportal (https://appeears.earthdatacloud.nasa.gov/) for the study (date of 207 
acquisition provided in Table 1). A cloud bit mask band was used to screen the bad-quality data. 208 
The study used the mean of the best available LST data, corresponding to the dust deposition 209 
period.  210 

The road network datasets were downloaded from the OpenStreetMap portal 211 
(https://www.openstreetmap.org/#map=12/21.8025/83.9033&layers=O) to investigate the 212 
relation of FDC with distance to the road. The distance to the road networks was calculated 213 
using ArcGIS software. Likely, ALOS world Digital Surface Model (DSM) based elevation data 214 
(AW3D30) was acquired from the Japan Aerospace Exploration Agency AW3D30 homepage 215 
(https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm) at 30 m resolution to 216 
examine the relation between FD and elevation.  217 

2.2.3 In-situ data collection for foliar dust measurement 218 
The in-situ data of foliar dust were measured for model development and validation. A total of 219 
300 samples (dusty leaves), corresponding to 30 ESU (10 leaves from each ESU), were collected 220 
from Jharsuguda coal mining regions, as indicated in Figure 1. For this, the field campaigns were 221 
conducted on two different dates. The leave samples were collected from 10 elementary 222 
sampling units (ESU) in the first campaign (14th December 2022), and the same was collected 223 
from 20 ESU in the second campaign (19th December 2022). For sampling, 10 m × 10 m plots 224 
were demarcated using measuring tape and a handheld Global Positioning System (Garmin) 225 
device. The sampling plots were demarcated within relatively homogenous patches of ~ 50 m × 226 
50 m. Due to various complexities (e.g., tree height, complex terrain, inaccessibility, etc.), 227 
sampling was restricted to limited zones. Additionally, the trees in these areas were relatively 228 
shorter, making it easier and safer to access the foliage for sampling.  229 

The collected samples were taken to the laboratory on subsequent days for further 230 
analysis. Firstly, the weight of each dusty leaf was measured using a high-precision electronic 231 
weighing machine. Later, each dusty leaf was carefully cleaned to remove deposited dust from 232 
the leaves. The cleaned leaves were then again weighed using a high-precision electronic 233 
weighing machine. The weight of the dust concentration over each ESU was determined by 234 
comparing the dust leaf sample with the weight of the clean leaf sample (Figure S2). As ten 235 
leaves were collected from each site, an average of 10 leaves were considered to represent the 236 
corresponding ESU. The graph paper was used to draw the leaf area to find the dust deposition 237 
per unit area. Randomly, two leaves were taken for leaf area measurement for each ESU. Later, 238 
the average of both leaf areas was taken as the leaf area for the corresponding site. The mean 239 
dust retention of each ESU was then divided with the total leaf area to get FD deposition per 240 
unit area (g/m2).  241 

 242 
 243 
 244 
 245 
 246 
 247 

 248 
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Table 1: Dataset used in the present study. 249 

Satellite/Sensor/Data Date of acquisition Resolutions Citation/Source 

Landsat-8, 9 13 Dec. 2022, 21 Dec., 
2022 30 m, 16-days USGS 

Sentinel-2B 16 Dec. 2022 10 m, 10 days ESA 

PlanetScope 14 Dec. 2022, 19 Dec. 
2022 3 m, daily Planet Labs 

MOD17A2H, MODIS 
Gross Primary 

Productivity (GPP) 

24 Oct., 1 Nov., 9 Nov., 
17 Nov., 25 Nov., 3 Dec., 

11 Dec., 19 Dec., 2022 
250 m, 8-days Running et al., 

(2015) 

MOD16A2, MODIS 
Evapotranspiration 

(ET) 

24 Oct., 1 Nov., 9 Nov., 
17 Nov., 25 Nov., 3 Dec., 

11 Dec., 19 Dec., 2022 
250 m, 8-days Running et al., 

(2017) 

ECOSTRESS Land 
Surface Temperature 

(LST) 

28 Oct., 3 Nov., 5 Nov., 9 
Nov., 22 Nov., 26 Nov., 

30 Nov., 4 Dec., 19 Dec., 
2022 

70 m, Daily Hook and Hulley 
(2022) 

ALOS World Digital 
Surface Model (DSM) 2020 30 m Tadono et al., (2014) 

Open Street Map, 
Roadways - Vector data Open street map 

In-situ Data  
(Foliar Dust) 

14 Dec. and 19 Dec. 
2022 10 m × 10 m plot Field Visit 

2.3 Method 250 
The present study has been carried out in three parts. The first part of the study focuses on the 251 
estimation of FD using remote sensing data and associated RI of four satellite sensors and their 252 
comparative efficacies in FD estimation. The second part of the study assesses the effect of FDC 253 
on VPP. Finally, the study investigates the influence of external factors, like distance from 254 
roadways, mining, and elevation, on FD deposition. The workflow of the study is represented in 255 
Figure 2. The key steps of the study are discussed in the following subsections:  256 
 257 
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 258 
Figure 2: Flowchart showing the research methodology adopted in the study.   259 

 260 
2.3.1 Data processing for analyses 261 
All the satellite data (Landsat-8, Landsat-9, Sentinel-2B, and PlanetScope) were pre-processed 262 
for geometric and radiometric corrections. Subsequently, the preprocessed data were used for 263 
extracting the surface reflectance (SR) of vegetation in different dusty conditions.  264 

Before extraction of SR data for a sampling point, the land use/land cover (LULC) of the 265 
region were studied to delineate the vegetation patches. The LULC map was broadly 266 
categorized into six classes: vegetation, agricultural land, mining, waterbody, 267 
settlement/asphalt, and others. The classification scheme of different LULC classes is provided 268 
in Table S1. Overall, 150 samples were taken for training, and 50 samples were taken for 269 
accuracy assessment for each class using false colour composite (FCC) images of PlanetScope 270 
data and Google Earth images. Before the accuracy assessment, manual editing of the LULC 271 
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map was also done to accurately demarcate the different spatial features, especially vegetation 272 
near the mining area, mining pits, settlements, etc. The LULC map was further used to mask 273 
other classes from the derived FD maps so that the dust concentration would be shown only for 274 
vegetation.  275 

The spectral reflectance profiles of both dusty and non-dusty vegetation were analyzed 276 
for specified bands of four satellite sensors. This comparative analysis aimed to understand 277 
how foliar dust affects vegetation spectra under different FD weights and in dust-free 278 
conditions. Different dust weights at ~25 g/m² intervals were selected for the study. This 279 
interval was chosen based on the availability of dust samples and to provide a manageable 280 
range for analysis. For non-dusty vegetation, the mean reflectance of three-point locations was 281 
used to ensure accurate and representative values.  282 

The satellite data were also used for deriving the radiometric indices (RIs). Eventually, 283 
the SR and RI data along with in-situ FD data were used for model development to predict the 284 
foliar dust concentration (FDC).  285 
 286 
2.3.2 Model development for foliar dust estimation 287 
Linear regression (LR) analysis was performed between in-situ FDC and different RIs and 288 
spectral bands to develop the FD estimation models. The current study examined the efficacy of 289 
22 vegetation indices, 4 soil indices, and individual spectral bands of four optical satellite 290 
sensors (i.e., Landsat-8, Landsat-9, Sentinel-2, and PlanetScope) in predicting FDC. The details of 291 
all indices are provided in Supplementary Table S2. For the PlanetScope, an average of four 292 
pixels was used against in-situ foliar data, and single-pixel values were used for the rest of the 293 
sensors. Few RIs (e.g., Global Environmental Monitoring Index (GEMI), MERIS terrestrial 294 
chlorophyll index (MTCI), etc.) were modified by substituting the nearest bands in designated 295 
places due to non-availability of desired band data in the specific sensor. There were no specific 296 
criteria for considering/selecting RIs. Thus, all the available indices in the Sentinel Application 297 
Platform (SNAP) software were assessed in the study for ease of implementation. Any RI or 298 
spectral band-based model that exhibits significant correlation (p = 0.01 to 0.1) is selected for 299 
FD estimation.  300 
 301 
2.3.3 Model performance assessment  302 
In the present study, five commonly used statistical measures [i.e., Mean Absolute Error (MAE), 303 
Root Mean Square Error (RMSE), Percent Bias (PBIAS), and correlation coefficient (r)] were 304 
employed to assess the agreement between the satellite-based estimates and the in-situ 305 
collected FDC. In-situ FDC data of ten unused ESU were utilized for validation purposes. The 306 
MAE measures the average absolute difference between the actual and predicted values. The 307 
RMSE quantifies the average difference between the predicted values from a model and the 308 
actual observed values. PBIAS provides valuable insights into the accuracy and reliability of 309 
model predictions by quantifying the degree of systematic error or bias in the model's output 310 
compared to observed data. The r-value indicates the closeness between in-situ and predicted 311 
FDC from satellite-based models. 312 
 313 
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2.3.4 Quantifying the role of external factors on foliar dust deposition 314 
The present study investigated the role of distance to road, distance to mining, and elevation 315 
on FD deposition through correlation analysis. The road network dataset was pooled from OSM 316 
to investigate the relation of FDC with distance to the road. Moreover, mining patches 317 
extracted from the LULC map were used to study the connection between FDC and distance to 318 
the mining patches. The distance to the road networks and distance to mining were calculated 319 
using the Euclidean function in ArcGIS software. Furthermore, DSM-based elevation data 320 
(AW3D30) was used to examine the relation between FDC and elevation. Before performing the 321 
correlation analysis, all the foliar maps were resampled to the pixel size of datasets used as 322 
proxies of VPP using the nearest neighbour function. 323 
 324 
2.3.5 Evaluation of foliar dust impacts on vegetation physiological processes 325 
This study used satellite-based proxies [i.e., GPP, ET, leaf temperature, and water use efficiency 326 
(WUE)] as a proxy of vegetation physiological processes (VPP) for investigations. The correlation 327 
analysis was performed between FDC and VPP proxies to understand how FD affects vegetation 328 
functions. The GPP and ET datasets were used to assess the impacts of FD on vegetation carbon 329 
uptake and vegetation transpiration, respectively. GPP data demonstrates the rate of 330 
conversion of CO2 by vegetation into organic compounds through photosynthesis. It facilitates 331 
to analyze the changes in carbon uptake capabilities in areas with varying levels of FD 332 
deposition. Similarly, ET data, which measures the sum of evaporation and plant transpiration, 333 
helps to understand the effects of FD deposition on the water cycle within vegetation. 334 
Moreover, WUE, the ratio of carbon assimilated as biomass to water transpired by plants, was 335 
also calculated using the GPP and ET dataset (WUE = GPP/ET) to investigate its relationships 336 
with FDC. The relationship between FD and WUE helps in assessing the impacts of  FD on the 337 
plant's ability to use water efficiently for atmospheric carbon assimilation in plants. Besides, the 338 
ECOSTRESS-based LST dataset was used to investigate the interplay between FD and leaf 339 
temperature. It helps in understanding the impacts of FD on vegetation's physiological status of 340 
plants and various stress conditions, including water and heat stress. Before performing the 341 
regression analysis, all the foliar maps were resampled to the pixel size of datasets used as 342 
proxies of VPP.  343 
 344 
3 Results 345 
3.1 Detection and delineation of vegetation zones 346 
For detection and delineation of vegetation zones, the land use land cover (LULC) map was 347 
derived using high-resolution PlanetScope satellite data based on the Random Forest 348 
classification approach. The classified LULC map of Jharsuguda district is shown in Figure 1. As 349 
per the classified LULC map, vegetation covers ~ 41% (867 km2) area of the district, followed by 350 
cropland (31%; 659 km2), waterbody (17%; 351 km2), others (8%; 173 km2), settlement/asphalt 351 
(2%; 46 km2), and mining (1%; 29 km2). The accuracy assessment of the LULC map revealed an 352 
overall classification accuracy of ~ 94%, with a kappa coefficient of 0.92. The detailed accuracy 353 
assessment metric is provided in Table S3. The LULC map was further used for vegetation and 354 
mining patch extractions.  355 
 356 
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3.2 Spectral profiles of dusty and non-dusty vegetation  357 
The results of comprehensive analyses of spectral reflectance profiles for different satellite 358 
sensors are shown in Figure 3. The results indicate that visible reflectance increases with low 359 
dust deposition but decreases with higher deposits for all the sensors (Figure 3). Specifically, 360 
the initial increase in visible reflectance is noticeable at lower dust weights (~24.33 g/m²) across 361 
all sensors. However, as dust accumulation increases (~98.05 g/m²), there is a marked decrease 362 
in visible reflectance. This trend is consistent across all sensors, indicating a uniform response 363 
to increasing dust levels. In the NIR spectrum (>700 nm), a consistent decrease in reflectance is 364 
observed with increasing dust accumulation. The NIR reflectance for non-dusty leaves is 365 
significantly higher compared to leaves with higher dust weights, and this decline becomes 366 
more pronounced as the dust weight increases, demonstrating the impact of dust on NIR 367 
reflectance. Similarly, in the SWIR spectrum (>1500 nm), initial positive reflectance changes are 368 
observed at lower dust weights (~24.33 g/m²). This positive change is more evident in the initial 369 
stages of dust deposition. However, as dust weight increases, the SWIR reflectance shows a 370 
declining trend similar to the NIR spectrum. The data from the SWIR bands indicate that dust 371 
affects not only the visible and NIR reflectance but also the SWIR reflectance characteristics.  372 

 373 
Figure 3. Spectral profile of dusty and non-dusty leaf derived from (a) Landsat-8, (b) Landsat-9, 374 
(c) Sentinel-2B, and (d) PlanetScope satellite data.   375 
 376 
3.3 Foliar dust estimation model results 377 
The correlation statistics (r-value) for spectral bands of different satellite sensors and RIs, based 378 
on LR models, are shown in Figure S3. Across all sensors, NIR bands (~865 nm) and SWIR bands 379 
(~1500-1700 nm) consistently exhibited strong negative correlations with FDC [Figure S3 (a)- 380 
(d)]. For PlanetScope, NIR and Red bands showed correlations of -0.661 and -0.623, 381 
respectively, aligning with the general trend of NIR and SWIR1 sensitivity to dust-induced 382 
spectral changes (Figure 2). Sentinel-2B displayed similar trends, with Red Edge 3 (RE3) and 383 
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narrow NIR bands showing the most pronounced negative correlations of -0.757 and -0.736, 384 
respectively. Landsat-8 also exhibited consistent trends, with the NIR band showing a 385 
correlation of -0.754 and the SWIR1 band showing a correlation of -0.645. Landsat-9 followed a 386 
similar pattern, with strong negative correlations for the NIR and SWIR1 bands. However, 387 
unexpected positive correlations were observed with the Blue (0.289) and CA (0.443) bands of 388 
Landsat-9. Further research is required to understand the factors contributing to this 389 
unexpected behaviour. 390 

On the other hand, vegetation indices across diverse satellite platforms revealed 391 
interesting insights into their sensitivity to FDC (Figure S3). The correlation values of 24 RIs with 392 
FDC are summarized in supplementary Figure S3 (e) – (h). PlanetScope-based GEMI showed 393 
robust negative correlation (r = -0.659) with FDC. This indicates that GEMI is more sensitive to 394 
dust-induced changes in vegetation reflectance. Similarly, other indices such as Brightness 395 
Index 2 (BI2_G_I), Non-Linear Index (NLI), and Perpendicular Vegetation Index (PVI) also 396 
exhibited significant negative correlations (r = -0.648 to -0.647) with FDC. Sentinel-2B data 397 
reaffirmed these trends, with indices like GEMIre, PVI, and Difference Vegetation Index (DVI) 398 
showing strong negative correlations. Landsat-8 data demonstrated consistent strong negative 399 
correlations with indices such as the Green Normalized Difference Vegetation Index (GNDVI), 400 
PVI, and DVI, with the Weighted Difference Vegetation Index (WDVI) displaying the highest 401 
negative correlation (r = -0.784). Landsat-9 data exhibited similar patterns to Landsat-8, with 402 
indices like WDVI, Soil Adjusted Vegetation Index 0.5 (SAVI0.5), and Modified SAVI2 (MSAVI2) 403 
showing strong negative correlations. Additionally, the Infrared Percentage Vegetation Index 404 
(IPVI) and Modified Simple Ratio (MSR) displayed notable negative correlations with dust (r = -405 
0.775 and -0.624, respectively). This analysis offers comprehensive insights into the varied 406 
sensitivity of different spectral bands and RIs to FDC.  407 

 408 
3.4 Performance evaluation of foliar dust estimation models 409 
The RMSE, MAE, PBIAS, and correlation (r) were estimated to assess the accuracy and reliability 410 
of the FD prediction models. All the error metrics are summarized in supplementary Figure S4. 411 
From the results, it can be inferred that NIR bands and GEMI-based RI perform better in FD 412 
prediction for each sensor. For PlanetScope sensor, the blue band exhibited utmost efficacy 413 
with a correlation of 0.74 [Figure S4 (a)] and a low RMSE of 22.75 g/m2 [Figure  S4 (m)]. The red 414 
band also demonstrated remarkable accuracy with an RMSE of 26.25 g/m2 and a correlation of 415 
0.68. However, both the bands (blue and red) were incompetent at deciphering the non-dusty 416 
vegetation, as entire vegetation exhibited with FD deposition. Despite its lower accuracy 417 
metrics, the NIR band proved proficient in discriminating dusty and non-dusty leaves. RIs 418 
derived from PlanetScope data, such as GEMInir, exhibited the utmost performance with a low 419 
RMSE of 24.40 g/m2 [Figure S4 (a)] and an r-value of 0.47 [Figure S4 (m)]. Similarly, the NLI 420 
exhibited competitive accuracy metrics, albeit with a tendency to slightly overestimate. In the 421 
context of Sentinel-2 data, the NIR band emerged as a key performer, standing out with a fair 422 
PBIAS [Figure S4 (j)] and r-value [Figure S4 (n)] despite a slightly higher RMSE [Figure S4 (b)]  423 
and MAE [Figure S4 (f)]. Despite its overestimation tendency, the CA band exhibited a 424 
paradoxical strong correlation with RE1. Notably, the GEMInir index stood out as a top 425 
performer among indices, with a low RMSE of 21.76 g/m2 [Figure S4 (b)]and an MAE of 19.28 426 
g/m2 [Figure S4 (f)]. Like PlanetScope, the CA band of Sentinel-2B was also incompetent in 427 
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discriminating and deciphering the dusty and non-dusty vegetation, as the entire vegetation 428 
showed dust deposition. Notably, RE3 and RE2 bands were also observed with less RMSE 429 
[Figure S4 (b)], MAE [Figure S4 (f)], PBIAS [Figure S4 (j)], and a strong positive correlation (r = > 430 
0.5) [Figure S4 (n)] with in-situ data. On the other hand, the Landsat-8 OLI data revealed the 431 
effectiveness of the NIR band in accurately estimating FDC, with relatively low RMSE (21.73 432 
g/m2) [Figure S4 (c)] and MAE (19.08 g/m2) [Figure S4 (g)]. Furthermore, the GEMI-based model 433 
emerged as a top performer with the least RMSE (22.08 g/m2) and MAE (19.11 g/m2), making it 434 
a reliable choice for accurate FD predictions. Landsat-9-based models also showed more or less 435 
similar accuracy statistics as Landsat-8, wherein the NIR band and GEMI stand out as key 436 
performers [Figure S4 (d), (h), (l), (p)].  437 

The analysis across different sensors pointed towards efficiency and reliability of NIR 438 
and SWIR bands, along with the GEMI and NLI index, as strong performers in FD mapping. Thus, 439 
the best models for each sensor (one band and one index) were subsequently used for deriving 440 
the spatial maps of FDC. As GEMI indices-based foliar maps across all four sensors were more 441 
accurate, they are shown in Figure 4. Moreover, the best spectral bands-based maps are 442 
presented in Figure S5. The outperformed linear models for FD mapping from individual 443 
spectral bands and indices-based models are provided in Table 2. Figure 5 shows that 444 
vegetation near and around the mining and roadways is predominantly affected by FD, as 445 
indicated by darker shades. These areas show significantly higher dust values compared to the 446 
surrounding non-dusty areas, suggesting that mining activities and vehicular movement (Figure 447 
S1) contribute substantially to the dust levels. Based on the derived maps, it was approximated 448 
that ~ 38 – 48 km2 of vegetation cover in the study area is affected by dust (Figure 4). The dust-449 
affected vegetation area, derived from the best one-band and one RI-based models are 450 
summarized in Table S4. 451 

Table 2. FD mapping models based on vegetation indices and individual spectral bands.  452 
Satellite/sensor VI-based models Spectral band-based models 

PlanetScope 
Dust (g/m2) = -882.77(GEMInir) + 
308.8 

Dust (g/m2) = -1975.9(NIR) + 
183.99 

Sentinel-2B 
Dust (g/m2) = -886.54(GEMInir) + 
272.32 

Dust (g/m2) = -2085.2(NIR) + 
152.54 

Landsat-8 
Dust (g/m2) = -843.82(GEMInir) + 
284.4 

Dust (g/m2) = -1876.1(NIR) + 
164.68 

Landsat-9 
Dust (g/m2) = -920.07(GEMInir) + 
300.85 

Dust (g/m2) = -2012.1(NIR) + 
170.02 

  453 
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 454 
Figure 4. FD maps of the Jharsuguda district, derived using GEMI indices-based model from (a) 455 
PlanetScope, (b) Sentinel-2B, (c) Landsat-8, and (d) Landsat-9 satellite sensors.  456 
 457 
3.5 Impacts of foliar dust on vegetation physiological processes 458 
The correlation analysis between proxies of VPP and FDC, as estimated by various models, 459 
revealed notable patterns in vegetation functionality (Figure 5). As GEMI-indices-based foliar 460 
models were most accurate, the current analysis considered only GEMI-based estimated FD 461 
across all four sensors. The GPP, a key indicator of the total CO2 uptake that vegetation 462 
assimilates through photosynthesis,  has shown a negative correlation with FDC [Figure 5(a)]. 463 
The negative relationship, as suggested by the linear equations, indicates a decline in GPP with 464 
increasing FDC for all models. On average, the GPP loss per gram of FD deposition was 465 
approximated as  2 to 3 gC. However, the correlation between ET and FDC across different 466 
models consistently revealed a negative relationship, indicating that higher FDC are associated 467 
with reduced ET (Figure 5b). The magnitude of the negative correlation suggests a moderate 468 
impact of FD on ET levels. The observed reductions in ET per unit of FD range ~ 0.0005 to 469 
0.0006 mm/m2/day.  470 

Additionally, the investigation into the relationship between FD and WUE across 471 
different models indicates a consistent negative impact of increasing dust concentrations on 472 
WUE [Figure 5(c)]. The analysis indicates that for every gram of FD per square meter, WUE 473 
decreases within the range of approximately 0.0121 to 0.0207 gC/kg H₂O. On the other hand, 474 
the positive correlation (r = 0.3118 to 0.4287) between FDC and leaf temperature across all 475 
models indicated a negative influence of dust deposition on the thermal conditions of 476 
vegetation [Figure 5(d)]. The positive slopes in the linear equations suggest that leaf 477 
temperature tends to rise as FDC increases. For every additional gram of FD per square meter, 478 
leaf temperature was increased by ~ 0.0376 – 0.0454 K. 479 
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 481
Figure 5. Association between FDC and (a) GPP, (b) ET, (c) WUE, (d) Leaf temperature.   482

483
3.6 Influencing parameters of foliar dust deposition 484
The correlation analysis between FDC predicted by various models and the distance to mines, 485
distance to roads, and elevation revealed  an inverse relationship with FD deposition (Figure 6). 486
The negative correlations (r = -0.37 to -0.48) observed across all models underscore a consistent 487
trend: FDC tends to decrease as the distance to mines increases [Figure 6(a)]. Conversely, the 488
distance to roads revealed a similar negative correlation with FDC [Figure 6(b)]. As the distance 489
to mines increases, the FDC tends to decrease. Besides, elevation and FD also revealed a 490
negative correlation, indicating that FDC tends to decrease as elevation increases [Figure 6(c)]. 491
The steeper slopes in the linear equations suggest a rapid decline in predicted FDC with 492
increasing elevation.  493

However, it is important to note that not all relationships are statistically significant (up 494
to 95% of the significance level). For instance, the p-values for the relationships between FDC 495
and distance to mines (p = 0.07 to 0.19) and elevation (p = 0.05 to 0.08) are greater than 0.05, 496
suggesting that these inverse relationships are not statistically significant. Only the relationship 497
between FDC and distance to roads shows statistical significance (p < 0.01). These findings 498
suggest a potential but not the definitive influence of proximity to mines and elevation on FDC 499
compared to distance to road. 500

501

(a) (b) 

(c) 

(d) 
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 502
Figure 6. Relationship between FDC and (a) distance to mines, (b) distance to road, and (c) 503
elevation.  504

505
4 Discussions 506
4.1 Spectral response of vegetation at varying foliar dust concentrations 507
The present study highlighted how dust deposition can significantly modify the spectral 508
responses of vegetation, leading to deviations from the ideal spectral profile typically 509
associated with healthy vegetation (Figure 3). This information on the spectral profile of dusty 510
and non-dusty vegetation shall help to improve the accuracy of RS applications (e.g., vegetation 511
mapping, species identification, phenology, productivity studies, etc.), monitoring vegetation 512
health, and understanding environmental impacts. The observed deviation in the spectral 513
reflectance (Figure 3) highlighted sensor-specific responses to dust-induced alterations in leaf 514
pigments, cell structure, and water content. Consistent with a few past studies (Lin et al., 2021; 515
Su et al., 2019; Zhou et al., 2018; Zhu et al., 2019), the present study also observed positive 516
reflectance changes at lower dust weights, with diminishing effects at higher weights 517
concerning the reflectance of non-dusty vegetation. The positive reflectance changes observed 518
at lower dust weights and diminishing effects at higher weights can be attributed to optical 519
phenomena and biological responses (Ackerman and Finlay, 2019; Zhao et al., 2020). The 520
biological responses to dust deposition include changes in the leaf's cuticle, epidermis, and 521
mesophyll. These alterations impact light scattering and reflectance, particularly in the NIR and 522
SWIR spectra (Figure S6). FD enhances scattering effects and diffuse reflection at lower dust 523
weights, contributing to higher reflectance values (Zhou et al., 2018). The altered orientation or 524
structure of leaves, combined with the unique spectral characteristics of the dust, may also 525
amplify these effects (Zhu et al., 2019). In the ideal spectral profile of vegetation (Figure S6), 526
particularly in the visible spectrum (400 - 700 nm), vegetation exhibits high reflectance in the 527

(a) 
(b) 

(c) 
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green region (500 - 600 nm) due to the strong absorption of red and blue light by chlorophyll, 528 
resulting in the reflection of green light. This characteristic peak in green reflectance is often 529 
used as an indicator of vegetation health and vigor. Similarly, in the NIR spectrum (>700 nm), 530 
vegetation typically exhibits high reflectance due to multiple scattering within leaf tissues and 531 
the internal structure of plant cells (Figure S6). The consistent decrease in NIR reflectance with 532 
increasing dust accumulation observed in our study diverges from this ideal profile. This decline 533 
is possibly a result of the absorption properties of dust particles, which absorb NIR radiation 534 
rather than scattering it, leading to diminished reflectance in this wavelength range (Lin et al., 535 
2021b). In the SWIR spectrum (>1500 nm), vegetation usually demonstrates relatively low 536 
reflectance (Figure S6). The observed initial positive reflectance changes at lower dust weights 537 
suggest alterations in leaf water content or surface structure, influencing the absorption and 538 
scattering of SWIR radiation. These alterations cause deviations from the typical spectral profile 539 
of vegetation in this wavelength range. As dust accumulation increases, the decline in SWIR 540 
reflectance becomes more pronounced, further highlighting the impact of dust on vegetation 541 
reflectance properties (Prusty et al., 2005).  542 

The present study further revealed a notable saturation issue in spectral reflectance in 543 
the visible to infrared region after ~ 50 g/m² of dust accumulation across all sensors (Figure 3). 544 
This suggests a potential threshold beyond which additional dust fails to significantly alter 545 
reflectance across various bands, indicating the need for further investigation. However, earlier 546 
studies (Kayet et al., 2019; Ma et al., 2017; Prusty et al., 2005; Lin et al., 2021b) have not 547 
reported any saturation effects in the spectral responses of dusty leaves. This discrepancy could 548 
be due to the fact that those studies primarily derived the spectra of dusty leaves using 549 
handheld or lab-based spectroradiometers. More insights into the complex spectral behaviour 550 
of dusty and non-dusty vegetation could be gained by utilizing hyperspectral satellite sensor 551 
datasets (e.g., AVIRIS-NG, PRISMA), which provide a contiguous and large number of spectral 552 
bands. Conversely, the present study has considered one sample for specific dust weight and 553 
three samples for non-dusty vegetation, which might have also affected the observed spectral 554 
profiles. So, more sample data is required for specific dust weight to reduce the possible 555 
uncertainties and for a more confident conclusive statement. Other factors (e.g., vegetation 556 
types, fraction of vegetation cover, dust types, different pigment concentrations, leaf angle, 557 
satellite sensors angle, radiometric and spatial resolution of satellite data, etc.) could also be 558 
responsible for the observed complex spectral characteristics of dusty and non-dusty 559 
vegetation (Lin et al. 2021a; Ma et al., 2020; Su et al., 2019). So, quantifying these angles in 560 
future studies would be essential.  561 
 562 
4.2 Foliar dust estimation: opportunities and challenges 563 
FD mapping models across different satellite sensors revealed common and distinct 564 
performances (Figure S4). The consistent efficacy of NIR and SWIR bands and specific RIs, such 565 
as the GEMI and the NLI, was observed in accurate FD estimation across all the sensors (Figure 566 
S4). The heightened accuracy observed in NIR and SWIR bands for FD estimation can be 567 
attributed to their sensitivity to structural changes, leaf properties, and water content altered 568 
by dust accumulation (Zhou et al., 2018). NIR's strong reflection from vegetation cell structure 569 
(mesophyll) and SWIR's ability to penetrate dust layers contribute to their effectiveness (Goel 570 
and Qin, 1994; Su et al., 2019; Zhou et al., 2018). Additionally, the reduced saturation effects in 571 
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the NIR-SWIR spectrum (Figure 3) and their consistency across different sensors underline their 572 
robustness in accurately discerning FD-induced alterations. 573 

On the other hand, the heightened accuracy observed in GEMI and NLI indices for FD 574 
mapping can be attributed to their exceptional characteristics and effectiveness. GEMI, 575 
developed by Pinty and Verstraete (1991), was designed to minimize the need for detailed 576 
atmospheric correction by constructing a stock atmospheric correction for the vegetation 577 
index. Its formula (Table S2) involves multiple factors, including NIR and red bands, allowing it 578 
to account for variations in atmospheric conditions. Conversely, the NLI developed based on 579 
the physics of optical radiation and vegetation canopy interaction leverages multiple-angle 580 
reflectance data. The indices are designed to minimize the impact of factors such as leaf angle 581 
distribution, view azimuth, and soil brightness (Goel and Qin, 1994). This nuanced approach 582 
enables NLI to provide robust results in complex environmental conditions, making them 583 
suitable for FD mapping. In contrast, the widely used indices, like NDVI, consistently exhibited 584 
higher errors and limitations in accurately predicting FDC across all sensors. Earlier studies by 585 
Ma et al. (2017) and Kayet et al. (2019) have highlighted that NDVI was the best indicator for FD 586 
estimation among the six tested VIs in their studies. In this context, the present study 587 
contradicts the development of the NDVI-based FD estimation model due to less accuracy 588 
reported in the present study.  589 

The inter-comparison of satellite sensors revealed Landsat-9 as a robust performer in FD 590 
estimation in the present study (Figure S4). Despite its coarser spatial resolution of 30 m, 591 
possibly Landsat-9's advanced radiometric capabilities (14 bits), coupled with effective 592 
atmospheric correction, contributed to its remarkable performance in accurate FD estimation. 593 
While PlanetScope and Sentinel-2 offer finer spatial resolutions, Landsat-9 compensates for this 594 
with its 14-bit radiometric resolution, allowing for enhanced detection of subtle spectral 595 
differences associated with foliar dust. On the other hand, though Landsat's 30 m resolution 596 
might not perfectly match the scale of the 10 x 10 m sample plots, the spatial averaging effects 597 
and assumed homogeneity within the plots enabled meaningful comparisons and accurate 598 
assessments of FDC at a larger scale (Ma et al., 2022; Mu et al., 2015). This comparative analysis 599 
emphasizes that while spatial resolution is important, the overall technical capabilities of a 600 
sensor, including radiometric resolution and atmospheric correction, play a critical role in the 601 
accurate estimation of foliar dust. 602 

Nevertheless, FD estimation using satellite data has several challenges. Spectral mixing, 603 
caused by the combined spectral responses of dust and vegetation, can make accurate 604 
quantification of dust deposition challenging, especially in cases of low dust loads or complex 605 
vegetation types. In-situ data collection poses a significant challenge (e.g., tree height, 606 
unfavourable landscape, etc.), requiring extensive fieldwork and reliable ground truth data to 607 
improve the model's accuracy and reliability. Furthermore, the need for different models for 608 
various plant species highlights the challenge of model generalization across different 609 
vegetation types. These challenges underscore the importance of continued research in 610 
improving the accuracy and reliability of FD estimation models. 611 
 612 
4.3 Nexus between foliar dust and vegetation physiological processes 613 
The present study, possibly for the first time, investigated the complex relationship between FD 614 
deposition and VPP using multi-source and multi-sensor satellite datasets. It was evident in the 615 
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present study that vegetation experienced a GPP reduction ranging from 2 to 3 gC for every 616 
additional gram of dust per square meter, depending on the specific model used for FD 617 
estimation. These findings suggested that elevated FDC potentially limits the vegetation's ability 618 
to perform optimal photosynthesis and affects the ecosystem's overall carbon uptake. 619 
Moreover, the reduction in ET was observed due to increasing dust concentration, which can be 620 
attributed to several potential factors. One possible explanation is that FD deposition on 621 
vegetation surfaces may affect stomatal conductance, reducing water loss through 622 
transpiration (Chaurasia et al., 2022; Ranjan et al., 2023). Furthermore, the negative correlation 623 
between FD accumulation and WUE can be attributed to several factors. Firstly, FD deposition 624 
on plant surfaces can hinder the photosynthetic process by reducing the amount of sunlight 625 
reaching the chloroplasts. Dust particles on leaves may act as a barrier (Figure S7), limiting the 626 
absorption of solar radiation crucial for photosynthesis, thereby affecting the overall efficiency 627 
of carbon assimilation (Naidoo and Chirkoot, 2004). Secondly, FD can influence stomatal 628 
conductance, which is pivotal in regulating water vapor and gas exchange during 629 
photosynthesis (Zhu et al., 2019). So, the reduction in transpiration could contribute to an 630 
observed decrease in WUE. While these are general explanations, the mechanisms driving the 631 
negative correlation may vary based on environmental conditions, plant species, and the nature 632 
of dust particles. Consequently, further studies, including controlled experiments and field 633 
observations, would be instrumental in understanding the complex relationships between FD 634 
and WUE/transpiration. 635 

On the other hand, a positive correlation between FD and leaf temperature was evident 636 
[Figure 5 (d)]. Dust on leaf surfaces alters the reflective properties of leaves, potentially 637 
enhancing the absorption of solar radiation and leading to an increase in leaf temperature. 638 
Moreover, dust particles, particularly darker ones, tend to absorb more sunlight, contributing 639 
to elevated temperatures (Evans et al., 2019). Dust layers may create a thermal barrier, limiting 640 
heat dissipation from the leaf and increasing temperature (Evans et al., 2019). Besides, it is 641 
essential to emphasize that correlation does not imply comprehensive causation, and the 642 
observed relationship needs further investigation. Controlled experiments and detailed field 643 
studies would be valuable for elucidating the specific mechanisms through which FD deposition 644 
influences leaf temperature.  645 
 646 
4.4 Influencing parameters of foliar dust 647 
The present study demonstrated that distance to roads is a more influential factor in FD 648 
deposition compared to elevation and distance to mines, as indicated by a stronger and more 649 
significant negative relationship with FDC (Figure 6). However, not all relationships were 650 
statistically significant (up to p ≤ 0.05), particularly in the case of distance to mines and 651 
elevation. The unpaved nature of these roads, coupled with intense vehicular traffic associated 652 
with mineral transport, contributes to increased dust emissions and subsequent deposition on 653 
vegetation (Prusty et al., 2005). The constant movement of trucks and other vehicles on 654 
unpaved surfaces disturbs the soil, leading to increased dust emissions [Figure S1 (e)]. On the 655 
other hand, the fair and negative correlation between FD and elevation could include the 656 
impact of topography on wind patterns. Higher elevations may result in increased wind speed 657 
(Yu et al., 2013), leading to better dispersion of dust particles. The elevation is often correlated 658 
with changes in temperature and humidity (Rangwala and Miller, 2012), which can impact the 659 
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settling and retention of dust particles on foliage. At higher elevations, cooler temperatures can 660 
lead to increased air density and reduced turbulence, facilitating dust particles settling onto 661 
foliage (Zender et al., 2004). Additionally, variations in humidity affect the stickiness of leaf 662 
surfaces; higher humidity can create moisture films on leaves, enhancing the adhesion and 663 
retention of dust particles. Conversely, lower humidity can result in drier leaf surfaces, making 664 
it more difficult for dust to adhere (Pöschl, 2005). Furthermore, shorter vegetation, often found 665 
in areas affected by vehicular movement, is more likely to accumulate dust due to its proximity 666 
to the ground, where dust is generated and quickly settles. Therefore, changes in temperature, 667 
humidity, and vegetation height associated with elevation play a crucial role in the settling and 668 
retention of dust particles on vegetation.  669 

Nevertheless, it is also essential to note that numerous other factors, such as 670 
climatological factors (e.g., wind speed, wind direction, humidity, etc.), geological factors (e.g., 671 
dust composition), vegetation characteristics (e.g., tree height, leaf texture), etc., may also have 672 
a substantial impact on FD deposition. For instance, wind speed and direction influence the 673 
transport and distribution of dust particles, potentially increasing or decreasing deposition rates 674 
depending on the terrain and vegetation cover (Beckett et al., 2000; Zender et al., 2004). 675 
Humidity affects how dust particles adhere to leaf surfaces, with higher humidity enhancing 676 
adhesion due to the formation of moisture films (Pöschl, 2005; Wang et al., 2013). Geological 677 
factors like dust composition can determine the size and weight of dust particles, influencing 678 
their ability to settle on vegetation (Goudie and Middleton, 2006; Ranjan et al., 2022). 679 
Vegetation characteristics such as tree height, leaf area, leaf texture, etc. can also affect how 680 
much dust is captured and retained, with shorter vegetation and rougher leaf surfaces generally 681 
accumulating more dust (Linden et al., 2023; Song et al., 2015). Due to certain limitations, 682 
including the coarser spatial resolution and the unavailability of specific datasets, examining 683 
these additional factor’s influence on vegetation FDC was not feasible within the scope of this 684 
research. 685 

 686 
5 Conclusions 687 
The present study unveiled opportunities and challenges in accurate FD estimation. 688 
Furthermore, this study revealed the multifaceted consequences of dust deposition on crucial 689 
ecological processes. Based on the present study, the following conclusions are drawn: 690 

1. The study revealed the complex spectral responses of vegetation to varying FD. A 691 
saturation threshold emerged near ~ 50 g/m² dust concentration, beyond which 692 
additional FD exhibited limited impact on spectral reflectance across various bands. 693 

2. The enhanced efficacy of FD estimation models varied, with NIR & SWIR1 bands and 694 
GEMI & NLI indices across the sensors, while commonly used NDVI exhibited limitations. 695 

3. The Landsat-9 sensor outperformed other sensors' accuracy and reliability in FD 696 
estimation, potentially due to its improved radiometric resolution (14 bits) capabilities. 697 

4. Proximity to distance to roads and elevation were identified as key factors influencing 698 
FD deposition. 699 

5. The research unveiled negative correlations between FD and GPP, ET, and WUE, 700 
indicating potential reductions in photosynthesis, carbon uptake, transpiration, and 701 
water use efficiency with increasing dust levels. 702 
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6. Positive correlations between FD and leaf temperature suggested a potential influence 703 
of dust deposition on the thermal conditions of vegetation. 704 

This comprehensive study significantly aids our understanding of FD's intricate influence on 705 
vegetation. The complex insights into FD estimation models, spectral behaviors, and vegetation 706 
functionality provide a solid foundation for informed environmental management. It further 707 
highlights the need for ongoing research to address challenges and refine methodologies to 708 
comprehend and mitigate the impacts of FD on ecosystems. 709 
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ECOSTRESS LST data are available from Hook and Hulley (2022); ALOS World DSM data are 733 
available from Tadono et al. (2014); Roadways data are available from Open Street Map 734 
(https://www.openstreetmap.org/); Foliar Dust data were collected during field visits on 14 and 735 
19 December 2022, and can be provided upon reasonable request. 736 
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