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Abstract

We combine an off-lattice agent-based mathematical model and experimentation to explore

filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevi-

siae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding

mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spa-

tially non-uniform growth, where filaments extend away from the colony centre, foraging for

food. We use approximate Bayesian computation to quantify how individual cell budding

mechanisms give rise to spatial patterns observed in experiments. We apply this method of

parameter inference to experimental images of colonies of two strains of S. cerevisiae, in

low and high nutrient environments. The colony size at the transition from sated to pseudo-

hyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key fea-

tures driving colony morphology. Simulations run with the most likely inferred parameters

produce colony morphologies that closely resemble experimental results.

Author summary

Yeasts are one of the most-studied organisms in biology due to their widespread use in

food and beverage production and their role as a model organism in biomedical research.

In this work, we combine mathematical modelling with experimentation to better under-

stand the growth mechanisms of a yeast colony. Typically, yeast cells are spherical, but

under environmental stress new daughter cells can become elongated. This change in the

cell shape creates non-uniform growth in the colony, where filaments consisting of chains

of elongated cells extend away from the colony centre, foraging for food. We use computer

simulations to understand how individual cell shapes and reproduction mechanisms pro-

duce different colony patterns observed in experiments. The colony size at the sated-to-

pseudohyphal transition and a forking in the cell proliferation mechanism were the key

features that determine the shape and structure of a colony. We showed that by using the
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most likely set of parameters, our computer simulation is able to generate colonies resem-

bling those seen in experiments.

Introduction and background

In this paper, we combine agent-based mathematical modelling, experiments, and statistical

inference to investigate how cellular behaviour drives colony-scale patterns in filamentous

yeast colonies. Yeasts are common single-cell fungal organisms, with over 1,500 recognised

species. One of these species, Saccharomyces cerevisiae, was the first eukaryote to have its

genome fully sequenced [1], and has since been one of the most widely studied model organ-

isms in biology [2]. In addition to their use in research, yeasts positively impact everyday life

through the production of baked goods, alcoholic beverages [3], medicines [4], and biofuels

[5]. Other yeasts, for example Candida albicans, have a major negative impact of causing path-

ogenic infections in humans [6]. These impacts are strongly influenced by the morphology of

individual cells or colonies. Therefore, understanding the fundamental mechanisms of yeast

growth can benefit food production, biotechnology, and disease research. Depending on the

strain and experimental conditions, colonies of lab-grown yeasts exhibit vastly different modes

of growth.

We focus on small filamentous yeast colonies of two different strains relevant to wine

research, AWRI 796 and Simi White [7]. Example colonies are shown in Fig 1. Although these

two strains are the same organism, they produce visually different colony morphologies, which

we seek to explain through our modelling. These filamentous colonies feature a central region

of Eden-like [8] circular growth, and an outer region of non-uniform filamentous growth. In

1967, [9] showed that for bacteria grown in low-nutrient environments, only the outer region

of the colony has access to nutrients, resulting in a constant increase in radius rather than an

exponential increase in area. This phenomenon is known as diffusion-limited growth (DLG).

Agent-based models for bacterial colonies have since shown that DLG can produce non-uni-

form patterns [10, 11] reminiscent of diffusion-limited aggregation [12]. Yeast colony develop-

ment was assumed to be analogous to bacterial growth governed by DLG, but experimental

work by [13] provided an alternative explanation for the non-uniform pattern. Their work

showed that yeasts can actively respond to environmental stressors such as low nutrition by

switching to a pseudohyphal growth mode [14]. This pseudohyphal growth involves cells

Fig 1. Examples of different modes of yeast (S. cerevisiae) colony growth. (a) A small filamentous colony grown in a low assimilable nitrogen

(nutrient) environment. (b) A large filamentous colony in a high nitrogen environment. (c) A different strain of yeast under low nutrient

conditions.

https://doi.org/10.1371/journal.pcbi.1012605.g001
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elongating and budding end-to-end, resulting in long, thin branches of cells emanating from

the centre of the colony, similar to Fig 1a. Recent work by [15] confirmed that pseudohyphal

growth, not DLG, was the mechanism for non-uniform patterning in filamentous yeast colo-

nies. However, a detailed quantitative link between the cellular mechanisms of pseudohyphal

growth and macroscale patterns has not yet been established.

We use agent-based mathematical modelling to simulate filamentous colony growth.

Agent-based models (ABMs) [10, 11, 16–23] track movement, proliferation, and death of indi-

vidual cells in the colony. Lattice-based ABMs, such as cellular automata, restrict the positions

of cells to discrete sites. Lattice-based models have been used to investigate budding patterns

[24] and the role of nutrient level on colony roughness [19]. [18] developed a lattice-based

model that incorporated pseudohyphal growth by introducing a directional bias to the cell

growth [18]. A weakness of lattice-based models is that it is difficult to capture microscale fea-

tures within the filament. Off-lattice models [25–27] address this shortcoming by allowing

cells with irregular shapes to take any position on the domain. Mathematical models have

shown that rod-shaped cells promote filament formation [28], and that cell morphology is a

major determinant of overall colony morphology [29, 30]. Modelling has also shown that bud-

ding angle influences the irregularity in filamentous colony morphology [31]. However, the

extent to which cell behaviour influences pseudohyphal colony shape in off-lattice models has

yet to be fully quantified.

We extend previous studies by developing a two-dimensional off-lattice model of pseudo-

hyphal yeast colony growth in the absence of DLG. We represent cells as ellipses, accounting

for the different sizes and aspect ratios observed in regular (sated) and pseudohyphal cells.

Since the timescale for nutrient diffusion is much faster than that of cell spread, we assume

that nutrient concentration will be spatially uniform, such that proliferation probability is

independent of space. After developing the model, we compare simulations with experiments,

and infer model parameters using spatial statistics, image processing and approximate Bayes-

ian computation [32]. Crucially, we incorporate cell size and budding angle differentiation

depending on whether a cell is sated or pseudohyphal. Modelling this microscopic detail helps

reveal how colony shape arises from these cell-scale behaviours. We use three spatial statistics

to quantify the morphology of simulated and experimental colonies. Yeast colony morphology

was primarily influenced by the colony size at the transition from sated to psuedohyphal bud-

ding, and a forking mechanism that controls formation of chains of pseudohyphal cells.

Biological background

The biology of filamentous yeast colonies informs our mathematical model. Budding yeasts

reproduce asexually by mitosis [13]. To produce new cells, an existing mother cell creates a

copy of itself from a protruding bud on its outer surface. The new daughter cell replicates the

genetic material of the existing cell, and eventually detaches from the mother [33]. Cells can

reproduce multiple times, and each division event creates a bud scar on the mother and daugh-

ter cell surfaces. These scars are the ring-like surface structures present in Fig 2a. When not

subject to external stressors, yeasts proliferate in an axial or bipolar budding pattern [34]. In

axial budding, cells first bud close to the bud scar, and subsequent buds form close to previous

budding sites [35]. In bipolar budding, cells reproduce at opposite ends of their major axis,

and subsequent buds form at the opposite end to the initial bud [36]. We refer to a yeast cell

growing in either the axial pattern or the bipolar pattern as sated.

Yeasts can change their growth patterns in response to stresses from the local environment

[37]. These stresses include low nutrient concentration or low availability of assimilable nitro-

gen [38]. Under stress, yeasts do not undergo axial or bipolar budding but instead exhibit the
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distal unipolar budding pattern [39]. Unipolar budding involves cells budding only at the pole

directly opposite the initial bud scar. Under stress, unipolar budding is accompanied by cell

elongation that increases the aspect ratio from approximately 1.5 to approximately 3.5 [13]. A

typical cell elongation is shown in Fig 2b. The combination of cell elongation and unipolar

budding generates longer branches emanating from the centre of the yeast colony and pro-

truding outwards. These structures are known as pseudohyphae, as shown in Fig 2c. Pseudo-

hyphal growth is thought to allow sessile colonies to forage for nutrients away from the

densely-occupied central region [13], or to invade a host organism to more easily obtain nutri-

ents. Pseudohyphal growth occurs in the baker’s yeast Saccharomyces cerevisiae, the pathogen

Candida albicans (both true hyphae and pseudohyphae), and many other yeast species.

Yeast colony behaviour is commonly studied by observing the growth of cells placed on a

growth medium solidified with agar [13, 40–42], as shown in Fig 3. In the absence of stressors,

Fig 2. Cell and colony-scale behaviour in filamentous yeast colonies [13]. (a) Schematic of a sated mother cell with two bud scars and a

developing daughter cell under normal conditions. (b) Schematic of an elongated pseudohyphal cell. (c) A filamentous branch at the edge of

a yeast colony, consisting of both sated and pseudohyphal cells.

https://doi.org/10.1371/journal.pcbi.1012605.g002

Fig 3. Spatiotemporal evolution of a filamentous yeast colony of AWRI 796 50 μM. (a)–(f) Time series of images from a yeast growth experiment,

showing the transition from Eden-like circular growth to filamentous growth. (g) Petri dish with many concurrent filamentous colony growth

experiments, indicating the small scale of filamentous colonies.

https://doi.org/10.1371/journal.pcbi.1012605.g003
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growth is approximately uniform, and yeast colonies appear circular when viewed from above.

In contrast, pseudohyphal growth produces filaments that grow out from the colony, so that

the growth is no longer uniform, as per Fig 3c–3f. These filaments consist of central chains of

pseudohyphal cells interspersed with sated cells, as shown in the experimental image of an S.
cerevisiae filament in Fig 2c. The length, width and taper of the filaments vary with strain and

growth conditions, and the mechanisms that control these properties are not fully

characterised.

Materials and methods

We combine yeast growth experiments, mathematical modelling and simulation, image pro-

cessing, and Bayesian statistical inference to investigate filamentous yeast growth. The subsec-

tions below outline our methods for each.

Yeast growth experiments

The Saccharomyces cerevisiae, diploid prototrophic wine yeast strains Maurivin AWRI 796 and

Enoferm Simi White were used in the experiments. Cultures were originally grown in YPD

(2% glucose, 2% bactopeptone, 1% yeast extract) from commercial packets and maintained as

glycerol stocks as per standard procedures. Yeast Nitrogen Base (YNB) liquid medium was pre-

pared using dehydrated culture medium as per the manufacturer’s instructions (Becton Dick-

son; Cat No. 233520) with the addition of glucose (2%) and ammonium sulfate (50 or 500 μM)

as the sole nitrogen source, or as described previously for ‘carbon base for nitrate assimilation

test’ [43] with the following modifications; glucose (2%), inositol (11.7 mg/L), and ammonium

sulfate (50 μM or 500 μM). YNB agar plates were prepared with concentrated media stocks (2×),

which were filter sterilised before mixing with an equal volume of Bacto agar (4%) (Becton

Dickinson), that was previously washed twice in ultrapure water and autoclaved to sterilise.

Aliquots (20 mL) were poured into standard 90 mm polystyrene Petri dishes. The yeast were

cultured from glycerol stocks in 2 mL YNB (50 μM ammonium sulfate) for two days, at 28˚C,

with agitation. Dilutions, calculated to contain between 50 to 100 cells, were then spread onto

YNB agar with 50 or 500 μM of ammonium sulfate and incubated at 28˚C to yield single colo-

nies. At least 14 yeast colonies from each condition were imaged over the timecourse of the

experiments and then at the terminal point, after about 235 hours. Bright field images were

viewed at 40× magnification using a Nikon Eclipse 50i microscope and imaged using a Digital

Sight DS-2MBWc camera and NIS-Elements F 3.0 imaging software (Nikon).

Mathematical model

We develop a two-dimensional off-lattice agent-based model for a filamentous yeast colony.

We index cells with a subscript i, for i = 1, . . ., n, where n is the number of cells in the colony.

Each cell is represented by an ellipse with centre mi, major radius ai, minor radius bi (with cor-

responding aspect ratio di = ai/bi), and orientation θi. The orientation angle θ is measured anti-

clockwise from the x-axis to the major axis of the cell. The distal pole of cell i is the point mi +

vi, where vi = ai(cos θi, sin θi), and the proximal pole is the point mi − vi. The size, position,

and orientation of each cell in 2D are thus completely specified by five quantities: the centre mi

= (mx, my)i, direction vector vi = (vx, vy)i and aspect ratio di. The boundary of cell i is then

xið�Þ ¼ mi þ ðai cos � cos yi � b sin � sin yi; ai cos � sin yi þ bi sin � cos yiÞ; ð1Þ

where ϕ 2 [0, 2π) is an angle parameter such that ϕ = 0 corresponds to the distal pole. The

yeast cell model is illustrated in Fig 4a. Each cell is classified as either sated or pseudohyphal as

shown in Fig 4b. Average dimensions for both cell types are known [13], and we assume they
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do not depend on yeast strain and initial nutrient concentration. These parameter values are

presented in Table 1. Importantly, with these parameters sated and pseudohyphal cells have

areas that differ by 1%. Therefore, we assume that cell number can provide a good approxima-

tion for colony size, regardless of colony composition.

Cells reproduce by budding from any of four prescribed bud sites located around the

boundary at each end of the cell, illustrated by red dots in Fig 4a. The bud sites at each end are

equidistant and centred on the pole between the angles ±β, relative to the cell axis. When a

sated cell divides, the budding site for the daughter cell is selected at random from the four

possibilities, regardless of whether the daughter is sated or pseudohyphal. In contrast, pseudo-

hyphal cells can only bud from either of the distal poles. For a pseudohyphal mother, the bud-

ding site for the daughter cell is chosen randomly from the two potential distal sites, regardless

of the daughter cell type. In terms of the cell boundary parameterisation Eq (1), a line at angle

β relative to the cell axis intersects the boundary at the point x(ϕβ). The angle β and parameter

ϕβ are related by

tan b ¼
b
a
tan �b: ð2Þ

Therefore, for a given budding angle β, the angle parameter is

�b ¼ bþ
arctan ð½a � b� tan bÞ

bþ a tan2 b
: ð3Þ

The angle parameter Eq (3), together with orientation θβ and known m, a, and d for the daugh-

ter cell, then fully characterises the boundary of the daughter cell.

We now outline the key assumptions governing colony evolution. We initiate simulations

on the two-dimensional domain (x, y) 2 [−Lx/2, Lx/2] × [−Ly/2, Ly/2], with a single cell with

Table 1. The cell half width a, cell half length b and budding angle β for sated and pseudohyphal cells [13].

Parameters Symbol Sated Pseudohyphal

Cell half width (μm) a 3 1.9

Cell half length (μm) b 4.2 6.7

Budding angle β 7π/16 π/16

https://doi.org/10.1371/journal.pcbi.1012605.t001

Fig 4. The yeast cell model and budding patterns. (a) Yeast cells are represented as ellipses with centre m, major radius a, minor radius b
and the angle between the x-axis and the major axis θ. The distal pole is m + v and the proximal pole m − v. New cells are produced at bud

sites (red dots) along the border of the cell, which are located between angles of ±β at both ends of the cell. (b) The sated (green) cell gives

birth to a daughter cell (blue), which in turn yields more pseudohyphal cells (purple). Environmental stressors trigger a transition from

colonies containing only sated cells to pseudohyphal growth.

https://doi.org/10.1371/journal.pcbi.1012605.g004
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centre at the origin and orientation θ1 = 0. Throughout a simulation, yeast cells do not change

shape or die. We neglect cell death because yeasts have lifespans of up to 10 days [44], and in

low-nutrient environments can enter a stationary phase instead of dying [45]. We permit the

boundary of a new cell to partially overlap an existing cell, but abort cell proliferation if the

centre of the new cell would lie within the boundary of an existing cell. This partial volume

exclusion enables some cell compression as cells proliferate in crowded environments. Cell

overlap may also approximate cell stacking in the direction normal to the plane of the simula-

tion, which is also observed in experiments [46]. Our volume exclusion assumption imple-

ments cellular competition without explicitly modelling the mechanical forces between cells.

Neglecting mechanics allows us to focus on modelling the hypothesis that changes to cellular

shape give rise to filamentous growth at the colony level. As Fig 3g shows, colonies have small

size relative to the entire Petri dish. Since nutrient diffusion is very fast compared to cell prolif-

eration in these small colonies [15], spatial variation in nutrient concentration will be negligi-

ble. Therefore, other than volume exclusion there is no spatial bias to cell proliferation.

Furthermore, in our simulations we neglect time, which will not affect the eventual colony

morphology. Instead, we simulate cell division events until the colony attains a prescribed

number of cells, nmax. We choose this prescribed cell number nmax such that the simulation

has approximately the same area as an experimental colony, facilitating comparison between

the spatial patterns in the model and experiments.

In simulations, we first select a cell to proliferate at random, and then generate a daughter

cell at a budding site governed by the relevant budding pattern. Environmental stressors are

known to govern the transition from sated to pseudohyphal growth. However, these stressors,

such as the nutrient concentration, are difficult to measure during the experiment. Therefore,

in simulations we assume that all cells are sated and produce sated offspring until the number

of cells in the colony, as a proportion of the maximum, exceeds a threshold value. That is, all

mother and daughter cells are sated until n/nmax > n*, where n* 2 (0, 1). This results in Eden-

like circular growth, as in Fig 3a, early in the colony development. Once n/nmax > n*, we

assume sufficient environmental stress to possibly trigger pseudohyphal growth. In a simula-

tion, if n/nmax > n* we implement a series of steps to propose the next proliferating cell, and

the type of daughter cell produced. We outline these below, and summarise them in a decision

tree, Fig 5.

The relative proliferation rates of sated and pseudohyphal cells are not precisely known. To

account for this in the model, when n/nmax > n* we propose that the proliferating cell is sated

with probability pa, where pa is a parameter that we can vary. This models the idea that a tran-

sition to pseudohyphal growth is a colony-level decision, rather than one made by individual

cells. This assumption acknowledges that there are complex colony-level genetic and signalling

pathways that govern pseudohyphal growth, without modelling them explicitly [14]. A pseudo-

hyphal cell is selected to proliferate with the complementary probability 1 − pa. The only

exception to this rule is if the yeast contains no pseudohyphal cells. If so, we must select a sated

cell. Given n/nmax > n*, a sated cell will produce a pseudohyphal daughter with probability psp,
and a sated daughter cell with probability 1 − psp.

If the cell chosen to proliferate is pseudohyphal, we also check whether the cell to proliferate

has an existing pseudohyphal daughter. If not, the daughter cell is pseudohyphal, in accor-

dance with end-to-end unipolar budding of pseudohyphal cells. However, if the pseudohyphal

cell chosen to proliferate already has an existing daughter cell, its behaviour is controlled by

two parameters, γ and pps. The parameter γ limits forking from pseudohyphal cells, which is

the scenario where multiple pseudohyphal branches emanate from the same pseudohyphal

mother. Once a pseudohyphal cell has been chosen to proliferate, with probability γ, we abort

proliferation, and instead select a new pseudohyphal mother cell with no pseudohyphal
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daughter to proliferate. Comparatively large γ models the scenario where the colony preferen-

tially chooses to generate a new filamentous branch, increasing its ability to forage radially.

Alternatively, with probability 1 − γ, the chosen pseudohyphal cell with an existing pseudohy-

phal daughter is allowed to proliferate. In this scenario, the daughter cell can be either sated,

with probability pps, or pseudohyphal, with probability 1 − pps. Enabling both daughter cell

types is in accordance with experimental observations of filaments (see Fig 2c), where sated

and pseudohyphal cells coexist. Finally, after proposing any proliferation event, if no budding

site is available or the event contradicts our volume exclusion condition, the event is aborted,

and the procedure begins again from the start. Producing an entire colony involves repeatedly

deciding on cell proliferation events until the colony attains a desired target area. As summa-

rised in Table 2, our off-lattice ABM contains five parameters: n*, pa, psp, pps, and γ. Since

parameter values are difficult to determine in experiments, we infer them by comparing simu-

lations with experimental photographs. We present image processing and parameter inference

methods in the sections below.

Fig 5. Flow chart outlining the process for deciding which type of new cell to propose when a cell proliferates. When selecting a cell type, the

probability of each event is indicated using the symbols that appear above the arrows.

https://doi.org/10.1371/journal.pcbi.1012605.g005
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Image processing and summary statistics

Image processing and quantification enable us to compare experimental and simulation

results. The first step is to convert grayscale photographs and simulation plots to binary

images. In all images, dark colours indicates regions occupied by the colony, whereas light col-

our indicates unoccupied regions. For an image with X × Y pixels labelled as the ordered pairs

(xi, yj), for i = 1, . . .X and j = 1, . . .Y, a binary image is a matrix

Mi;j ¼

1 if ðxi; yjÞ occupied

0 if ðxi; yjÞ unoccupied:

8
<

:
ð4Þ

We obtain the binary images using the Tool for Analysis of the Morphology of Microbial Colo-

nies (TAMMiCol) [47], which uses automatic thresholding and interpolation to obtain binary

images. We save simulation images at the same pixel resolution as experimental photographs,

such that binary images Eq (4) enable direct comparison between simulations and

experiments.

Summary statistics for the spatial pattern enable systematic comparison between simulated

and experimental images. In this work, we compute three summary statistics, which we use to

infer model parameters based on experimental observations. These summary statistics are the

sub-branch count (IB), filamentous area ratio (IF), and radius ratio (IR). These summary statis-

tics quantify the extent of filamentous growth in a colony, and the spatial distribution of fila-

ments. The radius ratio is defined as IR = rcsr/rmax, where rcsr and rmax are the complete spatial

randomness (CSR) radius and maximum radius of the colony [42], respectively. To compute

these radii, we first use MATLAB to locate the colony centroid. The maximum radius, rmax, is the

maximum distance from the centroid to an occupied pixel. The CSR radius, rcsr, is the distance

between the centroid and the radial position where the density of occupied pixels is equal to

rcsr ¼ N=pr2
max; where N = ∑i,j Mi,j is the number of occupied pixels in the colony. Fig 6b illus-

trates these radii for the colony in Fig 3f. The radius ratio, IR, then indicates the proportion of

the colony occupied by the central circular region of Eden-like growth.

The filamentous area ratio, IF, is the ratio of the number of occupied pixels in the annular

region between rcsr and rmax, to the total number of occupied pixels in the colony. Like the

radius ratio, IF quantifies the extent of filamentation but also accounts for the density of fila-

ments in addition to their maximum length. The sub-branch count, IB, characterises the shape

of filaments in the angular direction. MATLAB’s bwmorph() function provides a count of the

number of branches in a skeletonised image of the filamentous region. An example skeleton-

ised image is shown in Fig 6c. To obtain the sub-branch count, we count the number of

branches of a skeletonised experimental image. Due to the computational cost of skeletonisa-

tion, we only counted a quarter of the colony’s branches. We used the top left corner, counting

Table 2. Parameters that we vary in the off-lattice model. All parameters in this table take values in the interval

[0, 1].

Symbol Description

n* Proportion of total colony growth above which we permit pseudohyphal growth.

pa Probability of selecting a sated mother cell if n/nmax > n*.
psp Probability of a sated mother cell producing a pseudohyphal daughter cell.

pps Probability of a pseudohyphal mother cell producing a sated daughter cell.

γ Forking control parameter for pseudohyphal daughter cells.

https://doi.org/10.1371/journal.pcbi.1012605.t002
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branches in the region (r, θ) where r 2 [rcsr, rmax], and θ 2 [π/2, π], where r = 0 represents the

colony centroid.

Parameter inference

We perform Bayesian statistical analysis to infer posterior distributions for the model parame-

ters, θ = (n*, pa, psp, pps, γ), associated with different experimental images [48]. However, due

to the complexity of the model, which is specified implicitly as a simulation procedure, com-

puting the likelihood of the data, given the parameters, is intractable. To overcome this issue,

we use approximate Bayesian computation (ABC) [32]. This class of algorithms samples from

an approximation to the true posterior by using simulations of the model and comparing these

with the observed images (the data). The benefit of the ABC approach is that, instead of captur-

ing only point estimates of the parameters, we infer their full joint posterior distribution and

thus capture the variability and covariance structure as well.

As our model has five parameters, we choose to implement a version of ABC that uses

Metropolis-Hastings (MH) steps [49, 50], rather than rejection sampling. This works by simu-

lating a Markov chain whose stationary distribution is approximately the same as the target

posterior distribution. At each iteration of the chain, a new set of parameters, θ*, are proposed

based on the current set, θi, and these are accepted or rejected based on how ‘close’ the simu-

lated images are to the experimental results. More specifically, iterations are accepted with

probability,

a ¼ min 1;
pðy

∗
Þqðyijy

∗
Þ

pðyiÞqðy
∗
jyiÞ

1frðSðxÞ; �SÞ � �g
� �

; ð5Þ

where π(.) is the prior, q(.) is the proposal density, 1(.) is the indicator function, ρ(.) is a dis-

tance metric, S(.) is a function returning a vector of summary statistics, x is an image of the col-

ony from a simulation, and �S denotes mean summary statistics from the experimental data.

The dependence on the indicator function in Eq (5) means that for a given simulation, if ρ
(.)>�, where � is a chosen error tolerance, then the indicator is zero and hence so is α and

therefore the proposal is rejected. We chose a multivariate Gaussian for the proposal

Fig 6. (a) Processed image of the experimental yeast colony in Fig 3f. (b) A binary image of the colony with the occupied central region

removed from the image. The red marker is the colony centroid, such that the blue and orange curves indicate rcsr and rmax used to compute

the radius ratio. (c) Skeletonised image of (b) obtained using MATLAB’s bwmorph() command. This image is used to compute the sub-

branch count summary statistic.

https://doi.org/10.1371/journal.pcbi.1012605.g006
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distribution, which is symmetric; hence, the proposal densities, q(.), cancel out in the accep-

tance probability.

We quantify the closeness between a simulation and an experiment using a distance metric

that incorporates the three summary statistics described in the Image Processing and Sum-

mary Statistics section. However, typical values of IB are much larger than IF and IR, as Fig 7

shows. Hence, we define S(x) and �S in terms of normalised summary statistics to weight the

contributions of sub-branch count, filamentous area ratio, and radius ratio equally. The nor-

malisation for each statistic is carried out relative to vectors containing summary statistics

from all images of the same experimental conditions, denoted IB, IF, and IR. These vectors are

of length N, the number of replicates of a given experiment. Then, given a summary statistic

vector (IB(x), IF(x), IR(x)) for a single simulation image x, we can normalise as

SðxÞ ¼
IBðxÞ � minðIBÞ

maxðIBÞ � minðIBÞ
;
IFðxÞ � minðIFÞ

maxðIFÞ � minðIFÞ
;
IRðxÞ � minðIRÞ

maxðIRÞ � minðIRÞ

� �

; ð6Þ

where S(x) is the normalised summary statistic vector, such that each element of S(x) takes val-

ues near the unit interval. We also define

�S ¼ ð~IB;~IF;~IRÞ ¼
�IB � minðIBÞ

maxðIBÞ � minðIBÞ
;

�I F � minðIFÞ
maxðIFÞ � minðIFÞ

;
�IR � minðIRÞ

maxðIRÞ � minðIRÞ

� �

; ð7Þ

where a bar denotes the mean of an experimental data vector. We then use the normalised

Euclidean distance metric, ρ(.), given by [50],

rðSðxÞ; �SÞ ¼ jjSðxÞ � �Sjj ¼
1

3

X3

i¼1

SðxÞi � �Si
1þ �Si

� �2
" #

1

2
;

ð8Þ

We chose to compare simulations with the mean of the summary statistic vector, �S, for each

given experimental condition rather than for each individual replicate. Despite this simplifica-

tion, this was found to produce simulated colonies that closely resemble the experimentally

observed morphology. Inferring parameters for single experimental images is also possible,

but would not necessarily yield accurate posterior distributions due to wide variation across

experiments.

Fig 7. Box plots of metrics to distinguish between experiments with varying nutrient (ammonium sulfate) concentrations and strains. The

red marker represents the sample mean. (a) Sub-branch count, IB, (b) Filament area ratio, IF, and (c) Radius ratio, IR. SW: Simi White.

https://doi.org/10.1371/journal.pcbi.1012605.g007
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We chose Beta distribution priors (see Fig 8), and the proposal covariance matrix is calcu-

lated from doing pilot runs with a higher value of � to encourage faster mixing. We chose

weakly informative priors for n*, γ, and pa, and uninformative priors for pps and psp. We use

weakly informative priors when physical intuition guides our expectation for the values these

parameters may take, whereas less is known about pps and psp. We expect n* to be relatively

large, because experimental images show pseudohyphal growth emerging after a long initial

period of circular (Eden-like sated) growth. The parameter pa is likely to be small, because

after the transition to pseudohyphal growth is initiated, we expect most of the growth to be

pseudohyphal rather than sated. Finally, we expect the forking control mechanism controlled

by γ to be invoked infrequently, because experimental images suggest that pseudohyphal

branches do fork regularly. A second reason for using weakly informative priors is that they

help the performance of the ABC parameter inference algorithm. The chain can become stuck

(proposed moves are rarely accepted) if it enters regions of the parameter space where the sim-

ulated and experimental data are very different, and weakly informative priors can help pre-

vent this. However, we did explore using uniform priors and show results in Fig C in S1 Text.

There was little difference in the mean of the posterior distribution, suggesting our weakly

informative priors were appropriate.

With the covariance matrix fixed, we then decreased the error tolerance until the accep-

tance rate of the chain was between 5–10% [51]. Trace plots were employed to assess the con-

vergence and mixing of the chains (see Fig A in S1 Text). As the simulation of the off-lattice

Fig 8. Posterior densities for average colony summary statistics and mean colony areas of AWRI 796 50 μM, AWRI

796 500 μM, and Simi White (SW) 50 μM. The marker below the distribution shows the mean. The priors are as follows

(a) n** Beta(5, 2), (b) pps* Beta(2, 2), (c) psp* Beta(2, 2), (d) γ* Beta(2, 5), and (e) pa* Beta(2, 5).

https://doi.org/10.1371/journal.pcbi.1012605.g008
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model is computationally expensive, we ran multiple chains independently and concatenated

the samples to reduce total computation time. For each parameter, we used an initial value a

small perturbation away from the mean of the prior distribution. We ran each chain for a suffi-

cient time until an effective sample size (ESS) of at least 200 was reached. The ESS values and

the tuning parameter, �, for each experimental setup are given in Table A in S1 Text.

Results and discussion

Below we present the inference results and compare simulated colonies using parameters

drawn from the posteriors with the experimental images. This allows us to gain insight into

the driving factors in the cell biology of the shape formation of the yeast S. cerevisiae.

Experimental results

Overall, the summary statistics can distinguish between experiments based on initial nutrient

concentration and yeast strain. For example, Fig 7 shows that increasing initial nutrient con-

centration decreases all three metrics, indicating less filamentous growth. Furthermore, we

observe a clear difference in the mean of the summary statistics between experimental condi-

tions, which are used in the inference. These results suggest that the summary statistics are

suitable for quantifying some of the differences in colony morphology. A tabulated version of

the means and standard deviations of the normalised summary statistics of the experimental

colonies is given in Table 3.

Simulation and inference results

Kernel density estimates of the marginal posteriors for the five model parameters for all three

experiments are shown in Fig 8. A key distinction between the three experiments is the value

of n*, which is the proportion of total colony growth before pseudohyphal growth is permitted

(see Fig 8a). As expected, colonies at a lower initial nutrient level (50 μM) have a smaller pro-

portion of sated cells produced before pseudohyphal growth is permitted compared to colonies

under higher initial nutrient levels (500 μM). According to our parameter inference, the num-

ber of cells in the colony before pseudohyphal growth commences, n*nmax, is larger by a factor

of approximately 2.6 in the 500 μM initial nutrient AWRI colony compared to the 50 μM initial

nutrient AWRI colony. Therefore, although our results reflect that low nutrient concentration

is an environmental stressor that triggers psuedohyphal growth, n*nmax is not proportional to

the initial nutrient concentration. A possible explanation is that sustaining a larger colony

requires more nutrients, such that larger colonies have a higher critical nutrient threshold than

smaller colonies. A second key distinction reflected in our model is γ, the probability that con-

trols the reproduction of a second pseudohyphal daughter cell as displayed in Fig 8d. This

parameter can be interpreted as controlling the forking mechanism within colony branches. A

smaller γ means a higher probability of cells having two pseudohyphal daughter cells. We

Table 3. Mean and standard deviation of the normalised summary statistics for experimental images, where the

normalisation is based on Eq (7).

~IB ~I F ~I R
AWRI 50 μM 0.49 ± 0.20 0.62 ± 0.17 0.69 ± 0.20

AWRI 500 μM 0.26 ± 0.16 0.41 ± 0.25 0.30 ± 0.16

Simi White 50 μM 0.38 ± 0.22 0.53 ± 0.16 0.74 ± 0.16

https://doi.org/10.1371/journal.pcbi.1012605.t003
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observe that colonies of lower initial nutrient concentration exhibit more forking than the

higher initial nutrient colonies (see Fig 10).

To highlight the impact of these two parameter values, we also plotted bivariate kernel den-

sity estimators of these two parameter values as shown in Fig 9. The AWRI colony with 500 μM

initial nutrient corresponds to larger values of n* and γ than the colonies with 50 μM initial

nutrient. Larger γ lessens forking, in accordance with Fig 10. We emphasise that although fork-

ing is crucial to reproducing the observed experimental morphology in simulations, we do not

explicitly model the biological drivers of differentiated forking behaviour. Our work suggests

that understanding the forking mechanism would be a useful target for future experimental

work, with the goal of controlling colony morphology. Another interesting observation is that

the initial nutrient concentration has a greater impact on n* and γ than yeast strain. Therefore,

initial nutrient levels are an essential determinant of colony morphology, whereas yeast strain

makes a more subtle difference.

Focusing on the probabilities pps and psp, at higher initial nutrient concentrations colonies

have a lower probability of producing pseudohyphal cells compared to the colonies with lower

initial nutrient concentrations, as presented in Fig 8b and 8c. Filament length is likely to be

caused by chains of pseudohyphal cells, and colonies in higher nutrient environments have

shorter filaments. On the other hand, the posterior for the parameter controlling the probabil-

ity of transition from pseudohyphal to sated (pps) was uninformative (the posterior is similar

to the prior) as shown in Fig 8b. One possible explanation is that pps has little impact on growth

patterns because a sated or pseudohyphal cell might occupy a similar area within a filament.

Similarly, the parameter pa, which is the probability of biasing pseudohyphal daughter cell

reproduction, could not be distinguished among the three experiments either (see Fig 8e). One

explanation for this result could be that pseudohyphal cell reproduction is similar across the

three different types of experimental conditions.

We now present visual simulation results using the mean of the marginal posteriors, which

are indicated by the round markers in Fig 8 and the mean colony area of the experiment.

Results are shown in Fig 10. The simulations are quantitatively similar in size compared to the

experiments (pixel area), as per the model design. In addition, the simulated images closely

resemble the experimental colonies. However, since our model is stochastic, every simulation

of the same parameter values will generate different colonies. Therefore, it is impossible to cap-

ture the exact morphology to match the experiments. Moreover, since we infer parameters on

the mean of several similar experimental replicates, the parameter values used in Fig 10 were

Fig 9. Posterior bivariate densities of γ vs n* for (a) AWRI 50 μM, (b) AWRI 500 μM and (c) Simi White 50 μM.

https://doi.org/10.1371/journal.pcbi.1012605.g009
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not directly inferred from the sample experimental replicate shown. Results for parameter

inference applied to a selection of individual colonies are in Fig B in S1 Text. As expected,

inferring on an individual colony also yields morphologies similar to experiments.

Some limitations of our study are important to consider when evaluating the results. An

advantage of our approach is that we could characterise the filamentous morphology using

Fig 10. Comparison between experiments and simulations with parameters inferred using the mean summary

statistics from all replicates of given experimental conditions. (a) Example experiment, AWRI strain with 50 μM

initial nutrient (ammonium sulfate). (b) Simulation with θ = (n*, pa, psp, pps, γ) = (0.67, 0.14, 0.25, 0.58, 0.12). (c)

Example experiment, Simi White strain with 50 μM initial nutrient. (d) Simulation with θ = (n*, pa, psp, pps, γ) = (0.62,

0.15, 0.23, 0.71, 0.16) (e) Example experiment, AWRI strain with 500 μM initial nutrient. (f) Simulation with θ = (n*, pa,
psp, pps, γ) = (0.81, 0.16, 0.19, 0.49, 0.25).

https://doi.org/10.1371/journal.pcbi.1012605.g010
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only three summary statistics. However, inferring five parameters from these three summary

statistics might have contributed to the inconclusive results for parameters pps and pa. Since

our model neglected time, we only compared simulations and experiments using the final pho-

tograph of the colony morphology, rather than data from multiple time points. However,

observing the time-dependent colony growth in experiments and incorporating this informa-

tion into the parameter inference could increase the resolution of the results. One reason not

to add time dependence is that, with current techniques, the inference would be too computa-

tionally expensive, limiting the length of the chains and, hence, the ESS and the scope of our

results. In future work, more advanced Bayesian computation methods could be applied, such

as sequential ABC [52]. This might speed up the inference, and help to achieve higher ESS val-

ues and increase the fidelity of parameter inference. However, even with these limitations we

obtain strong agreement between experimental and simulated morphologies. This reinforces

the importance of initial nutrient level and cellular behaviour in driving filamentous colony

growth.

Conclusion

In this paper, we developed an off-lattice model to understand the cellular mechanisms that

contribute to colony morphology of the yeast Saccharomyces cerevisiae. We analysed three dif-

ferent experiments: two with the same initial nutrient concentration but varying strains, and

two with the same strain but varying initial nutrient concentration. To couple our model with

experimental results, we employed an ABC method to calibrate our model to match closely

with the experimental images. We do not capture all possible sources of experimental varia-

tion, such as different initial conditions, cellular mechanics, and explicit modelling of cell

crowding. However, our work isolates and quantifies the effects of cell shape changes on col-

ony morphology. The key factors contributing to the different morphology were the colony

size at the sated-to-pseudohyphal transition, and a forking mechanism that controls the repro-

duction of a second pseudohyphal cell. Although simple, a benefit of our model is its potential

adaptability to other morphologies. In this study, applied specifically to filamentous yeast colo-

nies, the five parameters that we allowed to vary were the most important for filamentous colo-

nies. However, in different contexts other features such as cell size and proliferation angle

could also be made variable. In future work, we will adapt the model to explore other unique

morphologies in colonies of yeast and other microorganisms.

Supporting information

S1 Text. This file includes a summary table of tuning parameters for the ABC-MCMC

algorithm, ABC-MCMC trace plots diagnoses, individual simulated colonies and an inves-

tigation into uninformative priors. Table A. Effective sample size and acceptance thresh-

old for ABC-MCMC results. ESS and � acceptance threshold for ABC-MCMC algorithm.

Each iteration of the chain is simulated up to the average pixel colony area of the respective

colonies, allowing up to a 5% difference. In addition, the computation time for a single colony

and their average cell number are given below. Computations are performed using an Intel

Xeon CPU E5–2699 v3 (2.30GHz). Fig A. ABC-MCMC trace plots. Trace plots of

ABC-MCMC algorithm for (a) AWRI 50 μM (ESS of 205.151), (b) AWRI 500 μM (ESS of

222.225) and (c) Simi White 50 μM (ESS of 251.980). Each chain is running until 20,000 itera-

tions. Fig B. Individual colony simulations. Comparison between experiments and simula-

tions with parameters inferred using individual colonies. (a–b) AWRI strain with 50 μM

nutrient. (c–d) AWRI strain with 500 μM nutrient. (e) Simulation with θ = (n*, pa, psp, pps, γ) =

(0.56, 0.10, 0.31, 0.65, 0.16) inferred S12 AWRI 50 μM experiments. (f) Simulation with θ =
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(n*, pa, psp, pps, γ) = (0.66, 0.10, 0.23, 0.54, 0.15) inferred S7 AWRI 50 μM experiments. (g) Sim-

ulation with θ = (n*, pa, psp, pps, γ) = (0.89, 0.09, 0.28, 0.67, 0.14) inferred S11 AWRI 500 μM

experiments. (h) Simulation with θ = (n*, pa, psp, pps, γ) = (0.78, 0.08, 0.20, 0.70, 0.13) inferred

S8 AWRI 500 μM experiments. Fig C. ABC-MCMC trace plot with uninformative priors.

Trace plot of ABC-MCMC algorithm for AWRI 796 50 μM using uniform priors.

(PDF)
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