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1 Introduction

Supersymmetric localization is a powerful tool to study the dynamics of strongly coupled
supersymmetric QFTs which has been efficiently exploited in a variety of examples [1].
A particularly interesting application of this technique is the study of the correspondence
between gauge theories and their gravity duals. In many situations the calculation of
supersymmetric observables in the field theory reduces to an evaluation of a matrix integral
which can then be studied in the planar limit with saddle point techniques. In the cases
when the supersymmetric theory has a known gravitational dual this provides a fruitful
avenue to quantitatively test the details of the AdS/CFT correspondence.

It is natural to consider questions on the interface of holography and supersymmet-
ric localization for conformal theories with maximal supersymmetry, like four-dimensional
N =4 SYM and the three-dimensional ABJM theory, on the round sphere. Indeed this
was pursued extensively and many important developments are summarized in [1]. These
two examples also offer the possibility to break conformal invariance and part of the super-
symmetry while still maintaining calculational control both in the field theory [2-5] and the
supergravity side [6-13]. This collection of results provides a non-trivial precision test of
holography away from the conformal limit. Our goal in this paper is to extend this success
to other non-conformal theories with maximal supersymmetry arising from string theory.

The theories we consider are maximally supersymmetric gauge theories on the round
sphere, S¢. In dimension 2 < d < 7 these theories are not conformal for d # 4 and
admit a Lagrangian which preserves 16 supercharges [14, 15]. Supersymmetric localization
reduces the path integral of the theory to an ordinary matrix integral. Despite this drastic
simplification the explicit evaluation of this integral is still non-trivial due to the presence
of non-perturbative effects like instantons. When the rank of the gauge group is large
it is believed that these non-perturbative effects are suppressed and the matrix integral
becomes more tractable. As we discuss in detail below, for all values of d it is possible to
compute the free energy and the vacuum expectation values (VEV) of a supersymmetric
Wilson loop using this matrix model.! A further simplification occurs in the limit where
the dimensionless 't Hooft coupling, defined as

A= RGN (1)

where R is the radius of S¢, is large. In this case the results can be written in analytic
form and can be formally analytically continued even to non-integer values of d.

!See [16] for calculations of the free energy on S¢ of QFTs without gauge fields.



The gravity dual of these maximally supersymmetric Yang-Mills theories (MSYM) on
flat space is given by the near horizon geometry of the Dp-brane solutions in supergravity
with d = p + 1 [17]. To study the MSYM theories on S¢ one needs a generalization of
these solutions to Dp-branes with spherical worldvolume. Indeed, such spherical brane
solutions exist and were constructed explicitly in [18].2 Equipped with these supergravity
backgrounds we can apply the tools of holography and compute the free energy and Wilson
loop VEV at large A\. The holographic free energy is calculated by evaluating the on-
shell action of the supergravity solution while the Wilson loop VEV is computed by first
finding an appropriately embedded probe string and then computing the Nambu-Goto
action on-shell. Both of these calculations can be performed explicitly and the results are
in agreement with the ones obtained by supersymmetric localization.

We encounter several subtleties in our calculations. In the supersymmetric localization
analysis the large IV limit of the matrix model admits a simple saddle point evaluation only
for 3 < d < 6. For values of d outside of this range we have to perform a careful analytic
continuation. For the case of d = 3, one would naively expect that there would be no
dependence on A since the Yang-Mills action is ()-exact in three dimensions. However, the
contribution from the localization determinant diverges for d = 3 with /' = 8 supersym-
metry, offsetting the Q-exactness of the action. By setting d = 3 4+ ¢ and sending € to zero
we find that the free-energy is indeed independent of A, but the Wilson loop VEV depends
nontrivially on A. We then show that these results can be reproduced in supergravity at
large A, including nontrivial pre-factors. While the strong coupling results can be obtained
by analytically continuing the results found for 3 < d < 6, we can actually do more and
find the Wilson loop VEV in terms of a simple function of A which is valid for all values of
the coupling.

For d = 2 another subtlety arises. The standard extension of a N = (2,2) vector
multiplet on the sphere is @Q-exact [23, 24], but this action cannot be extended to 16
supersymmetries by adding extra fields. However, there is another action that preserves
supersymmetry that can be extended and is not @Q-exact. This then leads to nontrivial
dependence on A. Again we can analytically continue our results down to d = 2 to find the
free energy and the Wilson loop VEV. We show that supergravity reproduces the Wilson
loop VEV and, with an appropriate counterterm, can also reproduce the free energy,

At d = 5 we reproduce previous results from the literature for the free energy and
Wilson loop [25-27]. In this case there is a well-known mismatch between the free energy
coming from localization and that coming from the on-shell action of the M theory dual of
the six-dimensional (2,0) theory with one direction compactified on a circle. In this paper
we consider the IIA supergravity dual directly and show that one can add counterterms
which is allowed because of the partial breaking of the R-symmetry and which can cancel
the mismatch. This is reminiscent of the difficulties encountered in [28, 29] in the context
of holographic renormalization for AdSs with an S x S boundary which ultimately lead
to the introduction of non-covariant counterterms.

The cases d = 6 and d = 7 are particularly subtle due to the appearance of divergences
in the matrix model. For d = 6 the divergence appears to be severe and perhaps signals

2Gee also [19-22] for other constructions of supersymmetric solutions sourced by curved Euclidean branes.



the onset of the (1,1) little string theory which is the UV completion of maximal SYM
in six dimensions. Nevertheless, we find a regularization procedure of the matrix model
which leads to finite results for both the free energy and the Wilson loop VEV.

For d = 7 we again observe a divergence in the matrix model which can be handled
using a more standard UV regularization. At weak 't Hooft coupling the matrix model is
similar to the lower dimensional cases. As we increase the regularized A, or equivalently
decrease A™!, one finds that we can smoothly continue A~! through zero and take it to
large negative values. It is in this regime with small negative 't Hooft coupling that we can
compare to supergravity, where we find a match for both the free energy and the Wilson loop
VEV. This fits nicely with an observation made by Peet and Polchinski [30] who speculated
that there were two weakly coupled theories in seven dimensions, the usual weakly coupled
supersymmetric gauge theory and some other weakly coupled theory that is described by
supergravity. Here we see that the supergravity dual is still a gauge theory, but with a
flipped sign for the coupling. Furthermore, since the coupling is weak, albeit negative, the
saddle point is sharply peaked, even for finite N. This parallels the observation in [17] that
the supergravity description can be trusted even for small N.

The analysis on the gravity side for all d # 4 goes beyond the realm of the usual
holographic dictionary. The spherical brane solutions for d # 4 are not asymptotically
locally AdS and therefore there is no generally established holographic renormalization
procedure. Despite this obstacle we are able to adapt the results in [31, 32] to our setting
and construct appropriate counterterms in supergravity which lead to a finite on-shell
action for the spherical brane backgrounds and the probe strings. The approach of [31, 32]
is however not applicable for d = 6 due to the linear dilaton characteristic of the little
string theory. Inspired by the regularization procedure in the matrix model analysis and
the results in [33-35] we are able to propose a way to cancel the divergences appearing in the
spherical D5-brane solution and obtain an agreement with the results from supersymmetric
localization.

In the next section we summarize the maximally supersymmetric Yang-Mills theory
on S% and show how to compute its free energy and the VEV of a BPS Wilson loop using
supersymmetric localization. In section 3 we summarize the spherical brane solutions and
the holographic renormalization procedure we use. Section 4 is devoted to a cases by cases
analyses of the QFT and supergravity evaluation of the free energy and the Wilson loop
VEV for 2 < d < 7. We conclude in section 5 with a short discussion. In the appendices
we summarize and further explain many technical results used throughout the paper.

2 Field theory and supersymmetric localization

The d-dimensional maximally supersymmetric Yang-Mills theory (MSYM) can be put on
the round sphere S¢ while preserving all 16 supercharges. If d # 4 then MSYM is not
superconformal and the fact that one can place the theory on a sphere and still preserve
supersymmetry is non-trivial and can be done only for d < 7, see [14] and [15]. The curva-
ture of the sphere induces new couplings in the MSYM action which break the SO(1,9 —d)
R-symmetry of the theory in flat Euclidean space to SU(1,1) x SO(7 — d). One advantage



of placing MSYM on a sphere is that one can employ the powerful techniques of supersym-
metric localization to calculate certain physical observables exactly, see [1] for a review.
This was pursued in [15, 36, 37] and we summarize and extend these results below.

2.1 Localization for MSYM on S¢
Our starting point is the MSYM Lagrangian on S¢ with radius R, which is given by? [14, 15]

_ 1 } MN _ (d—4) 2(d—3) A
E——QQ%MT&"<2FMNF \MD\IerTR \I/A\If+7R2 ¢ ba o)
d—2) , 2i
= =3 o+ (= D)[e", 6”16 e a0 - Kme> .

The indices M, N = 0,...9 arise from dimensional reduction of ten-dimensional super
Yang-Mills. In the reduction the ten-dimensional gauge field divides into a d-dimensional
gauge field and 10 — d scalar fields. Accordingly, the M, N indices are broken up into
the coordinate indices on S¢, u,v = 1,...d, and scalar indices I,J = 0,d +1,...9. The
scalar indices themselves split further into indices A, B = 0,8,9 and 4,57 = d+1,...7.
The field-strengths with components along the scalar dimensions are Fj,; = D,¢; and
Fry = —i[¢r,¢]. The scalar field ¢ originates from the time-like component of the ten-
dimensional gauge field, and so has a wrong-sign kinetic term. The ¥ are 16 component
real chiral spinors satisfying T'''W¥ = ¥ and we have defined A = I'%®9. There are also 7
auxiliary fields K, which allow for an off-shell formulation of supersymmetry.

The terms in the action proportional to R™! and R~2 break the R-symmetry from
SO(1,9—d) to SU(1,1) x SO(7 —d), except for d = 4 and d = 7. Note that the Lagrangian
L is obtained as a deformation of the dimensional reduction of the ten-dimensional SYM
Lagrangian in Lorentzian signature and we have not Wick rotated the ten-dimensional time
coordinate.

The Lagrangian in (2.1) is invariant under the off-shell supersymmetry transformations

0Ay = eIy,

1 2(d -3
S50 = 5rMNFMNe + (d)

m _ __.m (d_4) m
S K™ = — V™DV + 570V AV, (2.2)

where € is a bosonic 16 component real chiral spinor that satisfies the conformal Killing

2 .
THAGAV e + TGNV e+ KM,

spinor equation

1
2R
The v™ are seven commuting spinors that satisfy v™T'Me = 0, v T'Mp? = §7mel'Me,
refs. [15, 38].

The theory with Lagrangian (2.1) can be localized using a particular supercharge [15,
M _— 1M
=€l

Ve = =T, Ae. (2.3)

38]. Given any e satisfying (2.3) we can define a vector field v € that automatically

3Here we are replacing the Yang-Mills coupling ¢2,; in [36] by 2¢%\ to match the conventions used in
supergravity.



satisfies vprv™ = 0. We then choose € so that v° = 1, v89 = v* = 0, and along one particular
equator of the sphere v,v* = 1. We will later take the large N limit where it is assumed
that instantons can be ignored [2, 7]. In this situation the theory localizes onto the locus
where A, = 0, ¢r = 0 for I # 0, V,,¢° = 0, and K,, = — 22 (v, Ae). Wick rotating
the time direction leads to the transformations £ — —iL, ¢° — i¢?, and K™ — iK™,
After defining a dimensionless N x N Hermitian matrix o = R¢?, the partition function
for general d reduces to [15, 36, 37]

da+1

_4m 2 R
Z :/ [do] exp T a3 0% | Z1 _100p(0) + instantons . (2.4)
Cartan gYM (T)

Z1-100p(0) is the contribution of the Gaussian fluctuations about the localized fixed point,
and when combined with the Vandermonde determinant is given by
I'(n+d—3)

o)? T(n+1I(d-3)
Zl—loop(U) H H H < n+d 3 '7 >< ,O’>2> s (25)

>0 v>0n=0

where « are the positive roots for the gauge group. If d < 6 then (2.5) is convergent. For
d > 6 it diverges and will need to be regularized. For the rest of this section we assume
that d < 6. The d = 6 and d = 7 cases will be considered separately. Notice that in the
matrix model defined by (2.4), the integration over o is restricted to adjoint matrices in
the Cartan of the gauge group. We can therefore fully parametrize o by its eigenvalues o;.

We now take the large N limit and drop the instanton contributions. The partition
function is now dominated by a saddle point whose equations are given by

d+1
C N 8r 2z

1 ZG16 O'U Cl = T (d;3) R (26)
J#i 2

where X is the dimensionless 't Hooft coupling defined in (1.1) and o;; = 0; — 0. The
kernel Gi6(0) is given by [36]
iGig(0)  TI'(—io) I'(io) [(d-3—io) T(d-3+io)

Td—d) T(-d—io) T(-diio) Ta-io) = Ta+io) = &7

The behavior of the kernel Gig(o) is shown in figure 1 for various values of d. Notice that
in the figure we are not restricting the dimension d to be an integer. Indeed the kernel
G16(0) is a meromorphic function of d.

For small eigenvalue separations where |o;;| < 1, the kernel has the weak coupling

behavi
ehavior )

Gi6(0i) = —, (2.8)

Oij
which is independent of d. However, we are interested in strongly coupled theories where
A > 1. In this case the central potential for the eigenvalues is relatively weak so the
repulsive force coming from the kernel pushes the eigenvalues far apart for d < 6. Hence,

for generic i and j we have that |o;;| > 1. In this range (2.7) is approximately

GlG(O'ij) ~ C’glaij]d%sign(aij) N (29)
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Figure 1. The kernel Gi¢(0) for various values of d. For |o| < 1 the curves approach the same
weak coupling behavior. For |o| > 1 they approach different strong coupling behavior.

where
Cy =2(d—3)I'(5—d) sin 7T(Cl23) . (2.10)

The saddle point equation then becomes

C _5 ..
%NU’Z‘ = CQZ|O’Z‘—O'J"d 581gn(0i—aj). (2.11)
J#i
Notice that Cs in (2.10) has a pole at d = 6 and a double zero at d = 3. This restricts our
general analysis to the range 3 < d < 6. We will return to d = 2,3 in section 4.
We next define the eigenvalue density p(o),

plo) =N 60— o). (2.12)

Assuming strong coupling, the saddle point equation (2.11) for 3 < d < 6 becomes

b
% o= 02][ do'p(a’)|o — o'|4 Bsign(o — o), (2.13)
b

where b, given below, sets the endpoints of the eigenvalue distribution. Taking the large N
limit and using the result in (A.1), we see that (2.13) is satisfied if the density has the form

w(d—1) dt1
5 2

\)

B (1 sin _ T
— TACy(d — 5)(b2 — 02)[d=D)/2 T AT (6 — d)I(L2) (b2 — 02)(d-5)/2

p(o) (2.14)
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(a) d =4.5, N =80, A = 350 (b) d =4.98, N =100, A = 500 (¢) d=5.5, N =80, A =100
Figure 2. The eigenvalue density obtained from the numerical solutions of the full saddle point

equations (2.6) with various choices of parameters. The dashed lines represent the eigenvalue density
in (2.14).

Using (A.2), we can properly normalize the density by setting the eigenvalue endpoint b to

b= a7 (sar (S5 (O (452)) 7 215

To verify the validity of the strong coupling approximation in (2.9) we can test the

solutions to the saddle point equation numerically using the full function Gi6(0;;) defined
in (2.7). As can be seen from the graphs in figure 2, the numerical solutions at strong
coupling are in very good agreement with the eigenvalue density (2.14) in dimensions
3 <d<6.

2.2 The free energy and the BPS Wilson loop VEV from localization

In the strong coupling regime the large N limit of the free energy, F' = —log Z, is given by

F=N? <§; /_ Z dop(0)o? — 2(dcf4) /_ bb dop(o) /_ Z do’ p(o")|o — o'|d—4> C (216)

Dividing through by the N? factor and performing the second integral over o by parts gives

F O b s Cof(®) [, r\d—4
N2 = o 7bdap(a)a T4 /bda p(a")|b— |
G [ PN
+ 5 dof(o) do'p(c’)|o —a'|*7?, (2.17)
b b

where f(o) is defined in (A.4) and we used the fact that it is an odd function. Using (2.13)
in the last integral and integrating by parts we find

F . Cl b 9 Cl 2 CQf(b> b / / /jd—4
W_M/_bdap(a)a b or o~ 210 /_bdop(0)|b—0| . (2.18)

The remaining integrals are evaluated in (A.5) and (A.6). Using these, as well as f(b) = 1/2
and the expression for b in (2.15), we can simplify the free energy to

F_ G _6-d

N2 2)\(8—d)(d—4)

(d+1)(4—d)

st CE () e




This is our final result for the free energy as a function of d in the strong coupling limit.
A %—BPS Wilson loop W wraps the equator of S% and has a VEV given by

(W) = <Tr (Peifdxl‘A#+i§dsnA¢A)> (2.20)

A =1 and ny is fixed in its direction. If the loop is chosen to be invariant with

where nan
respect to the same supersymmetry used to localize the partition function then the Wilson
loop can also be localized. For our choice of supersymmetry this sets ng = 1 [15, 38] and

in the large N limit the Wilson loop becomes

(W) = <Tr (Pei§d8'¢0>> R~ /_bb dop(o)e*™ = (ﬂ'b)%r <8;d) I%(Qﬁb)a (2.21)

where we used the eigenvalue density in (2.14) to evaluate the integral. The Is_a(27b) are
modified Bessel functions which reduce to spherical Bessel functions when d is odd.

The result in (2.21) is valid for any value of A in d = 4. In section 4 we will show
that this is also true for d = 3. For all other d the result in (2.21) is valid only for large
A. In comparing to supergravity we will be mainly interested in the strong coupling limit
anyway. In this case the Wilson loop VEV is generally determined by the highest eigenvalue
b, where we find

(W) ~ e (2.22)

In the next section we discuss how one can obtain these results for the free energy and
the Wilson loop VEV from supergravity.

3 Supergravity

In this section we summarize the spherical Dp-brane type II supergravity solutions found
in [18]. These solutions are expected to provide a holographic dual to the MSYM theories
on S¢ discussed above. Note that we use p and d = p + 1 interchangeably throughout the
rest of this paper. We then present a roadmap to computing the holographic free energy
and %—BPS Wilson loops VEV using these supergravity solutions. The explicit comparison
between field theory and supergravity will be carried out in section 4.

3.1 Spherical branes

In [18] type II supergravity solutions preserving sixteen supercharges, corresponding to
the backreaction of Dp-branes with a spherical worldvolume, were constructed. These
backgrounds are found by starting with (p + 2)-dimensional maximal gauged supergravity
and subsequently lifting the solutions up to type IIA/B supergravity. A short discussion of
the gauged supergravity construction can be found in appendix B, see [18] for more details.
The type II string frame metric for these backgrounds is given by*

2(p—3)

2 e o r 2 20 152 .9 2
Ashia + =5 (46> + Peos?0 a3 + Qsin0 d02_,) | . (3.1)

en
dsty = o

“In this paper we use 1 to denote the scalar A in [18].




Here g is the gauge coupling of the (p + 2)-dimensional supergravity theory and can be
related to the ten-dimensional string theory constants as

7: gsN

2mloglP T =
(27lsg) 2mVe

(3.2)
where N is the number of Dp-branes, g5 is the string coupling, ¢, is the string length,
and Vj, = 27("*1/2/T(%EL) is the volume of the unit radius n-sphere. In (3.1) Az is
the metric on the unit radius (5 — p)-sphere, and dﬁ% is the metric on the unit radius
two-dimensional de Sitter space. Together with the coordinate 6 these form a squashed
(8 — p)-dimensional de Sitter space. The (p + 2)-dimensional factor of the metric, dsg 4o, 18
given by

dst,, = dr? +e*40d02 (3.3)

and ng 41 is the metric on the round (p + 1)-sphere wrapped by the Dp-branes. The
function A(r) is determined in terms of the scalars n(r), X(r), and Y (r) by an algebraic
equation as shown in appendix B. The squashing functions P and @ are determined in
terms of the gauged supergravity scalars as

X (Xsin?0 + (X% — Y?) cos? 9)_1 for p < 3, (3.4)
(cos29+Xs1n 9) ! for p > 3, '
(sm 0 + X cos? 9) -t for p < 3,

Q 2 2 2\ .2 —1 (35)
X (X cos?0+ (X2 —Y?)sin*6) ~ for p > 3.

The dQIQ) 41 and ng_p factors in the metric realize the SO(p + 2) x SO(6 — p) spacetime
and compact R-symmetries of the maximal SYM theory on the (p 4+ 1)-sphere. The non-
compact SU(1,1) factor of the R-symmetry group on the other hand is realized as the
isometry group of the two-dimensional de Sitter space with metric

dQ3 = —dt? + cosh? t dep? (3.6)

where 1) has a period of 27.> The ten-dimensional dilaton has the following form,

(7=p) -
2 = 2" P QT (3.7)

and the non-vanishing type II supergravity form fields are given by

p» YP
By = eﬁfpnng cos® 6 voly (3.8)
__p Y
C5_p = ie 65?"573))( sin* P9 vols_p, (3.9)
9s9
Crp = %_p (w(@) + Pcos@ sin®P 9) voly A vols_p . (3.10)

gs9g

5As explained in [18], for p = 1,2 an analytic continuation must be performed whereby 6 becomes timelike
and v spacelike such that the SU(1,1) symmetry is realized as the isometry of the hyperbolic plane.
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Figure 3. The regular geometries interpolate between flat Euclidean Dp-branes in the UV and
R”*2 in the IR.

Here vols_, and voly refer to the volume forms on ngfp and dﬁ%, respectively. The
function w(#) in (3.8) is defined such that in the UV the exterior derivative of C7_, gives
the volume form on the (8 — p)-dimensional de Sitter space, namely
% (w(f) + cos @ sin® P @) = (7 —p)cos® 6 sin®7g. (3.11)
For a fixed value of p the scalars n(r), X (r), and Y (r) can be found by solving the BPS
equations presented in appendix B. In the UV, i.e. for large values of r, the scalars X and
Y take the values X =1 and Y = 0 such that the solution asymptotically approaches the
flat brane domain wall solution. In the IR region on the other hand, the solution is regular
and the scalar fields approach a finite constant value. These IR values for the scalars can
be found as the critical points of the superpotential (B.8) and are given by:

2 _
XIR:g), YIR:j:(p33), forp <3,
p 2(p—3)
Xp=—P ViR=4+—-P"% forp>3 . 3.12
602 6-pp-2) (3:12)

Even though X and Y approach fixed values in the IR, the scalar 7 can take any constant
value nr. A schematic form of the spherical brane solutions is depicted in figure 3.

An important ingredient in relating the supergravity results below to the ones found
above using supersymmetric localization is the definition of 't Hooft coupling. In our
conventions, the Dp-brane tension and the Yang-Mills coupling constant are given in terms
of the string coupling as

27 2 (27T)2gs 271—95
— = = . 1
Hp (27T€S)p+1 ) gym (27T£s)4,up (271_68)3_1, (3 3)

The dimensionless holographic 't Hooft coupling, Ay, is defined by
Mol (E) = ghuNEL, (3.14)

where N is the number of Dp-branes and g%M is defined in (3.13). The quantity Fj is a
finite energy scale defined in an appropriate way through the supergravity solution. Since

~10 -



the supergravity backgrounds of interest here are not asymptotically locally AdS it is not
straightforward to define this quantity. A reasonable choice is to define it as the inverse of
the effective radius Reg of the (p + 1)-sphere dﬂf)+1 in (3.1), i.e.

Reg = Q 1e/*3, (3.15)
and multiply it by the ten-dimensional dilaton e® (3.7). This definition amounts to the
following result®

® o, D1/2
EP—3 RS{;P& _ e(3—p)Aeﬁ77P

hol = Js Ql/ 2’
This energy scale is finite in the UV limit » — oo and thus we propose to identify the
holographic 't Hooft coupling in (3.14) by evaluating (3.16) in the UV where

(r—9)
(6 —-p)(3—p)

The constant in this equation is fixed by regularity of the full supergravity background in

(3.16)

A— 7 + const . (3.17)

the IR, it can therefore not be deduced directly by an UV analysis of the BPS equations.
Using that lim, o, P(7) = lim, 0o Q(r) = 1 we arrive at the following explicit result”

27g. N
Ahol E( Js

90 Y5p )3_pe(3_p)Aeg—gn . (3.18)

r—00

We will sometimes express Ao in terms of the supergravity gauge coupling g using (3.2).
We note that the expression (3.18), which allows us to find a match between supergravity
and field theory, does not agree with the one proposed in [31] for all values of p.

3.2 Holographic free energy

The holographic free energy of the spherical Dp-brane solutions is given by the on-shell
action in (p + 2) dimensions. This action can be derived from the (p + 2)-dimensional
gauged supergravity, see [18], and takes the form

1

= 5.2
2K 12

S

3p
drt2y {R+d 2 _9K,5 er—V}, 3.19
[ @rteva{ B g lank - 26far] (3.19)

where the potential V' is given in appendix B in terms of a superpotential W. The (p + 2)-
dimensional Newton constant can be expressed as®

r(%2
(2704)3 g2 2 _
Koo = = <gp ) &P, (3.20)

T2

SWe divide by a factor of g, since we have already included a factor of g, in the definition of g%y,
in (3.13).

"An alternative way to obtain (3.18) is to define the running gauge coupling, as it appears in the probe
action for Dp-branes, by g2y = 2me®/(27m€s)3>"P. Then the energy scale is defined by E = RJ;. When
these two expressions are inserted into (3.14) and evaluated at r — co we obtain (3.18).

8This expression is derived in some detail in appendix B.1.

- 11 -



Evaluating the action in (3.19) on the spherical brane solutions leads to divergences arising
from the UV region. Since for p # 3 the metric is not asymptotically locally AdS one cannot
apply the standard technology of holographic renormalization to cancel these divergences
systematically. As explained in [31, 32] a useful approach to circumvent this impasse is
to perform a conformal transformation of the metric to the so-called dual frame. This
changes its UV asymptotics to the locally AdS form and for the solutions of interest here
is achieved by the following rescaling

p—3

. (3.21)

G = eQ‘”’gw, , where a =
Note that the case p = 6 needs to be treated separately. For p = 3 the background is
asymptotically AdSs and no rescaling is needed. In terms of this transformed metric, the
action takes the form

1 ~ - 3p
S = /dp+2:n gepan{R+<+a2pp+1>d 2 2K, dT2—eQ‘"7V}.
e g+ o+ D) )] 2K
(3.22)

In this frame the metric is asymptotically AdS and we can use the standard framework of
holographic renormalization to obtain the holographic counterterm action. When trans-
formed to the dual frame the Gibbons-Hawking boundary term is given by

1

Scu =

5 /dp"'lx\/Ze“p"(p +1) (A" —an) . (3.23)
K
p+2

The remaining divergences should be cancelled by the standard curvature counterterms [39].
However, as discussed in [32], the coefficients of these counterterms should be changed with
respect to the ones in [39] and are determined by the constant o = g%g . These infinite
counterterms are built out of the induced boundary metric in the dual frame, ilW and are
given by

1 = 20 — 1 1
Sct,curv = 5 /dp-‘rl‘,n\/ﬁeapn |:Jlg + ZRE
Kp+2 g — g

1 ag — 1 b o 2
— —~— (R ,R®»_— — — __R?2)|. (3.24
* 16g3 0 — 2 <R’wth 2(20 — 1) Rh)] (3.24)

The counterterms in the second line of (3.24) are only needed when p > 4. Note that this
infinite counterterm analysis in the “dual frame” formalism is not applicable for p = 5 and
we will treat this case separately in section 4.5.

Apart from these curvature counterterms we typically need additional infinite countert-
erms coming from the scalar fields. For supersymmetric backgrounds we can take advantage
of the Bogomol'nyi trick, see for example [6, 7], to construct these infinite counterterms.
This amounts to adding the following counterterm built out of the superpotential of the
gauged supergravity theory

Sct,superpot = ! / dp-&-ll,\/ze(p—l—l)an\/m‘

2
2hip o

. 3.25
Y—0 ( )
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Figure 4. A string wrapping the equator of a (p 4 1)-sphere.

This counterterm is precisely the one that appears when regularizing the free energy of su-
pergravity backgrounds with flat space boundary. There might be additional counterterms
appearing, such as conformal couplings of the scalars or terms depending on the scalar field
Y, for more general solutions such as our spherical branes. The precise form of these extra
infinite counterterms terms as well as any potential finite counterterms will be determined

on a case-by-case basis in section 4.

3.3 Holographic Wilson loops

Now let us demonstrate how to compute supersymmetric Wilson loop vacuum expectation
values. The %—BPS Wilson loop captured by supersymmetric localization lies on the equator
of the (p+1)-sphere and is invariant with respect to the localization supercharge if and only
if it is aligned along the field theory scalar field ¢y. This is realized by a fundamental string
wrapping the equator of S¢ in the spherical brane solutions and embedded in a specific
way in the internal space. To understand this in more detail we embed the internal space
Ig_p in R8P,

Xr: Iy, —»RYS7P.

3.26
{0,t,v,w;} — {cos@sinht, cosfcoshtsin, cosfcoshtcost, sinf@Ya}, (3.26)

where the Y, give the standard embedding of the (5 — p)-sphere in R®~P. This embedding
provides us with an explicit map from the internal space of our supergravity solutions to the
field theory scalars appearing in the Lagrangian (2.1), e.g. the scalars ¢ can be identified
with Xj. Therefore, the BPS condition requires that the corresponding holographic Wilson
loop lies at constant # = 0 and cosht = 0. This implies that the holographic evaluation of
the Wilson loop VEV must be performed using the analytically continued fully Euclidean
background. Indeed, this is how we obtained a finite Newton constant in (3.20).

In the holographic context we are thus lead to study a probe fundamental string
wrapping the equator of the spherical brane as in figure 4. The expectation value of a
Wilson line operator in the fundamental representation of the gauge group along a contour
C can be calculated holographically by evaluating the regularized on-shell action of the
probe string. More precisely,

log(W(C)) = —Sken: (3.27)

string »
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Ren.
where Sstring

Nambu-Goto action,

1 1
Sucns = 3773 /E A2/t PG] - 33 /E det P[Bs)], (3.28)

where P[...] denotes the pull-back of the bulk fields onto the string worldsheet 3
parametrized by o1 and o9 and Gy is the ten-dimensional string frame metric. In order

is the renormalized on-shell action. The probe string is governed by the

to determine the Wilson loop expectation value we have to minimize the string action,
regularize it and finally evaluate it on-shell. In order to do this, we parametrize the world-
sheet by the coordinates o7 = r and o9 = ¢ € [0,27], use that translations along ( are
a symmetry of the ten-dimensional solution described in section 3.1, and assume that the
induced fields depend only on r. Since By has legs only along the internal de Sitter part
of the geometry we conclude that P[Bs] = 0. The induced metric on the other hand takes
the form

e 0™ He"
Plds?))| = — [(1 + G —— > dr? + e“dgﬂ , (3.29)
\/@ or Or

where Gy, is the metric on the internal space and the functions ©™(r) describe the profile
of the string worldsheet in the internal directions. We can identify the functions ©™ with
the 8 — p coordinates (0,t,¢,w;) with ¢ = 1,...,5 — p. Minimizing the string action is
equivalent to minimizing

2n+2A o0e™ HO™

Since we are performing the holographic computation for the ten-dimensional metric ana-
lytically continued to Euclidean signature, the internal metric G,,, is positive definite. All
terms in the parentheses above are therefore manifestly positive and thus can be minimized
by setting each term to zero, i.e. by taking constant ©™. To determine the exact position
of the string in the internal space, i.e. the constant values of ©", we have to minimize
the function
e2'r]+2A
det P[Garn] |ar@m:0 :T
e277+2A

X
eZn+2A

(sin?6 + X cos?6) for p < 3, (3.31)

(X cos?0+ (X2 —Y?)sin?6) forp>3.

The extrema of these functions are at

nmw
2

0= forneZ. (3.32)

Since the range of 6 is [0, 7) there are only two inequivalent extrema: 6 = 0 and § = /2.
However, as explained at the beginning of this section, only § = 0 corresponds to a Wilson
loop which is BPS with respect to the localizing supercharge.’

9See [9] for a similar analysis in the context of the four-dimensional A’ = 2* theory on S*.
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We have thus arrived at the following probe string action (3.28)

1 1
Sstring = ﬁ/dfm/det P[Gun] = 7 /dre"+A, (3.33)

where we have already performed the integral over the great circle. This on-shell string
action diverges close to the UV boundary of the supergravity solution and we have to
renormalize it using appropriate covariant counterterms built out of the ten-dimensional
supergravity fields. This leads to the standard counterterm commonly used to regularize
string on-shell actions [9, 40]. In terms of the gauged supergravity fields, this counterterm
takes the form .
Sstring,ct = g@e“”GEp . (3.34)

Note that in addition to cancelling the divergences of the on-shell string action, in some
cases this counterterm contains a finite contribution which will prove to be crucial for our
analysis.

Before we discuss the various Dp-branes in detail it is worthwhile to study how the
Wilson line VEV scales with N and Aye1. Using the scaling relation (3.14), we find that

1
log(W) ~ NOAS P (3.35)

This scaling exactly matches the expectations from supersymmetric localization. In addi-
tion the same scaling of the Wilson loop vacuum expectation value was found in a holo-
graphic finite temperature setting in [41].

4 Free energy and Wilson loop VEVs for spherical Dp-branes

After discussing the general framework for computing the free energy and Wilson loop
expectation values, both from a supergravity and field theory point of view, we proceed
with a case-by-case study of the different values of p, starting at p = 1 and working our
way up to p = 6. For D5- and D6-branes some aspects of the general analysis above do
not apply and we treat these two cases in some more detail. To avoid confusion, in this
section we will denote the QFT ’t Hooft coupling in (1.1) by Aqrr to explicitly distinguish
it from the one used in supergravity denoted by Apo1.

4.1 D1-branes
4.1.1 Field theory

In section 2 we performed a general strong coupling analysis of the matrix model of [36]
at large N. Strictly speaking, the matrix model is only well defined for dimensions in
the interval 3 < d < 6. To go below this interval let us first try returning to the general
form of the kernel in (2.7). If we set d = 2 we find that the kernel takes the particularly

simple form,
4

o+ao3’

Gis(o) = (4.1)
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A matrix model with this kernel was previously analyzed in [42] where the free energy
was derived parametrically in terms of complete elliptic integrals. However, in our case the
central potential has a negative sign at d = 2, which leads to many subtleties. In particular
a straightforward analytic continuation of the results in [42] gives a complex free energy in
terms of )\QFT-

Instead we propose to analytically continue the dimension to d = 2 in the expressions
for the free energy and Wilson loop VEV in (2.19) and (2.21). Both the free energy and
Wilson loop are expressible in terms of the eigenvalue endpoint, which upon substituting

d =2 into (2.15) we find
b2 = ( QFT> ) (42)
™

which is real and positive. Having found by we can read of the free energy from equa-
tion (2.19),

21 4(2m)1/?
Fy= -5 (ba)* N? = _4m) 7 1/)2 (4.3)
QFT 3AgpT

Note that the free energy increases with increasing Aqrr. The Wilson loop VEV is obtained
from (2.22) by setting b = by

log(W) = 2mby = 2747\ (4.4)
4.1.2 Supergravity

The supergravity solution for spherical D1-branes is most conveniently described using the
scalar field X as the radial variable. The full solution is then specified by

(X +1)(1-X)?

Y2(X) =
( ) X Y
5 1-X
n(X)—nm+§10g 5x
A VOA+X)2-Y2VX (4.5)
¢ = ge2n/5 Y '’
X' — 2l VX (—2+2X2+Y?)

i

1+X)2-Y?
where the prime denotes a derivative with respect to the original radial coordinate r and
X ranges from 1/3 in the IR to 1 in the UV. To compute the holographic free energy we
evaluate the regularized supergravity action on the solution given above and subtract the
counterterms (3.23), (3.24), and (3.25). In addition, due to the presence of the scalar YV
we have to subtract the following infinite counterterm
1 =
Sect,inf = ——5 de\/ﬁe_gngYQ. (4.6)
K3 4
Furthermore, there is a unique covariant finite counterterm that can be built out of the
boundary metric and scalar fields which reads

Sct,ﬁn = /dzl'\/zegn <c;R10gX> . (47)

1
2
K3
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Evaluating the holographic 't Hooft coupling (3.18) in the UV leads to the following ex-
pression,

— 4 5

Substituting this expression and subtracting all infinite and finite counterterms we arrive
at the following result for the holographic free energy

2(2m)1/2N?

Fhol — _
1/2
3)\hol

(3 —4cy). (4.9)
We do not have a rigorous argument to fix the coefficient c, of the finite counterterm but
we observe that if we set ¢; = 1/4 the holographic result in (4.9) agrees with the field
theory answer in (4.3) upon identifying Ao with Aqrr. It will be most interesting to fix
¢, by a first principle calculation. This can be presumably achieved by ensuring that the
holographic renormalization procedure we employ is compatible with supersymmetry.

To compute the Wilson loop vacuum expectation value we start from the inte-
gral (3.33). For p =1 the on-shell probe string action becomes

1 5 1
Sitring = 17 dX axyvax) _ e/ / dx ' (4.10)
0 )iz X V29202 J1/3 V1 — X2(1 — X)

This integral is divergent and we have to regularize it in the UV by introducing a cutoff at
X =1 — e and subsequently subtracting the counterterm (3.34)

eMmr/5 1

string,ct — — 5,0 ~ ~— 5 4.11
Sst g,ct 9263 \/E +O(\/E) ( )

in order to obtain the renormalized on-shell action. Using the relation (4.8) we find the
following holographic result for the Wilson loop expectation value

log (Whely = 27/Ax3/1 )1/ (4.12)
This precisely agrees with the QFT result in (4.4).

4.1.3 A comment on the Yang-Mills action

We close this section with a comment. In [23, 24] (see also [43] for extensions of this
analysis) it was shown that there is a Yang-Mills action for an ' = (2,2) vector multiplet
on S? that is Q-exact and hence the partition function is independent of the Yang-Mills
coupling. In terms of the conventions used here, the N' = (2,2) vector multiplet contains
the gauge fields A,,, the scalar fields ¢g and ¢3, and the Dirac field ¥ with the projections

9y = v, 1979 =y, (4.13)

which reduces ¥ to four independent real components. There is also one auxiliary field
K'. All other scalar and auxiliary fields are turned off. If we restrict to four independent

supersymmetry transformations where

0789 — ¢, %67 = ¢, (4.14)
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and set v! = I'®e, the transformations on the fields in (2.2) reduce to

56 <F12 - ¢3> = —6F12m\lf

R
5 (K- D) = a¥pu
R
0V = <F12 - %) M2+ (Kl a 32) %% + D,p T e — i[go, ps]T %%
Sy = TpW. (4.15)

It is then straightforward to show that the flat-space Yang-Mills Lagrangian is invariant
under the transformations in (4.15) if Fy9 is replaced with Fia — % and K is replaced
with K! — %. At the localization locus both terms are zero so the action is also zero.

If we were to compare this Lagrangian to the one in (2.1) at d = 2 and with the fields
reduced as described above, then the Lagrangians differ by

1 2 1 3 2 1
— ——Tr ( =Fia¢3 — =503 — =500 — =K' g — = VAV | . 4.16
202, <R 12 93 R2¢ ®3 R2¢> b0 R b0 = (4.16)
One can show that (4.16) changes by a total derivative under the supersymmetry transfor-
mations in (4.15). Hence, both actions preserve N' = (2, 2) supersymmetry. However, only
the second action can be extended to 16 supersymmetries. The extra term in (4.16) is not
@-exact so it will contribute a coupling dependent part to the partition function.

4.2 D2-branes

4.2.1 Field theory

The matrix model analysis in this case is more subtle and one has to be careful when taking
the different limits to obtain the kernel. If we set d = 3+ ¢ then we can approximate G1¢(co)
for e — 0 as

2 ¢ no(coth(ro) + mocsch?(ro)) —2
€

— 3
- - +O@). (17

Gig(o)
The first term in (4.17) comes from the n = 0 term in (2.5) while the second term comes
from all other values of n. We can also see from (2.6) that Oy ~ 472 in this limit, which
approaches zero because the super Yang-Mills action is Q-exact in three dimensions. Aside
from the first term, all other terms in (4.17) are nonsingular on the real line and of order
€2 or higher. Hence they can be dropped in the saddle point equation in (2.6). Therefore,

in the large N limit the saddle point equation reduces to the integral equation'®

dre ][‘-"pw')da'_ /b po)do’ /b LGOI (4.18)

AQFT _p o—0' _p0—o +ie p 0 — ol —ie

10After a rescaling the integral equation in (4.18) has the same form as in [42] and we could extract the
the free energy by taking a limit of their results.
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Naively it looks like the right hand side of (4.18) is even in e. However, because of the
poles at o +ie (4.18) reduces to

472e

AQFT

o=mi (p(a +1ie) — p(o — ie)) + O(€®) = —2mep/ (o) 4+ O(€2). (4.19)

Hence, to leading order in ¢ we have that p(o) = )\Q”FT (b? — 02). The value of b is fixed by

setting ffb p(o)do = 1, which gives

1/3
b=by= <3AQFT> . (4.20)

47

The density p(o) and value for bs are precisely what one finds when analytically con-
tinuing (2.14) and (2.15) to d = 3. We can then use (2.19) and (2.21) to find the free
energy and the expectation value of the BPS Wilson loop. For the free energy we find

F3=0, (4.21)

which is not surprising given the @Q-exactness of the SYM action in three dimensions.
However, the Wilson loop is surprisingly nontrivial. Here we find that

3
g
To compare with supergravity we note that for for Aqrr > 1 the logarithm of the

(W) (£ cosh & — sinh¢) | £= 61/37r2/3A(1Q/1§T. (4.22)

Wilson loop VEV is approximately
log(W) ~ 613723 AP (4.23)

We stress however that (4.22) is exact for any nonzero Aqpr. If we expand (4.22) at small

Aqrt we find that

1
(W) =1+ 35(67*Aar1)* + O(\ger) (4.24)

hence this result cannot be reproduced in perturbation theory. Strictly speaking, the
perturbative behavior is only found for Aqrr < €2 where the matrix model approaches a
Gaussian model. In this sense, d = 3 MSYM is strongly coupled for any nonzero coupling.

One can also see that the behavior of the Wilson loop VEV is essentially an infrared
effect as the only relevant contribution to Gig(o) comes from the n = 0 term in the
partition function (2.5). The numerator of this term is the Vandermonde determinant
while the denominator is the uncanceled contribution of the constant spherical harmonics
about the localization locus [37].

4.2.2 Supergravity

The supergravity solution for spherical D2-branes is given by the following system of

equations
V2= % ((1 —X)(142X)+ /A -X)1+ 3X)> :
- VA= X) (14X + /(T X)(1 +3X))

V2X ’
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—n/4 3
e =C S X
g VY2 ’
Ty VX(—2X +2X2+Y?)

X' = ,
VX2 _y2

Like for D1-branes we use X as the radial variable which ranges from 2/3 in the IR to

(4.25)

1 in the UV. In order to obtain the holographic free energy we proceed similarly to the
previous case and subtract the counterterms (3.23), (3.24), (3.25) and an additional infinite
counterterm

1 =
Sevint = —— | BavVhe I y?, (4.26)
KJ 4

in order to obtain a finite free energy. In this case we do not find any finite counterterms.
Evaluating the regularized on-shell action we find that the holographic free energy vanishes

Fhl =, (4.27)

This agrees with the supersymmetric localization result in (4.21).
In order to compute the holographic Wilson loop expectation value we have to evaluate
the following integral,

1 1 2 2 2
Surng = — [ Eeneac — L / X IPXE 1) : (4.28)
& Eg 2/3 X, 926'2 2/3 Y(_QX + 2X2 + Y2)

Using (4.25) one can show that the integral reduces to

g eMR/2 liedX 1 eMr/2 (1 3 199
ST 202 /2/3 VA=X)B(1+3X)  g¥? <\/E 2) ’ (4.29)

where we have introduced a cutoff ¢ — 0. To regulate the integral we need to subtract the

counterterm (3.34) given by

eMr/2 / 1 1
Sstring,ct = W <\/E - 5 + O(\/E)) . (430)

Note that this counterterm contains a crucial finite piece needed to match the localization
result. After substituting the explicit expression (3.18) for Ay,

Smr/2 (4.31)

Ahol =

we find the following holographic result for the Wilson loop vacuum expectation value

log(Whly = —shen = 613723\ /7. (4.32)

string

This agrees with the field theory result (4.23).
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4.3 D3-branes

The worldvolume theory on spherical D3-branes is simply the Euclidean N = 4 SYM
theory on S*. Since this is a conformal theory we can apply a conformal transformation to
map S* to R* and then analytically continue to Lorentzian signature. Supergravity dual of
the theory is the the well-known AdSs x S® background of type IIB supergravity. Both the
QFT and supergravity evaluations of the free energy and Wilson loop vacuum expectation
value are well-known results available in the literature. Here we briefly summarize how
they can be obtained from our general formalism.
Setting d = 4 in (2.15) we find the eigenvalue endpoint

\/ 2)\QFT
by = +——, 4.33
4 27 ( )
which is the expected result from the Wigner distribution. To determine the free energy,

we set d = 4 + € and take the limit € — 0 since there is a singularity in (2.19) at d = 4.
We find

Fy, =

22 N2 )\QFT 14+¢/2 N2 N2
— O(e) = —— — —log A O(e). 4.34
() o= - Ym0 (431)

The divergent piece proportional to e ! is an overall constant that can be removed, leaving
the well-known result for the Gaussian matrix model. The Wilson loop VEV can be found
by inserting b4 in (2.21)

log<W> = \/2)\QFT . (4.35)
The free energy and the Wilson line VEV for A/ = 4 can also be computed holographically
using standard results in the literature. An efficient way to obtain the end result on S* is
to take the m = 0 limit of the N’ = 2* calculations in [7] and [9].1!

4.4 D4-branes

4.4.1 QFT

Next we consider the case of spherical D4-branes which can be studied by setting p = 4,
or equivalently d = 5, in the various general expressions above. From (2.15) with d = 5 we
find that the eigenvalue endpoint is at

AQFT
bs = ) 4.36
> 47?2 (4.36)
The free energy computed from (2.19) is then given by
AqrTN?
Fr=—-—— 4.37
’ 12r (4.37)

which agrees with the results in [25-27].
To compute the VEV of the BPS Wilson loop we need to plug the expression for bs
in (2.21) and take the large A limit to find

A
log(W) = %. (4.38)

"Note that for p = 3 our convention for g3y as given in (3.13) differs by a factor 2 from the convention
used in [7, 9].

- 21 —



4.4.2 Supergravity

The supergravity solution for spherical D4-branes is particularly simple as it is just a
dimensional reduction of the AdS7 x S* solution of eleven-dimensional supergravity. In
this case the AdS7 space has an S° x S' boundary. The spherical D4-brane solution is
obtained by a reduction along S' leading to the following expression in our variables:

X =1,
Y = lesz—Qn ’

7 (4.39)

(77/)2 _ EefSn (6477 _ 647713)
e"/2

e =2-—/etn—tnir — 1,
g

)

Notice that it is convenient to use 7 as the radial variable which runs from 7 in the
IR to infinity in the UV. To compute the holographic free energy we follow the, by now
familiar, procedure of evaluating the on-shell action and subtracting the infinite countert-
erms (3.23), (3.24), (3.25). No other counterterms are required in order to regularize the
action. However, we do find a number of covariant counterterms which give finite contri-
bution to the on-shell action. These are given by'?

1 - 1. i _
Setfin = / BV he? <01 (gRY2 - 209Y4> +eagVl 4 %‘”’RY4 n §R2Y2> . (4.40)
6

Although these counterterms look innocuous in six-dimensional gauged supergravity, from
the perspective of the parent SO(5) gauged seven-dimensional supergravity, they are not
gauge invariant. This is because the scalar field Y arises as the component of one of the
SO(5) gauge fields, A, along the S ! direction along which we reduce the seven-dimensional
theory [18]. Therefore the Y2 term in six dimensions corresponds to terms of the form
A, AF . After adding all these contributions and substituting the 't Hooft coupling

27
Ahol = —5 €Mk 4.41
hol gzeg € ) ( )
the renormalized holographic free energy reads
Ahot N2
Fhol — 200 (10 4 80¢y + ¢ + 20c3 4 400cy) . (4.42)

967

Similar to the discussion of the on-shell action for spherical D1-branes in section 4.1 we do
not know how to fix the coefficients c1 234 from a first principle calculation. However, we
note that a convenient choice, namely

1

— 4.43
= (4.43)

cr=ca=c4 =0, c3 = —

12Two more finite counterterms can be written as a product of quadratic curvature invariant times Y2,
for an S° boundary, these are related to the last term in (4.40).
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makes the holographic result agree with the QFT calculation (4.37). Gauge invariance of
the seven-dimensional supergravity theory would indicate that all four finite counterterms
should vanish, however in this case we reproduce the result of [26] and do not find a match
with the localization result. However, if we choose the counterterm coefficients as in (4.43)
we obtain an agreement with the supersymmetric localization calculation at the expense
of breaking the gauge invariance of the supergravity counterterms. This predicament is
reminiscent of the results in [28, 29] in the context of holographic renormalization for AdSs
with an S x S! boundary.

To evaluate the Wilson loop VEV we plug the solution (4.39) into the general expres-
sion (3.33) using n as a radial variable. We are then left with the following integral

1 1 [dn 8 o _
Sstring = 72 /drenJrA = 7 Weer = 9262/,7 dn edn—2mr (4.44)
S s TR

S

Evaluating the UV regulated integral and subtracting the counterterm in (3.34) results in

Ahol

log(Whel) = 22

(4.45)

which matches with the localization result in (4.38).

4.5 Db5-branes

4.5.1 Field theory

We next discuss MSYM on S% which was previously investigated in [44]. This case is subtle
because both (2.15) and (2.19) have an essential singularity at d = 6. To deal with this we
set d = 6 — ¢, after which we find

327 N2 3N\ /e
F6 = —771- € 6_8/3_7}5 731) 5 (446)
b 8mde

where g is the Euler-Mascheroni constant and A, is bare 't Hooft coupling. Hence the
free energy is negative and infinite for any value of Ay in the limit ¢ — 0. However, if we
substitute d = 6 — € directly into (2.6) it takes the form to leading order in €

%NUZ' = (6 — 6’)/E -+ 4> NUZ‘ — 3Z(O'i - Uj) log(ai — O'j)2 . (4.47)
b € Y
J#i

The first term on the right hand side can be absorbed into the 't Hooft coupling, hence we
define the renormalized coupling AqrT in terms of A as

=—+C), (4.48)
where the constant C), is given by

6 . 3 /1 1 1 1
C)\—_<6_6'YE+4)01 =33 <€+2log(47r)—2~yE—3) (4.49)
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Notice that since the r.h.s. of (4.47) contains e ! it is crucial to expand Cy up to first order
in € to obtain C) to order O(e”). Substituting Ay in terms of Aqpr into (4.46) we find

st 1 1 1 2/e
Fy = —12me 837 N2 (1 — _ -z = Jog (4
6 me € aqrr 3 o VB + 5 og (4m)

1 3
= —3N2exp (- om _ 2) . (4.50)
3)\QFT

The —2 in the argument of the exponent could be removed by a different scheme
choice for C.

A similar treatment can be applied to bs. Again using (4.48) for Aqrr we find

1/e 3
by = dy/Te—4/3—5/? <5’W> — 2exp (—?jﬁ — 1) : (4.51)

8m3e QFT

This leads to the following expectation value for the BPS Wilson loop

8 3
log(W) ~ 47 exp <_3AgFT - 1> . (4.52)

The above results can also be directly obtained from the saddle-point equation (4.47) which
we consider in detail in appendix C. While the prefactors of the exponentials in (4.50)
and (4.52) are scheme dependent since they can be changed by a shift of the renormalized
coupling AqrT, we can take the following combination of the free energy and the Wilson-
loop VEV,

Fs 3N?2

(log(W))2 — 1672’ (4.53)

which is scheme independent.
The form of (4.46) and (4.52) is also suggestive. We expect that the UV completion
of 6D maximal super Yang-Mills is the (1,1) little string. If we now write the free energy

in terms of the little string tension T = gzgi, we get
YM

— (4.54)

Fs ~ N%exp (— 167° TRQ) .
In the large R limit S® approaches flat space and Fg falls off to zero, consistent with the
flat space free energy found in [33]. The correction away from flat space is suggestive of a
non-perturbative contribution coming from the string world-sheet. It would be interesting
to explore this further.

Note that (4.51) and the assumption that the eigenvalues are widely separated imply
that Aqpr is small and negative. However, (2.8) and (2.9) show that near d = 6 the

1/2

crossover from the weak to the strong regime happens when |o;;| ~ €'/*. The approximation
47

is then valid if bg > €!/2 which corresponds to Aqpr > Wole)' Therefore, in the limit
€ — 0 the results in (4.46) and (4.52) can be trusted for any positive 't Hooft coupling.
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Figure 5. The supergravity solution for the scalar fields Y and n using X as the radial coordinate.

4.5.2 Supergravity

As can already be seen from the localization computation, handling the divergences in this
case is subtle. It is clear that the scaling relation in (3.35) breaks down for p = 5 and there
are also special features of the supergravity solution which render the evaluation of the
probe string action difficult. Additionally, the dual frame formalism of [31] is not adapted
to the case of five-branes.

The supergravity solution for spherical D5-branes can be obtained from the following
system of equations

2 -8X +6X%2-3Y?
V1—6X +9X2—-9y2’
1—16X +15X2%2 — 9Y?
T /X(L_6X 1 9XZ _ov?)’

b ie*%g‘/l —6X +9X2 —9Y?

10 VX ’
24 _ e X ((1-3X)%-9Y?) ‘
g2Y?

X' =e21VXyg

(Y2)/ _ e—2ny2

(4.55)

We were not able to find an analytic solution to this system of equations. A numerical
solution that interpolates between the IR at (X, Y?) = (4/3,16/9) and the UV at (X,Y?) =
(1,0) is plotted in figure 5. In order to extract holographic observables we must find
asymptotic expansions for the supergravity fields. Unfortunately the BPS equations do
not admit a simple UV expansion. Expressing Y2 as a function of X the asymptotic series
is simultaneously an expansion in (X — 1) and e='/(X=1 of the general form

V2 = Py(X) + e VTV (X) 4 e HEDPy(X) + O(e73/ X)) (4.56)
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where P; denotes a power series (possibly with negative powers) in (X — 1). The first two
terms Py and P; can be resummed to yield

5X —6X%+ /X (4 —3X)

Y? =
1+¢x<Tsx6> 2X +3X2 +3X\/X(4_ 3X) (4.57)
+Ce” ™ X1 + (’)(e—Q/(X—l)) ,

X(4—3X)

where C' is a constant that must be carefully chosen so that the UV expansion matches
onto the IR. Note that the first line in the above expansion is in fact an exact solution of
the BPS equations, However, this solution does not reach the IR since one encounters a
singularity at X = 4/3. The corresponding UV expansion for 7 takes the form

1 (2+2/X(4-3X) 2— X +/X(4-3X)
n=nuv + 5= + log
20 X -1 4X
(4.58)
6Ce—2/(X-1) e—2/(X-1)
5(X —1)2 X-1

In the IR we find an asymptotic series which follows the numerical solution to a very good
approximation for a large part of the domain but deviates from the actual solution in the
UV. This implies that the IR expansion will not be useful for extracting the holographic
observables from the background. Instead we will employ the numerical solution. As
we will explain, the linear behaviour of the “dilaton” 7 in the UV will prevent us from
performing a complete holographic renormalization as we did in the previous examples.

First let us evalute the expression (3.18) for p = 5 to determine the relation of the
supergravity parameters to the field theory data. Surprisingly we find that Ao does not
depend on g at all. In fact we find

Ahol = lim = lim

Y &3¢
X—1 X((l — 3X)2 — 9Y2) e—0

+ O(é)) =0, (4.59)

where we use X = 1+¢ and € — 07 in the UV. Since this vanishes in the strict e — 0 limit
we do not have a good definition of Ay for D5-branes. We will therefore proceed with the
computation of holographic observables and extract the A\no by relating the localization
and supergravity result for one of the observables, say the Wilson loop VEV. The relation
can then be used to compare the supergravity result for the free energy with (4.50).

Let us therefore evaluate the Wilson loop VEV for spherical D5-branes. In order to do
so we can again use X as a radial variable and evaluate the on-shell probe string action.
Inserting the expressions (4.55) in the on-shell probe string action, we are left with the
following integral

1 [dXe (1-3X)2-9Y?

1
S ‘ _ = d n+A _ o . 460
string E% / re Eg X'Y 2-8X+6X2-3Y2 ( )

Notice that the integrand depends exponentially on the dilaton 7, in the UV this diverges as
57 =1/e+O(loge). This implies that the integrand diverges in the UV with a combination
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of polynomial and exponential powers in the cutoff 1/e

1 1 _
Lstring = e [el/f\@ (6 —-1+ 0(e)> +O(e 1/6)] (4.61)
where, as before, X = 1+ €. Remarkably, the standard worldsheet counterterm, discussed
around eq. (3.34) cancels the entire exponential divergence and leaves a finite on-shell

action. Explicitly this counterterm has the form

5y VX /(1 —3X)? — 9?2
g2 2y

(4.62)

Sstring,ct =€

X=1+e
Once the action has been made finite in the UV we can evaluate it numerically using the
numerical solution to the BPS equations. The accuracy of the numerical procedure is
limited due to the fact that in the implementation of holographic renormalization we have
to subtract large numbers. Nevertheless, we were able to show that with 1% accuracy the
following result holds

1
log(Whely = — gg;gg N edMR (4.63)
943

Comparing this expression with (4.52) suggests the relation

1 83 1
= —log(dng*?) — —— — — . 4.64
mr = ¢ log(dmg™t;) Bager 5 (4.64)
Let us now return to the supergravity action with the aim to extract the holographic
free energy. The UV analysis of the bulk supergravity action integrand has the following

structure

7 [ 5, (576 1248 3 1/e
Son-shell = 5951‘1% |:e / <65 + GT + O(E )> + O(e / )] . (4.65)

The polynomial divergence multiplying e/

can be cancelled by the standard covariant
counterterms. However this still leaves seemingly infinitely many finite terms multiplying
an exponential divergence. In the case of five-branes, infinitely many counterterms are
available due to the linear dilaton in the UV. It therefore seems that it is required to use
infinitely many counterterms to eliminate the exponential divergence in (4.65). Indeed, we
have not been able to find a finite set of counterterms that renders the action finite.'® If
we nevertheless assume that (finitely or inifinitely many) counterterms can be found that
render the action finite, the form of the resulting expression can be deduced on general
grounds. Since the bulk action is proportional to e'% we expect

Ren. 67T3 z

2
95”7

S

on-shell — —

et0mr (4.66)

where 7 is an undetermined constant that we are not able to evaluate without a full
knowledge of the counterterms. Using (4.64) we find

Fhol _ qRen. _ *3ZN2 o 1671‘3 ) 4.67
— “on-shell — exXp 3>\QFT ) ( . )

13Such a finite set of counterterms was shown to exist in a recent study of five-branes on some curved
manifolds [35].
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in a nice agreement with the field theory result (4.50). As we argued above, the coefficients
of the exponentials in (4.50) and (4.52) are dependent on the renormalization scheme but a
scheme independent quantity can be found by combining the two as in (4.53). We observe
that the same combination in holography does not rely on the map (4.64) and we find

Sonshen _ _ 3N?Z (4.68)
(Siring)? 1672

which matches (4.53) if the constant Z equals one.

4.6 D6-branes
4.6.1 Field theory

We now turn to d = 7 and start by rewriting the one-loop determinant in (2.5) as

o2,
Z1toop(7) = exp ZZ 24 1)log <1+ng> . (4.69)

1<j n=1

To test the divergence we expand the log at large n, showing that the log of the determinant
behaves as

log Z1 _100p (0 Z Z 2% ) - a:-lj (n_2 + n_4) +.... (4.70)

The sum over n leads to a linear divergence for the a - term while the higher terms are
finite. The divergent piece can be rewritten as

2o N Y o7, (4.71)

where ng is a UV cutoff in n. This divergence has the form of the action in (2.4) and can
be absorbed by shifting the coupling. As for the D5-brane case, we can define a bare and
a renormalized 't Hooft coupling through the relation

1 1 no

=—_-_° 4.72
)\QFT b 2m4 ( 7)

The finite remainder from Z;_j0p(0) is what contributes to the analytic continuation
of (2.7) around the singularity at d = 7. If we assume large separation between the
eigenvalues then we can use (2.11) if we replace A with Aqpr in the lefthand side of the
equation. However, Cy in (2.10) is negative at d = 7. This is evident in figure 6 which
shows G16(0) for d = 7. At short distance the kernel is repulsive, but becomes attractive
for |o| > 1. Because of this negative sign, if we analytically continue (2.15) to d = 7 we
find that the eigenvalue endpoint is at

23

by = — 1 (4.73)
AQFT
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Figure 6. The kernel Gy4(0) for d = 7. At |o| = 1 the kernel crosses over from repulsive to
attractive behavior.

The negative value for (4.73) indicates that strictly speaking this is not a solution to (2.13)
assuming the eigenvalue distribution has the form in (2.12). This is obvious since (2.13) cor-
responds to an attractive central potential and an everywhere attractive potential between
the eigenvalues. In this case the only solution has all eigenvalues at zero.

To sort this out let us consider the full d = 7 kernel shown in figure 6,

G\D(o—0') = 2r(1 = (6—0")%) cothm(o—0") , (4.74)

and take the strong coupling limit so that the inverse renormalized coupling approaches
/\(Q%T — 04. While we cannot solve (2.6) analytically in this limit, we can determine the
eigenvalue distribution numerically. This is shown in figure 7 where we see that the short
distance repulsion stabilizes the eigenvalues into a bounded two hump distribution. Hence
the free energy approaches a constant multiplied by N? in the strong coupling limit.

Now suppose we continue )‘(51er through zero, such that Aqrr < 0. The central poten-
tial is now repulsive and the eigenvalues are pushed farther away from the center, but are
still stabilized by the attractive long-range force. As we let )\é%T become more and more
negative the two humps in figure 7 get pushed farther apart and we can then use the large
separation approximation in (2.9). In fact, in this approximation the eigenvalue density
becomes two delta functions, as is shown in appendix D.1. In appendix D.2 we numerically
show that the short range repulsion between the eigenvalues widens the delta functions to
a width of order 1.

Since Aqrr < 0, b7 in (4.73) is positive. In order for the large separation assumption
to be valid we require b7y > 1, which happens when _A(SI{‘T > 1. Hence we are in a
negative weak regime for the renormalized coupling, which is distinctly different from the

~ 99 —



plo)

05F

0.4F

0.3F

-1.0 -0.5 0.5 1.0

o

Figure 7. Distribution of eigenvalues obtained from (2.6) numerically for d = 7, )\éll;T = 0 and
N = 501. The eigenvalues are clearly bounded within a finite region.

usual positive weak coupling regime. Note that while —Aéll;T > 1, Ay which appears in
the original Lagrangian satisfies A;l > 1. If we now carry out the analytic continuation
of (2.19) we find

Fr

4ri N2 A\ 2 16710N2
T < > =T (4.75)

S 3aqrr \ 273 3N
which diverges toward negative infinity as )\(_Q%T — —oo. Likewise, for the Wilson loop
using (2.21) we find that

4t

CAqrT

log(W) = log cosh(2mbr) ~ (4.76)
which increases as AQ%T — —o0. Note that the cosh function is consistent with the delta
function support at d = 7.

Since the central potential is unbounded from below, the position of the eigenvalue
center of mass is unstable. However, if the gauge group is SU(N) and not U(N) then
the eigenvalues satisfy the trace constraint ), o; = 0, which keeps the center of mass of
the eigenvalues at the origin. This suggests that the U(N) theory cannot be continued to
negative AQpr.

Note further that the saddle point analysis is robust if Aqp is small and negative, even
when N is finite. As an example, consider an SU(2) gauge group. This has two eigenvalues
01 = —o9, and following the analysis in appendix D.3 the saddle point gives the same free
energy as (4.75) with N = 2. From D.3 we also see that the fluctuations to the free energy
about the saddle point are

4ot

5F = —
AQFT

(601)?, (4.77)
hence the fluctuations are sharply suppressed and can be ignored if —Aqpr < 1.

4.6.2 Supergravity

Spherical D6-branes do not fit in the general framework described in section 3. In this
case the SO(6 — p) symmetry is trivial, hence the internal space is given simply by the
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two-dimensional de Sitter factor. Furthermore the eight-dimensional supergravity featured
in the construction is particularly simple and contains only two scalar fields instead of the
familiar three. For this reason we will analyze spherical D6-branes in several different ways
in supergravity.

The spherical D6-brane solution is given by the following type IIA supergravity back-
ground, where we keep the radius R of the sphere arbitrary [18],

RQGQ(I)/?’ 1 1 . ~
dS%O — W <4dp2 + dQ% + 16 sinh? p dQ%) ,
S
3
Hj; = ﬂe%dp A vols ,
9°93 (4.78)
i
Fg = 7V012 s
gs9

3
?? = g2 (T sinh p> .

The radial coordinate p takes values from 0 to co. It is convenient at this point to define
the new coordinate

274R? sinh?
v=""2""00 (4.79)
gV
The equations in (4.78) then reduce to
1/2 1/2
as?, :€2<< 2y N ) 2 qu? . (2(27r)4U> / R0
S 2
1/2
2(2m)* 2)”
2.2
o, — BKSQQYI\igU dU A voly 7 (4.80)
2
CrR 1+ S
FQ = lNgs VO]Q N
2
1/2
022 _ FmU® /
24 N3 '

These equations reduce to the flat space supergravity solutions in [17] when taking R — oo
while keeping U and ¢2,(N fixed. The parameter U can be thought of as the energy of
a string stretched between a probe DG6-brane and the N D6-branes. For small U this
is directly probing the weakly coupled 7D MSYM which has an effective coupling ggﬁ =
g%MU?’. However, in string units one sees that the curvature on the dSs is large for small
U so supergravity can not be trusted in this regime.

Following work of Susskind and Witten [45], Peet and Polchinski observed that U is
not actually the energy scale for a probe in supergravity [30]. Instead, this is determined
by the wave equation for a field in the bulk, say a scalar v, which is given by

0? kg3 N
(_8U2 T 20m)iU

) Uy =0, (4.81)
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where we have ignored the modes on dS,. From this we see that the energy scale for

o (W> ) (4582)

supergravity is

g%MN U
In terms of this energy we have that effective coupling is
2(2m)t \ /2
2
- , 4.83
gef-f gym (g%MNU> ( )

which decreases with increasing U. At the same time, the curvature on dSy is small if
is dual to a Weakly coupled gauge theory, but not the standard weakly coupled gauge theory

, which corresponds to g%;N < 2(27)%. Hence it seems that the supergravity

since that is found at small U where we cannot trust the supergravity.

Now let’s assume that R is large but finite. We then see from (4.80) that we are in
the flat brane regime when E as defined in (4.82) satisfies £ > R~!. This shows that an
observer starts seeing the curvature of the branes when the energy scale is on the order
of the inverse radius. Furthermore, the radius of the S” should be large in string units,
which requires that £ < 2(22” 'R

supergravity for distances sigl\iiﬁcantly below the size of the sphere. As E approaches the
27r R

R, hence we need weak coupling in order to trust the

, E scales as

sphere scale its dependence on U starts to change, such that when U >
(logU)~ ! ~ p~ 1.

As we keep increasing U the string coupling eventually becomes large and we should
uplift the solution to eleven-dimensional supergravity. The uplifted metric and fields were
given in [18], where the solution takes the form of H?2/Zy x S7. Explicitly, the eleven-
dimensional metric is given by

2

L
dsty = - (dsi+4d93) . L=R/g)/?
. h2
ds? = dp? — y (dt2 — cosh? tdy® + (N~ tdw — sinhtdw)z) . (4.84)

This metric has two time directions, ¢t and w, which is to be expected since it describes
the M-theory lift of a Euclidean brane. We refer to [18] for more details. The eleven-
dimensional 4-form is given by

Gy = % volg2,2 , (4.85)
where volp2.2 is the volume form for the H?>2/Zy metric. The energy scale on the sphere
maintains the p~! fall off so that for large p the only mode accessed is the constant one.
Note that there is also a conical singularity at p = 0 if N > 1. This singularity is what is
left of the highly curved ITA theory at small U.

Let’s now use the results from the previous section to propose a dual theory to the su-
pergravity. We saw using localization that there was a smooth transition between positive
and negative A,.. We also saw that the “strong coupling” behavior, that is having widely
separated eigenvalues, occurs when —\, < 1. If we assume that g%,M < 0 in the supergrav-
ity, then (3.2) and (3.13) imply that the metric and e2>® in (4.78) have a negative sign. To
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compensate for this we can send p — —p in which case we go back to the original signs for
the metric and string coupling, while the Hs field changes sign. The eleven-dimensional
supergravity metric in (4.84) is unchanged but the four-form field in (4.85) changes by a
sign under these transformations. Hence, now everything looks almost the same as before,
except any dictionaries we have between the supergravity and the gauge theory should have
932(1\/[ replaced with — g%M. For example, the condition for small curvature on the dSs is now
Us > 220
gymN
We are now ready to compute the free energy and Wilson loop VEV using supergrav-

which translates to the relation —g%¢N < 2(2m)* for the effective coupling.

ity. One way to evaluate the free-energy of the spherical D6-brane is to use the eight-
dimensional gauged supergravity originally used in [18] to construct the background. The
eight-dimensional action is

§— 1 /* R L(ds + P |ay?) — 2L 8 (4.86)
262 ) 7° 2 2 ’ '
where 2 is given by (3.20). The eight-dimensional BPS equations are written in terms of
the metric
ds? = dr? + R%e*d02, (4.87)
where the metric function A is only a function of the radial variable r. The BPS equa-
tions read
B = - 6A>
X =6iR e A2 (4.88)
208
A2 —R2.24,9C

These equations can be easily solved by using the function A as the radial variable. It can
then be related to the coordinate p appearing in (4.78) by the transformation

R
e = QT sinhp . (4.89)
Evaluating the action on-shell using the above expression for the eight-dimensional fields
results in
g /00(1 7 cosh 2p) sinh p d (4.90)
S=— + Tcosh2p)sinh p dp, i
211 g2l8m2 Jo

where we have included the Gibbons-Hawking term and performed the integral over the
7-sphere. This integral diverges as p — oo which as we argued before is the IR of the geom-
etry. The eight-dimensional metric is in fact completely regular there whereas the scalar
diverges. This statement is of course dependent on the frame we use in supergravity. It is
a lucky coincidence here that the Einstein frame metric is regular wheras the string frame
or any other frame which is related to the metric above via a power of the scalar field e? is
singular. Subtracting divergences at p — oo can therefore be done as before, by changing
frame and introduce curvature counterterms such that the divergences cancel. We can also
perform minimal subtraction; expand out the divergent terms and remove them by hand.
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In both cases the result is the same, the contribution of the IR is eliminated completely.
The on-shell action is completely dominated by its contribution in the UV. Using the
relations in (3.2) and (3.13) with g2, replaced with —g2,; we find

10 A2
phol — 107 3N : (4.91)
3)\hol
where
25 4£2
Aol = Ng2yR 3 = -~ (4.92)

gR? '
is defined as before but since there is no n-scalar in this case the equation (3.18) is not
directly applicable. The extra minus sign is to account for the negative Yang-Mills coupling.
This result is in complete agreement with the localization result in (4.75).

We can also obtain the result in (4.91) from the eleven-dimensional supergravity. Be-
fore any Wick rotation the eleven-dimensional action is given by [46, 47|

1./ a1 [ pay) 2
167TG11 /d z\/ g < |G | > (4.93)

where .
|G4|2 = I(G4)/L1...u4 ((;4)‘“1“”u4 . (494)
Substituting the solution (4.84)—(4.85) into (4.93) results in
1 12
= dazy /g —= 4.
167G / ””” 2 (4.95)

In order to evaluate this on-shell action we need to Wick rotate one of the time directions
as t — —i7 in (4.84). This changes the metric ds? to

h2
ds? — dp? pamn e 1 (dT + cos’ rdy? — (N _ldw+isin7'dw)2) , (4.96)

Note that the M-theory circle parametrized by w remains time-like. Even though the metric

is now complex, its determinant remains real. The on-shell action then becomes'*

12 1 7oL [P0
Son—shell = /11 = dpsinh® p (4.97)

167rG11 L2 167Gy 2N 0

where we have introduced a UV cutoff py to regulate the volume of Hz; in (4.96). As we
take p > 1 the on-shell action behaves as

1 #8192 /1 3 2
Son— = — PP _ ZePo 4 Z 4 O(eP0 . 4.98
on—shell 167TG11 IN <24e 8e + 3 + (e )) ( )

The contribution to the integral over p in (4.97) might not be trustable for p < |[Aqrr|'/®. However, if
[Aqrr| < 1, then this will lead to corrections of order \)\QFT|2/3 and the results in (4.99) are trustable to
leading order.
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The divergent contributions in this expression should then be removed to obtain a finite
action. Using G11 = 1677¢) and the modified AdS/CFT dictionary to account for the

‘ : 3. _ _9%u 15
negative coupling, (27/s)°gs = —=2L, we find
16 10
GRen. ©NZ. (4.99)

on—shell = 3
3)\hol

This again agrees nicely with the free energy in (4.75).
The BPS Wilson loop can be computed using the ITA solution in (4.78). The on-shell
string action in this case is given in terms of the eight-dimensional metric function

1
S=— /ReA dr . (4.100)
KS
Changing coordinates to the radial coordinate p as above we find
R3 00
Sutring = = / dpsinh p, (4.101)
863 Jo

Just like the on-shell action, this integral diverges in the IR and can be regularized by
adding a simple counterterm analogous to (3.34). This counterterm implements minimal
subtraction resulting in the following expression for the Wilson line expectation value

47t

)
)\hol

log(Whely = — (4.102)
where we have again flipped the sign of g%,M in the dictionary. This precisely agrees with
the localization result in (4.76).

An alternative way to compute the Wilson loop VEV is to evaluate the on-shell action
of an appropriately embedded M2-brane in the eleven-dimensional solution (4.84). The
M2-brane wraps the equator of S7 and extends along p and the M-theory circle w. In
particular the brane is fixed along ¢ and % since it should be constant along the field
theory scalar ¢g. The holographic dual to the Wilson loop VEV is then given by

log(Wh) = —S¥5", (4.103)

where the probe M2-brane on-shell action is given by

She = o d30'\/ det P[GMN] . (4.104)

P[Garn] denotes the pullback of the determinant of the eleven-dimensional metric to the
M2-brane worldvolume and the brane tension is given by us = (27372)2. Evaluating this

action on our solution gives the following diverging result

L2 > L?
Smz = ,u24]\7;(27r)/0 dpsinhp = 987§(cosh po—1). (4.105)

5Note that in [18] the regularized on-shell action was computed using a four-dimensional effective super-
gravity approach leading to a result which differs by a factor of 2 from (4.99). The eight-dimensional and
eleven-dimensional approaches we use here is better justified and should be employed instead.
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where in the second step a cut-off py was introduced to regulate the divergence. By adding

a simple counterterm
3

L° .
SW et = _%W sinh pg , (4.106)
S

very similar in spirit to the counterterm (3.34), we obtain the following renormalized on-

shell action X
Ren. gL

S = —==. (4.107)
Inserting the expression for Ay in this equation with a sign change in the dictionary results
in the following expression for the holographic Wilson loop VEV

47t

log(Whe!) = — 7.
hol

(4.108)
This agrees nicely with the type IIA calculation in (4.102) and the localization result
in (4.76).

In [17] it was noted that the supergravity solution for D6-branes could be trusted even
for small N. This is consistent with our results here. As we showed in the last section, the
form of the free energy holds for small N, at least if N is even. In the classical supergravity
we find the same free energy as a function of IV so this appears to align well with the claim

in [17]. There is a subtlety however for odd N. As follows from (D.18), the localization
N(N-1)
(N-1/2)°
eigenvalue has to be placed at the origin in the solution to the saddle point equation.

result for the free energy comes with an extra factor of . This arises because one
Hence, it is essentially a quantization condition that the supergravity does not directly see.
In the IV = 1 case the free energy is zero for the gauge theory, not surprisingly since the
gauge group is SU(1) which is trivial. The supergravity does not look trivial although the
eleven-dimensional uplift is now smooth at the origin. It would be interesting to understand
this point better.

5 Discussion

In this work we showed how to compute the partition function and the expectation value of
a BPS Wilson loop for SU(NV) maximal SYM on S% in the limit of large N and large "t Hooft
coupling for 2 < d < 7. We approached this problem using supersymmetric localization
in the QFT as well holography using the spherical brane supergravity solutions of [18].
Both calculations involve non-trivial elements due to the peculiarities of the localization
matrix model for certain values of d and the fact that the supergravity solutions are not
asymptotically AdS. It will thus be interesting to extend and generalize our work in several
directions which we discuss below.

Studying the generalization of our construction for SYM theories with less supersym-
metry is of clear interest. Both pure and matter coupled SYM theories on S¢ with 8
supercharges exist in 2 < d < 6 and it is possible to study them in the large N limit using
supersymmetric localization. Constructing the corresponding supergravity solutions is not
straightforward since it is not clear which classes of such SYM theories have weakly coupled
supergravity dual. The analogous question for SYM with 4 supercharges on S with d < 4
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is also interesting but is perhaps even harder to analyze, both in quantum field theory and
in supergravity.' We do not know how to extend our construction to d > 7 but it will
certainly be interesting to study this. See [49] for some recent work on curved D7-branes
and [50, 51] for a QFT analysis that may be relevant to this question. We have focused on
MSYM theories on the round sphere in this paper. It is possible to place supersymmetric
gauge theories on other curved manifolds, for example on squashed spheres, at the price
of breaking part of the supersymmetry. The generalization of our analysis to these more
general setups will be interesting to pursue.

In the analysis of the matrix model results we have focused on planar MSYM in the
limit of large 't Hooft coupling A. It will be very interesting to extend this analysis to finite
values of A while remaining in the large N limit. This will allow us to understand whether
there are any interesting phase transitions as a function of A akin to the ones observed
for N' = 2% in [4, 52]. For MSYM on S our results appear to be exact in A. While the
free energy of this theory vanishes the Wilson loop VEV is non-trivial and does not have a
form suggesting a non-trivial phase transition. It will be desirable to understand this result
from a a perturbative analysis in the weakly coupled planar MSYM theory. Alternatively
one could attempt to study 1/A corrections to the on-shell action of the probe-string in the
supergravity solution.

In the holographic analysis of the spherical brane solutions we successfully employed
the holographic renormalization procedure in the context of asymptotically non-AdS space-
times. It is desirable to put this procedure on a more solid footing and to address the subtle
question on how to fix the coefficients of the finite counterterms in the on-shell actions we
have encountered for D2- and D4-branes.

Finally, we would like to stress that for D5/NS5-branes, both in the matrix model
and the supergravity solution, we have encountered some intriguing UV divergences which
we managed to regularize in a seemingly consistent way. It will be very interesting to
understand whether these calculations can teach us something about the structure of the
(1,1) little string theory.
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A Useful integrals

The following integrals are useful for the calculations in section 2

bdo'|o — o’ |*sign(c — o) o
][b 02— o)o? = TQo csc <?> , (A1)
and b l—a, 1/27 (2=
/ do’ _ blmeml AT (552) | (A.9)
B G T V€

where we have defined o = d — 5. Note that the result in (A.1) is independent of b. The
result in (A.1) can be understood by splitting the integral into two parts,

/da((,_a) _ /bdff(a—ff) (A.3)

(b2 = g2)/2 b2 — g')/2 "
b ( ) o ( )

Both integrals in (A.3) are discontinuous as ¢ crosses the branch cuts between —oo <
o < —borb< o < oco. However, it is straightforward to show that the discontinuities
cancel between the two integrals and so the sum must be a holomorphic function of ¢ in
the complex plane. By taking o to a large imaginary value in (A.3) one can see that the
combined integrals have a leading linear behavior in o with the coefficient in (A.1), while
the constant piece is zero because the integral in (A.1) is clearly an odd function of o.

It proves useful to define the following function

r2s2) o <1 a 3‘02)‘

NG s \20 2 2

flo) = (A.4)
One can show that f'(c) = p(o) where p(o) is defined in (2.14), and that f(b) = 1/2. Note
that since p(o) is an even function of o, f(o) is an odd function.

Finally, we present two integrals which are useful for the calculation of the free energy

b 2
L = /bdap(0)02 = b (A.5)

and

L= /b dop(o)(b— o) = 2bd—47r—1/2r<d; 1)r<8 ; d) . (A.6)

—b
B Gauged supergravity construction

Here we summarize the results in [18] on how to obtain the spherical brane solutions of
interest from maximal gauged supergravity in p + 2 dimensions. The Lorentzian super-
gravity theory is constructed by a reduction of type II supergravity on S®~P. This theory
has to then be analytically continued to Euclidean signature and further truncated to its
SU(1,1) x SO(6 — p) invariant sector in order to capture the R-symmetry of the dual
maximal SYM theory on SP*1. The spherical brane solutions preserve the SO(p -+ 2) isom-
etry of the sphere which the branes are wrapping. This implies that the solutions can be
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constructed by restricting only to the metric, one real scalar fields 7, and one complex
scalar field 7 parametrizing an SL(2)/SO(2) coset.!” The bosonic action for the truncated
Lorentzian gauged supergravity theories for 0 < p < 6 are

1

3p 2 2
R+ ———|dn|” = 2K z|dr|" =V ; , B.1
2ﬁp+2 /*p+2 { " 2(p — 6)| d Korrldr] } (B1)

where V' is the scalar potential and .7 the Ké&hler metric obtained from the Kéahler

K = —log <T;?) , (B.2)

The scalar potential can be written in terms of the superpotential

potential

—qg e3" (37 + (6 — p)iefﬁg for p < 3,
W = o (B-3)

—g e2(6 26=p)" (3196 p'! (6—p)7’> for p > 3,

where ¢ is the gauge coupling constant of the supergravity theory. The scalar potential
then reads

1 1
V—2e’<(6 Prlowp + IC”D WD:- W—“ \W\) (B.4)

where D, = 9; + 9;K is the Kéhler covariant derivative.
For p = 6 the scalar 7 is not present and the action takes the form

1
S=5 52 *3 { R — 2K 7|dr 2 =V}, (B.5)

where

_ 1 K 1 7 77_1 2
V= e <4IC D,WD:W - = W) > (B.6)

and
W = =3ig. (B.7)

The actions discussed above are in Lorentzian supergravities and have to be analytically
continued. This amounts to taking 7 and its complex conjugate 7 as two independent scalar
fields. We should work with two superpotentials, WV as defined in (B.3) and W given by

—g e (37: — (6 —p)ie_ﬁn) forp <3,
W = (B.8)
3(2—p) P
g 26" <3ie6fpn — (6 — p)i’) for p > 3.

The scalar potential of the Euclidean theory is obtained by replacing W by W in (B.4).
The spherical brane solutions are domain wall backgrounds of the Euclidean super-

gravity with the following metric

dsZ,o = dr? + R%*4dQ2, | . (B.9)

"The cases p = 3 and p = 6 have to be discussed separately.
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The scalar fields and the warp factor A only depend on the radial variable r. The constant
R is the radius of SP*! and is auxiliary since it can be absorbed into a redefinition of the
metric function A.

We can now use this Ansatz in the supersymmetry variations of the (p+2)-dimensional
gauged supergravity theory and look for solutions which preserve 16 supercharges. We find
the following system of BPS equations:

(n)? = <63_pp>2 (O, (@,W). (B.10)

()(7) = e <612pp > (O, W) K7D W (B.11)

)(F) = e (61 - ) (0, )7 Do, (B.12)

() (A — R Te4) = —e (66p p) @)W, (B.13)
() (A" + R te ) = = (66;21’ ) @V, (B.14)

where K77 is the inverse of the Kihler metric. Equations (B.10), (B.11), and (B.12) arise
from the spin—% supersymmetry variations, while (B.13) and (B.14) arise from the Spin—%
variations.
Equations (B.13) and (B.14) lead to a first order differential equation and an algebraic
relation for the metric function A(r)
A _ L 2p 77 203,

. B.15

The BPS equations in (B.10)—(B.14) are compatible with the second order equations of
motion after the analytic continuation.
It is convenient to introduce a new parametrization of the scalar fields as

7 =ie T3(X +Y), F=—ie T3(X —Y), for p < 3,
=i (X +Y), F=—iet (X —Y), for p> 3. (B.16)

To find regular solutions of the BPS equations we impose appropriate boundary condi-
tions in the IR. Guided by the physics of the MSYM theory on SP*! we look for solutions
in which close to some finite value of the radial coordinate r — rg the metric is that of
(p + 2)-dimensional flat space in spherical coordinates

d3227+2 ~ dr? 4 (r — TIR)QdQIQ)_H . (B.17)

In the UV region, i.e. for large values of r, the solution should approach the flat brane
domain wall solution for which X = 1 and Y = 0. The scalar fields should approach a
constant finite value in the IR. These IR values can be found as critical points of the
superpotential W (or W)

oW =D W =0, (B.18)
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which in terms of the scalars X,Y leads to the solutions in (3.12). The upper and lower
sign in (3.12) refers to a critical point of W and W, respectively. For p = 4 the critical
value of the superpotential is at the UV point X = 1.

B.1 Evaluation of kp42

Here we provide a derivation of the Newton constant in p+2 dimensions from the one in ten
dimensions by employing dimensional reduction. Consider the metric (3.1) transformed to
Einstein frame and evaluated in the UV, i.e.

2(p—3)
-~ _ (8=p)(p—3) e (6—-p)
ds%3 e gs 1/26 4(6—p) n d5§+2 + ngg_p . (Blg)

The type Il supergravity action is given by

S10 =5 [ 4d"z/=gq0)Rao) + (B.20)

where the dots represent other terms in the Lagrangian which are not important for the
(2mls)8
4

present discussion and R%O = . The (p+ 2)-dimensional supergravity action obtained

from this action is

/dp+2 Ty/=Ypt+2) Bipt2) T (B.21)

Sp+2 %% 5
p+2

The goal is now to obtain K,Z 1o, i.e. the Newton constant on the (p+ 2)-dimensional space.
To do this we insert the metric (B.19) in the ten-dimensional action and integrate over the
internal (8 — p)-dimensional space. Doing this results in a warp factor which we eliminate
by performing the conformal transformation

(8—p)(p—3) _p(8—p)(p— 3)

Guv = g5 Pe” A6 g0 /GR = g PR s T [—gUORUD - (B.22)

This transformation exactly removes all factors of the function 7 from the internal space
and thus we find the unambiguously defined (p + 2)-dimensional Newton constant
11 Ve,
2”;27+2 2K39 929577

(B.23)

where V,,_; = 277/ I'(5) is the volume of the unit n-sphere.

C Solution for d = 6

In this appendix we present an alternative derivation for the free energy and Wilson loop
expectation values of 6d MSYM theory that were obtained in section 4. For this purpose
we start with the saddle-point equation (4.47) in d = 6 — € dimensions. After renormaliza-
tion (4.48) of the coupling A, these equations reduce to

1673
—No; = —SZ — ) log(o; — 0;)%. (C.1)
AQET J#i
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Notice that the r.h.s. of this equation describes repulsive interaction between eigenvalues at
short distance of the eigenvalues and attractive at large distance. Hence in order to have
stable distribution of the eigenvalues with large size of the support we should consider
AqrT < 0 which is consistent with the conclusions of the section 4.

In the continuous limit we as usually introduce eigenvalue density according to (2.12)
and rewrite saddle-point equation (C.1) as the following integral equation

1673 ’ rogt / N2
— o= do'p(c’)(o —o')log(oc — ")~ (C.2)
3AQFT b

This equation has already appeared before in the context of 4d N' = 2 theories in [2, 4].
To solve it we should differentiate it twice w.r.t. o in order to obtain

b /
/ do’ ”(_“ ), ~0, (C.3)
—b g g

which is the standard singular integral equation with Cauchy kernel. This equation has

the following unbounded normalizable solution
1
o) = —7— Nk
In order to define position of the support endpoint b we can use the following integral:

b (o —0")log(o —o')? be
/ —
/—b do — = 20 log < 5 ) . (C.5)

Comparison with (C.2) immediately gives

(C.4)

3

81
=2e — -1, C.6
xp( — ) (C.6)

which precisely reproduces expression (4.51) we have obtained previously considering € — 0
of general expression (2.15). It is also worth noticing that the eigenvalue density (C.4) which
solves (C.2) is consistent with the € — 0 limit of the general expression (2.14) provided we
also use coupling renormalization (4.48). On figure 8 we also compare numerical solutions
of equations (C.1), (2.6) and analytical solution (C.4). As we see solutions to the equa-
tion (2.6) with full kernel agrees with the solution of (C.1) when d is close to 6. Also the
solution (C.4) describes both numerical solutions very well.

Finally to find the free energy instead of substituting eigenvalue density (C.4) into free
energy functional we notice the following identity

1 OF 83 /b 5 1673 — 167 o
- = p(o’)o’ = — e 3AQFT (C?)
N2 O\, A%QFT b )\éFT
Integrating this identity we easily obtain
F _dond o
= —3e *arr (C.8)

N2
which exactly reproduces expression in (4.50). Wilson loop we will obtain from (C.4)
and (C.6) will obviously also reproduce previously obtained result (4.52).
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Figure 8. The eigenvalue distribution of 6d MSYM for N = 100 and Aqrr = —20. In particular the
orange dots correspond to the numerical solution of (2.6) at A, = 0.42 and d = 5.995 (e = 0.005).
The latter parameters correspond to Aqrr = —20 according to (4.48). The red dots in turn
correspond to the numerical solution of (C.1) at N = 100 and Aqrr = —20. Finally the dashed
blue line shows the eigenvalue density (C.4) with the endpoint position b given by (C.6).

D Solutions for d =7

D.1 An alternative derivation for the eigenvalue density

In this part of the appendix we present an alternative way to analyze the matrix model (2.4)
for the d = 7 case. For this purpose we have to solve the saddle point equation (2.13)

b
1 o= 02/ do'p(c')|o — o'|*sign(o — o) (D.1)
AQFT b
with the regularized 't Hooft coupling AqrT which we assume is small and negative such
that the eigenvalues are in general widely separated. The integral equation in (D.1) is
closely related to the saddle point equation of the matrix model for five-dimensional SYM
in the decompactification limit, i.e. when the radius R of S° is taken to infinity. A detailed
analysis of this matrix model can be found in [53].

To solve (D.1) we differentiate both sides of the equation twice with respect to o. This
leads to the simple equation

/_l; do’p(c’)sign(o — o') = /_(; do’'p(o’) — /: do'p(c’) =0. (D.2)

This equation should be satisfied for any ¢ on the support, but this is possible only if the
eigenvalue density p(o) is zero everywhere except at the support endpoints, £b. Hence, we
can assume the following form for the solution,

(0(c+b)+0d(c—0b)), (D.3)

N |

plo) =
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where the factor of 1/2 is introduced to normalize the eigenvalue density. The endpoints of
the distribution can then be found by substituting the density (D.3) back into the integral
equation (D.1). This then results in the simple algebraic equation

CiAGhro = %CQ [0+ (0], (D.A)

which, using (2.6) and (2.10), leads to

1 Cl 271'3
b= ——L = . D.
2ACy  Aqrr (D-5)

The final expression agrees with (4.73) determined from the general expression. One can
also easily obtain the free energy in (4.75) using the distribution in (D.3) and the value of
bin (D.5).

Note that we can also derive the d-function behavior in (D.3) directly from the expres-
sion for the density in (2.14). If we let d = 7 — € then it is straightforward to see that the
density approaches zero in the limit ¢ — 0, everywhere except at ¢ = +b.

D.2 Numerical solutions at weak negative coupling

In this part of the appendix we analyze numerically the solution to (2.6) for d = 7 and
a weak negative renormalized 't Hooft constant. Here we solve a “heat equation” nu-
merically,'® which at large “times” approaches asymptotically the solution to the saddle
point equation below in (D.17). However, we also assume that the solution is symmetric
around the origin, i.e. for each eigenvalue o; there is another eigenvalue —o;. As can be
seen from figure 9(a), which compares the numerical and analytical results, the solution
in (D.3) indeed reproduces the behavior of the eigenvalue distribution at weak negative
coupling. Notice that the graph is for A\qpr = —1 which is not very small. Our solution

works whenever Mgffl < 1, which obviously holds for Aqrr = —1.
For —)\(S%T > ﬁ the eigenvalue distribution separates into two widely separated peaks

according to (D.3) with distance ‘;;LFBT‘ between them. However if we include subleading

terms in the kernel we can argue that the peaks are actually humps with a width of order

1. Including the next term, G%)(a) in (4.74) has the expansion

G\D (o) = 2n(1 — 0%)sign(a) + O(e 1), (D.6)

At this order in the approximation there is a repulsive force at short distance which smears
the peaks into finite size humps. To estimate the size of these humps we note that the
eigenvalue distribution is even about ¢ = 0. Hence, assuming that N is even, we can

express the eigenvalues as

o; = —0g — 00; 1<i< N/2,
o; = 09 +00N_; N/2+1§i§N. (D.?)

18See [53] for a more detailed explanation of the numerical techniques.
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Figure 9. Eigenvalue distribution of 7d MSYM for N = 400 and Aqrt = —1 and Aqrr = —3. In
the left panel we compare numerical results for A\qpr = —1 against the eigenvalue density (D.3),
while on the right panel we compare numerics for A\qrr = —3 against the analytical solution (D.13).
The latter one takes into account the finite width of the eigenvalue support.

Here we assume that o > |do;| and

N/2

> 60i=0, (D.8)
=1

to keep the center of mass of the eigenvalues on each hump fixed at +0¢. The equation of
motion in (2.6) for the positive eigenvalues can then be well approximated as

N/2 N/2
A3 N
"o +807) = Y [1— 0% coth (wai;) + 3 (1 (200 + 607 + 605)%) . (D.9)
AQFT — —
JF j=1
Setting op = —%, (D.9) reduces to
o N/2
—1= N Z ([1 — afj] coth (7 ;) — 0'2-2]-) , (D.10)
J#

where the condition on the sum in (D.8) is also imposed. This last equation has no A
dependence and we can expect that the o; range over a size of order 1. This can be

confirmed numerically as can be seen in figure 9(b).
In figure 9(b) we can see an exponential fall-off of the humps. We can capture this

behavior using the expression (D.6) for the kernel. In this case the continuous limit of (2.6)

can be written as
b

71.3 o
1 o= / (1— (0 —0"))p(c")do' - / (1— (o —a"))p(c)do". (D.11)

AQFT —b o

Taking three derivatives with respect to o on both sides of the equation gives

20" (o) —4p(a) =0, (D.12)
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hence

plo) = \l/% cosh (\/5 0) ) (D.13)

with the constraints

1= /bb \I/% cosh (\@0) do = ksinh (\@b) , (D.14)

= V2k (cosh (ﬂb) — V2bsinh (\/517)) . (D.15)

473

AQFT

Using (D.14) we can rewrite (D.15) as
1
sinh (\/1 T2 t) =, (D.16)

where t = 2v/273 / Aqrt. For a given Aqpr one can solve (D.16) for k£ numerically, and thus
determine p(o) in (D.13). The dashed line in figure 9(b) shows this density at AqrT = —3.

D.3 Solutions at weak negative coupling and finite N

In this part of the appendix we consider d = 7 solutions at finite N. For small negative
regularized coupling we can use the approximate equations of motion in (2.11), which for
d="T are

A3 N .

3 o; = ZO’%Slgn (0i5) - (D.17)

QFT —

JF#i
Assuming that N is even, the solution that corresponds to the large N solution in the
previous subsection has N/2 eigenvalues at o, = by = — )\QQ“:T and N/2 at o_ = —0o.
However, if we put 2M eigenvalues at 0 = 0, then we can also satisfy (D.17) if we place
N/2— M eigenvalues at o = —/\QQL;TNTM and the same number at o = —0,.1% We have

ignored short range interactions here, but as is shown in the previous subsection they only
spread the eigenvalues an order 1 distance from the peaks.
The free energy for these more general solutions is given by

_ 16710N? ( M2 )

F= R (D.18)

3
demonstrating that the free energy increases with increasing M since Aqrr < 0. Assum-
ing that Aqpr is also small (D.18) shows that the solutions with nonzero M are heavily
suppressed. If N is odd then M is replaced with M + 1/2 in (D.18).

The quadratic fluctuations about the lowest energy solution are

4
OF = Ar N Z(éai)z + QWZ loi — oj|(80:)* — 271'2 loi — ojldoido;
AQPT 4 i i
ah (N2 N/2
= 5o 5ol ), D.19
e (207 (20 o

YThere are still other solutions, e.g. one can have an unequal number of eigenvalues at o4 and o_, in
which case o_ # —0o.

— 46 —



where 50§+) are the fluctuations of the eigenvalues at o4 and 507 are the fluctuations of

K3
the eigenvalues at o_. Hence, to quadratic order there is a tachyonic mode corresponding
to the overall center of mass motion, which is not present for SU(N), and a positive
mode corresponding to the average of the left and right eigenvalues moving in the opposite
direction. This latter mode has a large positive coefficient and thus is sharply suppressed.
All other modes are zero modes.

The zero modes are not exact as there are nonzero cubic terms. Since the center of mass
modes are either removed or suppressed, we can assume that ), (50i(+) => (502(_) = 0.
Then the fluctuations of the free energy are

N/2

T _ _ _
OF = 3 Z (]501“) — (5UJ(~+)]3 + ](50§ ) _ (505» )|3 + 2(505” — 50§ ))3)
i,j

N/2 N/2
= g (N Z(éo§+))3 + Z ](505” - 5Jj(-+)|3>
l N/2 " N/2
+g ( ~N Z(aai(*))?) + Z dof )~ 50§)I3> , (D.20)
(3 ,]

where we see that right and left fluctuations decouple from each other. Note that these
fluctuations are of order 1 and independent of AqrT, hence their only effect is to shift the
free energy by an unimportant constant and can be ignored even for small V.
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