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Neuroeconomics theories propose that the value associated with diverse rewards or reward-

predicting stimuliis encoded along a common reference scale, irrespective of their sensory properties.
However, in a dynamic environment with changing stimulus-reward pairings, the brain must also

represent the sensory features of rewarding stimuli. The mechanism by which the brain balances these
needs—deriving a common reference scale for valuation while maintaining sensitivity to sensory

contexts—remains unclear. To investigate this, we conducted an fMRI study with human participants
engaged in a dynamic foraging task, which required integrating the reward history of auditory or visual
choice options and updating the subjective value for each sensory modality. Univariate fMRI analysis

revealed modality-specific value representations in the orbitofrontal cortex (OFC) and modality-
general value representations in the ventromedial prefrontal cortex (vmPFC), confirmed by an
exploratory multivariate pattern classification approach. Crucially, modality-specific value
representations were absent when the task involved instruction-based rather than value-based
choices. Effective connectivity analysis showed that modality-specific value representations emerged
from selective bidirectional interactions across the auditory and visual sensory cortices, the
corresponding OFC clusters, and the vmPFC. These results illustrate how the brain enables a valuation
process that is sensitive to the sensory context of rewarding stimuli.

When we are presented with options for making a choice, our decisions are
guided by our expectations of the rewards associated with each option.
Theoretical frameworks of value-based decision-making suggest that our
brain associates a subjective value to each available option based on their
expected rewards (i.e., a valuation process), then compares these values, and
makes a final choice'™. In a multimodal dynamic environment, choice
options can have fundamentally distinct sensory features and their asso-
ciated values can change in time. For instance, the sound of a coffee machine,
the smell of fresh bread, and the sight of a bottle of our favourite smoothie in
the fridge could evoke the pleasant expectation of a nice breakfast and may
therefore have similar value for us as we wake up in the morning. But after
satiation we may not enjoy the smell of bread or the sight of smoothie as
much as we may still be pleased by the sound of coffee machine.

To address the choice problem in a complex environment, as illustrated
above, the brain’s valuation process should adhere to two fundamental
principles. Firstly, it is important to be able to compare and choose between

distinct types of outcomes, hence value representations independent of the
specific type of rewards (e.g., juice, money, or social reward) and the stimuli
predicting these rewards (e.g., sound of coffee machine or a picture of a
smoothie bottle) should exist in the brain’™'*. This concept is often referred
to as “common currency” coding of value'”™". Secondly, the encoding of
recent stimulus-value associations should include specific information
about the sensory features of each available option'. These stimulus-specific
(also referred to as identity-specific) representations of value enable flexible
adaptation to rapid changes in internal states or external stimulus-value
associations'*, which is crucial in a dynamic environment. Given that
generalization across sensory features may conflict with the need for specific
representations for each sensory context, the question arises as to how the
brain reconciles these conflicting requirements while computing the sub-
jective value. Here, we investigate this question in a dynamic choice
environment in which reward-predicting stimuli vary both in their sensory
modality (auditory or visual) as well as their reward association history.
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Orbitofrontal frontal cortex (OFC) and ventromedial prefrontal cortex
(vmPFC) are key brain areas involved in the computation of subjective value
and guidance of value-based choices"'”***’. Different lines of evidence have
pointed to the potential role of OFC, in particular the lateral OFC, in
stimulus-specific valuation””****, whereas vmPFC has been shown to
underlie common currency coding of reward value’'"**"*". However, most
of these insights have been derived from studies focused on visual stimuli
and it remains uncertain whether they extend to the representation of the
value of reward-predicting stimuli from different sensory modalities. More
importantly, the neural mechanisms that generate stimulus-specific repre-
sentations of value and coordinate these with common currency valuation
have remained underexplored. These gaps have been noticed and addressed
by a few recent studies™ ™. Specifically, Shuster and Levy* introduced an
elegant way of investigating how the representation of subjective value
interacts with the sensory features of stimuli through employing reward-
predicting options from two different sensory modalities. Stimuli from
different sensory modalities have distinct representations at the input level
—for instance in the early visual and auditory cortices. This feature provides
a unique opportunity to selectively trace the neural mechanisms that gen-
erate the representations of value dependent or independent of the sensory
context across the brain, from the early sensory areas to the frontal valuation
regions. Taking this approach, Shuster and Levy"’ demonstrated the exis-
tence of common representations of stimulus value in the vmPFC, whereas
modality-specific representations were only observed in the sensory areas.

In the current study, we aimed to build upon these observations" and
find whether modality-specific stimulus value representations (SVR) also
exist in the key valuation regions in the frontal cortex. We were specifically
interested in the valuation process in a dynamic foraging situation when
trial-by-trial updating of computed values based on tracking modality-
specific reward history is necessary. We further sought to understand how
the putative modality-specific representation in the frontal cortex are gen-
erated through using an effective connectivity analysis approach. Lateral and
posterior regions of the orbitofrontal cortex receive highly specific and non-
overlapping sensory afferent inputs from auditory and visual sensory
areas''. More medial prefrontal areas including vmPFC on the other hand
receive few direct sensory inputs*’. Moreover, past research has shown that
reward value modulates early sensory processing* . Based on these find-
ings, we hypothesized that the representation of each option’s value should
exist in OFC in a modality-specific manner and in vmPFC in a modality-
general manner, and that the co-existence of these coding schemes in the
frontal valuation regions is enabled through long-range interactions with
the respective sensory cortices of each modality.

In order to test these hypotheses, we acquired fMRI data in a value-
based decision-making task with a dynamic foraging paradigm adopted
from a previous study *’. In this task, participants were presented with two
stimulus options and chose the one they believed was associated with
monetary value based on the trial-by-trial history of reward feedbacks. The
two options were rewarded in an independent and randomized fashion to
simulate foraging behaviour in a varying environment. To test the influence
of sensory modality through which reward information was presented, the
task was performed under three different conditions: auditory, visual, and
audio-visual, where the choice was made either intra-modally (between
options from the same sensory domain) or inter-modally (between options
form different sensory domains). To test the hypothesis that modality-
specific representations in frontal areas were due to a specificity in value
processing requirements and not due to the difference in sensory processing
requirements of the auditory and visual domains, a control task was also
employed. The control task was designed in a way that the sensory pro-
cessing requirements were identical to the value task, but selection was based
on passively following an instruction as to which stimulus to choose, and not
on the assessment of options’ reward history. Univariate fMRI analyses
revealed modality-specific and modality-general value representations in
lateral-posterior OFC and vimPFC, respectively. These results were corro-
borated by an exploratory multivariate analysis, conducted to test the
robustness of the univariate results. Effective connectivity analysis of a

network consisting of regions exhibiting value modulations in auditory and
visual sensory cortices, lateral and posterior OFC, and vinPFC, revealed how
the two types of value representations emerge and guide value-based
decisions.

Results

Behavioural results

We examined participants’ performance in two behavioural tasks (Fig. 1),
referred to as the value-based choice (value) and the instruction-based
(control) tasks. In both tasks, participants aimed to maximize their
performance while making a choice between two stimulus options.
Specifically, in the value task, they sought to maximize their reward by
choosing the stimulus option that they believed was associated with
reward based on the feedback history (for details see Methods). In the
control task, participants’ objective was to enhance the accuracy of fol-
lowing instructions regarding which option should be chosen. The pre-
sented choice options were either from the same modality (two auditory
stimuli or two visual stimuli or they were from different modalities (one
auditory and one visual stimulus, as shown in Fig. 1A, B). A choice was
made between two stimulus options from two sets: S1 or S2. In different
blocks, set S1 included intra-modal auditory low pitch, intra-modal
visual green, and inter-modal auditory (high or low pitch). Set S2
included intra-modal auditory high pitch, intra-modal visual red, and
inter-modal visual (red or green). We will refer to these sets as S1 = {low
pitch, green, auditory} and S2 = {high pitch, red, visual}.

In the value task, participants experienced an unpredictable outcome
scenario with a dynamic reward structure. In brief, rewards were assigned to
the options from different sensory modalities independently and stochas-
tically at random intervals using a Poisson process’'. On average, a reward
was available for delivery on 33% of the trials and they were distributed
between the two stimuli options in different reward ratios of {1:3, 1:1, 3:1}.
To ensure a balanced choice between both options, two constraints on
reward delivery were implemented, known as “baiting” and “change over
delay” (COD), which were adopted from previous studies’™". In baiting, a
reward assigned to an option remained available until that option was
chosen, preventing “extreme exploitation”. Additionally, if the participant
switched their choice from one option to another, the earned reward
feedback was delayed by one trial and delivered only if the participant chose
the same option again. This cost, referred to as COD, was used to discourage
an “extreme exploration” strategy, where the participant could consume all
rewards without any learning by rapidly alternating choices between
options.

Overall, the choice pattern in the value task exhibited matching
behaviour nearly in accordance with the Herrnstein’s Matching Law *,
which relates the choice behaviour to reward ratios {1:3, 1:1, 3:1}, as shown
in Fig. 2A for all modality conditions (auditory, visual, audio-visual). Spe-
cifically, the choice ratios, which indicate the number of choices made
towards one reward option (S,) over another (S,), increased as the S, : S,
reward ratio increased. Importantly, the choice patterns were consistent
across sensory modalities. This effect was captured by a strong main effect of
reward ratio on choice ratio (F[2,38] = 183.8, p < 0.001) and no significant
interaction between reward ratios and options’ sensory modality (F[4,171] =
0.95, p = 0.34) in a two-way repeated-measures ANOVA. Only a relatively
weak effect of modality on choice ratios was observed (F[2,38] = 5.95,
p=0.024), which corresponded to a tendency of participants to choose
visual options more often than auditory options in the audio-visual block
(see Table S1). Therefore, we collapsed the choice ratios across modalities for
a concise presentation of behavioural results (as shown in Fig. 2B). Analysis
of reaction times (RT) revealed no significant effect except for slower RTs in
audio-visual compared to both auditory and visual conditions, reflecting
that choosing between options from different sensory modalities is more
difficult than choices made between items from the same modality (for
details see the Supplementary Information and Fig. S1).

We next tested whether participants’ choices in the value task followed
the predictions of our computational framework. The linear-nonlinear-
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Fig. 1 | Experimental paradigm and computational framework of choice beha-
viour. A General schematic of an audio-visual (AudVis) trial in both behavioural
tasks (i.e., value and control tasks). After ajittered inter-trial interval of fixation (Fix),
stimuli (Sti) options were presented. Participants made a choice during a response
window of 2.25 s from the onset of stimuli, after which the fixation changed to either
yellow or blue colour to indicate the feedback (Fbk). In all intervals, two white noise
placeholders were shown on the screen. If a choice option was assigned to be from the
visual modality, the corresponding placeholder was replaced with a coloured
checkerboard (as shown here by a red checkerboard). On the right side of A the
stimuli options presented during an auditory (AudAud) or a visual (VisVis) trial are
displayed. In the value task, the yellow feedback indicated a reward, and the blue
feedback indicated no reward, whereas in the control task, the yellow and blue
feedback instructed participants either to switch or to keep the past trial’s choice,
respectively. Please note that auditory tones were presented through MR-compatible
headphones. To indicate the side from which each tone was played, we depict a
loudspeaker at the corresponding side to where a tone was delivered through the

headphones. B To create a dynamic multimodal environment for participants in the
value task, rewards were assigned to the stimuli options independently and sto-
chastically at random intervals, which means that in a trial there might be a reward
for none, either, or both stimuli options, as indicated by green check marks above the
rewarded option in three example trials. On average, a reward was available for
delivery on 33% of the trials (of a block of the value task), distributed between the
options according to reward ratios that were either 3:1, 1:1 or 1:3. Similar to the
reward assignment in the value task, switches were assigned to the stimuli options in
the control task, such that 33% of trials contained switches distributed according to
the ratio 3:1,1:1,or 1:3. C Reward history of option 1 and 2; i.e,, r,(t7) and r,(t7);
enter as inputs to two identical exponentially decaying filters that weigh rewards
based on their time in the past and compute the subjective value of each option (i.e.,
vy and v,). The difference of the output of filters gives the differential value between
the options (i.e., dv). The differential value determines the probability of choice
between options (option 1 or 2, here option 1 is chosen as an example) according to a
sigmoidal decision criterion.

probabilistic (LNP) model that we used’' estimated participants’ subjective
value beliefs for each reward option on a trial-by-trial basis based on the past
reward history (see Fig. 1C for a schematic illustration of the model and
Methods for details). For this, we approximated the linear filter weights
capturing the effect of reward history on choices (quantified by time scale
parameter 7; Fig. 2C), and we modeled the probability of choice function
(quantified by biasness ¢, and sensitivity to value differences o; Fig. 2D) for
each participant. Across participants, the mean time scale parameter 7 was
1.22 (£0.15 s.e.m.), which was significantly greater than zero {[19] = 8.39,
P <0.05, indicating that choices were in fact most impacted by recent
rewards rather than distant rewards in the past (Fig. 2E). Mean biasness y
across participants was 0.07 (+0.07 s.e.m.), which was not significantly
different than zero #[19] = 0.66, p = 0.52, indicating that participants did not
have a bias towards any particular option. Finally, the mean sensitivity ¢
across participants was 0.81 ( + 0.10 s.e.m.), which was significantly greater
than zero #[19] = 8.81, p < 0.05 and insignificantly lesser than one #[19] =
1.95, p = 0.07, indicating that participants were aware of the value difference
between options and had indeed adopted an optimal balance between
exploration and exploitation (0 = 0 and 6 > 1 for extreme exploitative and
explorative tendencies, respectively). Following this optimal strategy, par-
ticipants were able to harvest 94.94% (+0.84% s.e.m.) of the total rewards
available. The aforementioned fit parameters were first derived from the

model fits to the data of each sensory modality separately and then averaged
across modalities. We obtained similar results when each sensory modality
was inspected separately (see the Supplementary Information, Fig. S2 and
Table S2). These results demonstrate that participants’ choice behaviours in
the value task were strongly predicted by the filter weights, estimated sub-
jective values, and sigmoidal decision function of the LNP model in all
conditions.

In the control task, participants followed the instruction provided by
the feedbacks with a high accuracy (i.e., 95.2% + 1.33% collapsed across
keep/switch feedbacks), which indicated that they were aware of the task
strategy. Because choices in the control task were explicitly instructed on a
trial-by-trial basis, participants’ decisions were not expected to reflect past
reward history, unlike in the value task. This distinction was effectively
captured by the LNP (Fig. 2F): the model’s estimates of how much parti-
cipants updated their beliefs about options’ differential value (absDVs)
based on the feedback history showed a significant interaction (F[1,19] =
254.7, p < 0.001) between the type of the task (value or control) and the type
of feedback received in the past trial (blue or yellow), see Fig. 2F. Whereas in
the value task, absDVs derived from the model showed a significant dif-
ference between the two types of feedbacks (meants.e.m. = 0.12 + 0.01 and
0.74 £ 0.03 for blue and yellow feedbacks, respectively, p< 10711), these
estimates were not significantly different in the control task (mean+s.e.m. =
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Fig. 2 | Behavioural results. A Mean choice ratio across participants for each reward
ratio {1:3, 1:1, 3:1} of options S, : S, separately for each modality condition of the value
task (AudAud, VisVis and AudVis). B Mean S, : S, choice ratios in (A) collapsed across
modalities for individual reward ratios. C Linear filter weights (dots) and exponential
approximation (solid line) showing how past rewards are weighed based on their time in
the past for a single participant in the value task. Parameter 7 shows the timescale
component of the best-fitting exponentially decaying function. D Mapping of differential
value of option 1 and 2 to the probability of choice for option 1 (dots) and sigmoidal
approximation (solid line) for the same participant as in C. Parameters y and o of the

Differential Value (S1 — S2)

Previous trial feedback

best-fitting cumulative normal function show the participants’ bias towards an option and
sensitivity to value differences, respectively. E Mean parameters of the best-fitting curves
across participants. F Relationship between feedback colours (yellow: reward/switch,
blue - no reward/keep) and absolute differential value for the two tasks (value and
control), across all participants. S, : S, = {lowpitch : highpitch, green : red, auditory :
visual},$; — S, = {lowpitch — highpitch, green — red, auditory — visual}. In A, B and
E each dot represents the data of one participant. Error bars indicate standard error of the
mean (s.e.m.) across participants.

0.27 £ 0.02 and 0.26 + 0.02 for blue and yellow feedbacks, respectively, p = 0.
11). This finding illustrates that the LNP model effectively captured the
distinct roles of feedback in the value and control tasks.

We next examined the robustness of the model in predicting choices in
the two tasks, using a leave-one-out procedure described in a previous
study *’. For this, we tested parameter T (Fig. 2C, see also Eq. 3) and the
sigmoidal choice probability function (solid magenta line as shown in
Fig. 2D, and Eq. 7). This leave-one-out procedure was iterated for all 18
blocks of the value task and the mean prediction accuracy across partici-
pants was 74.31% ( + 1.17 s.e.m.), being significantly higher than the chance
level (paired-sample t-test results when compared with chance level accu-
racy (50%): t[19] = 20.69, p < 0.001). In contrast, when the fit parameters
were estimated from the value task and tested on the control task, partici-
pants’ choices were only predicted at chance level 49.12% (+ 1.14s.e.m.)
(t[19] =-0.77, p = 0.4504). These results support our notion that the LNP
framework uniquely predicted learning and choices in the value task but not
in the control task.

Collectively, our behavioural results confirmed that in the value task
participants learned and updated their beliefs about options’ value from
both sensory modalities through monitoring the feedbacks received on each
trial, whereas in the control task they passively followed the instructions
without any further processing of stimulus value, as intended.

fMRI results

Modality-general and modality-specific stimulus value representa-
tions (univariate): vmPFC and OFC. We next specified a general linear
model (GLM) for each participant to characterise the stimulus value
representations (SVRs) in different experimental conditions in the brain
and their potential dependence on the sensory modality of stimuli.

Importantly, this GLM included several parametric regressors, referred
to as the value regressors, that modelled the trial-by-trial modulations in
participants’ beliefs regarding the value of each stimulus option as esti-
mated from the computational modelling of the behavioural data. The
contrasts that were defined based on these regressors hence assessed the
extent to which fMRI responses changed as a function of modulations in
subjective value of a stimulus (see Methods, Fig. 1C and Fig. S4, Table 1
and Table S5). The stimulus value representations (SVRs) of each
modality condition were then identified in the frontal cortex (see
Methods and Fig. S3 for specifications of the search area) based on a
group-level random-effects analysis on the contrast images obtained
from all participants.

In intra-modal conditions (AudAud and VisVis), we examined the
parametric value regressors separately for the auditory or visual sensory
modality (referred to as intraAudSV>0 and intraVisSV >0 contrasts,
respectively). These contrasts reflect the combined responses to both
parametric value regressors for each trial within the specified condition.
For example, in the auditory condition (AudAud), the intraAudSV >0
contrast assesses the responses to high- and low-pitch auditory options
relative to the baseline (see Methods and Table 1). The auditory contrast
in the value task revealed significant activations in vmPFC and left lateral
OFC (1atOFC) and the visual contrast revealed activations in vmPFC and
left posterior OFC (postOFC, Fig. 3A-E). We did not find any significant
activation in the right OFC for either of these contrasts. Lateralization of
reward responsiveness in OFC could be related to a functional speciali-
zation of the left and right lateral OFC and has been reported in the
past”’. Importantly, we found a segregation of value-processing clusters
across the two sensory domains in OFC (d =20.59 mm, d: Euclidean
distance; criterion to decide a segregation was d > 8 mm according to the
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definitions in™”). On the contrary, the auditory and visual clusters in
vmPFC were substantially overlapping (Fig. 3A, B, D).

The aforementioned results hinted towards a functional segregation in
the OFC, but not vmPFC, with regard to the representations of stimulus
value from the visual and auditory sensory modalities. If this is the case, we

Table 1| Stimulus value representations in vmPFC and OFC for
various univariate contrasts

Contrast Region X Y V4 t(19) k
intraAudSV >0 vmPFC_L -6 64 -2 5.33 121
latOFC_L —48 32 -10 5.31 134
intraVisSV >0 vmPFC_L -8 58 —14 4.70 142
postOFC_L -30 26 -18 6.20 143
interAudVisSV > 0 vmPFC 0 52 -10 6.93 537
OFC_L —36 36 -14 7.60 242

MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster activations
at SVFWE corrected P < 0.005 (cluster labels are from AAL atlas®). Statistical maps were assessed
for cluster-wise significance using a cluster-defining threshold of {(19) = 3.58, P = 0.001; and using
small volume corrected threshold of P < 0.005 (referred to as a small volume family-wise-error
(SVFWE) correction) within the frontal search volume.

Description of contrasts: IntraAudSV > 0: contrast capturing responses elicited by changes in
subjective value (SV) when choice options consisted of two auditory stimuli (AudAud). The contrast
corresponds to the overall responses elicited by either low-pitch (joSV) or high-pitch (hpSV) auditory
stimuli. Thus, this contrast reflects the combined response to both types of auditory stimuli.
IntraVisSV > 0: contrast capturing responses elicited by changes in subjective value (SV) when
choice options consisted of two visual stimuli (VisVis). The contrast corresponds to the overall
responses elicited by either green (gSV) or red (rSV) visual stimuli. Thus, this contrast reflects the
combined response to both types of auditory stimuli.

InterAudVisSV > 0: contrast capturing responses elicited by changes in subjective value (SV) when
choice options consisted of one auditory and one visual stimulus (AudVis). The contrast
corresponds to the overall responses elicited by either auditory (@SV) or visual (vSV) stimuli. Thus,
this contrast reflects the combined response to both types of stimuli.

*see also Table S5 for contrasts defined based on each parametric value regressor.

mmmm |ntra_modal Auditory
= Intra_modal Visual

mmmm Inter_modal AudVis

Fig. 3 | Stimulus value representations (SVR) across different sensory modalities.
A-E In intra-modal conditions, we observed segregated modality-specific SVRs in
the OFC: for the auditory modality in the left lateral OFC (red cluster) and for the
visual modality in the left posterior OFC (blue cluster). Overlapping modality-

general SVRs were found in the vmPFC for both auditory and visual modalities. F In
inter-modal conditions, SVRs were observed in both the OFC and vimPFC. All

cluster activations in A-F are significant at SVFWE corrected P < 0.005. G To test the

should observe both types of representations (i.e., SVRs for visual and
auditory modality) in the inter-modal condition where the values of both
sensory modalities are simultaneously tracked. This is exactly what we
observed when we examined the modulation of fMRI responses by the value
of the two options in the inter-modal condition (AudVis). This analysis
(referred to as interAudVisSV > 0 contrast in Table 1) showed significantly
activated clusters in vimPFC and in the left OFC (Fig. 3F). Interestingly,
within the cluster in the left OFC (cluster peak at -36, 36, -14, see Table 1),
there were two local maxima peaks (-44, 26, -12, t(19) =5.24 and -36, 24,
-18,1(19) = 4.61), which were adjacent (d < 8 mm) to the respective auditory
and visual peaks found in the intra-modal conditions. While the above
results in intra- and inter-modal conditions were based on contrasting both
parametric regressors (one for each choice option) against the baseline, we
obtained similar results when each parametric regressor was separately
contrasted against the baseline (see Supplementary Information and
Table S5).

To test whether the observed segregation of auditory and visual
SVRs in the OFC during intra-modal conditions truly reflected a func-
tional specialization for modality-specific valuation, we performed a
cross-validation procedure (Fig. 3G). For this, the definition of regions of
interest (ROIs) and the measurement of effect were done on independent
datasets to avoid double-dipping™. Specifically, we defined the visual and
auditory ROIs based on the corresponding stimulus value representa-
tions from the inter-modal condition. We then assessed the responses of
these ROIs to individual parametric value regressors for each stimulus
option in the intra-modal conditions (i.e., visual red, visual green,
auditory high-pitch, and auditory low-pitch) and averaged the responses
within each modality (see Methods, Supplementary Information, and
Table S5 for details).

Modality-specific valuation would require that the auditory ROI is
more responsive to variations in the subjective value (SV) of auditory stimuli
compared to visual stimuli, and vice versa for the visual ROI. Statistically,

s VisUIB
/== Auditory

m—Auditory
—=Visual

Zscored effect size (beta)

o

—_—
Visual ROl Auditory ROI

dependence of SVRs in OFC and vmPFC (upper and lower panel, respectively) on
sensory modality, visual and auditory ROIs were defined based on the corresponding
SVRs in inter-modal condition (blue - visual, red - auditory) and tested on intra-

modal condition. Filled box plots show the responses to the stimulus value from the
same modality as the ROI and unfilled box plots show the responses to the stimulus
value in a different modality.
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Table 2 | Stimulus value representations in OFC for various interaction contrasts

Contrast Region X Y V4 t(19) k SVFWE corr
Value_all parametric > Control_all parametric ~ POStOFC_L —24 24 —-12 6.29 584 P <0.001
postOFC_R 30 24 -10 7.42 524 P =0.001

Value_all 11z igentity > Control_all 14
identity

No surviving clusters

Statistical maps were assessed for cluster-wise significance using a cluster-defining threshold of #(19) = 2.86, P = 0.005; and using small volume corrected threshold of P < 0.005 (referred to as a small
volume family-wise-error (SVFWE) correction) within the frontal search volume. MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster activations and activations shown in

bold survive a SVFWE corrected P < 0.005.

Description of contrasts: Value_all p,ametic: denotes all parametric regressors in both intra-modal (AudAud, VisVis) and inter-modal (AudVis) conditions of value task, here oSV, hpSV, gSV, rSV, aSV, vSV.
Control_all parametric: denotes all parametric regressors in both intra-modal (AudAud, VisVis) and inter-modal (AudVis) conditions of control task.

Value_all 1,4 igentity: denotes the unmodulated regressors that modelled the modality of stimuli in a trial (visual, auditory, or audio-visual) in all conditions of the value task.

Control_all 1z igentiry: denotes the unmodulated regressors that modelled the modality of stimuli in a trial (visual, auditory, or audio-visual) in all conditions of the control task.

this would manifest as an interaction effect between ROI and the type of SV
that the ROI represents. Conversely, modality-general valuation would
require that auditory and visual ROIs respond similarly to both auditory and
visual SVs. Examining auditory and visual ROIs in the OFC (Fig. 3G, upper
panel) and vmPFC (Fig. 3G, lower panel) provided evidence for these types
of valuation, respectively. A repeated measures ANOVA with factors: ROI
(visual or auditory) in the OFC, and SV (visual or auditory), showed only an
interaction between ROI and SV modality (F[1,19] = 9.88, p = 0.005), with
no main effect of ROI or SV (all ps > 0.1). The interaction effect corre-
sponded to numerically stronger responses of the auditory ROI to auditory
SVs (mean + s.e.m: 0.57 +0.07) than to visual SVs (0.47 +0.01, Cohen’s
D =0.28), and similarly stronger responses of the visual ROI to visual SVs
(mean * s.em: 0.60 £ 0.06) than to auditory SVs (0.50 + 0.06, Cohen’s
D =0.28). However, in both cases, the differences between responses to the
same versus different modalities did not reach statistical significance (ps >
0.1). The same analysis in the vmPFC revealed no significant main or
interaction effects (all ps > 0.1). These results further support distinct
representations of subjective values for each modality in OFC, whereas in
the vmPFC subjective value is represented regardless of the stimulus
modality.

An alternative explanation for the segregation in modality-wise
representations in the OFC is that rather than reflecting the functional
specialization of neural responses for the visual and auditory value pro-
cessing, they reflected differences in the sensory properties of stimuli. To
rule out this possibility, we next examined the control task (see Table 2 and
Table $4, Table S6 and Fig. S5). Crucially, the modality-specific activations
in OFC were absent in the control task when the same contrasts as in the
value task were examined, demonstrating that OFC representations reflect
the trial-by-trial updating of stimulus-value associations rather than the
sensory features of stimuli or simple choice based on the instruction. On the
contrary, in the control task activations overlapping with the modality-
general representations in vmPFC were found (Fig. S5). Inspecting contrasts
which explicitly tested the value and the control task against each other
supported these results (Table 2). Contrasting the unmodulated trial iden-
tity regressors which modelled the responses to different sensory modalities
revealed no significant difference between the two tasks, confirming that the
control task was powerful enough to capture the sensory responses to the
stimuli. Contrasting the parametric regressors however showed strong
bilateral activations in postOFC in the value task, supporting the involve-
ment of the OFC in representing the value of stimuli beyond their sensory
properties. The lack of activations in the vmPFC for this contrast further
highlights a general role of this area in representing the final choice irre-
spective of whether or not choices were informed by value or were
instructed.

Together, the findings of our univariate analyses provide evidence that
the valuation of stimuli from auditory and visual sensory modalities is
confined to segregated loci in the OFC. Additionally, our results indicate
that the representation of stimulus value is independent of sensory modality
in the vmPFC and that this region is involved in processing information
related to the final choice across different tasks.

Table 3 | Stimulus value representations outside of valuation
regions

Region X Y z t(19) K
SFGmed 0 54 40 10.50 64
Caudate_L -14 24 8 10.37 67
visSen_L —-20 -90 2 9.75 81
visSen_R 24 —96 10 8.86 119
Hippoc_L —36 —38 -12 9.62 30
Hippoc_R 34 -22 -12 9.51 29
audSen_L —66 -30 -4 9.08 24
audSen_R 66 -12 -4 8.99 15
Angular_L —42 —56 26 8.62 55

MNI coordinates (x, y, z) and T value corresponds to the local maxima peak of the cluster activations
at FWE corrected P < 0.05 (cluster labels are from AAL atlas®). SFGmed - medial Superior Frontal
Gyrus; Hippoc - Hippocampus; visSen — Visual Sensory Cortex; audSen — Auditory Sensory Cortex.
Highlighted (in bold) activations were used as ROls in the effective connectivity analysis.

Stimulus value representations outside of frontal valuation
regions: whole-brain univariate analysis

In order to identify regions exhibiting value modulations outside the
valuation regions, specifically in auditory and visual sensory cortices, we
performed a whole-brain analysis using the GLM described previously. For
this purpose, we estimated the overall effect of the parametric value
regressors across all conditions in the value task (AudAud, VisVis and
AudVis), which revealed bilateral activations in the auditory and visual
cortices (whole-brain FWE corrected P <0.05, cluster size k > 10 voxels;
Table 3, Fig. S6A-B). When estimating the value modulations for individual
conditions separately (auditory, visual), we found modality-specific acti-
vations in respective sensory cortices only (see Fig. S6C-D), whereas in inter-
modal condition both sensory cortices were activated (see Fig. S6E-F).

In addition to sensory cortices, we found significant value modulations
in areas involved in processing different aspects of value-related informa-
tion, such as detecting the reward prediction errors (Caudate Nucleus),
formation of memories about past events (Hippocampus), selection of
action sets (SFGmed/dmPFC)” and processing of symbolic information
related to monetary value (Angular gyrus). Since the specific aim of the
current study was to shed light on how modality-specific and modality-
general valuation is coordinated across the frontal and sensory areas, we
only included the whole-brain activations that were located in early visual or
auditory areas in our subsequent effective connectivity analyses.

Modality-general and modality-specific stimulus value repre-
sentations in the frontal cortex (multivariate results)

To evaluate the robustness of our findings and compare them with prior
research”’, we conducted a multivariate pattern analysis (MVPA). This
analysis is exploratory as it was not part of our initial study plan. We
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performed two types of MVPA, following approaches similar to previous
studies">*”. The first analysis used anatomical ROIs from the AAL atlas
(lateral and posterior OFC and vmPFC; see Fig. S7) and calculated the
accuracy of MVPA classifiers built from the activation patterns of all voxels
within each ROI (Fig. 4A, B). The second analysis was a searchlight clas-
sification, where classification accuracies were iteratively calculated for all
voxels in the frontal cortex (Fig. S3). In both cases, at the first-level analysis
for each participant, we computed the accuracy of classifying trials by their
respective levels of subjective value. Since the subjective value estimated
from our computational model is on a continuous scale, we binned the data
into four distinct levels to facilitate classification. At the group level, clas-
sification accuracies were tested against chance level (see Methods for
details).

Four types of classifiers were constructed to decode the value following
a previous study’s approach”: 1) Classifiers trained and tested on auditory
trials (Aud_on_Aud), 2) classifiers trained and tested on visual trials
(Vis_on_Vis), 3) classifiers trained on auditory trials and tested on visual
trials (Aud_on_Vis), and classifiers trained on visual trials and tested on
auditory trials (Vis_on_Aud). First, we confirmed that our ROIs (vimPFC
and OFC) could accurately represent the subjective value of both visual as
well as auditory stimuli by examining classifiers trained and tested on the
same stimulus option (e.g., Vis_on_Vis trained and tested on intra-modal
visual red stimuli). These are denoted as Visual and Auditory classifiers in
Fig. 4A, B. Next, we tested whether vmPFC and OFC could identify the value
of different stimuli from the same sensory modality. For this, we inspected
Aud_on_Aud and Vis_on_Vis classifiers trained and tested on different
stimuli within the same modality. These classifiers were averaged across
both modalities (Aud_on_Aud and Vis_on_Vis) to represent cross-identity
classification accuracy. Finally, to discern whether our ROIs represent sti-
mulus value independent of sensory modality, we examined the cross-
modality classiflers, averaging the classification accuracies of Vis_on_Aud
and Aud_on_Vis classifiers.

Using this approach, we found that in both vmPFC and OFC anato-
mical ROIs, subjective value was decoded significantly above chance levels
for both visual and auditory options, confirming the role of these areas in
representing subjective value. Additionally, both areas demonstrated above-
chance cross-identity classification, indicating they could identify the value
of different stimuli from the same modality (see cross-identity classifiers in
Fig. 4A, B). Importantly, only in the vmPFC did cross-modality classifiers
perform significantly above chance levels. This suggests that classifiers
trained with one modality could successfully discriminate the value of sti-
muli from another modality in the vmPFC but not in the OFC, corrobor-
ating our univariate results.

To elucidate whether modality-general representations are exclusive to
the vmPFC or they exist in other regions of the frontal ROI shown in
Figs. S3 and S7, we next examined the searchlight MVPA results (Fig. 4C).
Regions responsive to subjective value irrespective of sensory modality were
defined as those exhibiting significant activations for the cross-modality
contrast. Notably, this contrast showed activations exclusively in the
vmPFC, corroborating the univariate results and previous findings*. The
lack of cross-modality activations in the OFC despite its involvement in
valuation (Fig. 4A, B) supports the idea that this region represents value in a
modality-specific manner. Collectively, the univariate and multivariate
results provide strong evidence for modality-specific representations in the
OFC and modality-general representations in the vmPFC.

Modality-specific effective connectivity between sensory and
valuation areas

We next examined the effective connectivity (EC) of a network consisting of
sensory and valuation regions that showed significant value-related mod-
ulations in our univariate analysis. This network comprised 5 ROIs as
shown in Fig. 5 (i.e., auditory and visual sensory areas: audSen and visSen;
distinct modality-specific auditory and visual SVRs in the OFC: audOFC
and visOFC; and overlapping modality-general SVRs in the vmmPFC, see
Methods for details). The EC analysis® provides an estimation of the degree

to which different connectivity patterns across this network contribute to
the generation of value representations. Importantly, the EC analysis allows
for an additional test of our main hypothesis regarding the existence of
modality-specific representations of stimulus value across the brain, as
models with and without a specific connectivity pattern for auditory and
visual values were tested against each other (see the model space in Fig. 5A).
We then looked for the most probable connectivity pattern in this network
using a Bayesian model comparison approach®’.

In the value task, our findings revealed that the most probable model
was one that included modulatory connections between the sensory cor-
tices, modality-specific clusters in the OFC, and vmPFC (i.e., model 6,
Fig. 5A, B). The winning model in the value task contained two distinct
valuation sub-networks: an auditory sub-network comprising audSen,
audOFC and vmPFC, and a visual sub-network with visSen, visOFC and
vmPFC as nodes (Fig. 5C). Moreover, the sensory cortices did not directly
communicate with vmPFC (models 2, 4, 5, 7, 8 and 10) and we did not find
evidence for the cross-modality of the connectivity between the sensory
cortices and the value regions in OFC (models 1, 3,4, 5,9 and 10, containing
connections between visual cortex and auditory OFC and auditory cortex
and visual OFC). Additionally, in the control task, the null model, which
lacked any modulatory connections between ROIs, yielded the best fit to the
data suggesting that the connectivity patterns identified by the winning
model in the value task were indeed specific to the processing of the sub-
jective value rather than the sensory properties of the stimulus options.
These findings provide compelling evidence for the existence of modality-
specific communication pathways which convey value-related information
across the brain.

In order to understand how reward value modulates the commu-
nication of information across the brain areas, we next examined the
strength of modulatory connections in the winning model of the value task.
We found that during both intra-modal and inter-modal trials, all modality-
specific connections were significantly modulated at a posterior probability
P>0.99 (Fig. 5C). Notably, we identified a clear distinction between the
weights of feedforward and feedback connections. The directed feedforward
connections from sensory ROIs to OFC ROIs and from OFC ROIs to
vmPFC exhibited negative connection weights, signifying inhibitory mod-
ulatory connections. In contrast, the feedback connections displayed posi-
tive weights, indicating excitatory modulatory connections (for parameters
of intrinsic connections and driving inputs, refer to Tables S7-S8).

Additionally, to test whether effective connectivity between any two
nodes of the network was better explained by unidirectional connections, we
estimated all possible unidirectional variants of the winning model (i.e.,
model 6 shown in Fig. 5C). As a modulatory connection between two nodes
can exist in three possible ways: directed, reciprocal, bidirectional, the total
number of all possible unidirectional models for the model 6 of the value
task were 9, shown in Fig. 6A. The most likely model among these was the
network with bidirectional connectivity between the nodes (see the model
exceedance probabilities, Fig. 6B).

Collectively, the effective connectivity results showed that auditory and
visual sensory cortices communicate with separate clusters in OFC, which
contain modality-specific stimulus value representations (SVR) corre-
sponding to each sensory modality. Further, the modality-specific SVRs in
OFC were linked with the modality-general SVR in vimPFC to guide the final
choice.

Discussion

In order to generate specific predictive signals for adaptive goal-directed
choices, the brain must encode information about the sensory modality of
reward-predicting stimuli as well as the most recent value associations with
the stimuli. Moreover, to be able to compare and choose between stimuli
with fundamentally distinct sensory features, general value representations
are equally important. Here, we used stimuli from auditory and visual
sensory modalities as reward-predicting cues in a value-based decision-
making context with a dynamic foraging paradigm, enabling us to identify
modality-general and modality-specific value representations using
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Fig. 4 | Multivariate pattern analysis (MVPA)
results. A, B MVPA results in the anatomical ROIs,
defined based on the AAL atlas. Each boxplot
represents the average classification accuracies for
classifying the data into four levels of subjective
value across all classifiers of the same type against
the chance level (i.e., the accuracy of classifiers
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univariate fMRI analysis and reveal the underlying neural mechanisms that
generate the two types of representations using effective connectivity
analyses.

We found trial-by-trial value representations of auditory and visual
sensory modalities to be present in segregated lateral and posterior regions
of OFC, respectively. This effect cannot be due to differences in reward
sensitivity or difficulty of choices since neither the choice ratios relative to
rewards nor the reaction times indicated a difference between auditory and
visual conditions. We also did not observe any difference in fit parameters of
our computational model across sensory modalities. Furthermore, we ver-
ified using the control task that the segregation in modality-specific repre-
sentations is not due to the differences in sensory processing mechanisms
underlying the auditory and visual sensory modalities. These results were
corroborated by an exploratory multivariate pattern classification (MVPA)
analysis showing that only in the vmPFC but not in the OFC stimulus value
could be decoded independently of the sensory modality. Thus, our con-
vergent findings from multiple types of analysis show for the first time the
presence of dedicated neuronal populations in OFC that reflect updates in
value associations of a particular sensory modality and generate specific
predictive signals. As such, the present findings are in line with the known
role of the OFC in representing a “cognitive-map” of the task space””,
especially when a task involves reversal learning **** or devaluation of
previously valuable options”’. More specifically, these findings support
recent proposals that the representation of stimulus value is an active
hierarchical process in which the OFC plays a key role in representing the
value of individual features of a stimuli™*.

In contrast to the modality-specific value representations found in
OFC, we found modality-general value representations in vmPFC. Speci-
fically, auditory value representations were found to overlap with visual

value representations, aligning with the concept of the vmPFC as a common
currency coding hub for distinct categories of rewarding stimuli’”™'"*, a
finding that was also confirmed in our MVPA analysis. However, sub-
divisions from general to specific valuation have been also shown in vmPFC
in the anterior-to-posterior direction’***, where anterior vmPFC
represents values of distinct reward categories in a general manner and
posterior vmPFC in a specific manner. The loci of overlapping activations
that we found in this study were in anterior vmPFC and thus support a role
of the anterior vmPFC in common currency coding of value. However, we
did not find any modality-specific value representations in vmPFC (even in
the posterior part), which may either be due to OFC being exclusively
responsible for implementing modality-specificity in a task such as ours, or
be related to the specific type of reward category, i.e., monetary rewards, that
we employed in our task™. Interestingly, we also found that vmPFC acti-
vations were even present in the control task where no continuous and
gradual value-related information processing was needed. This observation
points to a general role of vmPFC in computation of choice in addition to
valuation, as suggested by recent theoretical frameworks*".

Whereas the majority of previous studies have underscored a common
currency coding of subjective value, few recent studies have provided evi-
dence for the stimulus-specific (or identity-specific) representations of
reward-predicting visual stimuli or specific reward outcomes'**"***, as well
as modality-specific valence”. We are only aware of one neuroimaging
study by Shuster and Levy"’ where modality-specificity of reward-predicting
valuation across auditory and visual domains was examined. Using a risk-
based choice task where monetary values of lotteries were either presented
visually or announced aurally, this study* found that the anterior portion of
vmPFC represents value irrespective of the sensory modality, whereas no
evidence for modality-specificity was found beyond sensory areas. Several
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Fig. 5 | Modality-specific effective connectivity. A Model space consisted of 10
biologically plausible models per task (value or control). Models differed in their
modulatory connections between nodes of a network comprising 5 ROIs (ROIs: V -
Valuation region, S - Sensory region, purple V - vmPFC, red V - Auditory OFC,
blue V - Visual OFC, red S - Auditory Sensory Cortex, blue S - Visual Sensory
Cortex, see also C). Modulatory connections in red exist during conditions in which
an auditory stimulus was selected and those in blue exist during conditions in which
a visual stimulus was selected in both intra- and inter-modal conditions.

B Exceedance probabilities for all connectivity models in the value and control task.

In the value task, Model 6 is the most likely model, with exceedance probability of
0.75. In the control task, the null model, which did not have modulatory connectivity
between ROI pairs for any condition was the winning model. C The weights of
feedforward (dashed) and feedback (solid) modulatory connections in the winning
model of the value task. Connection weights are shown for conditions in which an
auditory (red) or a visual (blue) stimulus either in intra-modal or inter-modal
conditions (in brackets) was selected. All parameters were significant at posterior
probability of P> 0.99.

factors could explain the absence of modality-specificity in the OFC in
Shuster and Levy’s study™. Firstly, their design involved visual and auditory
stimuli (text representation and audio recording of lottery numbers) that
could be directly and unequivocally translated into explicit numeric values.
This contrasts with our study, where specific sensory features of choice
options (red/green checkerboard circles and low/high pitch tones) had to be
disambiguated in terms of their link to rewards. Secondly, in our design,
distinct features of choice options had to be continuously tracked across
trials, and their subjective value had to be updated based on choice and
reward history, a key difference from previous studies*’. Given that one of
the major roles of the OFC is updating the valuation of options based on past
reward outcomes™, this could explain the discrepancy between the two
studies. Due to the importance of tracking sensory features of stimuli in our
design, we needed to account for the covariation of sensory and reward
processing'®. For this, we used a control task which was similar in sensory
requirements and final choice to the value task but did not require updating
computed values for each sensory modality. These features of our design
allowed us to uncover both modality-specific and modality-general repre-
sentations of value in the frontal cortex and extend previous findings®.
Apart from the frontal cortex, we found value modulations in sensory
cortices, which provide further evidence that representations of value are not
restricted only to higher cognitive areas, as has been shown before™. The
value representations in sensory cortices were largely modality-specific,
which means that individual sensory cortices represented the value of sti-
muli presented in their own sensory domain, as has been previously shown
for the representation of value® and valence”. These findings raised inter-
esting questions regarding whether and how a communication of value-

related information exists between sensory cortices and valuation regions.
Interestingly, we found that the auditory and visual sensory cortices were bi-
directionally connected to the lateral and posterior OFC (corresponding to
auditory and visual value representations), respectively, in a modality-
specific manner. Specifically, the modality-specific effective connectivity
results revealed a high degree of selectivity: in trials when planning to choose
auditory reward stimulus, there was a significant connectivity from the
auditory sensory cortex to lateral OFC for these trials and not otherwise. A
similar modality-specific significant connectivity existed from visual sen-
sory cortex to posterior OFC when choosing visual reward-predicting sti-
mulus. This finding is in line with a previous work showing connectivity
between OFC and piriform cortex (relevant in case of odour stimuli) for the
formation of stimulus-specific value representations in OFC’'. Moreover,
past studies have shown that lateral and posterior regions of OFC receive
direct afferent inputs from auditory and visual sensory cortices*"”’, pro-
viding neuroanatomical support for our findings.

The connectivity between sensory cortices and modality-specific
representations in the OFC allows the frontal valuation areas to have access
to sensory representations of rewarding stimuli in each sensory area. The
sign of this connectivity provides additional insights into how modality-
specific valuation is implemented. We found that feedforward connectivity
in modality-specific networks was inhibitory. Feedforward inhibition has
been suggested as a key mechanism in imposing temporal structure to
neuronal responses’’ and expanding their dynamic range of activity .
These mechanisms allow the OFC to form an integrated representation of
the sensory and value information across time, rather than encoding the
precise sensory features of stimuli at every moment (akin to sensory
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connections between all nodes, is the most likely model (ROIs: V - Valuation region,
S - Sensory region, purple V - vimPFC, red V - Auditory OFC, blue V - Visual OFC,
red S - Auditory Sensory Cortex, blue S - Visual Sensory Cortex). The second best
model is U3, which only contained feedback connections between the OFC nodes
(red and blue V) and sensory cortices (red and blue S).

cortices), thereby serving as a cognitive temporal map of the task™*.
Additionally, connectivity results showed that the value modulations in
sensory cortices were driven by top-down feedback signals generated in
respective valuation regions in OFC. This is consistent with previous work
showing that biasing signals generated from frontal and parietal areas
modulate spatially selective visual areas™. In fact, recent studies have pro-
vided robust causal evidence for the role of lateral OFC in value-driven
guidance of information processing in sensory cortices”. Our finding of the
presence of excitatory feedback connectivity between the modality-specific
representations in lateral and posterior OFC and auditory and visual cor-
tices, provides strong support for the causal role of top-down valuation
signals in shaping sensory perception during decision-making.

Further, we found that specific value representation in OFC were
linked to general value representations in vmPFC. Specifically, we showed
that when planning to select an auditory reward-predicting option, there
was a change in the connectivity between the auditory value representations
in OFC and modality-general representations in vimPFC, with a similar
pattern found for the selection of the visual options. This result highlights
the underlying mechanism whereby value representations in OFC provide
input to the vmPFC to support the formation of general value representa-
tions needed for the comparison of options from distinct modalities and
deriving the final choice. Notably, the modality-specific connectivity
between OFC and vimPFC corroborates previous findings showing that
sensory-specific satiety-related changes in connectivity between OFC and
vmPFC predicted choices in a devaluation tas 0, Together, these results
show how common currency coding of value integrates modality-specific
information about reward-predicting stimuli in a dynamic environment to
guide choices. However, it is crucial to interpret the effective connectivity
results with caution. For example, as illustrated in Fig. 6, various versions of
the winning model, differing in their mono- versus bi-directional con-
nectivity, produced similarly good fits to the data. Therefore, drawing
definitive conclusions about the specific modes and directions of

connectivity across the networks shown in Figs. 5 and 6 remains challenging
at this stage. Nevertheless, our study provides a valuable framework for
exploring how the representation of value and sensory features across the
brain underpins valuation.

Understanding whether valuation signals in frontal cortex contain
information about the sensory modality of reward-predicting stimuli has a
number of important theoretical and clinical implications that go beyond
the specialized field of neuroeconomics and value-based decision
making"'"*’*. We show that value-based choices involving reward-predicting
stimuli from different sensory modalities are supported by connectivity
between the sensory areas and the modality-specific representations in OFC.
Although top-down modulation of perception through interactions
between frontal and sensory areas has been the basic tenet of a number of
influential theoretical frameworks”*, the importance of modality-specific
representations of reward value in frontal areas that could provide a bio-
logically plausible implementation of these putative interactions has been
largely ignored. Therefore, our study provides novel insight for future
computational work on how top-down signals can be selectively routed to
impact on sensory processing. In doing so, it is important to note that the
modality-specific representations that we found may adapt and reorganize
under different contexts rather than being hardwired and fixed in the brain
see also ref. 59. In fact, outcome-related adaptation in the representation of
value can occur during the same task”, which provides a flexible mechanism
for reorganizing neuronal codes of value based on the context. Future stu-
dies will be needed to examine whether and to what extent the modality-
specific coding of value can adapt to the specific features of a task. From a
clinical perspective, our results suggest that localized lesions to OFC may be
associated with specialized impairments of value-based decisions in visual or
auditory domains, an interesting possibility that can be further investigated
by future studies. Additionally, our findings may allow a better under-
standing of pathological states such hallucinations*** where illusory per-
cepts arise in the absence of external stimuli®, likely due to the aberrations in
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communication pathways between the frontal and sensory areas”. More
generally, the present study, together with previous efforts in understanding
how value-related information is communicated between the frontal and
sensory areas’ %, provide instrumental insights regarding how perceptual
and cognitive processes are coordinated in the brain.

In summary, our results provide novel evidence for the co-existence of
modality-specific and modality-general encoding of subjective value in OFC
and vimPFC, respectively, pointing to the specialized functions of these two
valuation areas. A general value signal would facilitate the comparison
between distinct rewarding stimuli”"’ and the transformation of stimulus
values into motor commands”. On the contrary, modality-specific value
encoding associated to respective sensory cortical representations would
support goal-directed adaptive behaviour by generating specific predictive
signals about impending goals”***, such as when planning to choose
auditory or visual reward-predicting stimuli. We further show how the
communication between sensory areas and modality-specific representa-
tions of subjective value in OFC plays a central role in supporting value-
based decisions in a multimodal dynamic environment.

Methods
Participants
Twenty-four healthy subjects (13 male and 11 female, age 19 to 45 years;
mean * SD age = 27.92 * 6.04 years, including one of the co-authors) par-
ticipated in the experiment for financial compensation of 8€/hour. The
sample size was based on a previous study that used a similar paradigm”.
Furthermore, to ensure adequate statistical power for detecting valuation
across different sensory modality configurations, each participant under-
went scanning during two sessions, thereby providing a sufficient number of
repetitions for each configuration (see Experimental Design). Each session
lasted about 150 minutes (comprising 45 min preparation time and 105 min
scanning time: 90 min functional and 15 min structural scans). Before the
first session an online training (30 min) was scheduled to familiarise par-
ticipants with the task. Participants also had the opportunity to earn a
monetary bonus of maximum 22€ based on their behavioural performance
in the value-based decision-making task (value task) during the scanning
session. All participants were right-handed and had normal or corrected-to-
normal vision. Before the experiment started and after all procedures were
explained, participants gave an informed written consent and participated
in a practice session. The study was approved by the local ethics committee
of the “Universitatsmedizin Géttingen” (UMG), under the proposal num-
ber 15/7/15. All ethical regulations relevant to human research participants
were followed.

Four participants were excluded from the final analysis resulting in the
data from 20 subjects presented here (10 male and 10 female, age 21 to 42
years; mean + SD age =29.00 + 6.34 years): two participants had difficulty in
differentiating the strategies of the value and the control task (specifically
with the instructions associated with the feedback colours in the two tasks,
see Experimental Design); one participant was excluded due to excessive
head motion while scanning (>4 mm); and one participant due to the
unusually large size of the ventricles in the structural MRI scan.

Experimental design

The experiment consisted of a value-based (value task) and an instruction-
based (control task) decision-making task, completed in two sessions
(Fig. 1). Each session consisted of 12 blocks (of 72 trials each): 9 blocks of the
value task (i.e., 3 blocks for each of the 3 reward ratios; 1:3, 1:1, 3:1, for details
see the Dynamic Reward Structure) followed by 3 blocks of the control task.
Each task involved a binary choice between stimuli presented in one or two
sensory domains: both auditory (AudAud), both visual (VisVis), and audio-
visual (AudVis), which were presented in separate blocks. All three types of
sensory conditions appeared an equal number of times across each task in a
pseudo-random order.

Stimuli. Two pure auditory tones (low pitch (LP) tone sawtooth, 294 Hz;
high pitch (HP) tone sinusoidal, 1000 Hz, played through MR-

compatible earphones - Sensimetric S15, Sensimetrics Corporation,
Gloucester, MA - with an eartip - Comply™ Foam Canal Tips) and two
contrast reversing visual checkerboards (green and black or red and black
with the contrast reversing at 8 Hz, as in ref. 50) within circular apertures
(4 ° radius) were used as the choice options. In an auditory (AudAud) or a
visual (VisVis) trial, either two tones or two checkerboards were pre-
sented as options, respectively. In an audio-visual (AudVis) trial, one tone
and one checkerboard were presented as options. Choice options were
presented simultaneously on the left or right side of the centre (auditory
stimuli were played one on each side of the earphones; visual stimuli were
centred at the 10 ° horizontal distance and 5 ° above the centre of the
screen). Different tones and coloured checkerboards and their combi-
nations (in AudVis blocks) were presented an equal number of times
across the 72 trials of a block in a pseudorandom order.

Trial structure. Both the value and control tasks featured identical pre-
sentations of stimulus options, response requirements, and feedback on
the decisions. The only distinction between them lay in the cues asso-
ciated with the feedback colours (Fig. 1A, B). Participants were asked to
fixate continuously throughout each run (here, a run = 3 blocks) on a
small square (0.4 ° visual degree) at the centre of the screen. A trial began
with a mean fixation period of 1.8s (+0.45s), yielding a mean trial
duration of 4.3 s. Following the fixation period, the two stimuli options
were presented simultaneously for 1 s, one on each side of fixation. The
spatial position of each option was also pseudo-randomised across the
trials of a block in such a way that each option appeared an equal number
of times on both sides of the fixation point. Following the onset of the
stimulus options, participants pressed either the left or the right button
on a MR-compatible two-buttoned response box (Current Designs Inc.,
Philadelphia, PA), using the index or the middle finger of their right hand,
to indicate their choice. The participants were required to respond within
2.25 s following the onset of the options. Following the response window,
a feedback window of 0.25 s appeared in which the central fixation point
turned either yellow or blue in colour. In the value task, the yellow fixation
indicated that the choice was rewarded, and the blue fixation indicated
that the choice was not rewarded. Since the control task was designed to
be similar to the value task in terms of sensory processing requirements
without a need to track and update their estimation of options’ value, the
feedback instructed the participant to make a prescribed choice. Thus, in
the control task, the yellow fixation indicated to switch from the past trial
choice and the blue fixation indicated to keep the past trial choice. The
choice on the first trial of the control task in each block was a random
choice.

Note that in all intervals during a trial in both tasks, two placeholders
(circular apertures: 4 ° radius) containing white noise were presented on the
screen. This was specifically done to reduce the visual after-effects which
could ensue from the presentation of the coloured checkerboards, and
additionally minimized the low-level sensory differences between the dif-
ferent stimulus configurations. When choice options were from the visual
modality, the placeholders were replaced with the coloured checkerboards
and otherwise stayed in view on the screen (Fig. 1A).

Dynamic reward structure. To create a dynamic multimodal environ-
ment for participants, rewards were assigned to the options indepen-
dently and stochastically at random intervals using a Poisson process’'.
On average, a reward was available for delivery on 33% of the trials (of a
block of value task). These 24 rewards in a block (33% of 72 trials) were
distributed between the two stimuli options in different reward ratios of
{I:3, 1:1, 3:1}, such that the rewards assigned to options were
{8.5%:24.5%, 16.5%:16.5%, 24.5%:8.5%} in percentage of trials. For the
value task in a single session (9 blocks), these three reward ratios were
repeated and randomised such that each reward ratio was used exactly
once with every sensory domain block (i.e., AudAud, VisVis, and Aud-
Vis). The randomisation of various factors such as sensory modality,
spatial position of options, and reward ratios was done to provide a
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dynamic environment, in which the participant would be required not
only to update their stimuli-value associations with changing reward
ratios but also to keep track of the reward-predicting stimuli very care-
fully on a trial-to-trial basis as spatial positions changed. Two important
schemes of “baiting” and “change over delay” (COD) were adopted as in
previous studies®™". Firstly, the assigned reward to an option was baited
only until that option was chosen. Baiting was introduced to discourage
an “extreme exploitation” strategy in which a participant would always
stick to the option with a higher reward rate (e.g., 24.5% > 8.5%) asso-
ciation in a block and to motivate exploration of both options. Secondly,
an earned reward feedback was delayed for one trial when the participant
changed their choice from one option to the other and delivered only if
the participant chose the same option again. This cost, i.e., COD, was
employed to discourage “extreme exploration” strategy, where the par-
ticipant would be able to consume all rewards without any learning by
alternating choices rapidly between options. Trials following a change of
choice (switch) between options were not included in the analysis because
subjects were informed that they will not get a reward on such trials and
hence choices were not completely free. At the end of each block, parti-
cipants were shown the reward earned in that block at the rate of 5 cents
per yellow square shown as the reward feedback. At the end of the second
session, participants received the total reward earned, which was up to a
maximum of 22€ (11€ per session) based on their performance along with
a participation fee of 8€ per hour.

Control task structure. Similar to the reward structure in the value task,
switches were assigned independently and stochastically to the options in
an equiprobable manner with an average switch rate of 33%. Thus, on any
trial when a participant earned a switch from a chosen option, yellow
feedback was displayed indicating that they should switch their choice to
the other option on the next trial. On other trials, when a switch was not
assigned, blue feedback was shown to indicate that the same option
should be chosen on the next trial. This type of switch assignment
structure was developed to encourage a similar temporal choice pattern
as in the value task. To confirm that this design met its intended purpose,
we examined participants’ choices in the value task and found an average
switching rate of 27.12% (£0.02% s.e.m.), closely aligning with the
switch rate used in the control task. On a single day, the control task was
conducted in each of the three sensory domains. There were no baiting
and COD schemes employed in the control task. At the end of each block,
participants were shown their performance that indicated how accurately
they followed the instructions in that block.

Computational framework of choice behaviour
To examine whether participants’ choices in the value task were influ-
enced by the dynamic reward structure employed in our design, we used
a computational framework that has been used in the past to model
choice behaviour abiding by the matching law™**. In our task, there were
no prior reward associations with the options, and hence on any trial t a
participant made a choice ¢(t) based on the previous rewards received
r(t™) during the experiment, see Fig. 1C. Intuitively, an option that
delivers more rewards per unit of time should have relatively higher value
associations and should be chosen more often. Thus, to estimate parti-
cipants’ subjective value beliefs for each reward option on a trial-by-trial
basis, we fitted the reward history and choice data of each participant to a
linear-nonlinear-probabilistic (LNP) model, shown in Fig. 1C (also called
as linear regression-based model of reinforcement learning®’). We chose
an LNP model over other reinforcement learning models (RL models
such as Q-learning) since the former has been shown to better capture
the statistics of the matching behaviour that is observed in our
paradigm’". Two broad phases of the LNP model are the learning and the
decision-making phase™".

In the learning phase (see Fig. 1C), two identical linear filters (1 learning
weights a, 7 = 1 o n trials in the past) weigh the reward history (till n past
trials) of each option (r;(t ™), i = 1, 2 corresponding to stimulus sets S, , S, ),

where 7 is equal to half of the trials over which the reward ratio was
unchanged (here, 7 = 36)*". The purpose of the filter is to look back on the
reward history of past » trials and distil the effect of those trials into a scalar
value. This scalar value should be representative of the participant’s
expectations for associated value of stimulus options. In other words, if the
choice of a particular option was rewarded (or not rewarded) on the past
trials, then the value belief for that option should be relatively higher (or
lower) on the current trial, respectively.

First, we explain how filter weights were derived from the reward
history and choice data of a participant and then how these weights were
used to compute the subjective value beliefs for the stimuli options on each
trial. The reward history r;(t~) of a stimulus option S; is a binary vector
containing 1 when that option was chosen and rewarded on trial ¢ and 0
when chosen and not rewarded on trial £ or simply when not chosen on that
trial. As explained in previous section on experimental design, trials fol-
lowing a change of choice (switch) between options were not included in the
behavioural analysis because subjects were informed that they will not get a
reward on such trials and hence choices were not completely free. Thus, the
free choice ¢;(t) of a stimulus option S; is denoted by 1 when that option was
chosen on trial  and 0 when not chosen on that trial. As the overall reward
assignment over the two options was symmetric, their impact on choice was
equal and opposite, hence we used the composite reward history r (as shown
in (1)) and composite choices ¢ (shown in (2)) for further analysis.

r=r—r (1)

c=¢ —¢ 2)

A participant’s choices are strongly influenced by the reward history
(the learning mechanism), thus, intuitively the filter weights should most
closely match the input reward history to the desired output choices. This is
an optimization problem™" and can be solved by employing Wiener-Hopf
equations:

a,=C.'C, (3)
where, C,, is auto-covariance matrix of input time series #(#~) and C,, is
cross-covariance vector of output time series c(¢). Further, what we used in
the analysis were relative filter weights &,, which were obtained by
normalising weights obtained in (3) such that the sum of all # weights equals
1 (Fig. 2C shows relative filter weights of a single participant). For more
implementation details refer to™>".

Next, the relative filter weights were used to compute subjective value
beliefs for the stimuli options v;(f), i = 1,2 on trial ¢. This was done by
multiplying the reward history of option i on past n trials by the corre-
sponding weighting coefficients &, and summing the product results over
the past # trials (see Fig. 1C):

Vi(t) = i&rri(ti) = zn: &‘rri(t - T) (4)
=1 =1

The decision-making phase (see Fig. 1C), draws the ultimate binary
choice (S, or S,) on trial t based on a relation that maps the differential value
dv(t) (as shown in (5)) computed on trial ¢ to the participant’s probability of
choosing option S; on that trial. Intuitively, this relation should strongly
predict a participant’s choice behaviour, where the participant should make
a choice ¢(t) based on the comparison process shown in (6).

dv(t) = v (1) — v (1) )
[ Spifvi>v,
0= { Syyifvy<v, ©

To assess the fit of the LNP model during the learning phase, the
relative filter weights for the data of each participant were approximated by
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fitting an exponentially decaying function, indicating that choices were most
impacted by recent rewards rather than distant rewards in past (quantified
by time scale parameter trials of the fit; see Fig. 1C for the illustration of the
filter and Fig. 2C for the fit to the data of a single participant).

To assess the decision-making phase, i.e. the effect of the differential
value on choices, we separated trials of the value task into 20 bins of equal
size, based on their differential value dv(t)(see Eq. (5)). The probability of
choosing option S, in a bin was obtained by computing the proportion of S,
choices made in the subset of binned trials. Intuitively, as the differential
value between the stimuli options increases, the probability of choosing S,
should also increase (see scatter plot in Fig. 2D). Thereafter, the probability
of choosing option S, was approximated by fitting a normal cumulative
distribution function (Eq. (7)).

_p?

1 x
(p(x7.l’l7o.) =W~/—ooe W dx (7)

where x is the differential value (dv). This function contains two important
decision-making parameters: ¢ corresponding to a participant’s biasness
towards a particular option and ¢ that measures the sensitivity to value
differences or in other words the explore-exploit tendency. Accordingly,
0 =0 corresponds to an extreme exploitative tendency, and 0 — oo to
extreme exploration. The disadvantage of being extremely exploitative; ie.,
sticking to an option that has higher reward rate associated with it, is that it
would yield lesser number of rewards to the participant because there exist
unvisited options, which remain baited until chosen. Moreover, extreme
exploration would also be disadvantageous, as it would lead to no learning
and the absence of any strategy. Thus, the optimal strategy in this task would
be to choose more often the option with higher reward rate and to
occasionally visit the less rewarding option to consume rewards on it. An
optimal strategy is advantageous in a dynamic reward structure task where
the aim is to maximize rewards, and to examine whether this is the case in
our task, we inspected the abovementioned parameters (7, i, o) for their fit
to participants’ behavioural data (Fig. 2C-E).

In the value task, the positive and negative feedbacks have distinct
effects on participants’ beliefs. Therefore, if the choice of a particular option
was rewarded (yellow feedback) or not rewarded (blue feedback) on the
previous trial, then the value beliefs for that option should be relatively
higher or lower, respectively, on the current trial in comparison to the value
beliefs in the past trial. As only one of the two options could be chosen and
rewarded in any trial, the differential value of two options would also be
relatively high in magnitude when reward was received on the past trial, and
otherwise low. On the contrary, the control task was designed in a way to be
like the value task in terms of sensory processing requirements but not
involve the participant in any learning or updating of the stimuli value.
Intuitively, when no learning via feedbacks occurs, the two types of feed-
backs (keep/switch) should have a similar effect on the subjective preference
over the options. To confirm this, we tested the fit of the same LNP model to
the choices in the control task and compared the absolute differential values
of each trial obtained from models’ fits to both tasks (value and control
tasks) against the type of feedback received (blue or yellow) in the previous
trial (Fig. 2F). We used the absolute differential values (absDVs) as a mea-
sure of subjective preferences because the choice behaviour is symmetric
with respect to the individual options. Additionally, we also compared the fit
of the model estimated from the value task to the test data from the value
task (leave-one-out procedure as done in a previous study™) and control
task (fit parameters derived from all data in the value task and tested on the
control task).

fMRI data acquisition and pre-processing

MRI scanning was carried out on a 3-Tesla Siemens MAGNETOM Prisma
scanner equipped with a 64-channel head-neck coil at the Uni-
versititsmedizin Gottingen. Anatomical images were acquired using an
MPRAGE T1-weighted sequence that yielded images witha 1 X 1 x 1 mm
resolution. For fMRI, whole-brain gradient-echo echoplanar imaging (EPI)

volumes were acquired in transverse orientation (TR = 1500 ms, TE =30
ms, voxel size = 2 x 2 x 2 mm, flip angle = 70°, image matrix = 104 x 104,
field of view = 210 mm, slice thickness = 2 mm, 0.2 mm gap, PE acceleration
factor = 3, 69 slices, multi-band acceleration factor = 3, GRAPPA factor = 2).
Data from each participant was collected in two identical sessions on two
separate days. An experimental session consisted of multiple runs of fMRI
data acquisition, where a run comprised starting the scan and acquiring data
for three blocks of the tasks ( ~ 16.3 minutes) after which the scan was
stopped and resumed again after a break ( ~ 5 minutes). To account for the
signal dropout in the frontal regions, we used a data acquisition protocol that
minimizes signal dropout in this region™. This was achieved through usinga
PA phase encoding direction in combination with a rather high in-plane
spatial resolution and rather thin slices (2x2x2 mm) for our EPIs. For
every fMRI run, we also acquired a field map, which allowed us to have a
close match between fMRI and field maps used to correct image distortions
during the preprocessing. Using these measures, we successfully mitigated
the signal drop-out in the frontal areas (see Fig. S8). On each day, four fMRI
runs (first three runs: 9 blocks of the value task, last run: 3 blocks of the
control task) were conducted.

Data pre-processing and further statistical analyses were performed
using Statistical Parametric Mapping software (version SPMI12: v7487;
https://www.filion.ucl.ac.uk/spm/) and custom time-series analysis rou-
tines written in MATLAB. EPI images of each session were slice time cor-
rected, motion corrected, and distortion corrected by using the measured
field maps. The T1 anatomical image was co-registered to the mean EPI
from realign-&-unwarp step, and then segmented. The estimated defor-
mation fields from the segmentation were used for spatial normalisation of
the corrected functional and anatomical images from the native to the MNI
(Montreal Neurological Institute) space. Finally, the normalised EPI images
were spatially smoothed using a 6 x 6 x 6 mm FWHM Gaussian kernel.

fMRI univariate analysis: general linear modelling (univarGLM)
For each participant, we first specified a general linear model (GLM) using
the pre-processed functional images of two sessions that were concatenated.
The GLM modelled both the value and the control task using 35 event-
related regressors (see also Table S3) convolved with the canonical hemo-
dynamic response function (HRF). For the value task, we defined indivi-
dually for each of the three modality conditions (auditory, visual, audio-
visual) one unmodulated stick regressor representing the modality-wise trial
identity and two parametrically modulated stick regressors containing the
trial-by-trial updated subjective value (SV) beliefs regarding each of the
options presented, referred to as the value-modulated regressors. Trial
identity was entered as 1 at the onset of the stimuli for trials of a particular
modality condition and 0 otherwise. The value-modulated parametric
regressors (SVs) were estimated based on the LNP model (see Eq. 4) and
represented the trial-by-trial learning and updating of subjective value of
each option separately (Fig. 1C and Supplementary Fig. S4). The trial-by-
trial SV's were entered at the onset of the stimuli options and are denoted by
IpSV and hpSV in auditory domain corresponding to low pitch and high
pitch tones, SV and gSV in visual domain corresponding to red and green
checkerboard stimuli, aSV and vSV in audio-visual domain corresponding
to auditory and visual stimuli in any combination (see also Tables 1,
2 and S5).

Similarly, for the control task we defined individually for each of the
three modality-domains one unmodulated regressor representing the
modality-wise trial identity and two parametrically modulated regressors
corresponding to each of the options presented. In the control task, the aim
was to passively follow instructions. Thus, to create a parametrically
modulated regressor corresponding to one stimulus option, a weight of
either 1 or 0 was assigned at the onset of stimuli options in each trial
depending on whether the instruction (keep/switch your choice) from the
last trial was correctly followed or not, respectively (see also Supplementary
Table S4 and Fig. S4).

Additionally, we also modelled the response to the feedback displays in
each trial. Please note that in the value task, the feedback display in a trial
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indicated whether the chosen option in the current trial was rewarded or
not; while in the control task, the feedback indicated whether to switch or
keep the current trial’s choice in the next trial (for more details, refer to the
Experimental Design section). In order to separate signals related to the
expected value of the stimuli from the signals related to the choice (response)
and receipt of an outcome (feedback), we included two unmodulated event-
related regressors (collapsed across the value and the control task) locked to
the time of response and the onset of feedback in our GLM. Note that in our
paradigm, in any current trial ‘), the stimuli-value associations are updated
based on the feedback event in the previous trial ¢-1’. Therefore, in our task
design we had introduced a jitter between the feedback in the previous trial
and the stimuli presentation in the current trial. This jitter together with
modelling the feedback and response with separate repressors allowed us to
separate the signals related to the expectation of stimuli value from the
signals related to the receipt of an outcome, which would have been
otherwise impossible due to the sluggish nature of the hemodynamic
responses. Furthermore, 15 nuisance regressors were included in the GLM
corresponding to the following: instruction presentation at the start of each
block, six motion parameters, run regressors (modelled by assigning a
weight of 1 for each volume of that run and else 0: a run corresponds to each
period of MRI data acquisition between the start and the end of the scan) to
account for the difference in the mean signal activity between each time the
scan started (one less in number than the total number of fMRI runs, here 7)
and a constant (for a complete list of regressors see Table S3).

Based on the GLM described above, the brain regions which repre-
sented subjective value in each domain were identified by inspecting several
univariate contrasts of the value-modulated parametric regressors (Fig. 3
and Tables 1-3 and Figs. S5-S6 and Tables S5-S6). Note that our primary
interest in this study was to identify the neural correlates of valuation for
different sensory configurations. Since in a binary choice situation valuation
occurs for each of the two options separately, we used the trial-by-trial value-
modulations of each option as an independent variable (one parametric
regressor for each option in our GLM) to identify areas in the brain which
encode the value of each option. This is a different approach than using the
differential value of the options as the independent variable which seeks to
identify the neural correlates of comparison and choice between options™
rather than the valuation of each individual option which occurs before the
choice process. Accordingly, in intra-modal conditions (AudAud and Vis-
Vis), we estimated an overall effect of value-modulated regressors separately
in auditory and visual sensory domains by defining contrasts:
intraAudSV > 0 and intraVisSV > 0. The auditory contrast intraAudSV > 0
is the combined effect of parametric regressors of interest [pSV and hpSV
(according to SPM convention, the contrast vector corresponding to 35
regressors contains 1 for the two parametric regressors of interest, here [pSV
and hpSV, and 0 otherwise). Similarly, for the visual contrast intraVisSV > 0
is the combined effect of parametric regressors rSV and gSV. In the inter-
modal condition (AudVis), we estimated the overall effect of value mod-
ulations in both sensory modalities using the contrast: interAudVisSV >0,
where interAudVisSV > 0 is the combined effect of parametric regressors of
interest aSV and vSV. To compare the results based on the above contrasts
with those from an analysis focusing on the representation of the differential
value of options, we have included the latter in the Supplementary Infor-
mation (see Fig. S9, Supplementary Text, and Table S9).

Note that our GLMs included two parametric regressors each mod-
eling one of the two choice options in a trial of value and control tasks. This
inherently introduces some degree of (anti)correlation between the two
parametric regressors, as in every binary choice situation the subjective value
of one option is influenced to some extent by the subjective value of the other
option. To mitigate this correlation, we employed two strategies. Firstly, we
modeled these regressors across the entire experiment, including both value
and control tasks within the same GLM. This reduces collinearity, as during
intervals when participants perform a different task, the two parametric
regressors are not correlated. Secondly, we utilized orthogonalization of
regressors based on the standard method implemented in SPM¥. This
technique removes shared variance between the regressors due to

collinearity and assigns it to one of the regressors (in chronological order
within the GLM). Thus, orthogonalization effectively controls for redun-
dancy between the two parametric regressors within each task condition.
Furthermore, in our main univariate results (Fig. 3A-E), to assess the value
representations of a specific condition, we contrasted both parametric
regressors in the intra-modal auditory condition against baseline. This
allowed us to examine the overall variance in brain representations of value
captured by both parametric regressors together, regardless of whether some
component of the overall variance is shared by both regressors or assigned to
the first regressor.

An alternative analysis to the one described above is to contrast indi-
vidual value regressors against baseline (i.e. either [pSV > 0 or hpSV > 0, see
Table S5). However, we note that the estimated effects based on contrasting
each of the two parametric regressors separately against the baseline have
lower signal to noise ratio compared to when these regressors are both
contrasted against the baseline (i.e., IpSV + hpSV > 0), due to the residual
collinearity of regressors after orthogonalization. Therefore, only for the
cross-validation results shown in Fig. 3G, this approach (i.e. either [pSV >0
or hpSV > 0) was taken, as described below.

To perform a cross-validation of our results regarding the dependence
of the stimulus value representations (SVRs) in the OFC and vimPFC, we
defined ROIs based on responses to the individual visual and auditory
options of the inter-modal condition (interAudVis_aSV>0 and inter-
AudVis_vSV > 0, see Table S5). For each of these contrasts, the 10 most
active voxels in OFC or vimPFC were taken as an RO, resulting on one visual
and one auditory ROI in each area. We then measured the responses of each
ROI to all intra-modal stimuli. This means that for the visual ROI, we
measured responses to each individual intra-modal regressor corresponding
to visual green, visual red, auditory high-pitch and auditory low-pitch sti-
muli (gSV>0, SV >0, hpSV > 0 and IpSV > 0 contrasts, respectively). We
then averaged the responses across all stimuli corresponding to the same
modality. A similar approach was taken for the auditory ROI. This way, we
ensured that the definition of ROI and the test of the effects shown in Fig. 3G
were done on entirely independent data sets as inter-modal and intra-modal
conditions were recorded across different runs. The effect sizes shown in
Fig. 3G are the average regression coefficients (betas) from the above con-
trasts that were z-scored across all data of each participant. We then tested
the extent to which the effect size in ROIs defined based on visual or auditory
modalities exhibited selectivity for other conditions from the same modality.

On account of previous studies identifying the domain-general and
domain-specific valuation areas in the vmPFC and OFC™**, we limited our
analysis to a mask encompassing the orbital surface of frontal gyrus. This
search volume (for details see Figs. S3 and S7) consisted of anatomical
parcellations of orbital surface of frontal gyrus as defined in automated
anatomical labelling (AAL) atlas™®. Statistical maps were assessed for
cluster-wise significance using a cluster-defining threshold of #(19) = 3.58,
P =0.001 for simple contrasts (see Table 1) and at #(19) = 2.86, P = 0.005 for
interaction contrasts (see Tables 2 and S5); and using small volume cor-
rected threshold of P < 0.005 (referred to as a small volume family-wise-
error (SVFWE) correction) within the frontal search volume. Whole-brain
results were inspected at FWE p < 0.05, and k > 10 (see Table 3).

fMRI multivariate pattern classification analysis (MVPA)
For the MVPA analysis, we estimated the responses elicited by each stimulus
using a GLM approach, similar to previous studies®”’. This GLM was
identical to the univariate GLM except for two key differences: we used
unsmoothed preprocessed fMRI data, and each trial of a modality condition
was included in the GLM as a separate regressor modeled with stick func-
tions at the onset time of the choice options. We did not include parametric
regressors corresponding to the value of choice options in this GLM. All
other regressors, including those for feedback, response, and regressors of no
interest, were modeled similarly to the univariate GLM. All regressors were
convolved with the canonical hemodynamic response function (HRF).
The parameter estimates (betas) from this GLM were sorted into dif-
ferent stimulus options (i.e., responses to red or green visual stimuli, high- or

Communications Biology | (2024)7:1550

14


www.nature.com/commsbio

https://doi.org/10.1038/s42003-024-07253-8

Article

low-pitch auditory stimuli in intra-modal conditions, and visual or auditory
stimuli in inter-modal conditions) and z-scored across the entire experi-
ment for each participant. These z-scored estimates were then fed into
pattern classifiers built using LibSVM’s implementation of linear support
vector machines (SVMs) in MATLAB.

In our experiments, the subjective value (SV) of each stimulus was
estimated from the behavioral data of individual participants using our
computational framework, where SV can take any value on a continuous
scale. For simplification, we binned the SV of each stimulus option into four
equal bins, spanning from the lowest to the highest values of that option
condition across all trials. The SVM pattern classifiers were then trained to
distinguish the SV level of each option, with a chance performance of 25%
(see Fig. 4).

The SVM classification followed procedures from a previous study™.
Four types of classifiers were built: Aud_on_Aud and Vis_on_Vis (trained
and tested on the same modality), and Aud_on_Visand Vis_on_Aud (cross-
modality classifiers). The classifiers were trained and tested over 100 itera-
tions. At each iteration, half of the trials corresponding to a choice option
were randomly sampled to serve as training data. Aud_on_Aud and
Vis_on_Vis classifiers were then tested either on the remaining half of trials
from the same choice option used for training (as shown for Visual and
Auditory classifiers in Fig. 4A, B and D) or on other stimulus options from
the same modality (as shown for cross-identity classifiers in Fig. 4A, B). For
cross-modality classifiers, the classifiers were trained on one modality (with
half of the trials of that modality randomly assigned to training data) and
tested on a different modality (using a randomly selected half of the trials of
that modality). At each iteration, classification accuracy was also measured
with shuffled class labels for each classifier to estimate chance performance.
The classification accuracy for all classifiers was then averaged across all
iterations (N = 100).

We used both an ROI-based and a searchlight method. For the ROI-
based method (Fig. 4A, B), the input data were the activations of all voxels
within an anatomical ROI (vmPFC and OFC regions—posterior and lateral
OFC—in each hemisphere from the AAL® atlas) in response to different
stimuli from our stimulus sets: S1 = {low pitch, green, auditory} and S2 =
{high pitch, red, visual}. To avoid selection bias and assess classification
across the whole dataset, classifiers were built based on all possible combi-
nations of stimuli used for training and testing. This resulted in 15 classifiers
representing all binary combinations of our stimuli, S1 and S2, for training
and testing. Since in a binary choice situation, the subjective value of choice
options depends on each other, we excluded classifiers trained and tested on
stimulus options used in the same trial (e.g., a classifier trained on intra-
modal red was not tested on intra-modal green, as the value of these options
depends on each other). This resulted in 12 classifiers in total, with different
pairings of training and testing stimulus options used. We then averaged the
classification accuracies across left and right ROIs, lateral and posterior
OFC, as well as all instances of each classifier type (e.g., Vis_on_Vis). These
averages were compared across participants against a chance level derived
from classifiers trained with shuffled labels using paired t-tests.

In the searchlight method, classification was done over all voxels within
a spherical searchlight (6 mm, corresponding to 54 voxels), with the clas-
sification accuracy mapped to the center voxel. This searchlight iteratively
moved across all voxels of the frontal cortex (8353 voxels, see Fig. S3). This
analysis used data from a subset of stimuli due to computational expense.
Specifically, Aud_on_Aud classifiers were trained on intra-modal auditory
high-pitch trials and tested on the same stimulus (intra-modal, auditory
high pitch) or on auditory inter-modal stimuli. Likewise, Aud_on_Vis
classifiers were trained on auditory high-pitch trials and tested on intra-
modal green or inter-modal visual stimuli. The same logic was used for
Vis_on_Vis and Vis_on_Aud, using intra-modal green stimuli for training
and auditory high-pitch or inter-modal (high or low-pitch) for testing. The
output images from the searchlight analysis entered a first-level analysis
where contrasts between conditions were calculated. These contrast images
were then smoothed (FWHM, 6 mm) and entered into a second-level
analysis for statistical significance using one-sample t-tests. In Fig. 4C, the

cross-modality contrast is estimated by averaging the classification
accuracies of cross-modality classifiers and comparing them against cross-
modality classifiers trained with shuffled labels (testing the contrast:
(Aud_on_Vis + Vis_on_Aud) > (Aud_on_Vis + Vis_on_Aud)suuped))-
Figure 4D is produced only for illustration purposes to avoid circularity of
analysis, whereas statistical inferences are based on Fig. 4A, B and C.

Effective connectivity analysis of fMRI data

Our univariate analysis identified a number of regions, both in sensory and
in frontal areas, that were modulated by the subjective value of each choice
option (Fig. 3, Table 3 and Supplementary Fig. S6). We next aimed to
determine how the long-range communication between these areas gen-
erates the stimulus value representations (SVRs) and the degree to which
these representations are modality-specific. To this end, we investigated the
effective connectivity (EC) of a network consisting of sensory and frontal
regions exhibiting value modulations at the time of options’ presentation by
employing deterministic bilinear dynamic causal modelling (DCM)
approach®™"”, This approach fits a set of pre-defined patterns of EC within
a model space to the fMRI time series and compares them in terms of their
evidence (for details of the model space see the section under Defining the
model space for a 5-node network).

The DCM approach requires two basic types of information for
extracting time series data: the regions of interest (ROL e.g., audOFC, see
Fig. 5 and Regions of interest section) and the onset times of experimental
conditions (e.g., intra-modal auditory condition of value task). The pre-
defined model space contains the ROI information and the information on
different experimental conditions can be provided by a GLM containing
trial onsets of the experimental conditions that are of interest. The GLM
used for effective connectivity analysis contained four unmodulated choice
identity regressors. Two of these regressors represented the final choice
(whether auditory or visual stimulus) for each intra-modal condition
(AudAud or VisVis). The other two regressors corresponded to the inter-
modal condition, separating these into auditory and visual trials based on
the final choice (whether auditory or visual stimulus). Note that in intra-
modal conditions (AudAud, VisVis) effective connectivity is the con-
nectivity among sensory and frontal regions during the valuation of a
particular modality condition, either auditory or visual. However, for inter-
modal condition (AudVis), changes in EC during the valuation process
occur for both auditory and visual modalities. To test the same models for
their fit to both intra- and inter-modal conditions, we separated trials in the
inter-modal condition according to whether the auditory or visual stimulus
was selected (hence denoted by interAud or interVis, respectively). Using the
same model space for both intra- and inter-modal conditions would provide
insights into the underlying mechanisms that mediate valuation across
different contexts, i.e., when the same or different sensory modalities are
compared against each other in terms of their value. Additionally, this
approach is more parsimonious than either having two separate sets of
models for each condition or increasing the number or complexity of the
models to account for the differences between intra- and inter-modal
conditions”.

Regions of interest (ROIs). ROIs for the effective connectivity analysis
comprised the frontal valuation areas and the sensory regions that con-
tained stimulus value representations for auditory and visual modalities
according to the univariate analysis (Fig. 3A-E, Table 3, and Supple-
mentary Fig. $6). The resulting five ROIs from which time series for DCM
analysis were extracted were as follows: 1) The overlapping activation
area for intra-modal visual and auditory value representations in vmPFC,
which was obtained by performing an intersection of the two repre-
sentations in vmPFC (using a logical “AND” operation in Marsbar
toolbox of SPM™). 2) The activation area of left latOFC during intra-
modal auditory condition - i.e., audOFC, 3) The activation area of left
postOFC during intra-modal visual condition - i.e., visOFC, 4) bilateral
activations in auditory sensory cortex — ie., audSen, and 5) bilateral
activations in visual sensory cortex - i.e, visSen. From each ROI the first
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principal component of the pre-processed fMRI time series was extracted
and fed to the EC analysis™.

Defining the model space for a 5-node network. In order to under-
stand how valuation is supported by a network comprising modality-
general and modality-specific representations, we estimated 22 bio-
logically plausible models for the value and the control tasks (11
models in each task). These models were developed over a base model
and contained three types of connections: driving input, intrinsic, and
modulatory connections. In all models, intrinsic connections were
defined for every node of the network as self-connections and inde-
pendent of the experimental condition (see also the Supplementary
Tables S7 and S8). Because the stimuli were presented aurally or
visually, two types of driving inputs to the network were defined for
auditory and visual sensory cortices: 1) an input to ROI audSen in
auditory and audio-visual conditions of both tasks, and 2) an input to
ROI visSen in visual and audio-visual conditions of both tasks. The
driving input was modelled by entering ones at the onset of stimuli
options belonging to a certain condition type and zeros otherwise. The
different models differed from each other with respect to the mod-
ulatory connections between nodes, which depended on the experi-
mental conditions. The model space of all possible connectivity
models would be extensive for a 5-node network’, where a mod-
ulatory connection between any two nodes can exist in none or more
of the 4 experimental conditions of a task (intraAud, intraVis, inter-
Aud, interVis) and 2 directions (directed and reciprocal). Therefore,
we constrained the model space based on the following assumptions,
which resulted in model 1 shown in Fig. 5A:

1. We included models with only bidirectional modulatory connections
between nodes™, based on the past findings that anatomical con-
nectivity between two cortical areas is generally bidirectional™. Addi-
tionally, large connectivity databases indicate a strong likelihood of
cortico-cortical connections to be bidirectional®. Moreover, this
constraint does not imply that connection strengths would be identical
for both the directed and reciprocal connections between two nodes.

2. Based on our specific hypotheses and for simplicity, we only included
models that assumed two distinct and symmetric sub-networks for the
valuation of stimulus options from auditory or visual modalities
(auditory modality in: intraAud and interAud; visual modality in
intraVis and interVis). The auditory sub-network comprised auditory
valuation (vimnPFC, audOFC) and sensory (audSen) ROIs and visual
subnetwork comprised the visual valuation (vmPFC, visOFC) and
sensory (visSen) ROIs. Models which contained modulatory con-
nectivity between sensory areas or between OFC clusters were not
included in our model space, however intrinsic connections exist
between every pair of ROIs.

3. Finally, to explicitly test the plausibility of modality-specific valuation
in OFC, we focused on EC patterns in which modality-specificity was
either present or absent. The presence of modality-specific EC assumes
that a sensory area (e.g., audSen) should only communicate to its
respective value representation in OFC (i.e., audOFC) and not to others
(i.e., visSOFC), during experimental conditions involving that sensory
modality (i.e., in intraAud, interAud). The absence of modality-specific
ECassumes that additionally there are cross-modality connections (see
model 1 in Fig. 5) between each sensory area and OFC representations.
In this case, each sensory area (e.g., audSen) communicates not only to
its respective OFC (i.e., audOFC) during the auditory conditions but
also communicates to the other OFC value representations (ie.,
visOFC) during all experimental conditions (i.e., intraAud, interAud,
iR lghu%fleergll)sg've assumptions, we first built a biologically plau-

sible full model (model 1 in Fig. 5A). We then constructed the model
space, exhaustively, by generating models with a subset of connections
from the full model. In doing so, we took care of the following aspects: 1)
we maintained the subset connections in a model symmetrical across the

auditory and visual subnetworks; 2) we considered cross-modality con-
nections either for all or for none of the conditions; and 3) we included
models with each node connected to at least one other node of the
network. Additionally, we also included a null model, which had no
modulatory connectivity in the network for any experimental condition.
This approach resulted in a connectivity model space consisting of 10
models per task (shown in Fig. 5A) plus a null model. In this model set,
models 2, 6, 7, 8 assumed modality-specific EC and models 1, 3,4, 5, 9, 10
assumed the lack of modality-specificity (i.e., the existence of cross-
modality). We estimated each of the 22 models (11 in each task) indi-
vidually for all 20 subjects. However, for one subject the parameter
estimation did not converge and therefore, we excluded that subject from
the effective connectivity analysis. Thereafter, we identified the most
likely model using a group-level random effects Bayesian model selection
(rfxBMS) approach®'. The model exceedance probability used to find the
best model as shown in Fig. 5B represents the probability that a particular
model m is more likely than any other model in the model space
(comprising of M models), given the group data. Note that the excee-
dance probabilities over the model space add to one®'. Next, we estimated
the connection strength parameters for connections of interest using a
Bayesian parameter averaging (BPA) approach (Fig. 5C). After identi-
fying the model that best characterized EC in the value task, we further
tested the bidirectional as well as the unidirectional variants of the
winning model (Fig. 6).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The processed source data have been deposited in the Open Science Fra-
mework (OSF) and can be accessed at https://osf.io/5vkjx/”’. All raw datasets
generated and analysed in the current study are available from the corre-
sponding author upon request.

Code availability
The computer codes used to conduct the experiments and analyze the data
are available from the corresponding author upon request.
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