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Abstract: Recent research has suggested that category theory can provide useful insights into the
field of machine learning (ML). One example is improving the connection between an ML problem
and the design of a corresponding ML algorithm. A tool from category theory called a Kan extension
is used to derive the design of an unsupervised anomaly detection algorithm for a commonly used
benchmark, the Occupancy dataset. Achieving an accuracy of 93.5% and an ROCAUC of 0.98, the
performance of this algorithm is compared to state-of-the-art anomaly detection algorithms tested
on the Occupancy dataset. These initial results demonstrate that category theory can offer new
perspectives with which to attack problems, particularly in making more direct connections between
the solutions and the problem’s structure.
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1. Introduction

Category theory is not a discipline traditionally known for its practical applications.
However, there have been indications that it can benefit the field of machine learning [1].
In particular, Kan extensions, a tool from category theory, have been used to describe
the construction of a handful of supervised learning algorithms [2]. This paper will look
at applying this construction to motivate the design of an unsupervised classification
algorithm, seeking to more closely link the outcomes of the data analysis to the design of
the algorithm on a real-world problem.

The Occupancy dataset, first introduced for supervised learning, has also been used to
demonstrate the performance of unsupervised anomaly detection algorithms on time series
data. Though a seemingly reasonable choice for this task, it possesses two potential issues.
Firstly, its classification labels have a limited relationship to the information provided by
the timestamps or sequences of recorded points. Secondly, the dataset contains anoma-
lous points whose nature is not reflected in their classifications. These characteristics are
indicated by the initial data analysis and included in the construction of a Kan extension,
which is used to derive the “Constrained Support Vector Machine” (C-SVM) algorithm.

The C-SVM is an unsupervised linear SVM whose hyperplane is constrained to inter-
sect a given point. It achieved an accuracy of 93.5% and an ROCAUC of 0.98, which is a
competitive score with regard to algorithms presented in related works. Motivating the
design of the C-SVM from the hypothesised characteristics of the Occupancy dataset allows
its performance to validate their relevance to the machine learning problem. The pres-
ence of these characteristics indicates that the dataset should be used with caution when
benchmarking other time series anomaly detection algorithms.

2. Materials and Methods
2.1. Dataset

The Occupancy dataset is a five-dimensional time series dataset that records tem-
perature (Celsius), relative humidity (percentage), light (Lux), CO, (parts per million),
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humidity ratio (kilograms of water divided by kilograms of air) in an office room. Each
data point has one of two classes, indicating if the room is occupied or not. Introduced by
Luis M. Candanedo and Véronique Feldheim [3] (accessible at the UCI ML repository as
of 16 January 2022), the original paper explores the use of supervised machine learning
models to detect building occupancy and improve the energy efficiency of smart buildings.
The dataset contains 20,560 data points recorded over 16 days. In total, 15,843 (77.1%) of
the points correspond to the not-occupied class and 4717 (22.9%) to the occupied class.
The bias towards the not-occupied class has led to the dataset being used to evaluate
unsupervised classification techniques. This dataset has been used in a large number of
works. For comparison, these are limited to English language primary research, which tests
an unsupervised algorithm to classify occupancy on the unmodified Occupancy dataset.
Screening occurred in two phases: the first was based only on abstracts, and the second
considered full papers. From an initial pool of 226 papers that cited this dataset, 12 met the
inclusion criteria; see Tables 1 and 2.

PCA was used to plot the first three principal components of the dataset. The times-
tamps for each point were removed, and their sequential nature was ignored (Figure 1).
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Figure 1. The first three principle components of the Occupancy dataset produced by the PCA
algorithm after the data were normalised to have a mean of zero and variance of one in each
dimension. The time components of the data were ignored. Points corresponding to the room being
unoccupied are coloured black, and occupied rooms are coloured red.

The figure shows a clear separation between the two classes of the Occupancy dataset,
indicating that a hyperplane may suitably classify it. As this separation is seen when
time is disregarded, it would appear that the temporal component of the dataset is not a
particularly relevant feature for the classification problem and should be disregarded by a
potential classification algorithm. It is also helpful to note that a small number of points
from both classes deviate from the main body of the data. This appears to be due to one of
the sensors breaking during data collection.
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2.2. Category Theory and Kan Extensions for Classification Algorithms

Previous works have suggested that Kan extensions, a tool from category theory,
might be used to generalise the notion of extrapolating new data points from previous
observations, providing an interesting construction for a supervised classification algo-
rithm from Kan extensions [2]. This construction can be modified to help motivate the
unsupervised C-SVM algorithm in the following section. There are three core concepts
which are necessary to introduce the definition of a Kan extension: categories, functors,
and natural transforms.

2.2.1. Categories

A category is similar to a graph. Where a graph would have nodes and edges, a cate-
gory has objects and arrows, called morphisms. A morphism starts at an object (domain)
and finishes at an object (codomain). A morphism f from a domain A to a codomain B can
be written as f : A — B.

The morphisms in category theory are inspired by functions. As a result, morphisms
can be composed like functions. These compositions can be thought of as paths through a
graph. If one morphism ends where another starts, they can be composed. The morphisms
f:A — Band g : B — C can be composed as g(f(-)) = (¢go f)(-) = gf(-) : A — C.
The composition can be represented by a commutative diagram. A diagram is said to
commute when all paths with the same domain and codomain (start and finish) are equal,

ie,gof=gf.
f

A——B
8f lg
C

There can be multiple morphisms between two objects, as shown in the non-commutative
diagram below.

Finally, it is required that every object in a category has a morphism to itself which
does nothing, called the identity morphism. It can be written (for an object A) as 14 or Id 4.
To say that a morphism does nothing is to say that composing a morphism with an identity
morphism yields the same morphism: Idg o f = foldy = f.

These requirements produce the following definition of a category [4-6].

Definition 1 (Category). A category C consists of a class of objects Ob(C), and between any
two objects x,y € Ob(C), a class of morphisms is C(x,y), such that

e Anypair f € C(x,y)and g € C(y,z) can be composed to form gf € C(x,z).

e Composition is associative: (hg)f = h(gf).

e Every object x € Ob(C) has an identity morphism Idy € C(x,x).

* Forany f € C(x,y), fldy = f = Id,f.

2.2.2. Functors

A functor is a morphism between categories. A functor F : C — D maps objects
and morphisms in a category C to objects and morphisms in category D. The structure
of a category comes from how its morphisms can be composed together. For the functor
to preserve the structure of the category, it must preserve the morphism’s composition.
Firstly, this requires that identity morphisms in C are mapped to identity morphisms
in D. Secondly, if two morphisms in C combine to make a third, then the image of
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these three morphisms in D should be a valid composition, i.e., if f o g = h in C, then
F(f)oF(g) = F(h)in D.
The following defines a functor [4-6].

Definition 2 (Functor). A functor F : C — D, between categories C and D, sends every
object x € Ob(C) to F(x) € Ob(D), and every morphism f € C(x,y) sends every object to
F(f) € D(F(x), F(y)), such that

e F Preserves composition: F(gf) = F(g)F(f).

*  F Preserves identities: F(Idy) = Idpy).

2.2.3. Natural Transforms

A natural transform is a morphism between functors. Given two functors F,G :
C — D, a natural transform 7 : F = G slides the outputs of F to the outputs of G along
morphisms in D.

The following defines a natural transform [4-6].

Definition 3 (Natural Transform). Given functors F,G : C — D, between categories C and
D, a natural transformation « : F = G is a family of morphisms ay : F(x) — G(x) in D for
each object x € Ob(C), such that G(f)ax = ayF(f) for any f € D(x,y), i.e., the following
diagram commutes.

2.2.4. Kan Extensions

Kan extensions ask how one might extend one functor to produce another. Given
two functors K : C — Eand G : C — D, a Kan extension attempts to find a functor
F: D — E, such that FG is approximately equal to K. It is overly restrictive (and often less
helpful) to ask for FG to be exactly equal to K. So, Kan extensions weaken the equality
to the requirement for some universal natural transformation between the two functors.
The left Kan extension asks for a natural transform # : K = FG, and the right asks for
€ : FG = K. The Kan extensions require that for any natural transform 7y and functor H
pair, the natural transform can be factored uniquely as a composition of the “best” natural
transform, as well as some other natural transform, e.g., v = a#. The notation for the
functors, which satisfy the requirements of the left and right Kan extensions, are LangK
and RangK, respectively.

The following defines the left and right Kan extensions [4].

Definition 4 (Left Kan Extension). Given functors K : C — E, G : C — D, a left Kan
extension of K along G is a functor LangK : D — E together with a natural transformation
7 : K = (LangK)G, such that for any other such pair (H : D — E, : K = HG), vy factors
uniquely through 5.

D

V >~ LangK
W’?
S

e
C < E
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Definition 5 (Right Kan Extension). Given functors K : C — E, G : C — D, a right Kan
extension of K along G is a functor RangK : D — E together with a natural transformation
€ : (RangK)G = K, such that forany (H : D — E,é : HG = K), J factors uniquely through e

D

V S~ RangK
€ N
N

_
C < E

2.2.5. A Supervised Classification Algorithm from Kan Extensions

This subsection summarises the supervised Kan extension classification algorithm
described by Dan Shiebler [2], which forms the basis for the unsupervised algorithm
developed in this paper.

The unique IDs of a dataset can be represented by a category whose only morphisms
are the identity morphisms for each object. This is called a discrete category. For a given
discrete category I’, functors may assign values to each data point. The input data can be
described by a functor G : I' — I (Figure 2). In order to encode some of the geometric
information present within the dataset, rather than a discrete category, I is allowed to
be a Preorder. This is a category with at most one morphism between any two objects.
An example would be the ordered real numbers R<, whose objects are the real numbers
and for which a unique morphism <: x — y exists if and only if x < .

~
~

I/

=
[

Figure 2. A functor G : I’ — I embedding discrete data points from I’ into a richer space I.

For a dataset with binary classification labels, the target data can be represented
by a functor K : I’ — {false, true}. In this instance, {false, true} represents an ordered
two-object category whose only non-identity morphism is <: false — true.

For each of the points in I selected by G, there is information about their classification
labels given by K. The general principle of a supervised classification algorithm is to extend
information from a subset to the whole space. This can be described in this context as
finding a suitable functor F : [ — {false, true}.

An initial attempt may be to assign F to be either the left (LangK) or right (RangK)
Kan extensions in Equations (1)-(3) from [2].

LangK : I — {false,true} RangK:I — {false,true} (1)
/ / / < /
LangK(x) = true Ix' € I'(G(x') < x, K(x')) @
false else
/ / < / - /
RangK(x) = {false I’ e I'(x < G(x'), =K(x')) 3)
true else
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An example visualisation of these equations can be seen in Figure 3, in which [ was
set to R<. The figure presents the resulting Kan extensions from datasets with overlapping
and non-overlapping classes.

A
true = Q—LW——O%}O———‘ o0—0
| l
! |
! |
false —@—®— -@ - - Ran_o
\
[ 4
R<
I
Ran
true = e o—0——o0—
| l
! I
! I
false 4— oo 0 0 @ - Lan,

~

Figure 3. The left and right Kan extensions, LangK and RangK, produced from the functors K : I’ —
{false, true} and G : I’ — R<, which represent a binary classification dataset over the ordered real
numbers. The two graphs show the different extensions produced from a dataset with overlapping
classes (upper) and separable classes (lower).

In the case where [ is R<, F is forced to become a step function due to the induced
ordering of the two categories by their morphisms. This creates a decision boundary at
some point in R<.

F : R< — {false, true} (4)
true a <x

F(x) := (5)
false else

For two functors F, F’ : R< — {false, true}, a natural transform v : F = F/ must select
for each object in R< and a morphism in {false, true}. This, at most, may alter the output
of F from false to true while retaining its monotonicity. Considering the decision boundary
« in F, the effect of o can only be to increase «. This means that a natural transform can
only exist between F and F’ if « < a/. When composed with G : I’ — R<, the objects
of I and their image under G restrict the components of . Consequently, the left and
right Kan extensions produce classifying functions with no false negatives and no false
positives, respectively.

This approach is not yet sufficient for more complex systems. To extend the utility of
this representation, an additional, trainable functor f : I — I* can be added.

I' —X {false, true}

For the case of overlapping classification regions, it is a reasonable assumption that the
less these regions overlap, i.e., the smaller the disagreement region, the better the resulting
classification is likely to be. For this purpose, by assuming that I* is R, a function known
as the ordering loss can be introduced [2], with the guarantee that minimizing the ordering
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loss will also minimize the disagreement region. The following equation uses f(x)[i] to
represent the i-th component of the vector f(x) € R¥.

I:(I-RY) >R (6)
1(f) = Y max(0, max{f(x)[i] | x € I', =K(x)} = min{f(x)[i] | x € I',K(x)})  (7)

2.3. Motivating C-SVM through Kan Extensions

Two steps are required to motivate the C-SVM from the construction shown in
Section 2.2.5. Firstly, details about the dataset, which were introduced in Section 2.1,
can be used to populate the construction with information specific to this task. Secondly,
the construction of a classification algorithm through Kan extensions needs to be modified
for it to define an unsupervised algorithm.

The morphism G : I’ — I assigns information regarding the input data of the dataset
to each of the data points in the discrete category I’. In this case, the measured values in
the time series can be represented as a five-dimensional real number vector R. The time
series information was determined to be irrelevant in the data analysis. By selecting I’
as the discrete category [n] with 1 objects, which act analogously as unique IDs to the n
data points in the dataset, [1] disregards any time series information. For the sake of this
formulation, rather than using G directly, the data can be shifted to have a mean of g, giving
G’ : [n] — RS. The choice of f is arbitrary, making it a hyper-parameter of this algorithm.
By inspection, the data analysis indicates that normalising the datasets to have a mean of
zero is a reasonable choice.

The data analysis identified that the data could be suitably separated with a hyper-
plane. This can be represented by constraining the trainable portion of the construction to
be a linear map into the real numbers f : R> — R<. For this construction, R® is the discrete
category, with R< being the category which represents the ordered set of real numbers.
The choice of R< as the codomain of f is equivalent to stating the belief that the points
of R? can be ordered based on how likely they are to be classified as either “occupied” or
“not-occupied”. This means that f uses the ordering of R< to induce a partial ordering on
the points of R® based on their presumed classification. The role of the Kan extensions in
this construction is to decide the cutoff, where points greater than a certain value must be
classified as “occupied” and less than that value as “not-occupied”. These choices result in
the diagram in Figure 4.

[1] SN {false, true}

Figure 4. A diagram describing the structure of the classification algorithm for the Occupancy dataset.
By defining K := (0<)fG’ and allowing f to be a trainable hyperplane, this diagram represents an
unsupervised linear classifier.

The second problem is modifying the construction to be applied to an unsupervised
learning problem. The definition of the Kan extension requires that the morphism K : [n] —
{false, true} is known. By introducing an additional morphism (Equation (8)), it is possible
to define K through composition K := (0<) fG/, as follows:

(0<) : R< — {false, true} (8)

(0<)(x) 1= {true 0<x ©)

false else



Math. Comput. Appl. 2024, 29, 74

8 of 15

Interpreting this composition, introducing (0<) converts the hyperplane f into a binary
classifier. The points’ classification depends on which side of the hyperplane they lie
on. Due to the definition of K by composition, it is guaranteed that there is no overlap
in the classification boundaries. As the resulting Kan extensions are from the function
space R< — {false, true}, the resulting left and right Kan extensions correspond with the
functions shown in Figure 3. The decision boundaries formed by the three function (0<)f,
(LangeK)f, and (Ransc/K) f can be visualised as in Figure 5.

Lan
.
N o)

0<)

. O

A
\\ N
A Y
Ran . .
A .
. A .
. A .
. A .
. A .
. A .
) s . O
kN A
. \ O
o . .
. A Y
t t * O
. A .
. A .
. A .
. A Y
. A .
° . . .
S A RS \
. Y 4

Figure 5. A representation of the classification boundaries produced by the functions (0<)f,
(LanseK)f, and (Rangg K)f for an imagined dataset on the plane. The white and black circles
represent points whose classifications are true and false, respectively.

Any choice of f now produces a preliminary classification of the points in the Occu-
pancy dataset. The left and right Kan extensions identify the points closest to the decision
boundary. The classification quality produced by a given f can be judged by the distance
between the left and right Kan extensions, A.

The ordering loss, as previously defined, cannot be used directly for this version of
the problem, as it is zero when there is no overlap between classification regions. However,
given that it can be guaranteed that there will never be an overlap of the classification
regions, the outer max function of the ordering loss function can be removed, allowing
the modified ordering loss function (') to become negative (Equations (10) and (11)).
Minimisation of the modified ordering loss function maximises the separation region
between the left and right Kan extensions. In the particular case where f has codomain
R<, the modified ordering loss is reduced to be I'(f) = —A, where A can be seen as the
difference between the closest points on each side of the hyperplane f when projected
down onto the real numbers (Figure 5). Ultimately, the choices and modifications applied
to the construction produce an algorithm which appears to be a linear, unsupervised SVM
whose hyperplane is constrained to pass through p

(IR =R (10)
V() = Yomax{f(x)[i] | x € I', =K (x)} — min{f(x)[i] | x € I', K(x)} (11)

i<a
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2.4. Implementation of C-SVM

From the construction presented in the previous section, the remaining task is to
produce an algorithm which finds a suitable, linear transform, f : R — R, which
maximises the distance (A) between the decision boundaries produced by the left and right
Kan extensions. As f is a linear transform, it can be defined as f(X) := X - 0, where d is a
five-dimensional real number vector. Applying f to every point of the normalised dataset,
A can be computed as the difference between the data point with the smallest positive value
after f, as well as the data point with the largest negative value after f. For the purposes
of classification, the process of normalising the dataset and then transforming with f can
be understood as assigning a score to each point based on its signed distance from the
hyperplane. This corresponds with the image of the point in R< (Equation (12)):

score = (X — ) -0 (12)

The unsupervised fitting algorithm (Algorithm 1), which this paper introduces, de-
termines the value for each dimension of the normal vector by rotating the vector around
axes of a hyper-sphere centred at the constraining point. For each iteration, there are
set values, the current value, and the unset values. For each loop, the fitting algorithm
checks an integer number of uniformly spaced angles ©, € [0, r), which are given by
the following formula:

O, =ar/(res—1)

To determine the value which maximises the plane’s distance to the closest point, the al-
gorithm checks integer values of 4, where 0 < a < res. The vector of values this induces
can be represented by the notation @y« s, where (@p<res)s = ©,. The set values remain
unchanged, and only the current value and unset values are varied. At the end of the loop,
the maximising value is assigned to the current value. The logic of conserving previously
determined values, selecting the active dimension based on the angle, and modifying
the following dimensions to preserve the unit magnitude of the vector is encoded in the
following piece-wise function (Equation (13)):

A

U]‘ ] <1
Angle2Value(d,1,j,0,) = { sin(Oy) j=1 (13)

cos(@y)4/1—sin(®,) . .

— dm@ - /!

Algorithm 1 Fitting C-SVM
Input: data € R"*", res € N
Output: ji, o € R"
1: ji < mean of the n points in data
2: ﬁagm 0
3 fori <~ Otoi=mdo

4 Opcres < am/(res —1)

5 Vicm, a<res < Angle2Value(d,i,j,©,)

6: S < MatrixProduct(data — ji, V)

7. L < MinAlongFirstAxisIfTrue(S, IsPositive)

8: R <« MaxAlongFirstAxisIfTrue(S, IsNegative)
99 A+ L-R

10:  k + MaxIndex(A)

11: 0; = ik

12: end for

13: return ji, 0
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Fitting each of the values sequentially the fitting algorithm achieves a time complexity
of O(nm? res) with n being the number of data points, m being the number of dimensions,
and res being the resolution of the angle search space.

3. Results

The scores given by the fitted C-SVM on every point in the dataset are shown in
Figure 6.

1500 A

1000 ~

Score

500 -

y

T T T T T T T T T T T T T T T T T T
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Day

Figure 6. The scores generated by the fitted C-SVM on the Occupancy dataset. Points that are labelled
as occupied in the dataset are coloured red, and unoccupied points are coloured black.

Points that the Occupancy dataset labels as occupied were coloured red, and the
points corresponding to unoccupied points were coloured black. Via a visual inspection,
higher scores assigned with the C-SVM correlate strongly with the building being occupied.
The receiver operator curves (ROCs) for these scores, when compared to the ground truth
labels of the dataset, are shown in Figure 7. For classification algorithms that return a scalar
value (score) which is thresholded to produce true/false classifications, their ROCs can
be used to show how modifying the threshold value (sensitivity) changes the rate of false
positives and true positives. It is assumed that better classifiers will produce scores that
more clearly delineate which points are true/false. This can be measured using the area
under the receiver operator curve (ROCAUC). An almost perfect classifier would produce
few false positives vs. its number of true positives. The better a classifier is the more its
ROC approaches a step change and the closer its ROCAUC is to 1. The C-SVM achieved an
ROCAUC of 0.9814 with a maximum accuracy of 93.5%.

Four of the papers found in Section 2.1 provided ROCAUC scores for models tested
on the Occupancy dataset. The C-SVM algorithm achieved the fourth highest ROCAUC
out of twenty-six models, with a difference in the ROCAUC score of 0.0146 between it and
the top-performing model (Table 1). Six of the papers provided classification accuracies
(with varying levels of precision) for the tested models. The C-SVM algorithm had the
sixteenth highest accuracy out of twenty-eight models, with a difference in accuracy of
3.5% between it and the top-performing model (Table 2).
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Figure 7. The receiver operator curve (ROC) for the scores given by the C-SVM when compared to
the ground truth labels in the Occupancy dataset. The model achieved an ROCAUC of 0.9814.

Table 1. An ordered list of the ROCAUC scores of unsupervised algorithms on the Occupancy dataset,

as provided by the papers found in Section 2.1.

Model Citation ROCAUC
EIF [71 0.9970
VAE [7] 0.9960
AD HKDE [8] 0.9907
C-SVM 0.9814
1C-SsVM [71 0.9780
GRU-GSVDD [9] 0.9109
GRU-GSVM [9] 0.9059
KDE-AB [8] 0.9531
FOGD [8] 0.9490
IF [71 0.9470
K-KDE [8] 0.9368
Online 0sPCA [8] 0.9292
DIFF-RF [71 0.9000
LSTM-GSVM [9] 0.8957
GRU-QPSVM [9] 0.8719
SVM [9] 0.8676
LSTM-GSVDD [9] 0.8609
CSVM [10] 0.8220
DSVM [10] 0.8220
LSTM-QPSVM [9] 0.8197
LSTM-QPSVDD [9] 0.7869
LSTM [9] 0.7444
GRU-QPSVDD [9] 0.7417
SVDD [9] 0.6715
LSVM [10] 0.6670
KitNET [7] 0.6580
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Table 2. An ordered list of the accuracy scores of unsupervised algorithms on the Occupancy dataset,
as provided by the papers found in Section 2.1. Note that the number of decimal points is inconsistent
because different papers quoted the accuracy of their models to different precisions.

Model Citation Accuracy (%)
OEMP-4K [11] 97
BEMG [11] 96.5
BEMP [11] 96.5
OEMP-2K [11] 96.5
OEMP-3K [11] 96.5
Batch UM [12] 96
Batch CBM [12] 9
ARF [13] 95.9
DA [13] 95.8
AD [13] 95.3
OEMP-1K [11] 95
RF [14] 94.5
J48 [14] 944
REPTree [14] 94.4
Occ-STPN [15] 94
C-SVM 93.5
IFC [13] 93
HMM [16] 90.2
LA [13] 89.1
GeoMA [11] 87
LB [13] 86.4
SOL [13] 85.4
AS [13] 84
PHT [11] 83.5
OB [13] 82.3
AUE [13] 81.8
RC [13] 75.6
AWE [13] 73.4

4. Discussion
4.1. Category Theory

It is reasonable to suggest that a person could design the C-SVM algorithm without
any knowledge of category theory. At this initial phase, the utility of category theory with
respect to ML may be primarily to be used as a descriptive language, offering occasional
intuition. However, developing this more rigorous procedure of encoding the structure
of ML problems may start to provide solutions which would not be immediately obvious
from a traditional perspective.

Commonly, intuition and experience are used to bridge the gap between knowledge
about an ML problem and the design of an algorithm. Category theoretic techniques
have the potential to make this connection more explicit. Using the template of the Kan
extension, adding information about the dataset began to outline the necessary algorithm.
Not only does this form of notation highlight the reasoning for specific choices but it also
suggests an alteration to the classic ML design loop. Traditionally, by testing iterations
of algorithms, an engineer may understand more about the particular problem they are
working on. Intuitively, this means adding information about the dataset into the design
of the algorithm. However, with a categorical perspective, it may be more sensible to add
new information about the structure of a dataset to its categorical description, trusting that
these changes will indicate the appropriate modification to the algorithm design.

It is worth noting that the techniques used to derive the C-SVM algorithm are relatively
crude compared to what may be possible with category theory. It was necessary to work
inside of the category of categories to make use of the natural transforms required in the
definition of the Kan extension. Unfortunately, this led to the use of categories themselves
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as the objects of interest. It is true that categories can encode rich mathematical structures,
but it is often their objects which represent the structures. For example, vector spaces
would have been useful in the definition of the C-SVM and do exist as objects inside
of categories, but are not necessarily categories themselves. Future development of the
techniques shown may benefit from more nuanced constructions to increase their flexibility
and descriptive power.

4.2. The Occupancy Dataset and Anomaly Prediction

The performance of the C-SVM algorithm highlights two issues with using the Occu-
pancy dataset as a benchmark for anomaly prediction algorithms.

The first concern comes from its use in evaluating the performance of algorithms
on time series data. Ten of the twelve included papers tested time-sensitive algorithms.
However, the PCA analysis in Figure 1 and the ROCAUC of the C-SVM algorithm raised
the concern that, effectively, none of the features required for successful classification are
present in temporal information. The C-SVM was outperformed in accuracy by fifteen
of the algorithms presented in relevant papers. However, with an accuracy difference of
only 3.5%, it becomes unclear whether this improvement is due to time series information.
For the purpose of investigating the performance of an algorithm on a time series dataset,
this uncertainty impairs the utility of the Occupancy dataset as a benchmark. If the
accuracy difference is entirely due to time series information, such a slight variation
reduces the resolution of the dataset in differentiating the attributes of tested algorithms.
This property of the dataset may lead to an improper evaluation of model performance
when not accounted for: either by over-representing the performance of an algorithm,
which ineffectively utilises time series information, or in the underperformance of models,
such as LSTMs, whose additional connection weights increase the dimensionality and
symmetries of their loss plane without conferring any significant benefit in this case.

The second concern can be seen in the data points generated by a broken sensor. These
data points occur for both occupied and unoccupied classifications; however, considering
the use of anomaly detection algorithms, it creates an issue. The Occupancy dataset
in this context is a dataset with three classifications: occupied, unoccupied, and true
anomaly. For this reason, the labels included in the dataset cannot be taken as ground
truth classifications when validating anomaly detection algorithms. An algorithm may
correctly identify the erroneous points as anomalies but be punished in its resultant score.
In this way, it should be considered that the performance of such algorithms on this dataset
is not an entirely accurate indication of their performance as anomaly detection systems.
The C-SVM algorithm, due to its simplicity, is largely insensitive to the more nuanced
forms of anomalies created by the broken sensor, contributing to its outperformance of
comparatively more advanced systems.

The concerns identified with the Occupancy dataset do not necessarily mean it should
be completely disregarded. Only in the cases of validating algorithms which are sensitive to
time series information, or which identify anomalies, should these concerns be considered
in their performance. In summary, it is suggested that the Occupancy dataset should be
used with caution.

4.3. Uses of the Centred SVM

Though this paper has primarily utilised the C-SVM to demonstrate certain properties
of the Occupancy dataset, it may also provide value in other applications. Its low time
complexity allows it to be implemented as a component of a larger system, or as another
tool for data analysis. The ability to control the constraining point provides the opportunity
for manual selection, or for the point to be provided by another algorithm. Furthermore,
the optimising algorithm presented may use any loss function relative to the dataset.
Situations, where the separation between datasets is less clear, may cause issues as the
hyperplane which maximises the distance to the nearest point may not generate a suitable
result. Alterations such as using the distance to the k-th nearest point, the average distance
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of k points, or maximising the distance variance (in which its operation becomes similar to
the Fischer linear discriminant) may all be varied on a case-by-case basis.

5. Conclusions

The primary contribution of this report was the demonstration of a category theoretic
approach to the analysis and presentation of machine learning problems. It was demon-
strated that it is possible to describe a simple unsupervised anomaly detection algorithm,
for a real-world problem, with Kan extensions. As a result, the design of the algorithm was
directly informed by the characteristics of the dataset that were discovered in the initial
data analysis. Not only was this algorithm competitive with those presented in related
works but its Kan extension-inspired design was also able to add supporting evidence to
claims about the characteristics of the Occupancy dataset. Namely; its classification labels
have little relationship to the temporal component of the data and truly anomalous data
points exist whose nature is not reflected by their classification, which are characteristics
which should be considered before utilising the Occupancy dataset as a benchmark for
other algorithms.

The development of category theoretic techniques may ultimately generate useful tools
for the construction of machine learning algorithms, providing a perspective which is more
concerned with the structure of data than the particular implementations of algorithms.
Though Kan extensions have provided a promising indication of what these techniques
may look like, there are many facets that a future work may improve.
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