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Updating reliability of pile groups with load tests considering spatially variable
soils
Yuting Zhang, Jinsong Huang, Jiawei Xie, Anna Giacomini and Cheng Zeng

Discipline of Civil, Surveying and Environmental Engineering, Priority Research Centre for Geotechnical Science and Engineering, The
University of Newcastle, Callaghan, Australia

ABSTRACT
This paper proposes a rigorous framework to update the reliability of pile groups based on load
tests. The proposed approach enables the consideration of the spatial variability of soils, which
is disregarded in previous studies. To achieve this, the random finite difference method (RFDM)
is utilised to assess the group efficiency, individual pile capacities, and the correlation between
individual pile capacities in spatially variable soils. Subsequently, Bayes’ theorem is employed to
update individual pile capacities based on load test results, taking into account the correlation
between individual pile capacities. Finally, the reliability of pile groups is evaluated based on
the group efficiency and updated individual pile capacities. An axially loaded pile group in
undrained clays is utilised for demonstration. Results indicate that neglecting the spatial
variability of soils may lead to unrealistic assessments of the reliability of pile groups.
Specifically, in cases where all piles fail, the ignorance of spatial variability results in an
overconservative design. Conversely, in cases where one or more piles pass, it leads to an
unconservative design.

ARTICLE HISTORY
Received 22 June 2023
Accepted 6 February 2024

KEYWORDS
Pile load tests; reliability; pile
group; random finite
difference method; Bayes’
theorem

1. Introduction

Uncertainties exist in the design and construction of pile
foundations. For example, the design parameters are
commonly established by limited site investigations
and tests that are associated with measurement errors
(Länsivaara, Phoon, and Ching 2021). Besides, empiri-
cal methods, such as static analysis and dynamic for-
mulas, are used to determine pile capacity during the
design phase, subject to model uncertainties (Phoon
and Tang 2019). Furthermore, construction methods
and workmanship can vary significantly from pile to
pile, further exacerbating uncertainties. To address
these uncertainties and verify that the pile has sufficient
capacity, pile load tests are commonly utilised. The
adoption of load tests provides a more accurate esti-
mation of pile capacity while substantially reducing
the associated uncertainty, owing to the smaller margin
of error in load test measurements compared to that in
predictions (Huang et al. 2016). Consequently, a low
factor of safety (FS) in Allowable Stress Design, or a
higher resistance factor in Reliability-based Design can
be adopted if load tests are conducted. For instance,
the FS can be reduced from 3.0–2.0 if the pile capacity

calculated by empirical methods is confirmed by load
tests (AASHTO 1998). Similarly, the resistance factor
increases to 0.50–0.70 if static load tests are performed,
in comparison to that of 0.35–0.45 if only static analysis
is employed (CSA 2014).

The utilisation of pile load tests for the purpose of
refining or validating designs bears a strong resem-
blance to the Bayesian statistical process. Prior knowl-
edge of the pile capacity is formed using the design
information, and pile load tests conducted during con-
struction are utilised to update this prior knowledge. By
combining existing knowledge of pile design with site-
specific information from load tests, the reliability of
piles can be updated (Zhang and Huang 2022; Zhang
and Tang 2002). Bayesian methods have been employed
to update the reliability of single piles based on pile load
tests (Zhang, Li, and Tang 2006; Zhang, Huang, and
Giacomini 2023). Zhang (2004) treated the mean pile
capacity following a lognormal distribution and used
the Bayesian method to update the pile capacity based
on proof load tests. In contrast, Najjar and Gilbert
(2009) assumed the pile capacity followed a mixed log-
normal distribution and adopted the Bayesian method
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to update the lower-bound pile capacity. Results indi-
cated that the proof load test significantly increased
the reliability of piles, even if the test load was smaller
than the predicted capacity. However, updating the
reliability of pile groups based on pile load test results
is rarely available in previous studies. A preliminary
investigation on this topic was carried out in our pre-
vious work (Huang et al. 2016), which proposed a
framework for updating the reliability of pile groups
based on the individual pile load test results. However,
the spatial variability of soils was not considered, lead-
ing to the correlation between individual pile capacities
cannot be quantified as the correlation is influenced by
soil properties.

In order to account for the spatial variability of soils
in the reliability analysis of pile groups, a rigorous 3D
finite difference (FD) method or finite element (FE)
method may be required to assess the complex pile-
soil-pile interaction, known as the group effect. How-
ever, the computational effort required is significant
due to the complex numerical analysis that needs to
be repeated numerous times to evaluate the updated
reliability of pile groups, particularly for high reliability
levels (e.g. reliability index, b . 3) (Huang et al. 2017).
To address this issue, the group efficiency, h, is
employed to reflect the group effect, defined as the
ratio of the actual pile group capacity to the summation
of the individual pile capacities (Poulos and Davis
1980). The concept of group efficiency has been utilised
for a quick evaluation of the reliability of pile groups
based on the behaviour of single piles (Bian et al.
2017; Huang et al. 2016; Oudah, El Naggar, and Norlan-
der 2019). However, these studies predominantly relied
on the assumption of a constant group efficiency value,
disregarding its inherent complexity, which is
influenced by various factors, such as the number of
piles, group arrangement, and soil properties (Poulos,
1989; Sayed and Bakeer 1992). Additionally, previous
studies concerning the estimation of group efficiency
commonly treated the soil properties as deterministic
(Kanellopoulos and Gazetas 2020; Rose, Taylor, and El
Naggar 2013). Consequently, the group efficiency in
the presence of spatially varying soil properties has
not been assessed.

The correlation between pile capacities is another
essential factor that affects the reliability of pile groups
(Chen and Gilbert 2017; Klammler et al. 2013), but
there is little guidance in the literature for quantifying
the correlation coefficient. Thus, most previous studies
adopted assumed values (e.g. 0, 0.5 or 1) and assigned
the same correlation coefficient to piles within the pile
group (Huang et al. 2016; Zhang, Tang, and Ng 2001).
However, the pile capacity is primarily determined by

the nearby soil property, such as undrained shear
strength, cu, which is known to be spatially correlated
(Vanmarcke 2010). Therefore, it is more appropriate
to consider that pile capacities are spatially correlated.
Naghibi and Fenton (2017) used an isotropic Markov
correlation function to describe the correlation between
pile capacities within the group, and revealed the
relationship between the reliability of single piles and
the reliability of pile groups. Instead of directly treating
the correlation coefficient as a spatially random variable,
this paper considers the soil strength as a spatially ran-
dom property, and the correlation between pile
capacities is generated based on FD analysis results.

In this paper, a rigorous framework based on the ran-
dom finite difference method (RFDM) and Bayes’ theo-
rem is proposed for updating the reliability of pile
groups with load tests considering the spatial variability
of soils. The FD analysis is merged with random field
theory in conjunction with MCS to assess the statistics
of group efficiency and pile capacity, as well as the cor-
relation between pile capacities in spatially variable
soils, which are further used in updating the reliability
of pile groups with load test results based on Bayes’ the-
orem. The first part of this paper introduces the meth-
odology. The second part demonstrates the proposed
approach for a 3×3 pile group subjected to axial loads
in undrained clays. The reliability of pile groups
updated by different load test results considering the
spatial variability of soils is investigated.

2. Methodology

The proposed framework contains two parts: 1) updat-
ing the reliability of pile groups with load test results
based on Bayes’ theorem, and 2) assessing the statistics
of group efficiency and pile capacity, as well as the cor-
relation between pile capacities in spatially variable soils
via RFDM. Further elaborations on these two parts are
presented in the following subsections.

2.1. Updating reliability of pile groups with load
test results

Suppose a pile group consists of N piles, and the indi-
vidual pile capacity (y) is assumed to be lognormally dis-
tributed with mean (my) and standard deviation (sy).
The correlation coefficient between the capacities of
pile i and pile j is denoted as rij, i and
j = 1 , 2 , . . . , N. Thus, the joint probability density
function of N piles within the pile group is described as
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follows (Huang et al. 2016):

f ′y(y1 , . . . , yN) = 1

(2p)N/2 ����|C|√ ∏N
i=1 yi

× exp − 1
2
(ln yi − mln y)

TC−1(ln yi − mln y)

{ } (1)

where |C| is the determinant of C, mln y is the mean of
ln y, superscript T means the transpose, C is a N by N
matrix with each element is defined as:

Cij = rijs
2
ln y if i = j

= s2
ln y if i = j

(2)

where sln y is the standard deviation of ln y,

sln y =
����������������
ln (1+ COV2

y )
√

, mln y = lnmy − 1
2s

2
ln y and

COVy = sy/my.
Two distinct types of pile groups are identified,

namely: 1) free-standing group, wherein the pile cap is
not in contact with the underlying soil; and 2) piled
foundation, wherein the pile cap is in contact with the
underlying soil. Only the free-standing group is con-
sidered herein, in which the cap-soil interaction does
not need to be considered. The capacity of the free-
standing pile group, Qug , is calculated based on the indi-
vidual pile capacities and group efficiency (Poulos and
Davis 1980):

Qug = h
∑N
i=1

yi (3)

Suppose a conventional Factor of Safety (FS) is adopted
in the pile design. The load transfer from the superstruc-
ture is the mean capacity divided by FS. Thus, the limit
state function (g) is defined as:

g = h
∑N
i=1

yi −
Nmy

FS
(4)

To be able to use Equations (1) and (4) to assess the
reliability of pile groups, the values of h, y and rij in
spatially variable soils should be evaluated. Thus, the
RFDM is adopted, and the determination of these par-
ameters is illustrated in section 2.3. The probability of
failure, pf , of the pile group cannot be obtained analyti-
cally. Thus, the Markov chain Monte Carlo (MCMC)
method is adopted in this paper to sample the joint dis-
tribution. Once the individual pile capacities are
sampled, Equation (4) is employed to evaluate the safety
of the pile group. g ≤ 0 implies that the pile group fails
and pf is determined as the ratio of the number of failed
simulations to the total number of simulations. It should
be noted this paper focuses on the free-standing pile

group with rigid cap subjected to axial loads. However,
in cases where the cap is in contact with the underlying
soils (i.e. piled foundation), or the cap is not strictly
rigid, or the load condition is more generalised (e.g.
combined lateral and axial loads), the limit state func-
tion needs to be replaced by appropriate numerical
models, which are beyond the scope of this paper.

During construction, some load tests are conducted
on single piles to verify the pile capacities, and the
load test results are used to update the reliability of
pile groups. The load test measurements are subject to
errors and uncertainties. In this paper, the measurement
error (1) is assumed to be normally distributed with
mean (m1) and standard deviation (s1). The proof test
load is assumed to be T. Thus, the actual load applied
on the tested pile is T − 1. The likelihood function for
a tested pile passes the proof load test is:

L/P(y≥T−1)=1−P(1≤T−y)=F
m1−(T−y)

s1

( )
(5)

where F is the cumulative distribution function of the
standard normal distribution.

Suppose the proof load tests are conducted on n piles
with m piles fail. The index of the failed pile is denoted
as f = ( f1, f2, · · · , fm) while the index of the passed
pile is denoted as p = ( p1, p2, · · · , pn−m). The
obtained test results (i.e. pass or fail) are denoted as
the vector ŷ. Thus, the likelihood function for m tests
fail among n tests is:

L(y1 , . . . , yN |ŷ)

/
∏fm
i=f1

1−F
m1− (T−yi)

s1

( )( )∏pn−m

i=p1

F
m1− (T−yi)

s1

( )

(6)

Based on Bayes’ theorem, the posterior distribution of
(y1 , . . . , yN) is derived as (Ang and Tang 2007):

f ′′y(y1 , . . . , yN |ŷ)/L(y1 , . . . , yN |ŷ)f ′y(y1 , . . . , yN)

/
∏fm
i=f1

1−F
m1−(T−yi)

s1

( )( )∏pn−m

i=p1

F
m1−(T−yi)

s1

( )

1∏N
i=1yi

×exp −1
2
(lnyi−mlny)

TC−1(lnyi−mlny)

{ }

(7)

The analytical derivation of the posterior distribution of
pile capacity is not possible. Thus, the MCMC is utilised
to directly sample the posterior distribution. Various
MCMC algorithms exist, and the delayed rejection
adaptive Metropolis (DRAM) algorithm proposed by
Haario et al. (2006) is adopted, which is based on the
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combination of the delayed rejection algorithm and the
adaptive Metropolis algorithm. For detailed infor-
mation on this method, interested readers can refer to
the original paper by Haario et al. (2006).

2.2. Random finite difference method

2.2.1. Finite difference model
The capacity of a pile group is significantly different
from the total capacity of individual piles due to the
overlapping of stress and strain fields of neighbouring
piles (Sayed and Bakeer 1992). Moreover, the failure
mechanics of pile groups (e.g. block failure or individual
pile failure) are complex, and empirical equations are
not feasible for calculating the capacity of pile groups.
Thus, FLAC3D (Itasca Consulting Group, 2017) is
adopted in this paper to determine the capacity of pile
groups. To be consistent, the capacity of single piles is
also determined by FLAC3D.

A typical FD model of the single pile and pile group
used in this paper is shown in Figure 1 (a) and (b),
respectively. In order to simplify the process of generat-
ing a random field and mapping the randomly distribu-
ted soil property for each element, the soil medium is
divided into 8-noded cubic elements with uniform
size. While the incorporation of the complexity in ran-
dom field generation resulting from an FD model with
varying shapes and sizes of elements is possible, it is
not addressed in this study. The soil is modelled using
the Mohr-Coulomb plasticity model, while the pile is
modelled using the pile-element, an inbuild structural
element in FLAC3D. The pile-element represents the
pile as a linear structural element with interface proper-
ties, and the physical geometry of piles does not need to
be modelled. Pile-element modelling has been proven to
significantly reduce computation time without losing

accuracy for the analysis of pile groups (Maheetharan
and Jaen-Toribio 2020). In light of the free-standing
group considered herein, the pile cap does not need to
be modelled in Figure 1 (b). To obtain the capacity of
individual piles, the single pile FD model shown in
Figure 1 (a) is utilised. In this analysis, a small incre-
mental displacement is applied to the top of pile during
each step. Simultaneously, the axial load on the pile is
obtained using the embedded Fish function “force”.
The load-displacement curve of the pile is generated
with a large number of steps (e.g. 50000) have been
applied. Finally, the capacity is captured based on the
load-displacement curve and specified failure criteria,
e.g. ISSMFE criterion (ISSMFE 1985). A rigid pile cap
is assumed to connect individual piles in this study, so
that all piles undergo equal head displacements (Poulos,
1989). To obtain the capacity of the pile group, the pile
group FD model shown in Figure 1 (b) is used. In this
analysis, the same displacement is applied to the top
of individual piles in each step. Simultaneously, the
axial load on individual piles is obtained using the
embedded Fish function “force” with the individual
pile coordinates. The load-displacement curve of indi-
vidual piles within the group is obtained when a large
number of steps have been applied. The total load
acted on the pile group is the summation of loads on
individual piles (Zhang and Zhang 2012), while the dis-
placement of the pile group is equivalent to that of indi-
vidual piles. Consequently, a load-displacement curve
for the pile group is obtained, and the same failure cri-
terion utilised for individual piles is employed to define
the capacity of the pile group.

When subjected to axial loads, piles transfer the
external load to the soil medium through skin friction
and end bearing. The skin friction is incorporated into
the pile-element through the coupled shear spring

Figure 1. The FD model of the single pile and pile group.
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along the pile length. The normal stiffness (kn) and
shear stiffness (ks) are recommended by the FLAC3D
manual (Itasca Consulting Group, 2017) as:

kn or ks = 10×max
K + 4G/3
Dzmin

[ ]
(8)

where K and G are the bulk modulus and shear modulus
of soil, respectively. Dzmin is the smallest dimension of
an adjoining zone in the normal or shear direction.

The end bearing is incorporated into the pile-element
through the coupled end bearing spring at the bottom of
the pile. The minimum stiffness value of the end bearing
spring (kb) is set to be equal to or greater than the axial
stiffness of the pile, as recommended by the FLAC3D
manual (Itasca Consulting Group, 2017):

kb = EPAb/L (9)

where EP is the elastic modulus of the pile, Ab is the area
at the pile base, L is the length of the pile.

2.2.2. Random field model
Random fields have been frequently utilised to model
the spatial variability of soil properties (Ching et al.
2021; Crisp et al. 2018; Vanmarcke 2010). Among var-
ious random field models, statistically homogeneous
or stationary random fields are often preferred due to
their relative simplicity and the practical feasibility of
characterising them with limited data (Ching and
Phoon 2013). Therefore, the stationary random field is
adopted in this paper. For the pile foundations in
undrained clay, the capacity of a pile or pile group is pri-
marily dependent on the undrained shear strength, cu.
Therefore, in this paper, only cu is modelled as a random
field while other parameters (e.g. elastic modulus) are
treated as constant.

A three-dimensional (3D) stationary random field of
cu can be characterised by the mean (mcu), coefficient of
variation (COVcu) and spatial correlation length in three
directions (ux, uy, uz). In engineering practice, the mean
and coefficient of variation of a random property are
typically well understood. However, the spatial corre-
lation length, also referred to as the scale of fluctuation,
is often less comprehended (Lloret-Cabot, Fenton, and
Hicks 2014). The spatial correlation length describes
the distance over which the spatially random values in
the underlying Gaussian field tend to be correlated.
Conversely, two points that are separated by a distance
exceeding the spatial correlation length are expected to
be largely uncorrelated. Several covariance or corre-
lation functions are available in the literature, such as
the Markov correlation function, Triangular correlation
function, and Gaussian correlation function (Fenton

and Griffiths 2008). The Markov correlation function
is widely used due to its simplicity, and thus is adopted
in this paper. Notably, the use of isotropic spatial corre-
lation lengths remains prevalent in the most recent pub-
lications on the reliability analysis of piles (Crisp, Jaksa,
and Kuo 2021; Naghibi and Fenton 2022; Zhang et al.
2021). Furthermore, it is challenging to effectively
demonstrate the influence of load test locations when
a large vertical correlation length is employed.
Additionally, the degree of anisotropy is inherently
dependent on site-specific characteristics (Fenton and
Griffiths 2005). Consequently, the isotropic spatial cor-
relation length, ux = uy = uz = u, is adopted in this
study, while the consideration of the anisotropy corre-
lation structure is left for future research. However, it
should be noted that the proposed approach can be
employed to consider anisotropic spatial correlation
lengths. The isotropic Markov correlation function
used in this paper is given as follows:

r(t) = exp − 2|t|
u

( )
(10)

where r(t) is the correlation coefficient between proper-
ties assigned to two points in the random field separated
by an absolute distance t.

The lognormal distribution is usually used to charac-
terise the variability of a soil property because it avoids
a negative value for the soil property, which is not phys-
ically meaningful. Thus, the undrained shear strength cu
is treated as lognormally distributed in this paper, which
means the ln cu is normally distributed. The mean (mln cu)
and standard deviation (sln cu) of the underlying normal
distribution of ln cu are obtained by:

sln cu =
����������������
ln (1+ COV2

cu)
√

and mln cu = lnmcu − 1
2s

2
ln cu

.
In this paper, the generation of random fields is per-

formed utilising the open-source toolbox “GSTools”
(Müller et al. 2021). Initially, a standard normally dis-
tributed random field G(x) is simulated through the
randomisation method proposed by Kramer, Kurban-
muradov, and Sabelfeld (2007) and Heße et al. (2014).
Subsequently, the desired lognormally distributed ran-
dom field is obtained by transforming the underlying
normally distributed random field using the following
relationship:

cui = exp (mln cu + sln cuG(xi)) (11)

where xi is a vector containing the coordinates of the ith
element, cui is the desired undrained shear strength
assigned to the ith element.
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2.3. Evaluation of group efficiency, pile capacity
and correlation between pile capacities

To evaluate the statistics of group efficiency and pile
capacity, as well as the correlation between pile
capacities in spatially variable soils, RFDM described
in section 2.2 is utilised. The generation of random
fields and the automation of MCS are based on Python
programming, while the generation of the FE model and
the mapping of random property for soil elements is
based on the embedded FISH scripting language. The
steps are summarised as follows:

Step 1: Generate the pile group model in FLAC3D
and extract the coordinates of soil elements.

Step 2: Generate stationary random fields of cu based
on the specified statistics of cu.

Step 3: Extract the value of cu according to the coor-
dinates of soil element and map the value to the corre-
sponding soil element. A typical FD model of the pile
group in spatially variable soils is shown in Figure 2.

Step 4: Use FLAC3D to compute the capacity of the
pile group, following the process outlined in section
2.2.1. The pile group model presented in Figure 1 (b)
is used to compute the capacity of the pile group, only
one FD analysis is required.

Step 5: Use FLAC3D to compute the capacities of
nine individual piles within the pile group in the same
soil property, in accordance with the process described
in section 2.2.1. The single pile model depicted in Figure
1 (a) is used to compute the capacity of individual piles,
nine FD analyses are required owing to the variation of
soils surrounding individual piles.

Step 6: Calculate the group efficiency based on the
obtained capacity of pile group and individual piles.

Step 7: Repeat steps 2–6 for 100 times. The evaluation
of the number of simulations is given in section 4.2.

Step 8: Derive the statistics of group efficiency (i.e.
mean and coefficient of variation) based on the 100
group efficiency values.

Step 9: Generate the statistics of pile capacity (i.e.
mean and coefficient of variation) based on the obtained
100 capacity values for nine individual piles. It should be
noted that, despite the variation in capacities of individ-
ual piles across simulations, the underlying statistics of
pile capacity for each pile remains constant because
they are situated in the same random field.

Step 10: Generate the correlation coefficient between
pile capacities based on the 100 combinations of the
capacities of nine individual piles. Upon the completion
of 100 simulations, a total of 100 combinations of the
capacities of nine individual piles are generated,
(yk1 , . . . , yk9), k = 1 , 2 , . . . , 100. The correlation
coefficient rij, i and j = 1 , 2 , . . . , 9, is determined
using the following equation (Ang and Tang 2007):

rij =
∑100

k=1 (y
k
i − yi)(ykj − yj)����������������������������������∑100

k=1 (y
k
i − yi)

2∑100
k=1 (y

k
j − yj)

2
√ (12)

where yi = 1
100

∑100

k=1
yki and yj = 1

100

∑100

k=1
ykj .

3. Example

A 3×3 pile group subjected to axial loads in undrained
clay is taken as an example to demonstrate the proposed
approach. The pile length (L) is 10.5 m, with 10 m
embedded in the clay, while the pile diameter (D) is
1.0 m. The pile spacing (d), is 3 times the pile diameter.

Figure 2. The pile group in spatially variable soils.
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The elastic modulus (EP) is determined as 2.2×107 kPa,
while the Poisson ratio is 0.3. The soil medium is mod-
elled as a cuboid of dimensions 30m×30m×20 m, which
is discretized using cubic elements with a uniform side
length of 1 m. The values of shear and bulk modulus
are determined as 1.3×103 kPa and 6.0×103 kPa, respect-
ively, following Bowles (1995).

In this paper, the spatial correlation length, u, is non-
dimensionalized by dividing it by the embedded length
of pile (Lm = 10m). The normalised spatial correlation
length is denoted asQ = u/Lm. The value of cu assigned
to each soil element in the FD model is treated as a ran-
dom variable, with a mean value mcu = 20kPa, while
COVcu = 20%, 30%, 50% and 100%, and Q = 0.5, 1, 2
and 5. It should be noted that the general range of
COVcu reported by Phoon and Kulhawy (1999) was
10%–55%, which is lower than that used in this paper.
However, Fenton and Griffiths (2003) pointed out that
COVcu is related to the site investigation intensity and
scale, and that even a value of COVcu up to 5 is possible.
Interested readers may refer to Fenton and Griffiths
(2003) for further discussions on this topic.

When the statistics of group efficiency and pile
capacity, as well as the correlation between pile capacities
are obtained following section 2.3, these values are
further used to update the reliability of pile groups by
load test results following section 2.1. In this paper, the
proof test load is assumed equal to themean pile capacity,
T = my, and the FS used in the design is assumed equal to
2, FS = 2. The mean and standard deviation of measure-
ment error are assumed as 0 and 0.1T, m1 = 0 and
s1 = 0.1T, respectively. It should be noted that the
measurement error is related to the load test method
(e.g. dynamic or static load tests), as well as the method
to interpolate the t-z (load-displacement) curve obtained
by load tests. However, there is little guidance on quanti-
fying the value of measurement error, and further
research is needed to address this issue.

4. Results

4.1. Group efficiency in deterministic soils

In this section, the evaluation of group efficiency, h, in
deterministic soils is presented. The results are then
compared with those obtained by empirical formulas
to validate the FD model employed in this paper.

This study investigates h at three displacement levels,
specifically 0.05D, 0.075D and 0.10D. The selected dis-
placement level is used to define the capacity of individ-
ual piles and the pile group. For example, when
assessing the group efficiency at the displacement level
of 0.05D, the capacity of individual piles and the pile

group is defined as the load corresponding to a displace-
ment of 0.05D. The selection of these specific displace-
ment levels is based on previous studies that have
highlighted variations in h concerning different displa-
cement levels (Comodromos 2004; Rose, Taylor, and El
Naggar 2013). It is noteworthy that a displacement level
beyond 0.10D is not considered because the majority of
load has been mobilised by a displacement of 0.10D
(Fleming et al. 2009). A uniform value of cu = 20kPa
is used in this section. h for different spacing-to-diam-
eter ratios (d/D) and displacement levels are assessed
and presented in Figure 3. It is observed that h varies
with the displacement level of pile groups, as observed
by Rose, Taylor, and El Naggar (2013). Results also
reveal that h in clay soils are below unity, which is con-
sistent with the observations made by Poulos and Davis
(1980). Additionally, it is shown that h increases as d/D
increases. For the group efficiency determined based on
the displacement equals 0.05D, the group efficiency
increases from 0.42–0.90 as d/D increases from 1.5–5.
For d/D = 8, the group efficiency approaches 1, which
means group effect is minimal at a larger pile spacing.

Several empirical formulas have been proposed to
estimate h, which is summarised in Table 1. Among
these, the formulas proposed by Bolin (1941) and Feld
(1943) relied solely on the spacing-to-diameter ratio
and number of piles, with the same parameters used
but in different formulations. On the other hand, the
formula developed by Seiler and Keeney (1944) only
considered the pile spacing and number of piles, while
ignoring the pile diameter. It is found that this formula
is invalid for the case of a = b = 1, as it yields a h of
1.15, contrary to the fact that h should be unity for a
single pile. Poulos and Davis (1980) incorporated the

Figure 3. Comparison of h by deterministic analysis and empiri-
cal formulas.
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failure mechanism of the pile group in their calculation
of h. The PB is the capacity for block failure of the
group, which assumes the soil enclosing the pile group
perimeter acts as a rigid block upon failure. In a differ-
ent approach, Sayed and Bakeer (1992) proposed two
new parameters (i.e. K and 6) to consider the effect of
the property and type of soil, pile length, and method
of pile installation. However, these parameters may
lead to subjective results.

For comparison purposes, h calculated using these
empirical formulas is also presented in Figure 3. Results
reveal that h calculated using different formulas are
considerably inconsistent. For example, when
d/D = 2, h is 0.61, given by Bolin (1941), whereas
0.85 is obtained by Seiler and Keeney (1944). For
d/D ≥ 3, h obtained by FLAC3D with a displacement
level equal to 0.10D is slightly higher than those
obtained using empirical formulas. This can be attribu-
ted to the small pile length to diameter ratio used in the
model, as indicated by Poulos and Davis (1980). Gener-
ally, the results presented in this paper are in line with
those obtained using empirical formulas.

4.2. Group efficiency in spatially variable soils

In this section, the evaluation of h in spatially variable
soils is carried out. The value of cu assigned to each
soil element in the FDmodel is treated as a spatially ran-
dom variable, with a constant mean value mcu = 20kPa,
while COVcu = 20%, 30%, 50% and 100%, and Q = 0.5,
1, 2 and 5. The pile capacity is defined by the ISSMFE
criterion (ISSMFE 1985), corresponding to the displace-
ment of pile group is 0.10D.

The number of simulations carried out for each set of
statistical values (i.e. mcu , COVcu and Q) significantly

affects the accuracy of the estimated statistics of h. An
estimate based on a few numbers of simulations will
lead to a large standard deviation, whereas a large num-
ber of simulations requires extensive computation time.
Figures 4 and 5 show the effect of the number of MCS
on the mean (mh) and coefficient of variation (COVh)
of h, respectively. It is observed that the fluctuation of
mh and COVh is negligible when 70 simulations are
used. Thus, 100 simulations are deemed adequate for
this study.

Figure 6 shows how mh varies with COVcu and Q for
d/D = 3. It can be seen that mh in spatially variable soil
is generally lower than that obtained from the determi-
nistic analysis. It also shows that mh decreases as COVcu

increases. For example, mh is 0.94 when COVcu = 20%
and Q = 1, while mh is 0.82 when COVcu = 100% and
Q = 1. Additionally, it can be observed that mh first
decreases and then increases as Q increases from 0.5–

Figure 4. Effect of the number of simulations on mh.

Figure 5. Effect of the number of simulations on COVh.

Table 1. Summary of empirical formulas for group efficiency.
Reference Formulas

Bolin (1941)
h = 1− (b− 1)a+ (a− 1)b

90ab

[ ]
tan−1 D

d

( )

Feld (1943)
h = 1− D

pdab
[a(b− 1)+ b(a− 1)+

��
2

√
(a− 1)(b− 1)]

Seiler and
Keeney
(1944)

h = 1− 11d
7(d2 − 1)

[ ]
a+ b− 2
a+ b− 1

[ ]{ }
+ 0.3
a+ b

Poulos and
Davis (1980)

1
h2

= 1+ (ab)2P21
P2B

Sayed and
Bakeer
(1992)

h = 1− (1− h′
s · K)6

h′
s = 2

[(b− 1)d + D]+ [(a− 1)d + D]
pabD

Note: a is the number of rows of the pile group, b is the number of piles per
row, P1 is the capacity of a single pile, PB is the capacity for block failure of
the group, h′

s is the geometric efficiency, K is the group interaction factor,
6 is the friction factor.
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5. Specifically, for COVcu = 50%, mh decreases from
0.91–0.89 as Q increases from 0.5–2, and then increases
to 0.92 as Q increases to 5. The value of Q correspond-
ing to the greatest reduction in mh falls within the range
of 1–2.

The variation of COVh with respect to COVcu and Q

for d/D = 3 is presented in Figure 7. It is noted that
COVh exhibits an increasing trend as Q increases.
Specifically, for COVcu = 100%, COVh increases from
0.10–0.16 as Q increases from 0.5–5. Furthermore, it is
found that the effect of COVcu on COVh is significant,
and COVh increases as the COVcu increases. For instance,
forQ = 2, COVh is 0.03, 0.05, 0.09 and 0.16 when COVcu

is equal to 20%, 30%, 50% and 100%, respectively. This
observation can be attributed to the relationship between
h and the soil strength (Poulos, 1989). As the variability

of soil increases, it is expected that h will exhibit a corre-
sponding increase in variability.

4.3. The statistics of pile capacity and the
correlation between pile capacities

Figure 8 shows the histogram of the single pile capacity
with COVcu = 50% and 100%, and Q = 1. The lognor-
mal distribution is utilised to fit the pile capacity, and it
demonstrates that the lognormal distribution fits the his-
togram quite well. Additionally, it shows that the mean
pile capacity is only slightly different for COVcu = 50%
and COVcu = 100% (i.e. 799kN and 787kN), as observed
by Fenton and Griffiths (2007). In contrast, the pile
capacity spreads over a larger area for COVcu = 100%,
implying that the variation of pile capacity, COVy,
increases as COVcu increases, which is reasonable as the
soil becomes increasingly variable, its ability to support
the pile would also become increasingly variable.

The assessment of the correlation coefficient between
pile capacities, rij, is conducted in accordance with Step
10 outlined in section 2.3. Figure 9 illustrates the corre-
lation coefficient for COVcu = 50%, Q = 1 and 2. It is
noted that Q has a significant effect on the correlation
coefficient. An increase in Q indicates that the strength
of soil is correlated over a wider area, resulting in the
pile capacities that are determined based on the strength
property being more likely to be correlated. Specifically,
the correlation coefficient between pile 1 and pile 3 is
0.41 for Q = 1, but it increases to 0.70 as Q increases to
2. It is noted that the correlation coefficient between pile
capacities is related to the distance between piles. For
example, the distance between pile 1 and pile 2 (or pile
4) is the smallest, and the correlation coefficient is the
highest. Conversely, the distance between pile 1 and pile
9 is the largest, and the correlation coefficient is the lowest.

Figure 6. mh as a function of COVcu and Q.

Figure 7. COVh as a function of COVcu and Q.

Figure 8. The distribution of the single pile capacity.
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4.4. Reliability of pile groups updated by load
test results

Based on the obtained group efficiency (section 4.2), the
pile capacity and the correlation coefficient between pile
capacities (section 4.3), the reliability of pile group
updated by different load test results is investigated in
the section. It should be noted that, in Table 2 and
Figures 10–13, the load tests are assumed to be con-
ducted following the order of piles within the pile
group, wherein the first test is conducted on pile 1,
and the second test is conducted on pile 2. In contrast,
in Figures 14 and 15, the load tests are conducted on the
designated pile without adherence to the order of piles.

With the completion of load tests, the individual pile
capacities are updated based on the test outcomes. Table
2 summarises the updated individual pile capacities for
different spatial correlation lengths and test results, with
n = 1 and COVcu = 50%. The load test is assumed to be
conducted on pile 1. Consequently, owing to the sym-
metrical configuration of the pile group, the updated
results for pile 2 and pile 4, pile 3 and pile 7, as well
as pile 6 and pile 8, are identical. The mean values
shown in Table 2 are normalised by their respective
prior mean values, thus consistently yielding prior

mean values of 1 across all cases. Table 2 reveals that
the posterior mean and coefficient of variation (COV)
of individual pile capacities are significantly influenced
by their relative distances from the tested pile. For
example, in Case 1, where pile 2 and pile 4, being the
closest to pile 1, exhibit higher mean capacities and
lower COV in contrast to pile 9, situated at a greater dis-
tance. Additionally, it is noteworthy that the spatial cor-
relation length also exerts an impact on the posterior

Figure 9. The correlation coefficient between pile capacities.

Table 2. Updated individual pile capacities based on load tests.

Cases Prior

Posterior

Pile 1 Pile 2/4 Pile 3/7 Pile 5 Pile 6/8 Pile 9

Case 1: Q = 5 m = 0 Mean 1.00 1.36 1.34 1.31 1.32 1.29 1.26
COV 0.41 0.27 0.29 0.31 0.30 0.32 0.34

Case 2: Q = 5 m = 1 Mean 1.00 0.73 0.75 0.77 0.76 0.78 0.80
COV 0.41 0.24 0.26 0.30 0.28 0.31 0.33

Case 3: Q = 0.5 m = 0 Mean 1.00 1.19 1.10 1.03 1.06 1.01 1.00
COV 0.24 0.17 0.22 0.24 0.23 0.24 0.24

Case 3: Q = 0.5 m = 1 Mean 1.00 0.84 0.92 0.98 0.95 0.99 1.00
COV 0.24 0.16 0.22 0.24 0.23 0.24 0.24

Figure 10. pf updated by different load test results with various
COVcu .
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mean and COV of individual pile capacities. For
instance, the test result significantly affects pile 9 in
Case 1 and Case 2, where Q = 5, while the test result
has no effect on pile 9 in Case 3 and Case 4, where
Q = 0.5. Furthermore, results in Table 2 elucidate that
a tested pile passes the load test increases the mean
pile capacity, while a tested pile fails the load test
decreases the mean pile capacity. Remarkably, a
reduction in the variation of pile capacity is consistently
observed with load tests conducted, regardless of test
outcomes.

Figure 10 shows how pf varies with COVcu , the num-
ber of load tests, n, and the number of failed tests,m, for
Q = 5. In light of the utilisation of ten million simu-
lations in the probability analysis, values of pf less
than 1.0e-7 cannot be determined through simple

MCS. Consequently, these values are represented as
pf = 1.0e-7 in Figure 10, where the y-axis employs a
logarithmic scale. Figure 10 shows that, for the same n
and m, pf increases as COVcu increases. For example,
when three load tests are conducted and all piles fail,
pf are 7.46e-4, 0.02, 0.19, and 0.49 for COVcu = 20%,
COVcu = 30%, COVcu = 50% and COVcu = 100%,
respectively. It is noteworthy that, when
COVcu = 20%, the pile group still satisfies the design
requirement (e.g. a target reliability index, bT = 3, or
pf ≤ 0.0014) even if three consecutive piles fail, indicat-
ing that the FS = 2 used in the soil with small COVcu is
conservative. Moreover, Figure 10 indicates that the
test results have a significant effect on pf . For instance,
when n = 3 and COVcu = 100%, pf increases from
2.46e-4–0.49 as m increases from zero to three.

Figure 11 illustrates the change of pf with respect to n
and Q for COVcu = 100%. It is assumed that all the

Figure 11. pf as a function of the number of load tests (all fail),
and Q.

Figure 12. pf as a function of the number of load tests (only the
last test passes), and Q.

Figure 13. pf as a function of the number of load tests (all pass),
and Q.

Figure 14. The effect of load test location on pf , for n = 1 and
m = 0.
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tested piles fail (i.e. n = m). When no tests conducted
(n = 0), pf , 1.0e-7 as Q � 0, which can be analysed
as follows: when Q approaches zero, the variation in
cu is eliminated owing to the averaging effect (Fenton
and Griffiths 2005). Consequently, the coefficient of
variation of the pile capacity, COVy, and group
efficiency, COVh, tend towards zero. Moreover, the
pile group capacity based on the mean of cu is consist-
ently exceeds the design value when FS = 2 is employed,
resulting in pf = 0. When three consecutive piles fail, pf
remains zero for Q � 0 in Figure 11. This is mainly
because the individual piles are uncorrelated, the test
results do not impact untested piles. Even if three con-
secutive piles fail, the presence of strong piles compen-
sates for the weak ones, ensuring the safety of the pile
group. For the opposite extreme case, Q � 1, each
simulation of MCS involves a uniform soil, with the
value of cu is randomly sampled from its distribution.
In this case, COVy and COVh are non-zero because
the pile capacity and group efficiency are influenced
by the soil strength, resulting in a non-zero value of pf
as depicted in Figure 11. Additionally, Figure 11 reveals
a monotonic increase in pf with increasing Q while the
worst-case phenomenon is not pronounced. The results
indicate that ignoring spatial variation (i.e. Q � 1)
leads to an overestimation of pf . From a reliability-
based design perspective, the worst-case spatial corre-
lation length occurs when Q � 1.

Figures 12 and 13 depict the variation in pf with
respect to n and Q for COVcu = 100%. In Figure 12, it
is assumed that only the last tested pile passes the
proof load test, while in Figure 13, all the tested piles
pass the proof load test (i.e. m = 0). In contrast to the
monotonic relationship observed in Figure 11, both
Figure 12 and Figure 13 exhibit a non-monotonic
trend. pf initially increases and subsequently decreases
as Q increases. The worst-case phenomenon is

pronounced in Figure 12 and Figure 13 with the
worst-case spatial correlation length corresponding to
Q = 1. The results presented in Figure 12 and Figure
13 indicate that ignoring spatial variation (i.e.
Q � 1) underestimates pf , which may lead to an
unconservative design.

Based on the results depicted in Figure 13, it can be
deduced that Q plays a critical role in determining the
optimal number of tests required to attain a target
reliability for the pile group (e.g. bT = 3 or
pf ≤ 0.0014). Notably, for Q = 0.5 and 5, the pile
group can meet the design requirement with two con-
secutive piles passing the tests. In contrast, for Q = 1
and 2, achieving the desired reliability index requires
that at least three consecutive piles pass the tests.

This part aims to illustrate the effect of load test
locations on pf , which refers to situations wherein the
tested pile does not follow the order of piles. Figures 14
and 15 show the effect of load test locations (i.e. pile 1/
corner pile, pile 2/edge pile and pile 5/centre pile) on
pf for COVcu = 100% and n = 1. It is assumed that the
tested pile passes (i.e.m = 0) in Figure 14 while the tested
pile fails (i.e. m = 1) in Figure 15. Notably, regardless of
the value of Q, the load test conducted on pile 5 consist-
ently yields the minimum value of pf if the pile passes (i.e.
Figure 14), while it consistently yields the maximum
value of pf if the pile fails (i.e. Figure 15). The observation
indicates that the load test on pile 5 provides more infor-
mation regarding the reliability of pile groups, suggesting
that the centre pile is the optimal location if only one test
is to be performed. In contrast, previous studies have
failed to consider the spatial variability of soils, leading
to an assumption of perfect correlation among individual
pile capacities. Consequently, the potential impact of load
test locations on the updated reliability of pile groups has
been disregarded.

It is worth noting that the load test location affects
the required number of load tests to achieve the target
reliability of pile groups. For instance, in Figure 14,
when Q = 5, pf = 3.92e-3 if pile 1 is tested while
pf = 7.22e-4 if pile 5 is tested. In this case, if the target
reliability index of 3 (i.e. pf ≤ 0.0014) is adopted in pile
design, the result obtained based on the load test on pile
5 is sufficient to verify the design of pile groups. How-
ever, if the load test is conducted on pile 1 or pile 2,
more load tests are required.

It is noted that the results for Q of 0.5 and 5 exhibit
almost identical outcomes in Figure 14, which can be
explained as follows. In the extreme case, where
Q � 0, the values of cu at any two distinct points are
independent. In this case, the pile effectively averages
the cu field, resulting in individual pile capacities tend-
ing to those obtained in a deterministic condition

Figure 15. The effect of load test location on pf , for n = 1 and
m = 1.
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(Fenton and Griffiths 2005). Consequently, the tested
pile is quite representative of the untested piles, and a
pass of the tested pile indicates a low pf for the pile
group. Conversely, in the extreme case, where
Q � 1, individual pile capacities exhibit perfect corre-
lation. In this case, a pass of the tested pile implies a
higher likelihood that the untested piles will also pass
the tests, thereby yielding a low pf again. However, at
intermediate correlation lengths, the tested pile becomes
a less accurate estimator of the untested piles, leading to
an increase in pf . Consequently, pf initially increases
and subsequently decreases as Q increases from zero
to infinity, with the highest pf occurring at an inter-
mediate correlation length between zero and infinity.
Figure 14 illustrates that the highest pf corresponds to
Q = 1. Hence, the results forQ = 0.5 and 5 may appear
similar.

5. Conclusions

This paper proposes a rigorous framework for updating
the reliability of pile groups with load tests, accounting
for the spatial variability of soil. The group efficiency,
pile capacity and correlation between pile capacities in
spatially variable soils are evaluated, which are further
utilised in updating the reliability of pile groups based
on the number of tests and the corresponding test results.
Results indicate that neglecting the spatial variability
(assuming Q � 1) leads to an overconservative design
when all piles fail. Conversely, it results in an unconser-
vative design when one or more piles pass. These findings
underscore the importance of incorporating spatial varia-
bility into the evaluation of pile group reliability.

The proposed approach allows for the consideration
of the impact of load test locations on the updated
reliability of pile groups, surpassing the limitations of
previous studies. Notably, for a 3×3 pile group, results
indicate that the centre pile is the optimal location if
only one test is to be performed. However, it should be
noted that the present investigation regarding the effect
of load test locations involves only one load test, and a
comprehensive investigation into the optimal load test
scheme (e.g. the number of tests and corresponding test
locations) remains a topic for future research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Natural Science
Foundation of China (Project Nos. 41972280, 42272326).

The first author wishes to acknowledge support from the
China Scholarship Council (grant number 201906270257).

References

AASHTO. 1998. LRFD Bridge Design Specifications
Foundation. 2nd ed. Washington, D.C.: American
Association of State Highway and Transportation Officials.

Ang, A. H.-S., and W. H. X. Tang. 2007. Probability Concepts
in Engineering Planning and Design: Emphasis on
Application to Civil and Environmental Engineering.
Hoboken, NJ: Wiley.

Bian, X.-y., J.-j. Zheng, R.-J. Zhang, and Z.-j. Xu. 2017.
“Reliability Analysis for Serviceability Limit State of Pile
Groups Foundation.” KSCE Journal of Civil Engineering
22 (1): 54–61. https://doi.org/10.1007/s12205-017-0246-1.

Bolin, H. W. 1941. “The Pile Efficiency Formula of the Uniform
Building Code.” Building Standards Monthly 10 (1): 4–5.

Bowles, J. E. 1995. Foundation Analysis and Design.
Chen, J. B., and R. B. Gilbert. 2017. “Offshore Pile System

Model Biases and Reliability.” Georisk-Assessment and
Management of Risk for Engineered Systems and
Geohazards 11 (1): 55–69. https://doi.org/10.1080/
17499518.2016.1250914.

Ching, J., and K.-K. Phoon. 2013. “Probability Distribution
for Mobilised Shear Strengths of Spatially Variable Soils
Under Uniform Stress States.” Georisk: Assessment and
Management of Risk for Engineered Systems and
Geohazards 7 (3): 209–224. https://doi.org/10.1080/
17499518.2013.801273.

Ching, J., K.-K. Phoon, Z. Yang, and A. W. Stuedlein. 2021.
“Quasi-site-specific Multivariate Probability Distribution
Model for Sparse, Incomplete, and Three-Dimensional
Spatially Varying Soil Data.” Georisk: Assessment and
Management of Risk for Engineered Systems and
Geohazards 16 (1): 53–76. https://doi.org/10.1080/
17499518.2021.1971256.

Comodromos, E. M. 2004. “Response Evaluation of Axially
Loaded Fixed Head Pile Groups Using 3D Nonlinear
Analysis.” Soils and Foundations 44 (2): 31–39. https://
doi.org/10.3208/sandf.44.2_31.

Crisp, M. P., M. B. Jaksa, and Y. L. Kuo. 2021. “Characterising
Site Investigation Performance in Multiple-Layer Soils and
Soil Lenses.” Georisk-Assessment and Management of Risk
for Engineered Systems and Geohazards 15 (3): 196–208.
https://doi.org/10.1080/17499518.2020.1806332.

Crisp, M. P., M. B. Jaksa, Y. L. Kuo, G. A. Fenton, and D. V.
Griffiths. 2018. “A Method for Generating Virtual Soil
Profiles with Complex, Multi-Layer Stratigraphy.”
Georisk: Assessment and Management of Risk for
Engineered Systems and Geohazards 13 (2): 154–163.
https://doi.org/10.1080/17499518.2018.1554817.

CSA. 2014. “Canadian Highway Bridge Design Code.” In
CSA-S6-14, edited by Canadian Standards Association,
231–232. Mississauga, ON: Code and Commentary.

Feld, J. 1943. “Discussion on Friction Pile Foundations.”
Transactions of the American Society of Civil Engineers
108 (1): 73–115. https://doi.org/10.1061/TACEAT.0005589

Fenton, G. A., and D. V. Griffiths. 2003. “Bearing-capacity
Prediction of Spatially Random c – f Soils.” Canadian
Geotechnical Journal 40 (1): 54–65. https://doi.org/10.
1139/t02-086.

762 Y. ZHANG ET AL.

https://doi.org/10.1007/s12205-017-0246-1
https://doi.org/10.1080/17499518.2016.1250914
https://doi.org/10.1080/17499518.2016.1250914
https://doi.org/10.1080/17499518.2013.801273
https://doi.org/10.1080/17499518.2013.801273
https://doi.org/10.1080/17499518.2021.1971256
https://doi.org/10.1080/17499518.2021.1971256
https://doi.org/10.3208/sandf.44.2_31
https://doi.org/10.3208/sandf.44.2_31
https://doi.org/10.1080/17499518.2020.1806332
https://doi.org/10.1080/17499518.2018.1554817
https://doi.org/10.1061/TACEAT.0005589
https://doi.org/10.1139/t02-086
https://doi.org/10.1139/t02-086


Fenton, G. A., and D. V. Griffiths. 2005. “Three-dimensional
Probabilistic Foundation Settlement.” Journal of
Geotechnical and Geoenvironmental Engineering 131 (2):
232–239. https://doi.org/10.1061/(Asce)1090-0241
(2005)131:2(232).

Fenton, G. A., and D. V. Griffiths. 2007. “Reliability-based
Deep Foundation Design.” In Probabilistic Applications in
Geotechnical Engineering, 1–12. https://doi.org/10.1061/
40914(233)1.

Fenton, G. A., and D. V. Griffiths. 2008. Risk Assessment in
Geotechnical Engineering. New York: John Wiley & Sons.

Fleming, W. G. K., A. J. Weltman, M. F. Randolph, and W. K.
Elson. 2009. Piling Engineering. 3rd ed. Abingdon: Taylor
and Francis.

Haario, H., M. Laine, A. Mira, and E. Saksman. 2006. “DRAM:
Efficient Adaptive MCMC.” Statistics and Computing 16
(4): 339–354. https://doi.org/10.1007/s11222-006-9438-0.

Heße, F., V. Prykhodko, S. Schlüter, and S. Attinger. 2014.
“Generating Random Fields with a Truncated Power-law
Variogram: A Comparison of Several Numerical
Methods.” Environmental Modelling & Software 55: 32–
48. https://doi.org/10.1016/j.envsoft.2014.01.013.

Huang, J. S., G. Fenton, D. V. Griffiths, D. Q. Li, and C. B.
Zhou. 2017. “On the Efficient Estimation of Small Failure
Probability in Slopes.” Landslides 14 (2): 491–498. https://
doi.org/10.1007/s10346-016-0726-2.

Huang, J. S., R. Kelly, D. Q. Li, C. B. Zhou, and S. Sloan. 2016.
“Updating Reliability of Single Piles and Pile Groups by
Load Tests.” Computers and Geotechnics 73: 221–230.
https://doi.org/10.1016/j.compgeo.2015.12.003.

ISSMFE. 1985. “Axial Pile Loading Test—Part 1: Static
Loading.” Geotechnical Testing Journal 8 (2): 79–90.
https://doi.org/10.1520/GTJ10514J.

Itasca Consulting Group, I. 2017. FLAC3D— Fast Lagrangian
Analysis of Continua in Three-Dimensions, Ver. 6.0.
Minneapolis: Itasca.

Kanellopoulos, K., and G. Gazetas. 2020. “Vertical Static and
Dynamic Pile-to-Pile Interaction in non-Linear Soil.”
Geotechnique 70 (5): 432–447. https://doi.org/10.1680/
jgeot.18.P.303.

Klammler, H., M. McVay, R. Herrera, and P. Lai. 2013.
“Reliability Based Design of Driven Pile Groups Using
Combination of Pile Driving Equations and High Strain
Dynamic Pile Monitoring.” Structural Safety 45: 10–17.
https://doi.org/10.1016/j.strusafe.2013.07.009.

Kramer, P. R., O. Kurbanmuradov, and K. Sabelfeld. 2007.
“Comparative Analysis of Multiscale Gaussian Random
Field Simulation Algorithms.” Journal of Computational
Physics 226 (1): 897–924. https://doi.org/10.1016/j.jcp.
2007.05.002.

Länsivaara, T., K. K. Phoon, and J. Ching. 2021. “What is a
Characteristic Value for Soils?” Georisk: Assessment and
Management of Risk for Engineered Systems and
Geohazards 16 (2): 199–224. https://doi.org/10.1080/
17499518.2021.1975301.

Lloret-Cabot, M., G. A. Fenton, and M. A. Hicks. 2014. “On
the Estimation of Scale of Fluctuation in Geostatistics.”
Georisk: Assessment and Management of Risk for
Engineered Systems and Geohazards 8 (2): 129–140.
https://doi.org/10.1080/17499518.2013.871189

Maheetharan, A. T. A., and A. Jaen-Toribio. 2020.
“Verification of Pile Modelling Technique in FLAC3D.”

In Applied Numerical Modeling in Geomechanics, edited
by D. Billaux, J. Hazzard, M. Nelson, and M. Schöpfer.
Paper, 16–03.

Müller, S., L. Schüler, A. Zech, and F. Heße. 2021. “GSTools
v1. 3: A Toolbox for Geostatistical Modelling in Python.”
Geoscientific Model Development Discussions, 1–33.
https://doi.org/10.5194/gmd-2021-301.

Naghibi, F., and G. A. Fenton. 2017. “Target Geotechnical
Reliability for Redundant Foundation Systems.” Canadian
Geotechnical Journal 54 (7): 945–952. https://doi.org/10.
1139/cgj-2016-0478.

Naghibi, F., and G. A. Fenton. 2022. “Design of Foundations
Against Differential Settlement.” Canadian Geotechnical
Journal 59 (3): 384–396. https://doi.org/10.1139/cgj-2020-
0782.

Najjar, S. S., and R. B. Gilbert. 2009. “Importance of Proof-
Load Tests in Foundation Reliability.” In Contemporary
Topics in In Situ Testing, Analysis, and Reliability of
Foundations, 340–347. https://doi.org/10.1061/41022
(336)44.

Oudah, F., M. H. El Naggar, and G. Norlander. 2019. “Unified
System Reliability Approach for Single and Group Pile
Foundations - Theory and Resistance Factor Calibration.”
Computers and Geotechnics 108: 173–182. https://doi.org/
10.1016/j.compgeo.2018.12.003.

Phoon, K. K., and F. H. Kulhawy. 1999. “Characterization of
Geotechnical Variability.” Canadian Geotechnical Journal
36 (4): 612–624. https://doi.org/10.1139/t99-038.

Phoon, K. K., and C. Tang. 2019. “Characterisation of
Geotechnical Model Uncertainty.” Georisk-Assessment
and Management of Risk for Engineered Systems and
Geohazards 13 (2): 101–130. https://doi.org/10.1080/
17499518.2019.1585545.

Poulos, H. G. 1989. “Pile Behavior - Theory and Application.”
Geotechnique 39 (3): 363–415. https://doi.org/10.1680/geot.
1989.39.3.365.

Poulos, H. G., and E. H. Davis. 1980. Pile Foundation Analysis
and Design.

Rose, A. V., R. N. Taylor, and M. H. El Naggar. 2013.
“Numerical Modelling of Perimeter Pile Groups in Clay.”
Canadian Geotechnical Journal 50 (3): 250–258. https://
doi.org/10.1139/cgj-2012-0194.

Sayed, S. M., and R. M. Bakeer. 1992. “Efficiency Formula for
Pile Groups.” Journal of Geotechnical Engineering-Asce 118
(2): 278–299. https://doi.org/10.1061/(Asce)0733-9410
(1992)118:2(278).

Seiler, J. F., andW. D. Keeney. 1944. “The Efficiency of Piles in
Groups.” Wood Preserving News 22 (11): 109–118.

Vanmarcke, E. 2010. Random Fields: Analysis and Synthesis.
Beijing: World scientific.

Zhang, L. M. 2004. “Reliability Verification Using Proof Pile
Load Tests.” Journal of Geotechnical and Geoenvironmental
Engineering 130 (11): 1203–1213. https://doi.org/10.1061/
(Asce)1090-0241(2004)130:11(1203).

Zhang, Y., and J. Huang. 2022. Calibration of Resistance
Factor Based on Pile Load Test Conducted to Failure. 8th
International Symposium on Geotechnical Safety and
Risk (ISGSR), Newcastle, Australia.

Zhang, Y., J. Huang, and A. Giacomini. 2023. “Bayesian
Updating on Resistance Factors of H-Piles with Axial
Load Tests.” Computers and Geotechnics 159. https://doi.
org/10.1016/j.compgeo.2023.105421.

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 763

https://doi.org/10.1061/(Asce)1090-0241(2005)131:2(232)
https://doi.org/10.1061/(Asce)1090-0241(2005)131:2(232)
https://doi.org/10.1061/40914(233)1
https://doi.org/10.1061/40914(233)1
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.1016/j.envsoft.2014.01.013
https://doi.org/10.1007/s10346-016-0726-2
https://doi.org/10.1007/s10346-016-0726-2
https://doi.org/10.1016/j.compgeo.2015.12.003
https://doi.org/10.1520/GTJ10514J
https://doi.org/10.1680/jgeot.18.P.303
https://doi.org/10.1680/jgeot.18.P.303
https://doi.org/10.1016/j.strusafe.2013.07.009
https://doi.org/10.1016/j.jcp.2007.05.002
https://doi.org/10.1016/j.jcp.2007.05.002
https://doi.org/10.1080/17499518.2021.1975301
https://doi.org/10.1080/17499518.2021.1975301
https://doi.org/10.1080/17499518.2013.871189
https://doi.org/10.5194/gmd-2021-301
https://doi.org/10.1139/cgj-2016-0478
https://doi.org/10.1139/cgj-2016-0478
https://doi.org/10.1139/cgj-2020-0782
https://doi.org/10.1139/cgj-2020-0782
https://doi.org/10.1061/41022(336)44
https://doi.org/10.1061/41022(336)44
https://doi.org/10.1016/j.compgeo.2018.12.003
https://doi.org/10.1016/j.compgeo.2018.12.003
https://doi.org/10.1139/t99-038
https://doi.org/10.1080/17499518.2019.1585545
https://doi.org/10.1080/17499518.2019.1585545
https://doi.org/10.1680/geot.1989.39.3.365
https://doi.org/10.1680/geot.1989.39.3.365
https://doi.org/10.1139/cgj-2012-0194
https://doi.org/10.1139/cgj-2012-0194
https://doi.org/10.1061/(Asce)0733-9410(1992)118:2(278)
https://doi.org/10.1061/(Asce)0733-9410(1992)118:2(278)
https://doi.org/10.1061/(Asce)1090-0241(2004)130:11(1203)
https://doi.org/10.1061/(Asce)1090-0241(2004)130:11(1203)
https://doi.org/10.1016/j.compgeo.2023.105421
https://doi.org/10.1016/j.compgeo.2023.105421


Zhang, X.-l., B.-h. Jiao, Y. Han, S.-l. Chen, and X.-y. Li. 2021.
“Random Field Model of Soil Parameters and the
Application in Reliability Analysis of Laterally Loaded
Pile.” Soil Dynamics and Earthquake Engineering 147:
106821. https://doi.org/10.1016/j.soildyn.2021.106821.

Zhang, L. M., D. Q. Li, and W. H. Tang. 2006. “Level of
Construction Control and Safety of Driven Piles.” Soils
and Foundations 46 (4): 415–425. https://doi.org/10.3208/
sandf.46.415.

Zhang, L., and W. H. Tang. 2002. Use of Load Tests for
Reducing Pile Length Deep Foundations 2002: An

International Perspective on Theory, Design,
Construction, and Performance.

Zhang, L. M., W. H. Tang, and C. W.W. Ng. 2001. “Reliability
of Axially Loaded Driven Pile Groups.” Journal of
Geotechnical and Geoenvironmental Engineering 127 (12):
1051–1060. https://doi.org/10.1061/(Asce)1090-0241
(2001)127:12(1051).

Zhang, Q.-q., and Z.-m. Zhang. 2012. “Simplified Calculation
Approach for Settlement of Single Pile and Pile Groups.”
Journal of Computing in Civil Engineering 26 (6): 750–
758. https://doi.org/10.1061/(asce)cp.1943-5487.0000167.

764 Y. ZHANG ET AL.

https://doi.org/10.1016/j.soildyn.2021.106821
https://doi.org/10.3208/sandf.46.415
https://doi.org/10.3208/sandf.46.415
https://doi.org/10.1061/(Asce)1090-0241(2001)127:12(1051)
https://doi.org/10.1061/(Asce)1090-0241(2001)127:12(1051)
https://doi.org/10.1061/(asce)cp.1943-5487.0000167

	Abstract
	1. Introduction
	2. Methodology
	2.1. Updating reliability of pile groups with load test results
	2.2. Random finite difference method
	2.2.1. Finite difference model
	2.2.2. Random field model

	2.3. Evaluation of group efficiency, pile capacity and correlation between pile capacities

	3. Example
	4. Results
	4.1. Group efficiency in deterministic soils
	4.2. Group efficiency in spatially variable soils
	4.3. The statistics of pile capacity and the correlation between pile capacities
	4.4. Reliability of pile groups updated by load test results

	5. Conclusions
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


