The University of Southampton
University of Southampton Institutional Repository

Anthropometric prediction models of body composition in 3 to 24month old infants: a multicenter international study

Anthropometric prediction models of body composition in 3 to 24month old infants: a multicenter international study
Anthropometric prediction models of body composition in 3 to 24month old infants: a multicenter international study
Background: accurate assessment of body composition during infancy is an important marker of early growth. This study aimed to develop anthropometric models to predict body composition in 3–24-month-old infants from diverse socioeconomic settings and ethnic groups.

Methods: an observational, longitudinal, prospective, multi-country study of infants from 3 to 24 months with body composition assessed at three monthly intervals using deuterium dilution (DD) and anthropometry. Linear mixed modelling was utilized to generate sex-specific fat mass (FM) and fat-free mass (FFM) prediction equations, using length(m), weight-for-length (kg/m), triceps and subscapular skinfolds and South Asian ethnicity as variables. The study sample consisted of 1896 (942 measurements from 310 girls) training data sets, 941 (441 measurements from 154 girls) validation data sets of 3–24 months from Brazil, Pakistan, South Africa and Sri Lanka. The external validation group (test) comprised 349 measurements from 250 (185 from 124 girls) infants 3–6 months of age from South Africa, Australia and India.

Results: sex-specific equations for three age categories (3–9 months; 10–18 months; 19–24 months) were developed, validated on same population and externally validated. Root mean squared error (RMSE) was similar between training, validation and test data for assessment of FM and FFM in boys and in girls. RMSPE and mean absolute percentage error (MAPE) were higher in validation compared to test data for predicting FM, however, in the assessment of FFM, both measures were lower in validation data. RMSE for test data from South Africa (M/F−0.46/0.45 kg) showed good agreement with validation data for assessment of FFM compared to Australia (M/F−0.51/0.33 kg) and India(M/F−0.77/0.80 kg).

Conclusions: anthropometry-based FFM prediction equations provide acceptable results. Assessments based on equations developed on similar populations are more applicable than those developed from a different population.
0954-3007
943-951
Wickramasinghe, Vithanage Pujitha
6a80ef33-aea5-45f4-81b1-715d7e2a599e
Ariff, Shabina
acb1ad6d-2073-47c4-a19b-ee98b1d4773d
Norris, Shane A.
1d346f1b-6d5f-4bca-ac87-7589851b75a4
Santos, Ina S.
db55a8d5-a9eb-4769-a0b6-cf65912b1da2
Kuriyan, Rebecca
01eb0b05-3bf7-4a15-af7b-98271f649c34
Nyati, Lukhanyo
18d7ac34-0c97-4f40-9195-5eee0a8ed7ff
Varghese, Jithin Sam
8f7f8577-a98e-4d66-a41b-59b1bc5153ed
Murphy-Alford, Alexia J.
a965e8b4-bdd4-4fee-9200-851e2466f342
Lucas, Nishani
df45dac8-d2d8-4add-bd96-8d8b301de363
Costa, Caroline
aea03c3c-9774-470e-9363-c5e4fec5b41f
Ahuja, Kiran D.K.
1cd25eeb-778e-46ee-911f-b0c5ef77a976
Jayasinghe, S.
1dd83425-62f1-401e-bb8b-bb03cb4a0f97
Kurpad, Anura V.
d94c1b3b-a14f-44e8-bd9a-84f5f25cc8d0
Hills, Andrew P.
d4e02e02-0bae-463c-bdb1-2937e8149f35
Wickramasinghe, V. Pujitha
8530eb70-b474-40ee-8c8c-bb47d7fa143b
Murphy-Alford, Alexia
b444049c-2860-4299-8744-28c2cc3067c0
Nyati, Lukhanyo
18d7ac34-0c97-4f40-9195-5eee0a8ed7ff
Costa, Caroline S.
43c21b9d-56aa-47ae-a353-4e2b9d0d9318
Ahmad, Tanvir
1db2b79d-0768-4070-b9f2-7109f0e003c3
Beckett, Jeff M.
cfd23c6a-f398-46ef-a13e-d3eda6338978
Bielemann, Renata M.
d60d7190-85f0-49d1-9871-9328c9d87419
Byrne, Nuala M.
50dddf2a-83e1-4874-a20b-98199dd3f5d1
Charania, Laila
8211ebe0-c411-4f7a-8844-79ce3cdefe53
Christian, Michele Peresh
126c1c8e-c16e-4cd1-9130-e0e108ea6c07
Divya, Priscilla J.
bdb01571-089f-4106-9626-96c5ab4d8656
Hanley, Anne
46a3a9b7-2a4b-496e-9565-d56da923ed15
Herath, Manoja P.
c098e44b-34ea-443f-92aa-aaf5c4bdc39f
Ismail, Leila I. Cheikh
57c5d6ce-ac59-433b-b9b9-bf8531ccbf09
Jayasinghe, Sisitha
68637b8d-39ad-4a07-91e2-7a1d13deb829
Lanerolle, Pulani
c40676e9-9495-4a72-9469-7e8a0328aeb5
Loechl, Cornelia
11f67720-1fde-48c9-b62d-69f5fe5ee484
Mokhtar, Najat
1f339636-457a-4531-9a61-7752c4537e5c
Senerath, Upul
61ba9db1-9fa2-4cd5-8260-e6ed4f43376f
Slater, Christine
1060655f-80e8-4c27-83b1-a5a87ee9ac84
Soofi, Sajid
a78cae2a-a474-4282-9426-41e636c416c3
Street, Steven J.
d7f28b0d-cd39-4bda-abd7-ca743fd7cf58
Valle, Neiva C.J.
7f50fad6-12f6-4f7e-9d49-ca2fca7e63ba
Yameen, Ayesha
dfd92583-9cf2-4871-a4b8-83dfcd37eb14
Multi-center Infant Body Composition Reference Study (MIBCRS)
Wickramasinghe, Vithanage Pujitha
6a80ef33-aea5-45f4-81b1-715d7e2a599e
Ariff, Shabina
acb1ad6d-2073-47c4-a19b-ee98b1d4773d
Norris, Shane A.
1d346f1b-6d5f-4bca-ac87-7589851b75a4
Santos, Ina S.
db55a8d5-a9eb-4769-a0b6-cf65912b1da2
Kuriyan, Rebecca
01eb0b05-3bf7-4a15-af7b-98271f649c34
Nyati, Lukhanyo
18d7ac34-0c97-4f40-9195-5eee0a8ed7ff
Varghese, Jithin Sam
8f7f8577-a98e-4d66-a41b-59b1bc5153ed
Murphy-Alford, Alexia J.
a965e8b4-bdd4-4fee-9200-851e2466f342
Lucas, Nishani
df45dac8-d2d8-4add-bd96-8d8b301de363
Costa, Caroline
aea03c3c-9774-470e-9363-c5e4fec5b41f
Ahuja, Kiran D.K.
1cd25eeb-778e-46ee-911f-b0c5ef77a976
Jayasinghe, S.
1dd83425-62f1-401e-bb8b-bb03cb4a0f97
Kurpad, Anura V.
d94c1b3b-a14f-44e8-bd9a-84f5f25cc8d0
Hills, Andrew P.
d4e02e02-0bae-463c-bdb1-2937e8149f35
Wickramasinghe, V. Pujitha
8530eb70-b474-40ee-8c8c-bb47d7fa143b
Murphy-Alford, Alexia
b444049c-2860-4299-8744-28c2cc3067c0
Nyati, Lukhanyo
18d7ac34-0c97-4f40-9195-5eee0a8ed7ff
Costa, Caroline S.
43c21b9d-56aa-47ae-a353-4e2b9d0d9318
Ahmad, Tanvir
1db2b79d-0768-4070-b9f2-7109f0e003c3
Beckett, Jeff M.
cfd23c6a-f398-46ef-a13e-d3eda6338978
Bielemann, Renata M.
d60d7190-85f0-49d1-9871-9328c9d87419
Byrne, Nuala M.
50dddf2a-83e1-4874-a20b-98199dd3f5d1
Charania, Laila
8211ebe0-c411-4f7a-8844-79ce3cdefe53
Christian, Michele Peresh
126c1c8e-c16e-4cd1-9130-e0e108ea6c07
Divya, Priscilla J.
bdb01571-089f-4106-9626-96c5ab4d8656
Hanley, Anne
46a3a9b7-2a4b-496e-9565-d56da923ed15
Herath, Manoja P.
c098e44b-34ea-443f-92aa-aaf5c4bdc39f
Ismail, Leila I. Cheikh
57c5d6ce-ac59-433b-b9b9-bf8531ccbf09
Jayasinghe, Sisitha
68637b8d-39ad-4a07-91e2-7a1d13deb829
Lanerolle, Pulani
c40676e9-9495-4a72-9469-7e8a0328aeb5
Loechl, Cornelia
11f67720-1fde-48c9-b62d-69f5fe5ee484
Mokhtar, Najat
1f339636-457a-4531-9a61-7752c4537e5c
Senerath, Upul
61ba9db1-9fa2-4cd5-8260-e6ed4f43376f
Slater, Christine
1060655f-80e8-4c27-83b1-a5a87ee9ac84
Soofi, Sajid
a78cae2a-a474-4282-9426-41e636c416c3
Street, Steven J.
d7f28b0d-cd39-4bda-abd7-ca743fd7cf58
Valle, Neiva C.J.
7f50fad6-12f6-4f7e-9d49-ca2fca7e63ba
Yameen, Ayesha
dfd92583-9cf2-4871-a4b8-83dfcd37eb14

Wickramasinghe, Vithanage Pujitha, Ariff, Shabina, Norris, Shane A., Santos, Ina S., Kuriyan, Rebecca, Nyati, Lukhanyo, Varghese, Jithin Sam, Murphy-Alford, Alexia J., Lucas, Nishani, Costa, Caroline, Jayasinghe, S., Kurpad, Anura V. and Hills, Andrew P. , Multi-center Infant Body Composition Reference Study (MIBCRS) (2024) Anthropometric prediction models of body composition in 3 to 24month old infants: a multicenter international study. European Journal of Clinical Nutrition, 78 (11), 943-951. (doi:10.1038/s41430-024-01501-0).

Record type: Article

Abstract

Background: accurate assessment of body composition during infancy is an important marker of early growth. This study aimed to develop anthropometric models to predict body composition in 3–24-month-old infants from diverse socioeconomic settings and ethnic groups.

Methods: an observational, longitudinal, prospective, multi-country study of infants from 3 to 24 months with body composition assessed at three monthly intervals using deuterium dilution (DD) and anthropometry. Linear mixed modelling was utilized to generate sex-specific fat mass (FM) and fat-free mass (FFM) prediction equations, using length(m), weight-for-length (kg/m), triceps and subscapular skinfolds and South Asian ethnicity as variables. The study sample consisted of 1896 (942 measurements from 310 girls) training data sets, 941 (441 measurements from 154 girls) validation data sets of 3–24 months from Brazil, Pakistan, South Africa and Sri Lanka. The external validation group (test) comprised 349 measurements from 250 (185 from 124 girls) infants 3–6 months of age from South Africa, Australia and India.

Results: sex-specific equations for three age categories (3–9 months; 10–18 months; 19–24 months) were developed, validated on same population and externally validated. Root mean squared error (RMSE) was similar between training, validation and test data for assessment of FM and FFM in boys and in girls. RMSPE and mean absolute percentage error (MAPE) were higher in validation compared to test data for predicting FM, however, in the assessment of FFM, both measures were lower in validation data. RMSE for test data from South Africa (M/F−0.46/0.45 kg) showed good agreement with validation data for assessment of FFM compared to Australia (M/F−0.51/0.33 kg) and India(M/F−0.77/0.80 kg).

Conclusions: anthropometry-based FFM prediction equations provide acceptable results. Assessments based on equations developed on similar populations are more applicable than those developed from a different population.

Text
s41430-024-01501-0 - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 21 August 2024
Published date: 20 September 2024

Identifiers

Local EPrints ID: 497046
URI: http://eprints.soton.ac.uk/id/eprint/497046
ISSN: 0954-3007
PURE UUID: 752b4035-a41e-41c1-8cba-e5f940774779
ORCID for Shane A. Norris: ORCID iD orcid.org/0000-0001-7124-3788

Catalogue record

Date deposited: 10 Jan 2025 17:49
Last modified: 11 Jan 2025 02:59

Export record

Altmetrics

Contributors

Author: Vithanage Pujitha Wickramasinghe
Author: Shabina Ariff
Author: Shane A. Norris ORCID iD
Author: Ina S. Santos
Author: Rebecca Kuriyan
Author: Lukhanyo Nyati
Author: Jithin Sam Varghese
Author: Alexia J. Murphy-Alford
Author: Nishani Lucas
Author: Caroline Costa
Author: Kiran D.K. Ahuja
Author: S. Jayasinghe
Author: Anura V. Kurpad
Author: Andrew P. Hills
Author: V. Pujitha Wickramasinghe
Author: Alexia Murphy-Alford
Author: Lukhanyo Nyati
Author: Caroline S. Costa
Author: Tanvir Ahmad
Author: Jeff M. Beckett
Author: Renata M. Bielemann
Author: Nuala M. Byrne
Author: Laila Charania
Author: Michele Peresh Christian
Author: Priscilla J. Divya
Author: Anne Hanley
Author: Manoja P. Herath
Author: Leila I. Cheikh Ismail
Author: Sisitha Jayasinghe
Author: Pulani Lanerolle
Author: Cornelia Loechl
Author: Najat Mokhtar
Author: Upul Senerath
Author: Christine Slater
Author: Sajid Soofi
Author: Steven J. Street
Author: Neiva C.J. Valle
Author: Ayesha Yameen
Corporate Author: Multi-center Infant Body Composition Reference Study (MIBCRS)

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×