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A B S T R A C T

Blood clotting is an important physiological process to suppress bleeding upon injury, but when it occurs
inadvertently, it can cause thrombosis, which can lead to life threatening conditions. Hence, understanding
the microscopic mechanistic factors for inadvertent, spontaneous blood clotting, in absence of a vessel breach,
can help in predicting and averting such conditions. Here, we present a minimal model – reminiscent of the SIR
model – for the initiating stage of spontaneous blood clotting, the collective activation of blood platelets. This
model predicts that in the presence of very small initial activation signals, collective activation of the platelet
population is possible, but requires a sufficient degree of heterogeneity of platelet sensitivity. To propagate the
activation signal and achieve collective activation of the bulk platelet population, it requires the presence of,
possibly only few, hyper-sensitive platelets, but also a sufficient proportion of platelets with intermediate, yet
higher-than-average sensitivity. A comparison with experimental results demonstrates a qualitative agreement
for high platelet signalling activity.
1. Introduction

Blood clotting is the formation of macroscopic aggregates of blood
platelets which are stabilised by a fibrin polymer network (coagula-
tion) (Gale, 2011). The physiological purpose of such an aggregate,
called a blood clot, or thrombus, is to seal breached vessels and to protect
an individual from blood loss. However, when blood clots emerge
in the blood stream, away from vessel breaches, they can occlude
vessels (thrombosis) and obstruct blood flow, which is associated with
pathologies such as stroke and heart attacks (Raskob et al., 2014),
leading to more than 15 million deaths per annum world-wide (British
Heart Foundation, 2021).

The first stage of platelet-mediated blood clotting (primary hemosta-
sis) is the formation of a platelet plug through platelet aggregation (Gale,
2011). Platelets can only aggregate once they have been activated.
Activation is mediated by agonists in the bloodstream and vessel walls
(usually arising from damaged vasculature), or through shear stresses
and collisions with the vessel wall (Rana et al., 2019; Hellmuth et al.,
2016), or indirectly, via paracrine signalling from other activated
platelets (Stalker et al., 2012; van der Meijden and Heemskerk, 2019).

Physiological blood clotting occurs at vessel breaches, but blood
clots can sometimes emerge without apparent vascular damage and
with stimulant levels far below threshold levels expected to activate
platelets (hypercoagulation) (LaPelusa and Dave, 2023). Although ge-
netic and lifestyle risk factors for this are well established, the micro-
scopic mechanistic origin of the emergence of such spontaneous blood
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clotting (without apparent external activator) has so far eluded our full
understanding.

It has been shown that platelets are highly diverse, and their sensi-
tivity – the threshold and propensity to activate when exposed to stim-
ulating factors – differs greatly between platelets within a person (van
der Meijden and Heemskerk, 2019; Heemskerk and West, 2022; Jongen
et al., 2020). Some platelets are extremely sensitive (Baaten et al.,
2017), and it has been hypothesised that activation of such hyper-
sensitive platelets – which might be rare, but can activate at very
low stimulant concentrations – can propagate activation via paracrine
signalling to activate also less sensitive platelets, thereby generat-
ing a macroscopic population of activated platelets. This could initi-
ate platelet aggregation in situations where the abundance of stim-
ulants is much lower than the threshold for the bulk activation of
platelets (Baaten et al., 2017; Jongen et al., 2020; Lesyk and Jurasz,
2019). Thus, the diversity of platelet sensitivity, and not bulk platelet
sensitivity alone, may drive platelet aggregation.

Platelet aggregation is measured by platelet aggregometry (Ruf et al.,
1997), which employs several methods: the traditional ‘‘gold standard’’
is light transmission aggregometry (Born, 1962) which identifies platelet
aggregation in an activated platelet suspension through increased light
transmissibility. However, this method requires large sample volumes,
long processing times and complex sample preparation (Koltai et al.,
2017). Newer methods that measure impedance (Cardinal and Flower,
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1980) and elastic properties (Thromboelastography, TEG) (Donahue
and Otto, 2005) can also be performed on whole blood samples, and
can measure whole blood clotting (TEG), not only aggregation. Flow cy-
tometry uses fluorescent markers to measure activated platelets (Carubb
et al., 2014; Jongen et al., 2020) and thus can be used identify large
scale platelet activation.

Whether activated clusters remain microscopic or the activation
signal percolates through the platelet population, leading to collective
activation/aggregation, is a non-trivial critical emergent phenomenon
which has not been understood yet. Although models for blood clot
growth have been widely used, those established models usually model
blood clot growth at the vessel wall, from which strong activation
stimulants are seccreted and where shear flow can trigger activa-
tion (Fogelson, 1993; Wang and Fogelson, 1999; Anand et al., 2003;
Pivkin et al., 2006; Xu et al., 2008; Fogelson and Neeves, 2015;
Fogelson, 2016; Schoeman et al., 2017; Link et al., 2020). How macro-
scopic platelet populations can get activated away from the vessel wall,
when activation signals are absent or very low, is less understood.

In this work, we present a minimal mechanistic model for paracrine
(platelet-platelet) activation via signalling, which captures the main
qualitative features of the first phase of spontaneous blood clotting —
the macroscopic, collective activation of a platelet population, upon a
weak stimulant signal, which usually would not be able to activate
the bulk population of platelets alone. We thus propose a reaction-
rate model which can be translated into a dynamical system for the
concentration of activated and naive platelets. This system has sim-
ilarities to the SIR model, a model for the spread of infectious dis-
eases (contagions), with the difference that multiple contagion-carrying
agents (here: stimulant-secreting activated platelets) need to meet close
to each other to spread the contagion (here: activation signal). We will
show that even minor stimulation can lead to macroscopic activation of
the platelet population away from vessel walls – which from a medical
point of view can lead to a dangerous thrombus that occludes otherwise
undamaged vessels – if there is a substantial degree of heterogeneity of
platelet sensitivity.

2. Model

Our aim is to model the transition from a naive, non-activated
population of platelets, which are not able to aggregate, to a situation
where a substantial proportion of the platelet population is activated.
Activated platelets can adhere to each other, which is the pre-requisite
for the first stage of blood clotting, platelet aggregation. To develop
a thorough theoretical understanding we keep this model simple, by
focusing only on the initiating step of platelet aggregation, the macro-
scopic activation of platelets, as further steps of blood clotting, platelet
aggregation and coagulation, have been modelled elsewhere.

2.1. Model assumptions

We make the following simplifying, yet biologically motivated as-
sumptions:

• The platelet population is approximated as being well mixed, that
is, each platelet can get in contact with each other platelet (the
impact of this approximation is discussed in Section 4).

• Naive, non-activated platelets (𝑁) can be activated either by
external stimuli (e.g. activating agonists, shear flow stress, col-
lisions), or by paracrine signalling (e.g. ADP) from other platelets
in their immediate vicinity. A threshold amount of signalling
molecules is required at their surface to activate (van der Meijden
and Heemskerk, 2019; Jongen et al., 2020), as illustrated in Fig. 1.

• Freshly activated platelets (𝐴𝑠) secret signalling molecules
(e.g. ADP) which can activate other platelets (‘‘degranulation’’)
(van der Meijden and Heemskerk, 2019).
2 
Fig. 1. Illustration of the model for the case 𝑐 = 3𝑐0, meaning 𝑚 = 3. (Top right:) The
propensity 𝑝 of a platelet to activate as function of the provided stimulant concentration
𝑐′ for 𝑐 = 3𝑐0 (𝜔̃ is the maximal activation rate.). Only if 𝑐′ ≥ 𝑐, platelets can activate.
(Bottom:) Illustration of the cooperative activation of platelets. A single secreting
activated platelet provides only a stimulant level 𝑐0, not sufficient to activate other
naive platelets. However, if 3 secreting platelets are close to a naive platelet, their
stimulants add linearly to provide 𝑐′ = 3𝑐0 = 𝑐, which is sufficient to activate the naive
platelet.

• Signalling molecules disperse quickly through diffusion and ad-
vection. Hence, the range of the signalling interaction is very
short, and can be characterised by a stimulant concentration 𝑐0
added by each activated secreting platelet, 𝐴𝑠, to its immediate
environment.

• The threshold amount of stimulus required to activate a naive
platelet, 𝑐, might be higher than 𝑐0, the concentration provided
by a single neighbouring secreting platelet.

• Degranulation occurs for a limited amount of time (Polasek,
2006), after which platelets turn into an idle activated state (𝐴𝑖),
that is, they remain activated (and thus able to aggregate and
initiate coagulation), but stop secreting activation signals.

These assumptions aim to simplify the model sufficiently to allow a
thorough theoretical understanding, yet to retain the relevant features
how paracrine signalling can spread the activation signal. This way, the
model is expected to reproduce the qualitative features of macroscopic
activation, e.g. to decide whether a transition from a microscopic
to a macroscopic population of activated platelets is possible, and
whether it occurs at a particular critical point of parameter values as
an abrupt transition. The model is not intended to reflect a particular
experimental situation and due to its approximative nature, it is not
expected to reproduce accurate numerical predictions for experiments.
However, it is expected to approximately model situations in which
platelet activation (and possibly aggregation) occurs where platelets
are immersed in blood flow, i.e. not bound to vessel walls, or in vitro
situations where there is no flow.

2.2. Model for homogeneous platelet population

From these assumptions, we can formalise the activation dynamics
of platelets. Let us assume that initially some, but not all platelets have
been activated through external factors (e.g. by agonists, shear stress,
collisions, which we do not model explicitly), and are now secreting. If
𝑚′ of these secreting platelets are immediately next to a naive platelet
(within the distance over which the stimulant level, 𝑐0, secreted by a
platelet is maintained), they generate a maximal agonist concentration
𝑐′ = 𝑚′ 𝑐0 in their immediate vicinity, where the naive platelet resides.
To activate a naive platelet with threshold concentration 𝑐, it requires
that 𝑐′ > 𝑐, and thus,

𝑚 =
⌈

𝑐
⌉

(1)

𝑐0
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is the minimal number of secreting platelets required to activate that
latelet (see illustration in Fig. 1). Hence, we can formally write the

events of this model as:

𝑁𝑚 + 𝑚𝐴𝑠 → (𝑚 + 1)𝐴𝑠, 𝐴𝑠 → 𝐴𝑖 (2)

The first term describes how 𝑚 activated secreting platelets, 𝐴𝑠, turn a
aive platelet, 𝑁𝑚, into another activated secreting platelet. The second
erm denotes that a secreting activated platelet stops secreting after
ome time and becomes an idle activated platelet 𝐴𝑖. Note that in
rinciple also higher numbers of co-located secreting platelets 𝑚′ > 𝑚
an activate a platelet, but the probability for this to happen decreases
xponentially with 𝑚′, and can thus be neglected.

As the population is well mixed, we can use the law of mass action
to derive a dynamical model for the concentrations of naive platelets,
𝑛𝑚, secreting activated platelets, 𝑎𝑠, and idle activated platelets, 𝑎𝑖, from
the ‘‘reactions’’ (2):

̇𝑚 = −𝜔𝑛𝑚𝑎𝑚𝑠 (3)
𝑎̇𝑠 = 𝜔𝑛𝑚𝑎

𝑚
𝑠 − 𝛾 𝑎𝑠

𝑎̇𝑖 = 𝛾 𝑎𝑠 ,

where 𝑥̇ ∶= 𝑑 𝑥(𝑡)
𝑑 𝑡 for 𝑥 = 𝑛𝑚, 𝑎𝑠, 𝑎𝑖, while 𝜔 is the specific activation rate.

This rate depends on the range a secreting platelet travels during the
time it keeps secreting (‘‘degranulation time’’ 𝑡𝑠 (Polasek, 2006)), the
signalling range, and the propensity to activate 𝜔̃ (as in Fig. 1). The
arameter 𝛾 = 1

𝑡𝑠
is the rate at which a previously activated platelet

ceases secreting stimulants.
Notably, for 𝑚 = 1, this model is equivalent to the SIR model,

the paradigmatic model for the spread of a contagion (Kermack and
cKendrick, 1927). In the context of infectious diseases, the case 𝑚 > 1

can be seen as a variant of the SIR model in which several infected
individuals need to be present at the same time to infect others, i.e. they
‘cooperate’’ to spread the contagion. We therefore refer to this model,
n its general form, as a cooperative SIR model. The following analysis
ill study this model, and its heterogeneous version, for its general
roperties.

To simplify the analysis, we will use a non-dimensionalised version
f Eqs. (3), in which we use the degranulation time as time unit. Thus,

we use rescaled time 𝑡 = 𝛾 𝑡, and the reproductive number 𝑟 = 𝜔𝜌
𝛾 , where

= 𝑛 + 𝑎𝑠 + 𝑎𝑖 is the total concentration of platelets. Furthermore, we
xpress the equations in terms of the proportions of subpopulations,
𝑛̃ = 𝑛

𝜌 , 𝑎̃𝑠 = 𝑎𝑠
𝜌 , 𝑎̃𝑖 = 𝑎𝑖

𝜌 , so that 𝑛̃ + 𝑎̃𝑠 + 𝑎̃𝑖 = 1. We can then
liminate 𝑎̃𝑖 = 1 − 𝑛̃𝑚− 𝑎̃𝑠, and express the system by two equations. For
onvenience, we rename the non-dimensionalised quantities to remove
he tilde: 𝑛̃𝑚 → 𝑛𝑚, 𝑎̃𝑠 → 𝑎𝑠, 𝑡 → 𝑡, to arrive at the non-dimensional form
f Eq. (3):

̇𝑚 = −𝑟𝑛𝑚𝑎𝑚𝑠 (4)

𝑎̇𝑠 = 𝑟𝑛𝑚𝑎
𝑚
𝑠 − 𝑎𝑠 . (5)

2.3. Model for heterogeneous platelet population

We will also study a heterogeneous version of the model. First,
e note that heterogeneity in 𝑟 is not qualitatively different to a
omogeneous system. Assuming a distribution of naive platelets with
ifferent 𝑟, 𝑛(𝑟), we have, instead of Eq. (5), 𝑎̇𝑠 = ∫ ∞

0 𝑟 𝑛(𝑟)𝑎𝑚𝑠 𝑑 𝑟 − 𝑎𝑠.
Since 𝑎𝑚𝑠 ∫ ∞

0 𝑟 𝑛(𝑟)𝑑 𝑟 = 𝑟̄𝑛𝑎𝑠, where 𝑟̄ is the mean value of 𝑟, the
corresponding equation is the same as (5) when replacing 𝑟 with 𝑟̄.

hus, we do not consider this type of heterogeneity explicitly. Another
type of heterogeneity is when the threshold concentration 𝑐 varies
etween platelets, according to a probability density distribution 𝑛(𝑐).
ssociated with this are sub-populations 𝑛𝑚 with different threshold

numbers 𝑚 = 1, 2,…, which are related to 𝑛(𝑐) by 𝑛𝑚 = ∫ (𝑚+1)𝑐0
𝑚𝑐0

𝑛(𝑐) 𝑑 𝑐.
Then, we get the non-dimensionalised time evolution of the system:

̇ = −𝑟𝑛 𝑎𝑚 for all 𝑚 ∈ N (6)
𝑚 𝑚 𝑠

3 
𝑎̇𝑠 = 𝑟
∑

𝑚
𝑛𝑚𝑎

𝑚
𝑠 − 𝑎𝑠 .

While the sensitivity of a platelet is not relevant for the dynamics
after it is activated, we will for our analysis also distinguish activated
platelets by sensitivity, defining the proportions of activated platelets
with activation threshold 𝑚 as 𝑎𝑚 ∶= 𝑎(𝑚)𝑠 + 𝑎(𝑚)𝑖 ∶= 𝑛𝑚(𝑡 = 0) − 𝑛𝑚 for
𝑚 = 1, 2,…, when using the initial condition that at time 𝑡 = 0, 𝑎𝑠 = 0.

3. Results

3.1. Collective activation

Our main goal of this section is to assess under which circumstances
 macroscopic population of activated platelets, 𝑎 ∶= 𝑎𝑠+𝑎𝑖 = 1 −∑𝑚 𝑛𝑚,
merges, if initially only a microscopic (i.e. infinitesimal) population
f the size 𝑎𝑠 = 𝜖 → 0 of secreting activated platelets is present,
f external stimulant is absent or only microscopic. For a convenient
erminology, we define the terms ‘‘microscopic’’/‘‘macroscopic’’, as
ollows: We consider a total of 𝑋 platelets (or, alternatively, stimulant
olecules), which is large, that is, 𝑋 → ∞, and a sub-population thereof
ith 𝑋𝑠 platelets. The sub-population 𝑋𝑠 is microscopic, if 𝑋𝑠 > 0, but

ts proportion on the total population 𝑋, 𝑥 ∶= lim𝑋→∞
𝑋𝑠
𝑋 = 0. On the

ther hand, a population is macroscopic if 𝑋𝑠 diverges for 𝑋 → ∞, in a
way that the proportion 𝑋𝑠

𝑋 is non-zero, 0 < 𝑥 ≤ 1.

3.1.1. Macroscopic activation of hyper-sensitive platelets (𝑚 = 1)
The question, under which circumstances a macroscopic population

of activated platelets 𝑎 emerges from an initially microscopic one
(𝑎𝑠(𝑡 = 0) = 𝜖 → 0), is equivalent to asking under which circumstances
an epidemic breaks out in a contagion model such as the SIR model.
Since for 𝑚 = 1, the model (4),(5) is equivalent to the SIR model, it
is well known that the condition for an epidemic to break out is for
𝑟 > 1, if initially all individuals, except for a microscopic proportion, are
susceptible — which in our case corresponds to all but a few platelets
being naive.

We now wish to study this question for general 𝑚 > 1 in Eqs. (4),(5)
and then for the heterogeneous model, Eq. (6). We first note that the
ondition for a macroscopic platelet population to become activated
pon exposure to a microscopic population of secreting activated
latelets, 𝑎𝑠(𝑡 = 0) = 𝜖 → 0, is equivalent to the fixed point 𝒙∗ = (𝑛 =

1, 𝑎𝑠 = 0) being unstable (Strogatz, 1994). Thus, to assess this, we have a
look at the Jacobian matrix of Eqs. (4),(5) at that fixed point for 𝑚 > 1,

𝐽 |𝒙∗ =

(

−𝑟𝑎𝑚𝑠 −𝑟𝑚𝑛𝑎𝑚−1𝑠

𝑟𝑎𝑚𝑠 𝑟𝑚𝑛𝑎𝑚−1𝑠 − 1

)

|(𝑛=1,𝑎𝑠=0) =
(

0 0
0 −1

)

. (7)

This matrix has eigenvalues 0 and −1, therefore the fixed point is
yapunov stable (Strogatz, 1994), and not unstable for any value of

𝑟. This means that for 𝑚 > 1, no macroscopic activation of the platelet
opulation can occur when seeded with an infinitesimally small popu-
ation of activated platelets, 𝑎𝑠(𝑡 = 0) = 𝜖. This has some advantages
rom the biological point of view: since macroscopic activation of
latelets can lead to blood clotting, and inadvertent clotting can lead
o dangerous pathologies through thrombosis, it could be a dangerous
ituation if a tiny population of such platelets were sufficient to trigger

this. Hence, a situation with 𝑚 > 1 is protecting against inadvertent
clotting.

However, it has been shown that platelet sensitivity is highly
heterogeneous (Jongen et al., 2020), therefore, we study under which
ircumstances the heterogeneous model, Eq. (6), with a distribution of
latelet thresholds 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 , 𝑚 = 1, 2, ..., can lead to macroscopic
ctivation. Taking the Jacobian matrix of the heterogeneous model,
q. (6), gives:

𝐽 =

⎛

⎜

⎜

⎜

⎜

−𝑟𝑎𝑠 0 0 ⋯ −𝑟𝑛1
0 −𝑟𝑎2𝑠 0 ⋯ −2𝑟𝑛2𝑎𝑠
⋮ ⋮ ⋯ ⋮ ⋮

2 ∑ 𝑚−1

⎞

⎟

⎟

⎟

⎟

, (8)
⎝

𝑟𝑎𝑠 𝑟𝑎𝑠 ⋯ ⋯ 𝑟 𝑚 𝑚𝑛𝑚𝑎𝑠 − 1
⎠
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Fig. 2. Time course of proportion of activated platelets, 𝑎 = 𝑎𝑒 + 𝑎𝑖 as predicted from model (6) for 𝑟 = 300 and initial platelet sensitivities, 𝑛(0)𝑚 , being distributed normally with
mean 𝑚̄ = 4 and different values of standard deviation 𝜎 (see text for normalisation of distribution to discrete values). We have, from left to right, 𝜎 = 1, 1.2, 1.5, 2. The initial
conditions are 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 , 𝑎𝑠(𝑡 = 0) = 0.0001. (Top row:) Activated platelets separated for their initial sensitivities, 𝑎𝑚 = 𝑛(0)𝑚 − 𝑛𝑚, with 𝑚 = 1 (black), 𝑚 = 2 (red), 𝑚 = 3 (orange),
𝑚 = 4 (yellow), 𝑚 = 5 (green), 𝑚 = 6 (cyan), 𝑚 = 7 (blue). (Bottom row:) Total proportion of activated platelets 𝑎 = 𝑎𝑒 + 𝑎𝑖.
Fig. 3. Equilibrium proportions of activated platelets separated for sensitivities, 𝑎𝑚 = 𝑛(0)𝑚 −𝑛𝑚, when 𝑛(0)𝑚 are normally distributed (as in Fig. 2), shown as function of the width of the
sensitivity distribution, 𝜎, for time 𝑡 = 10, as predicted by model (6). Plots are shown for different values of the distribution’s mean 𝑚̄ (rows) and 𝑟 (columns). Rows have, from top to
bottom, 𝑚̄ = 2, 3, 4, 5, columns have, from left to right, 𝑟 = 5, 25, 125, 625. Colours represent 𝑎𝑚 for different 𝑚 as in Fig. 2. The initial conditions are 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 , 𝑎𝑠(𝑡 = 0) = 0.0001.
where the size of the matrix is 𝑚max + 1 with 𝑚max being the largest 𝑚
for which 𝑛(0)𝑚 > 0. Taking the Jacobian at the fixed point 𝑛𝑚 = 𝑛(0)𝑚 for
𝑚 = 1, 2,… and 𝑎(0)𝑠 = 0, we get,

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 ⋯ −𝑟𝑛(0)1
0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ ⋯ 𝑟𝑛(0)1 − 1

⎞

⎟

⎟

⎟

⎟

⎠

. (9)

This is a triangular matrix, which thus has the eigenvalues 0 (with
multiplicity 𝑚 ) and 𝑟 𝑛(0) − 1. As the latter eigenvalue is positive
max 1

4 
for 𝑟 𝑛(0)1 > 1, we get that for those values the fixed point is unstable
and thus a macroscopic proportion of the platelet population becomes
activated, while for 𝑟 𝑛(0)1 < 1, no macroscopic activation occurs,
i.e. 𝑎 ≈ 0. For notational convenience, we thus call 𝑛∗1 ∶= 1

𝑟 and 𝑟∗ ∶=
1

𝑛(0)1
, respectively, the critical values which, when exceeded, lead to

macroscopic activation. This is not surprising, since the sub-population
of hyper-sensitive platelets, with 𝑚 = 1, follows the dynamics of the SIR
model. In that case (when 𝑟𝑛(0)1 > 1), we have that 𝑎̇𝑠 > 𝑟𝑛1 − 1 > 0 as
long as 𝑛 > 1 . Since the activation wave ceases only once 𝑎̇ ≤ 0, this
1 𝑟
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Fig. 4. Equilibrium values of the total proportion of activated platelets, 𝑎 = 𝑎𝑒 + 𝑎𝑖, when 𝑛(0)𝑚 are normally distributed (as in Fig. 2), as function of the width of the sensitivity
distribution, 𝜎 (see Fig. 2), for non-dimensionalised time 𝑡 = 10, as predicted by model (6). Plots are shown for different values of the distribution’s mean 𝑚̄ (rows) and signalling
parameter 𝑟 (columns). Rows have, from top to bottom, 𝑚̄ = 2, 3, 4, 5, columns have, from left to right, 𝑟 = 5, 25, 125, 625. The initial conditions are 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 , 𝑎𝑠(𝑡 = 0) = 0.0001.
means that eventually 𝑛1 <
1
𝑟 , and thus the final proportion of activated

platelets, for 𝑡 = 𝑡𝑓 → ∞, has a lower bound: 𝑎 = 𝑛(0)1 − 𝑛1 > 𝑛(0)1 − 1
𝑟 .

3.1.2. Macroscopic activation of less sensitive platelets (𝑚 > 1)
At first glance, it is only obvious that the sub-population of platelets

with 𝑚 = 1 is activated, while it is not clear whether platelets with
less sensitivity, that is, higher thresholds of 𝑚, will be activated to
macroscopic proportions. To assess this, we consider numerical solu-
tions of Eqs. (6), restricted to 𝑚 = 1,… , 𝑚max with 𝑚max = 12, to
ensure a finite number of equations. We solved these for different
distributions of platelet sensitivities and values of 𝑟. We first consider
the scenario where platelet sensitivities are distributed according to
a Normal distribution 𝑚̄,𝜎 with mean activation threshold 𝑚̄ and
standard deviation 𝜎. Here, we adapt the Normal distribution to return
probabilities only at discrete values 𝑚 = 1,… , 𝑚max, by normalising it
so that ∑𝑚max

𝑚=1 𝑚̄,𝜎 (𝑚) = 1. In Fig. 2 we see time courses of activation,
separated for platelets with different 𝑚, with 𝑎𝑚 = 𝑛(0)𝑚 − 𝑛𝑚 for fixed
𝑚̄ = 4 and different values of 𝜎. Notably, we see that for low values of 𝜎,
no macroscopic activation occurs, for larger values, activation occurs,
but only for population 𝑛1, while for even larger values activation of
populations 𝑛𝑚 with higher 𝑚 > 1 occurs as well. Thus, we observe
that in a heterogeneous population, the population with the highest
sensitivity 𝑚 = 1, but also populations with the lower sensitivity
(larger 𝑚 > 1) are activated if signalling strength 𝑟 and heterogeneity,
characterised by 𝜎, are sufficiently high.

To further assess how the mean sensitivity and the heterogeneity
of the sensitivity affect the collective activation of platelets, we show
in Figs. 3 and 4 the end points of the time courses of Fig. 2 (as the
curves reach a plateau) as a function of the standard deviation of the
sensitivity distribution, 𝜎. Total activated proportions 𝑎 (Fig. 4) and
individual proportions 𝑎𝑚 (Fig. 3, as curves of different colours) are
shown for various values of 𝑚̄ and 𝑟. We see that for fixed values
5 
Fig. 5. Phase portrait projected on 𝑎𝑠 , 𝑛1 (collection of trajectories 𝑎𝑠(𝑛1)), rescaled by
𝑛∗1 = 1

𝑟
for small 𝑎𝑠 when 𝑂(𝑎3𝑠 ) can be neglected and 𝑛𝑚 ≈ 𝑐 𝑜𝑛𝑠𝑡 for 𝑚 > 1. Parameter

𝑟 = 100. The emphasised blue trajectory shows the trajectory converging to the fixed
point (𝑛1 = 0, 𝑎𝑠 = 1

𝑛2𝑟
), given by Eq. (11). This trajectory denotes the stable manifold

which separates basins of attraction.

of 𝑚̄, but small heterogeneity 𝜎, there is no macroscopic activation,
but as the heterogeneity increases, macrosopic activation with 𝑎 > 0
occurs. For small values of 𝑟, we see that when increasing 𝜎, first
only the population with 𝑚 = 1 is activated and then, for higher 𝜎
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Fig. 6. Equilibrium proportions of activated platelets, 𝑎 = 𝑎𝑠 + 𝑎𝑖, as function of 𝑛(0)1 , rescaled by 𝑛∗1 = 1∕𝑟. The plots show different values of 𝑛2 in different columns, from left
to right 𝑛2 = 0, 0.2, 0.3, 0.4. We assume a symmetric distribution with 𝑚̄ = 3, which further implies 𝑛(0)3 = 1 − 2𝑛(0)1 − 2𝑛(0)2 , 𝑛(0)4 = 𝑛(0)2 , 𝑛(0)5 = 𝑛(0)1 . The vertical dashed line indicates the
critical value 𝑛∗∗1 = 𝑛∗1

1+𝑛2
𝑛2

. The initial conditions are 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 , 𝑎𝑠(𝑡 = 0) = 10−6 (Top row:) Illustration of the distributions 𝑛(0)𝑚 for 𝑚 = 1, 2,… , 5 used below. (Middle row:)
activated proportions separated by 𝑚, 𝑎𝑚 = 𝑛(0)𝑚 − 𝑛𝑚. (Bottom row:) Total activated proportion 𝑎.
populations with lower sensitivity (𝑚 > 1) are activated. Notably, for
higher 𝑟, the activated proportions of the populations with 𝑚 > 1
exceed substantially the activated population with 𝑚 = 1. Since we
know that lower sensitive populations with 𝑚 > 1 cannot be activated
macroscopically by microscopic 𝑎𝑠, it appears that the population with
𝑚 = 1 is initially activated, generating a non-zero proportion 𝑎𝑠, which
serves as a ‘seed’ to activate lower sensitive populations. This activation
may then sustain itself if 𝑎𝑠 is large enough.

In order to understand this behaviour, we study analytically un-
der which circumstances the population of activated platelets remains
small, i.e. when 𝑎 ≪ 1 and thus 𝑎𝑠 ≪ 1. We wish to study this
for arbitrary distributions of platelet sensitivities 𝑛𝑚(𝑡 = 0) = 𝑛(0)𝑚 ,
𝑚 = 1, 2,…, but focus on situations where the population of hyper-
sensitive platelets with 𝑚 = 1 is very small, while the other populations
are much larger: 𝑛(0)1 ≪ 1 and 𝑛(0)𝑚 ≫ 𝑛(0)1 are such that

𝑛(0)1
𝑛(0)𝑚

∼ 𝑂(𝑎𝑠) ≪ 1
for all 𝑚 > 1. Furthermore, since macroscopic activation can only occur
for 𝑛(0)1 > 1

𝑟 we additionally assume that 𝑛∗1 = 1
𝑟 ≪ 1, that is, 𝑟 is large.

This is also a biologically realistic regime: as the degranulation time is
around 60s (Polasek, 2006), which is roughly the time blood circulates
once through the entire circulatory system, any secreting platelet can
potentially get in contact with a very large number of naive platelets
and activate them.

Since, according to these assumptions, 𝑎𝑚 ≪ 1, we can assume
𝑛𝑚 ≈ 𝑛(0)𝑚 being approximately constant for 𝑚 > 1, and it is therefore
sufficient to consider only 𝑛1, 𝑎𝑠 as dynamical variables. We note that
the first two terms of Eq. (6), 𝑟𝑛1𝑎𝑠 and 𝑟𝑛2𝑎2𝑠 are both of order 𝑂(𝑎2𝑠 )
while the other terms are of order 𝑂(𝑎3𝑠 ), thus we have, in leading order
of (small) 𝑎𝑠 for Eq. (6):

̇ 1 = −𝑟𝑛1𝑎𝑠 (10)
𝑎̇𝑠 = 𝑟𝑛1𝑎𝑠 + 𝑟𝑛2𝑎

2
𝑠 − 𝑎𝑠 + 𝑂(𝑎3𝑠 ) ≈ 𝑟𝑛1𝑎𝑠 + 𝑟𝑛2𝑎

2
𝑠 − 𝑎𝑠 .

We can now study the fixed points of this system when neglecting
𝑂(𝑎3𝑠 ). We see that there are fixed points for any 𝑎𝑠 = 0, and there
is one fixed point for 𝑎𝑠 > 0, namely for 𝑛1 = 0 and 𝑎𝑠 = 1

𝑛2𝑟
=∶ 𝑎∗𝑠 .

A linear stability analysis (see Appendix) shows that this is a saddle
point, which means that there is a stable manifold, which, since this
is a two-dimensional system, consists of the trajectories that converge
6 
to the point 𝒙∗ = (𝑛1 = 0, 𝑎𝑠 = 1
𝑛2𝑟

). This stable manifold separates
the phase space into two basins of attraction, one which converges to
𝑎𝑠 = 0 and one where trajectories diverge. To illustrate this, we show
the phase portrait of system (10) for 𝑟 = 100 in Fig. 5. Here, we see that
the highlighted trajectory separates the other trajectories according to
their fate. If 𝑛(0)1 lies below this curve, 𝑎𝑠 cannot exceed 𝑎∗𝑠 = 1

𝑛2𝑟
. On

the other hand, if it lies above that curve, 𝑎𝑠 will diverge, meaning that
our approximation will break down and thus 𝑎𝑠 ≫

1
𝑛2𝑟

.
To find the stable manifold which separates basins of attraction, we

express trajectories as functions 𝑎𝑠(𝑛1) in the 𝑛1-𝑎𝑠-plane. They can be
found as solutions to the differential equation,

𝑑 𝑎𝑠
𝑑 𝑛1

=
𝑑 𝑎𝑠
𝑑 𝑡
𝑑 𝑛1
𝑑 𝑡

≈ −1 − 𝑛2
𝑛1

𝑎𝑠(𝑛1) + 1
𝑟𝑛1

. (11)

This is a linear ordinary differential equation, whose solution can be
found, for example, by the integrating factor method. As we are looking
for a trajectory converging to (𝑛1 = 0, 𝑎𝑠 = 1

𝑛2𝑟
), we can choose the

initial condition 𝑎𝑠(𝑛1 = 0) = 1
𝑛2𝑟

, and with this we get the solution,

𝑎𝑠(𝑛1) =
1 + 𝑛2 − 𝑟𝑛1𝑛2
𝑟𝑛2(1 + 𝑛2)

. (12)

Furthermore, since 𝑛̇1 < 0, the direction of this trajectory is towards
𝒙∗, hence this is indeed the stable manifold. Now, we need to distin-
guish whether 𝑛(0)1 is below or above that trajectory. To this end, we
determine the intersection of this trajectory with the 𝑛1 axis, which we
find as the solution to 0 = 1+𝑛2−𝑟𝑛1𝑛2

𝑟𝑛2(1+𝑛2)
, which is 𝑛∗∗1 = 1+𝑛2

𝑟𝑛2
. Hence, for

𝑛(0)1 < 𝑛∗∗1 , 𝑎𝑠, and thus 𝑎, remain below 𝑎∗𝑠 = 1
𝑛2𝑟

, while for 𝑛(0)1 > 𝑛∗∗1 ,
𝑎𝑠, and thus 𝑎, exceed this value substantially. Note that in the case
𝑟 → ∞, 1

𝑛2𝑟
= 𝑎∗𝑠 must be microscopic, so the condition for 𝑎 remaining

microscopic is 𝑛(0)1 < 1+𝑛2
𝑟𝑛2

. In that case, we thus get that substantial
proportions of 𝑎𝑚 emerge once 𝑛(0)1 exceeds 𝑛∗∗1 = 𝑛∗1

1+𝑛2
𝑛2

. This is shown
in Fig. 6 to be an accurate prediction: there, final activation 𝑎 is shown
as function of 𝑛1 for different values of 𝑛2 and a mean value 𝑚̄ = 3, and
the dashed line shows the predicted value 𝑛∗∗ for the transition towards
macroscopic activation.

This demonstrates that a microscopic proportion of hyper-sensitive
platelets, 𝑛(0), is sufficient to trigger a macroscopic activation also
1
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Fig. 7. Illustration of the mechanism driving macroscopic activation in heterogeneous
platelet populations. Black arrows denote changes in the population over time, grey
areas denote activation signal ranges. (Top:) platelets with lower sensitivity (here 𝑚 = 3)
cannot be activated by a single platelet. (Middle/bottom:) If hyper-sensitive platelets
with 𝑚 = 1 and higher-than-average sensitivity (here: 𝑚 = 2) are present, a cascade of
intermediate activation, first of the 𝑚 = 1 population and then of the 𝑚 = 2 population,
allows also the activation of the less sensitive 𝑚 = 3 population.

of platelet populations with less sensitivity, 𝑚 > 1, including those
with average sensitivity 𝑚̄. Nonetheless, for 𝑛(0)2 = 0, no substantial
activation is observed. Thus, we conclude that the presence of platelets
with intermediate sensitivity, between hyper-sensitivity with 𝑚 = 1,
and mean sensitivity 𝑚̄, are essential for macroscopic activation (see
ilustration in Fig. 7). Although we do not have analytical means to
study further terms in Eq. (6), we expect that more populations with
𝑚 > 2 can further amplify the spread of the activation signal if 𝑛(0)𝑚 ≫
𝑛(0)1 , as has been indicated above in Figs. 2–4.

3.2. Comparison with experiments with external stimulants

We now consider the situation where an external stimulant (agonist)
is present which is able to directly activate platelets. We assume that
the stimulation of this agonist and that of signalling molecules emitted
by secretory platelets add up, so that the total stimulant concentra-
tion in the vicinity of 𝑚 platelets is 𝑐′ = 𝑐ex + 𝑚𝑐0, where 𝑐ex is
an concentration equivalent of externally provided stimulant. Hence,
the threshold number of secreting platelets 𝑚 required to activate
platelets with threshold concentration 𝑐 is 𝑚 = ⌈

𝑐−𝑐ex
𝑐0

⌉. Therefore,
given a probability density distribution 𝑛(𝑐) of platelets with threshold
concentrations 𝑐, we get a distribution of initially naive platelets of
𝑛𝑚 = 𝑛⌈ 𝑐+𝑐ex

𝑐0

⌉. This means that with increasing 𝑐ex, the distribution 𝑛𝑚
gets shifted towards lower 𝑚. Importantly, platelets with 𝑐 < 𝑐ex are
activated from the beginning, when the stimulant is given. We thus
have as initial condition 𝑎𝑠(𝑡 = 0) = ∫𝑐 <𝑐ex 𝑛(𝑐) 𝑑 𝑐 ≈

∑

𝑚< 𝑐ex
𝑐0

𝑛𝑚. Hence,
with increasing 𝑐ex, both the proportion of initially secreting activated
platelets increases, and the distribution of platelets is shifted towards
lower 𝑚, consequently enhancing activation.

We wish to compare our model predictions with experimental
results from droplet microfluidics assays with platelets, performed
by Jongen et al. (2020). In one of those experiments, platelets were
enclosed in micro-droplets and exposed to the external stimulant con-
vulxin, at varying concentration, and then the abundance of the acti-
vation marker P-selectin was measured via fluorescent cytometry, that
is, the fluorescent intensity, 𝐼 , was recorded (Fig. 2B in Jongen et al.
7 
(2020)). Two scenarios are compared: (A) where each droplet contains
a single platelet, (B) where droplets contain platelet collectives. In
situation (A) no platelet can activate another platelet through paracrine
signalling since they are separated by droplets, hence 𝑐′ = 𝑐ex and
thus the proportion of activated platelets at a given concentration
𝑐ex of convulxin is the cumulative distribution 𝐹 (𝑐ex) = 𝑎𝑠(𝑡 = 0) =
∫𝑐 <𝑐𝑒𝑥 𝑛(𝑐)𝑑 𝑐. Hence, the distribution of sensitivities can directly be
inferred from this data. In scenario (B), platelets can activate each
other, and thus this measures the collective activation of a platelet
population. This can be compared with the predicted proportion of
activated platelets, 𝑎, from our model.

However, our model has limitations modelling this data, as the
experimental setup does not meet all assumptions of our model. In
particular, since platelet collectives are encapsulated in a flow-free con-
fined environment (droplets), the agonists secreted by platelets are not
quickly dispersed, and thus can accumulate and reach platelets which
are even further away. This means that we can expect an enhanced
paracrine activation between platelets, resulting in a higher value of 𝑟
than would be expected in an in vivo situation. Nonetheless, we wish to
test whether the qualitative behaviour, namely the predicted collective
activation of the population through a small, hyper-sensitive population
of platelets, prevails. To that end, rather than finding accurate precise
numerical model fits, we explore the parameter space to find values for
which the model qualitatively reproduces the data.

To determine an estimate for the distribution 𝑛(𝑐) and thus 𝑛𝑚,
we fit a cumulative distribution function to the data of single-platelet
droplets (A). First, we need to renormalise the experimental fluores-
cence measurements, 𝐼 , from Jongen et al. (2020), as there is some
background P-selectin expression even in absence of activation. Hence,
we define the relative activation as 𝑎exp = 𝐼−𝐼min

𝐼max−𝐼min
where 𝐼min and 𝐼max

are minimum and maximum fluorescence values. As the data in Jongen
et al. (2020) shows a symmetric sigmoidal form on a logarithmic scale
of 𝑐, we will attempt to fit a log-normal distribution, with mean 𝑐 and
logarithmic variance 𝜎2𝑐 to the data. For an easier comparison with our
model, which uses 𝑚 = 𝑐

𝑐0
to define platelet populations, we will try

only values 𝑐 = 𝑚̄𝑐0 and 𝜎𝑐 = 𝜎𝑚𝑐0 with integer 𝑚̄, 𝜎𝑚 = 1, 2,…. To
that end, we first need to find an estimate for 𝑐0. As for 𝑐ex = 𝑐0 the
sub-population with 𝑚 = 1 is being activated for the first time upon
increasing values of 𝑐ex, we identify 𝑐0 as the concentration for which,
upon increasing concentrations of 𝑐ex, for the first time substantial
collective activation emerges in data (B). While due to the lack of
intermediate data points, this estimate can only be a rough one, we
can estimate this from inspection of data (B) to be around 𝑐0 = 0.3
ng/mL. While some activation is present already at 𝑐ex = 0.1 ng/mL,
this could be due to spontaneous activation that is expected from our
model according to our previous discussion.

We find that for 𝑚̄ = 14 and 𝜎𝑚 = 2, corresponding to 𝑐 = 4.2 ng/mL
and 𝜎𝑚 = 0.6 ng/mL, a good match of the log-normal distribution with
the single-platelet droplet data, (A), is achieved, as is shown in Fig. 8A.

We will thus use 𝑛(0)𝑚 =  𝑒
− (ln𝑚−ln 𝑚̄)2

2𝜎2𝑚 as the initial distribution of platelet
activation thresholds in absence of external stimulant, where  is a
normalisation factor that accounts for the discreteness of the values
𝑚 (in the same way as was done in the previous section). Then, we
determine the initial distribution of platelet sensitivities with external
stimulant 𝑐ex as 𝑛𝑚(𝑡 = 0) = 𝑛(0)

⌊𝑚+𝑐ex∕𝑐0⌋
and 𝑎𝑠(𝑡 = 0) = ∑

𝑚< 𝑐ex
𝑐0

𝑛(0)𝑚 ,
and we solve the system (6) numerically using Scipy’s solve_ivp
function. The end points (at time 𝑡 = 10) of those solutions are shown
in Fig. 8B for different values of 𝑟, together with the experimental data
of platelet collectives in droplets from from Jongen et al. (2020). We
note that for smaller values of 𝑟 no reasonable match is achieved, but
for very high values of 𝑟, in particular for 𝑟 = 30 000 (green curve
in Fig. 8B), a good qualitative agreement is achieved. This is consis-
tent with the expectation that due to the accumulation of paracrine
signalling molecules within droplets, a single platelet can reach and
activate a much higher population of platelets than would be in an
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Fig. 8. Comparison with experimental results from Jongen et al. (2020). Pluses show
experimental results measuring overall P-selectin activity (a marker for platelet activa-
tion) as fluorescence levels via flow cytometry, rescaled for background fluorescence
and as proportion of maximal fluorescence (see text). Error bars are smaller than the
symbol sizes. Curves show model predictions for 𝑎 = 𝑎𝑒 + 𝑎𝑖. The horizontal axis shows
varying concentrations of stimulant (convulxin) to which platelets were exposed in the
experiments, the 𝑦-axis shows relative activation. (A) Shows a log-normal distribution
with mean 𝑐 = 4.2 ng/mL and standard deviation 𝜎 = 0.6 ng/mL, together with
experimental results from Jongen et al. (2020) where single platelets are encapsulated
in single droplets. This is a proxy for the cumulative probability distribution (CDF )
𝐹 (𝑐) = ∫𝑐′<𝑐 𝑛(𝑐

′) 𝑑 𝑐′. (B) Shows model output for 𝑎, compared with experimental results
from Jongen et al. (2020) with platelet collectives in single droplets, for different values
of 𝑟: 𝑟 = 1000 (black), 𝑟 = 3000 (red), 𝑟 = 10 000 (orange), 𝑟 = 30 000 (green), 𝑟 = 100 000
(cyan).

in vivo flow environment. Overall, this demonstrates that our model
is able to qualitatively reproduce the experimental data on collective
platelet activation, though at parameter values which are likely beyond
the corresponding in vivo values.

4. Discussion

Blood clotting is an important physiological process, but when it
occurs inadvertently, it can cause thrombosis which can be live threat-
ening. Thus, understanding and eventually predicting blood clotting
can aid in preventing thrombosis. The initiating stage on the path
towards blood clotting is the collective activation of platelets, hence
understanding the platelet activation dynamics will aid in assessing
blood clotting risk.

We have introduced a minimal model for the activation dynamics of
blood platelets via paracrine, platelet-platelet signalling. In particular,
we considered the scenario when platelets are immersed in blood flow,
where due to fast dispersion of stimulants, one or more activated
platelets that secret activation signals are required in the immediate
vicinity of a non-activated, naive platelet, to activate the latter. From
these and other biologically motivated assumptions, we formulated a
minimal dynamical model, (3), for the time evolution of naive and
activated platelets, with the aim to predict the proportion of activated
platelets when starting with a predominantly naive platelet population,
that is, with only a small number of initially activated plateles. If the
number of secreting activated platelets required to activate a naive
one, 𝑚, is equal to one, this model is equivalent to the SIR model –
the paradigmatic contagion model – and macroscopic activation occurs
8 
whenever the ’reproductive number’ 𝑟 is above a critical value, even
for microscopic proportions of initially activated secreting platelets.
For 𝑚 > 1 the model, which we then call cooperative SIR model, still
has the characteristic of a contagion model, yet, if the population is
uniform, no macroscopic activation is possible, if initially only few
platelets are secreting. The formal similarity to the SIR model provides
some intuitive understanding, by viewing the activation signal as a type
of contagion which may or may not spread across the whole platelet
population (like an ‘epidemic’), depending on the circumstances.

Nonetheless, it is known that platelet sensitivity varies consid-
erably between platelets, therefore we considered a heterogeneous
version of the model, where sensitivity to activation, characterised by
𝑚, may differ between platelets. We showed that in this case, a macro-
scopic activation of the population is possible when only few activated
platelets are initially present, if 𝑟 is sufficiently high. In that case, the
hyper-sensitive sub-population with 𝑚 = 1 becomes activated, and this
activated, secreting sub-population then serves as a ‘seed’ to activate
sub-populations with higher 𝑚, in a staggered cascade of activating
ever less sensitive sub-populations (with higher 𝑚 > 1). Notably, we
showed analytically and numerically that a microscopic proportion of
platelets with 𝑚 = 1 is sufficient to achieve this, if 𝑟 is sufficiently large.
This supports the hypothesis that a rare population of hyper-sensitive
platelets could be able to mediate macroscopic activation and thus
trigger blood clotting (Baaten et al., 2017; Jongen et al., 2020; Lesyk
and Jurasz, 2019). We further showed that in order to activate the
bulk of the platelet population, also platelets with less, yet higher-than-
average sensitivity, with thresholds 𝑚 between that of hyper-sensitive
and average platelets (thresholds 1 < 𝑚 < 𝑚̄), are required (see
illustration in Fig. 7). This is biologically required to then achieve
macroscopic platelet aggregation and eventually blood clotting. A ‘gap’
in sensitivities, for example if there are no, or only few platelets with
𝑚 = 2, may break the activation cascade, and no substantial activation
of the platelet population as a whole emerges.

Finally, we compared our model results with experimental results
where platelet activation and aggregation was measured with platelets
encapsulated in micro droplets (Jongen et al., 2020). While this exper-
imental setup did not meet all our model assumptions – in particular
since secretory, stimulating signals can accumulate – we showed that
our model is capable of qualitatively reproducing the observed dose–
response curves, namely the activation intensity as function of provided
external stimulant, if the reproductive number 𝑟 is very large.

Since most clinical platelet function tests measure bulk platelet
properties to assess thrombosis risk (Anghel et al., 2020; Pabinger and
Ay, 2009), these findings suggest that clinical practice may need to be
revised: if the distribution of (higher-than average) platelet sensitivities
is determining the onset of blood clotting, rather than bulk platelet
sensitivity, then measurements of the former – for example via droplet
microfluidics as done by Jongen et al. (2020) – would be required for
an appropriate assessment of thrombosis risk.

Naturally, a simple model as the here presented one has limitations,
mainly by using a well-mixed approximation, which is essential to
render the model simple enough – in the form of ordinary differential
equations – to allow thorough theoretical insights beyond mere numer-
ical results. This approximation, which is widely used in population
dynamics, epidemiology and chemistry, neglects the spatial structure of
the population and does not consider different flow velocities between
different parts of the population. For example, it does not consider
the situation where activated, aggregated platelets are bound to the
vessel walls and non-activated platelets being immersed in free flow,
as usually occurs in physiological clotting. It does, however, consider
pathological clotting when platelets within the blood flow, detached
from vessel walls, activate on macroscopic scales (homogeneous flow
can be accommodated by changing to the co-moving frame). The
well-mixed approximation – in other fields like physics also known
as ‘‘mean field approximation’’ – has less quantitative accuracy than
more complex and spatially detailed models, yet, mean field models
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as ours are known to reflect qualitative features, such as the here
escribed transition from microscopic to macroscopic activation, and
he impact of platelet diversity, rather well (Goldenfeld, 1992). The
odel is therefore well suited to reproduce the qualitative features of

pontaneous blood clotting that is initiated away from vessel walls.
To summarise, we showed that a simple model, reminiscent of

he SIR model, is able to reproduce measured qualitative features of
ollective platelet activation. This model explains mechanistically how,
ossibly very rare, hyper-sensitive platelets can serve as an activation

seed for the propagation of activation through the whole population to
achieve macroscopic activation, if sufficient amounts of platelets with
less, but larger-than-average sensitivity are present. Once a substantial
fraction of the platelet population has been activated, they may then
aggregate and form the body of a blood clot. These findings may
serve as a stepping stone towards the development of a comprehensive
model for whole blood clotting, to allow quantitative predictions for
the probability of blood clotting, and hence the risk of thrombosis.
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Appendix

We wish to analyse the stability and stable manifold of the fixed
point of Eq. (10). This system has fixed points for any 𝑎𝑠 = 0 and for
𝑎𝑠 =

1
𝑛2𝑟

and 𝑛1 = 0. The Jacobian of the system at this fixed point is:

𝐽 =
(

−𝑟𝑎𝑠 −𝑟𝑛1
𝑟𝑎𝑠 𝑟𝑛1 + 2𝑟𝑛2𝑎𝑠 − 1

)

|𝑛1=0,𝑎𝑠=1∕𝑟 =

(

− 1
𝑛2

0
1
𝑛2

1

)

(A.1)

This matrix is in triangular form and thus has eigenvalues −1∕𝑛2 < 0
and 1 > 0. Hence it is a saddle point, which possesses a stable trajectory,
which separates the space into two basins of attraction, defined as the
trajectory converging to the fixed point. In the main text, we show that
𝑎𝑠(𝑛1) = 1+𝑛2−𝑟𝑛1𝑛2

𝑟𝑛2(1+𝑛2)
is this trajectory.

Data availability

Numerical data for Figures 2-6 was generated with Wolfram Math-
matica, and for Fig. 8 with python. The Mathematica workbook
nd python programming code are available at https://github.com/

philipgreulich/cooperative-SIR.
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