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1 Introduction

The dynamics of the branes in string and M-theory at low energy is captured by the
physics of supersymmetric quantum field theories. An alternative vantage point on the same
physics is offered by the supergravity solutions obtained by considering a large number of
branes and studying their near horizon limit. This dichotomy is the basis of the AdS/CFT
correspondence and its many generalizations and applications. A prominent set of explicit
examples of AdS/CFT, which is the main focus of this work, arises from the dynamics of
branes wrapped on compact manifolds [1, 2], see [3, 4] for a review and a number of explicit
solutions.

Our interest here is in situations where the branes are wrapped on a smooth compact
Riemann surface ¥y. In order to preserve supersymmetry, the QFT on the world-volume of
the branes has to be partially topologically twisted. As reviewed in [5] this topological twist
leads to an RG flow across dimensions interpolating between the (d+1)-dimensional QFT in
the UV and a (d—1)-dimensional QFT in the IR. Here we consider situations in which both
the UV and the IR QFTs are superconformal. The supergravity description of this setup is
captured by a domain wall solution which interpolates between an asymptotically locally
AdSgy 9 region in the UV and an AdS; near horizon region in the IR. This holographic RG
flow solution can also be viewed as a black brane background in d + 2 dimensions with a
horizon topology determined by .

Whenever the partial topological twist of an SCFT with a continuous R-symmetry is
well-defined, it can be performed for an arbitrary metric on the Riemann surface while still
preserving the same amount of supersymmetry [6]. When interpreted holographically this
immediately implies that the black brane solutions should exist for any choice of metric on
Y. Indeed, this was shown to be the case in [7] where several examples of such holographic
RG flows arising from wrapped D3- and M5-branes were studied in detail. The main result
in [7] is that while the metric on ¥4 can be arbitrary in the asymptotically locally AdSg;2
UV region, the supergravity BPS equations act as a geometric flow which uniformizes
the metric on the Riemann surface. In other words only the constant curvature metric is
allowed in the near horizon AdS, region.

This uniformization behavior of the holographic RG flows across dimensions in [7]
confirms, in a non-trivial manner, two important physical expectations. First, it was
conjectured in [8], see also [9], that the Kéahler moduli of the Riemann surface should
appear as irrelevant deformations of the (d — 1)-dimensional IR CFT. This conjecture is
explicitly confirmed for the examples analyzed in [7]. This in turn is compatible with the
more general expectation that the number of degrees of freedom in a QFT should decrease
along an RG flow from the UV to the IR. Second, the black brane solutions have non-trivial
entropy and general arguments from black hole thermodynamics dictate that this entropy
should not depend on continuous parameters. This is akin to the situation in asymptotically
flat black holes in string theory for which the attractor mechanism, see [10-12] and [13] for
a nice review, ensures that this conundrum does not arise. Therefore, the solutions studied
in [7] can also be interpreted as an explicit realization of an attractor mechanism for the
moduli associated with the horizon geometry of asymptotically AdS black branes.



Our goal in this paper is to generalize and extend the results of [7] to other wrapped
brane solutions in string and M-theory and thus establish a myriad of novel examples
of holographic uniformization. We study numerous new holographic RG flow solutions
arising from M2-, D2-, D4-, and M5-branes wrapped on Y. We perform these studies
in appropriate consistent truncations of ten- and eleven-dimensional supergravity to a
gauged supergravity theory in lower dimensions. In all cases we analyze, we find that the
supergravity BPS equations admit arbitrary smooth metrics on ¥, in the asymptotically
AdSgi2 UV region. On the other hand, in the near horizon AdS,; IR region the only regular
solutions are the ones with a constant curvature metric on the Riemann surface. This
behavior is precisely the same as the holographic uniformization, or attractor mechanism,
for the metric on ¥, expected from the results in [7].

We separate the technical analysis of the supergravity BPS equations into two main
parts. For the minimal gauged supergravity solutions in four, five, six, and seven dimensions
the BPS equations reduce to a single non-linear PDE for a function of three variables which
determines the metric and matter fields in the full supergravity background. One can then
analyze this single PDE and arrive at the uniformization behavior described above. This
is very similar to the results in [7]. We also study solutions of matter coupled supergravity
theories in four, five, and seven dimensions. In these examples the BPS equations are con-
siderably more involved and take the form of a system of coupled PDEs for functions of three
variables. Nevertheless we are able to analyze these BPS equations in the UV and IR regions
of the geometry and establish the expected uniformization behavior in all cases we studied.

Our results in four-dimensional gauged supergravity deserve some additional com-
ments. In this case we find asymptotically locally AdS, supersymmetric static black holes
with a X4 horizon. The freedom to choose an arbitrary metric on ¥4 at asymptotic infinity
can be interpreted as black hole “hair”, see [14] for a review of the “no-hair” conjectures.
The possibility to have black hole “hair” in asymptotically AdSy solutions is well-known,
in particular in the context of holographic superconductors [15, 16]. However, our solu-
tions are distinct from holographic superconductors since we do not employ charged scalar
fields to construct them. The attractor mechanism for asymptotically AdS, black holes
with scalar fields has been discussed extensively in the literature, starting with [17-19].
We note that these results have a very different character than the attractor mechanism
for asymptotically flat black holes. The reason is that in the asymptotically AdSy region,
the values of the scalar fields are typically fixed to specific values determined by the struc-
ture of the potential of the gauged supergravity theory. Therefore, these scalars do not
represent continuous parameters on which the AdSy black hole entropy can depend. In
contrast, the metric moduli associated to X; we study here are continuous and therefore
holographic uniformization can be viewed as a more direct analog of the attractor mecha-
nism for asymptotically flat black holes. Finally, we note that one can use supersymmetric
localization results to account for the black hole entropy of large classes of static supersym-
metric asymptotically locally AdSy black holes, see [20-22] and [23] for a recent review.
These results were established by studying black hole solutions with constant curvature
metric on Yy. Our more general black hole solutions have the same area of the horizon as
the solutions in [20, 22] and therefore carry the same entropy. This in turn is compatible



with the fact that the metric on ¥ is a Q-exact deformation of the topologically twisted
index used to account for the black hole entropy [24-26].

We organize the presentation of our results as follows. In the next section we explain
in some detail our main results by focusing on the so called universal black holes as defined
in [5]. In section 3 we extend these results by coupling the supergravity theory to additional
matter fields. We discuss a number of generalizations and open problems that stem from
our work in section 4. In the appendix we present in some detail the derivation of the
supergravity BPS equations for the universal black holes discussed in section 2.

2 Universal black holes

The simplest examples of the asymptotically locally AdSg, o black hole and black brane
solutions we are interested in are the so-called universal RG flows across dimensions studied
in [5]. The supergravity solutions realize a partial topological twist of a (d+ 1)-dimensional
SCFT with a continuous R-symmetry placed on the manifold R4~ x Y4 In this construc-
tion some supersymmetry is preserved by cancelling the curvature of the U(1)y structure
group of the Riemann surface ¥, by a background gauge field for the U(1)x subgroup of
the R-symmetry. Spinor parameters that are singlet with respect to the twisted group
diag[U(1)s x U(1)g] lead to preserved supersymmetry [6]. As shown in [1] these partial
topological twists can be realized holographically by asymptotically locally AdS .o super-
gravity solutions with an R4~ x ¥4 boundary and a non-trivial magnetic flux for the
dynamical gauge field dual to the Abelian R-current.

In this section we will present such supergravity solutions in four, five, six and seven
dimensions. To illustrate our construction we focus on the minimal gauged supergravity
theories which allow for this type of solutions. These theories contain the dynamical bulk
fields in the gravity multiplet which are dual to the energy momentum multiplet of the
dual SCFT. We study more general supergravity theories coupled to matter multiplets in
section 3. An important difference between our analysis and the discussion in [5] is that
we allow for the metric on the Riemann surface to be arbitrary. A general metric on the
Riemann surface is compatible with the topological twist and does not break additional
supersymmetry and is therefore natural to consider in supergravity. Indeed, this was
explored in a holographic context in [7] and our analysis and results bear resemblance
to [7]. We have assumed that the metric on the Riemann surface is smooth throughout
our calculations, see [27] for a recent discussion of similar supergravity solutions that have
Riemann surfaces with point-like singularities.

While the details of our construction depend on the dimension in which the super-
gravity theory lives there are notable similarities in the derivation of the BPS equations
that follow from the supersymmetry variations of the theory. We present the details of the
derivation of these BPS equations in appendix A. Here we note that the supersymmetric
solutions we study have supersymmetry transformation parameter that obey projectors of
the following schematic form

Yege =Te,  vype=ce. (2.1)



Here 7, are space-time gamma matrices, x,y denote local coordinates on the Riemann
surface, p is the radial coordinate of AdS, and I' is a matrix that acts on the internal
indices of the spinor € associated with the R-symmetry.

We now proceed with the analysis of the BPS equations and their solutions for each
of these four minimal gauged supergravities.

2.1 Four dimensions

We start our exploration with the minimal ' = 2 gauged supergravity theory in four
dimensions [28, 29]. The bosonic field content consists of the metric and a Maxwell field
A. We present the bosonic Lagrangian of the theory in (A.1). As described above we look
for static supersymmetric solutions which realize the partial topological twist in the dual
SCFET. The derivation of the BPS equations is carried out in appendix A.1 and here we only
display the results. The complete supersymmetric solution can be written in terms of a
single function, ¢, which depends on the radial coordinate p as well as the Riemann surface
coordinates  and y. The metric and the gauge field of these supersymmetric solutions take

the compact form

dt?
ds? = ————— + (0,0)%(dp? + e* (dz? + dy?)),
1= " @,pr T O¥) ( ( ) (2.2)
A = (Op)dy — (9yp)dz,
where ¢ satisfies the non-linear partial differential equation
N+ " (020 + (9p9)*) = 0, (2.3)

and we have defined A = 92 + (95.

2.1.1 The constant curvature black hole

An exact analytic solution of the equation in (2.3) is given by the black hole solution of [30],
see also [31, 32], which has a constant curvature metric on the Riemann surface. To obtain
this solution we write the function ¢ as a sum of p-dependent function, f(p), and a function
on the Riemann surface g(z,y)

(F(p) + g(z,y)) - (2.4)

N | =

90 =
The function g(z,y) defines a metric on the Riemann surface
ds%g = e¥(dz? + dy?). (2.5)
Using the separable Ansatz (2.4) in (2.3) yields the following differential equations
Ag+re* =0, (2" + (7)?) = 2, (2.6)

where the prime denotes a derivative with respect to p. The constant x is initially intro-
duced to separate the equation (2.3) but has a simple geometric interpretation. The sign of
x determines the curvature of the Riemann surface in (2.5), indeed the Ricci scalar of the



metric d32Zg is simply 2. Shifting the function f by a constant it is possible to normalize
k such that it takes the values k = —1,0,1. In this paper we assume that the Riemann
surface is compact and smooth which means that if the genus g = 0 then x =1, if g =1
then k = 0, and if g > 2 then xk = —1. More explicitly the solutions of the first equation
in (2.6) for the constant curvature metric on the covering space of the Riemann surface
can be written as

g(z,y) = —logy, g>2,

g(x,y) = const, g=1, (2.7)

g(z,y) = —log(1 + 2% +y?) +log2, g=0.

The solution of the second equation in (2.6), up to shifts in the radial coordinate p and
rescaling of the time coordinate, is

o =p’+ g . (2.8)

With this explicit solution for ¢ in (2.4) we find the following metric and gauge field

2 —2
K K
d 2 - _ dt2 d 2 2d 2
52 <p+2p> + <p+2p> P+ phdsh

F= —gngdx ANdy.

(2.9)

For p — oo we have an asymptotically locally AdSs spacetime with Rb! x Y4 boundary.
As p decreases we encounter a naked singularity for k > 0 at p = 0 [31]. Since we are
interested in regular black hole solutions we take k = —1 which has an AdSy near horizon
region located at p? = 1/2 around which the function § takes the form

d=v2p-1+0(W2p—1)*. (2.10)
The near horizon metric then reads
9 1.4 1.5
d54 = ZdSAdSQ + §dszg ; (211)

where both two-dimensional metrics dsids2 and dsQZg are normalized such that their Ricci
scalar equals —2. We refer to this supersymmetric black hole solution with x = —1 and f
given in (2.8) as the constant curvature black hole. Borrowing terminology from holography
we will refer to the asymptotically AdSy region as “the UV region” and the near horizon
AdSs region as “the IR region”. The black hole in (2.9) has a finite Bekenstein-Hawking
entropy which, in the semiclassical approximation, can be accounted for microscopically
by embedding it in string or M-theory and employing holography and supersymmetric
localization [22]. Note also that it follows from (2.6) that complex structure deformations
of the metric on Y  leave the solution invariant and do not affect the horizon area and thus
the black hole entropy.

Our next goal is to analyze small perturbations around the constant curvature black
hole solution that satisfy the equation (2.3).



2.1.2 Perturbative analysis

We consider linearized perturbations around the solution (2.4) and (2.8). We write

1
o= L (lo8(? ~ 1/ + gla.) + 8o, g =0, 212

where we have chosen k = —1 and d¢(p, z,y) represents a small fluctuation. Inserting this
expression into (2.3) and expanding to linear order in dp, we obtain the partial differential
equation

[(e—29A —9) 4 2p(p? — 1/2)0, + (p* — 1/2)283] 5p=0. (2.13)

To solve this differential equation it is useful to define the operator
Ng=e 2N, (2.14)

which is the Laplacian on the Riemann surface ¥y with metric (2.5). Since (2.13) is linear,
it is useful to decompose the fluctuations into eigenmodes of the Laplacian as follows:

So(poe,y) = Y on(p)Yu(@,y) s DgYn=—pnYn, pin > 0. (2.15)
n=0

Note that since we have a smooth and compact metric on the Riemann surface the eigen-
values of the Laplacian j,, are non-negative.! Using orthogonality of the eigenfunctions Y,
the equations for ¢, (p) take the form

[ = (i +2) + 20(6 = 1/2)8, + (6* = 1/2)°02| pulp) = 0. (2.16)

This equation admits the following analytic solution which depends on two sets of integra-
tion constants

\/ip_1>’YTL (ﬁp_l)_77L Lin
nlP) = an| —F= +op | —=—— ) n=1/1+—. 2.17
#nlr) <\/§p+1 V2p+1 VT (2.17)

Notice that v, > 0 and since the deformation must be regular at the horizon v/2p — 1 we
should choose the integration constants b, = 0. The linearized perturbation around the
constant curvature black hole solution is therefore

B > \/ip—l Tn
5907;)@71(\/%_’_1) Yo(z,y), (2.18)

where a,, are undetermined real constants which should be small in order to ensure that
validity of the linearized approximation. In general the constants -y, are irrational numbers
and one may worry whether the corresponding solutions have curvature singularities. We
have checked explicitly that this is not the case.

The perturbative solution in (2.18) demonstrates clearly the general behavior the BPS
solutions we study in this work. In the UV region, p — oo, the perturbations are completely

!There may be stronger lower bounds on the eigenvalues ji,, see [33], which will not be important for
our analysis.
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Figure 1. The uniformizing nature of the equation (2.3) demonstrated in a cartoon. A generic
point on the moduli space of solutions represents a choice of metric on the Riemann surface which
is not constant curvature in the UV region. In the IR all these solutions approach the constant
curvature black hole solution and thus the metric on the Riemann surface is uniformized.

unconstrained and are controlled by the constants a,,. The choice of constants a,, represents
a choice of a metric on the Riemann surface >4 in the UV. Instead of the constant curvature
metric g that obeys (2.6), the UV metric is determined by

o0
guv =g+2> anYu(z,y). (2.19)

n=0

Clearly this function does not satisfy the Liouville equation (2.6) and is therefore not a
constant curvature metric. The metric in (2.19) represents a single point on the moduli
space of metrics we can choose on the Riemann surface. As p decreases and we approach the
IR region, the perturbations in (2.18) get smaller and smaller and ultimately vanish near
the horizon at p — 1/+/2. In this sense the metric on the Riemann surface is uniformized by
the PDE in (2.3) as we approach the IR region. This qualitative behavior is illustrated in
figure 1. Here we demonstrated this uniformizing behavior using a linearized approximation
around the constant curvature black hole solution. Nevertheless, based on the results in [7],
we expect the same result to hold for arbitrary perturbations of the UV metric. To support
this expectation we now perform a general UV expansion of the equation (2.3).

2.1.3 UV analysis

Another simple exact solution of the PDE in (2.3) with metric as in (2.2) is provided by
the AdS, vacuum given by

p=logp. (2.20)

The black hole solution in (2.9) is asymptotically locally AdS, which is manifested by the
following UV expansion of the function ¢ as p — oo

1
p=logp+g(z,y)+ O(1/p%), (2.21)



where g(x,y) is the constant curvature metric on the Riemann surface. We now demon-
strate that a general solution of (2.3) has exactly the same type of UV expansion where the
function ¢ is not constrained to satisfy the Liouville equation in (2.6). To avoid confusion
we will denote this more general metric by g(z,y). In other words, any smooth metric is
permitted on the Riemann surface in the UV. In the UV region a general solution of (2.3)
can be written as the following expansion

1, 1 _
p=logp+ 50w, y) + —v(z,y) + Y p "gn(w.y). (2.22)
p
n>2
Solving (2.3) order by order in p as p — oo we find, that §(x,y) as well as v(x,y) are un-
constrained. However, all other functions g, (z,y) are all algebraically determined in terms
of (derivatives of) g(x,y) and v(zx,y). For instance, the first two functions take the form

(2.23)

1 1 1
g3 = =v° + QvAgg — =Agv.

3 6
The existence of two free functions in this UV expansion is compatible with general expec-
tations for asymptotically locally AdS, solutions that follow from the Fefferman-Graham
expansion [34, 35]. These two functions can also be interpreted in the dual field theory.
The function g(x,y) deforms the metric on the Riemann surface and thus serves as a source
for the energy momentum tensor in the dual SCFT, while the function v controls the vev
of this operator which in turn determines the state of the IR QFT. For generic choice
of functions § and v we expect the full solution of (2.3) to be singular in the IR region.
This intuition is based on previous studies of charged supersymmetric asymptotically AdS
solutions in string theory [36, 37], as well as previous results on holographic RG flows [38].
However, if the vev function v(x, y) is carefully chosen, the flow solution of the PDE in (2.3)
will reach the unique regular AdS, x 34 solution, with metric (2.11), in the IR region. This
result is compatible with intuition from the dual QFT where it is expected that to arrive at
conformal dynamics for the IR theory one has to carefully tune the vev of the relevant op-
erators triggering the RG flow in the UV. Let us see how this pans out for the perturbative
solution in (2.18). Expanding this solution in the UV region we find

1 s 1 & )
p=logp+ Sg(z,y) + ) anYa(r,y) - p > a2+ Yol y) + O(1/p%) . (2.24)

n=0 n=0
This explicitly demonstrates that for supergravity solutions which approach the AdSs x 34
solution in the IR region the function v in (2.22) is precisely determined by the metric
on the Riemann surface, given by the first two terms on the right-hand-side of (2.24). If
we change the function of (z,y) in the p~! term in (2.24) the resulting solution will be
singular in the IR. This singular behaviour should be captured by keeping both the a, and

by, coefficients in the perturbative solution (2.17).
We can summarize our results as follows. We have an initial value problem in the
UV region for the PDE in (2.3) which is controlled by two arbitrary functions of the Rie-
mann surface, §(z,y) and v(z,y), in (2.22). The solutions of this PDE that lead to regular



supergravity backgrounds are such that in the IR the metric on the Riemann surface is
uniformized to the constant curvature one. To be more precise we can formulate this holo-
graphic uniformization principle as follows: given any smooth metric on the Riemann sur-
face, g(x,y), there exists a unique function v(x,y) such that the solution to the BPS equa-
tion (2.3) with § and v as initial values is reqular and approaches the near horizon metric
in (2.11). An alternative formulation of the same statement is that the constant curvature
metric of the black hole horizon in (2.11) is an attractor in the moduli space of metrics for all
supersymmetric static black holes with regular horizons. We emphasize the need to tune the
subleading term in the Fefferman-Graham expansion in order to obtain a regular IR solution
is by no means a special feature of our supergravity solutions. This is a general property
of holographic RG flows which is perhaps more familiar in the context discussed in [38].

As explained around (2.18), we have established a perturbative proof of this uniformiza-
tion principle. A non-perturbative global proof should be constructed using methods similar
to the ones employed in [7]. After illustrating the general behavior of the uniformization
flows we are interested in we move on to discuss supersymmetric black brane solutions in
higher dimensions which exhibit similar structure.

2.2 Five dimensions

In this section we repeat the analysis above for supersymmetric static solutions of the
minimal A/ = 2 supergravity in five dimensions [39, 40]. The bosonic content of the theory
is the same as in four dimensions, see appendix A.2 for the explicit form of the bosonic
Lagrangian. The analysis of the BPS equations and their solutions is very similar to the
one above and thus we keep the discussion brief.

The derivation of the BPS solution is carried out in appendix A.2. This results in the
following solution for the bosonic fields

ds?
ds? = BN 4 (5 ©)?(dp? 4 €% (da? + dy?)) ,
5= () T O¥) ( ( ) (2.25)
A = (Oup)dy — (Oyp)da,
where ¢ satisfies the partial differential equation
A+ e (070 + 2(0,0)°) = 0. (2.26)

Notice the similarity with (2.3) which only differs from (2.26) by numerical factors.

2.2.1 The constant curvature black string

We start our analysis by studying the analytic black string solution found in [1, 41], see
also [42, 43]. This solution is again obtained by assuming that ¢ can be written as a sum

o = 5(10) + 9(z,1) (227)

The function g(x,y) defines a metric on the Riemann surface as in (2.5). Assuming that
the equation (2.26) is separable leads

Ag+re* =0, 721" + 3(f)?) = 3x, (2.28)

~10 -



where k denotes the curvature of the Riemann surface and the explicit form of the metric
on the covering space is given in (2.7). The equation for § can be solved explicitly by first
changing coordinates as follows

1
o) = 3O (o), (2.29)
which, using (2.28), implies
3efdr 9r
dp=—— Opf = ——. 2.30
P32k J 32+ kK (2.30)

The five-dimensional solution then takes the explicit form

2
dsz

3 -2
2
7"% <r + ;) dsgi1 + (7" + ;) dr? + 7“2(18%9 ,

F= —ge2gdm Ady.

(2.31)

where we have absorbed the only integration constant into redefinitions of the coordinates
on RY!'. This metric is singular for £ = 0, 1 but has a smooth horizon given by a hyperbolic
Riemann surface of constant curvature for k = —1. As expected, for a supersymmetric
black string solution the metric in the near horizon region, r — 371/2, has an AdSs factor
and takes the form

4 1
dS% = §d82AdS3 + gdS%g N (232)
where both metrics are normalized such that R;; = —(d — 1)g;;.

2.2.2 Perturbative analysis

We now study linearized perturbations around the solution (2.31) using the equation (2.26).
As in four dimensions it is convenient to expand the perturbations in eigenfunctions of the
Laplacian on the Riemann surface as in (2.15). Our starting point is therefore

o= 30 +9(0,9) + 3 pal)Vale,0), (233)

n=0

where f and g define the constant curvature black string and Y;, are defined in (2.15). We
assume that the functions ¢, remain small for all values of p. Linearizing (2.26) we then
find the following differential equation for ¢,
1
[ — (ptn +2) + §e2f(4f’6p + 383)} on(p) =0. (2.34)
Using the coordinate transformation (2.29), we obtain the equation
1
[ — (pn +2) + §(3r2 — 1)(9r0, + (3r2 — 1)0,2,)} on(r)=0. (2.35)

This equation has only one regular solution given by

3
Pn = an(3T2 - 1>7n2F1 Tns In + 1; 5 + 27n§ 1- 37'2:| ) (2'36)

- 11 -



where we have defined

25+ 12, — 1
= Y2 (237)

and a,, are arbitrary real constants. Note that since u, > 0 we find that the constants -,
are positive. In the IR region we have 7 — 371/2 and therefore from (2.36) we find

On = an(3r — 1) =0, (2.38)

since v, > 0. This shows that the perturbations vanish in the IR and the metric uniformizes
to the constant curvature one in (2.32).

2.2.3 UV analysis

The UV analysis is very similar to the one performed in section 2.1.3 and leads to the same
conclusions. In the UV region, p — oo, the general solution to (2.26) takes the form

n—1

1 1. 1 )
¢ =3logp+3g(@y) + v(ey) + SN " (log p) ™ gnm (@, y) - (2.39)
n>1m=1

We can then solve (2.26) order by order for large p. This leads to relations between the
function gy, ,, and the unconstrained functions g(z,y) and v(z,y). All functions g, m(,y)
can be expressed algebraically in terms of (derivatives of) g(x,y) and v(x,y). For example

the lowest order function is
1

gi1 = gﬁég- (2.40)
A notable difference between the expansion in (2.39) and the four-dimensional one in (2.22)
is the presence of log p terms in (2.39). These terms are characteristic for the Fefferman-
Graham expansion for odd-dimensional asymptotically locally AdS spaces and their pres-
ence can be traced to the conformal anomaly in the dual quantum field theory.

This UV expansion leads to the same conclusion as in section 2.1.3. Namely, we find
that in the UV region the metric on the Riemann surface can be arbitrary and is not
constrained to obey the Liouville equation. To find regular solutions one needs to adjust
the function v(z,y) appropriately and then one finds that in the IR region the solutions
approaches the near horizon geometry of the supersymmetric black string in (2.32) with
a constant curvature metric on the Riemann surface. We thus conclude that the PDE
in (2.26) leads to the same uniformization behavior as discussed below (2.24).

2.3 Six dimensions

We now turn to supersymmetric black brane solutions of the six-dimensional minimal
gauged supergravity constructed in [44]. The difference here with respect to the two previ-
ous examples is that the minimal supergravity in six dimensions has a larger gravity multi-
plet with bosonic content a scalar field in addition to the metric and an SU(2) gauge field.
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We present the derivation of the BPS equations for this theory in appendix A.3. The
result is the following configuration for the bosonic fields

2 e’ ds%{h? 3/2(9.2 | 6p.—dp(q. 2 2
dsg = @) 2 + (9pp)* 2 (dp” + €*Pe™*(da® + dy?))
1 2.41
4 = [(@p)ely — (0], (241
e4a — ap(p’

where the index 3 on the gauge field indicates that we are turning only the U(1) Cartan
generator of the SU(2) gauge group. As before, ¢ satisfies a single partial differential
equation

A + S0 ((93)30 +3(0pp)? — 30,p) = 0. (2.42)

Notice that the structure of this PDE is somewhat different from the corresponding PDEs
in four (2.3) and five dimensions (2.26). This difference can be traced to the presence of
the extra scalar field in the six-dimensional supergravity theory.

2.3.1 The constant curvature black 2-brane

A simple solution of (2.42) corresponding to a constant curvature black brane is obtained
by assuming a separable solution of the form
1
o= 3(f() +9(x,)), (2.43)
where

Ag+re* =0, A+ - 3)) =k, (2.44)

and k is the curvature of the Riemann surface (2.5). The equation for f in (2.44) does
not admit a general analytic solution. However there are two special solutions which are
singled out by the fact that the scalar « takes a constant value. These solutions take the
simple form

f=capt+ec, a#0, (2.45)
where ¢; 9 are undetermined constants. Inserting (2.45) into (2.44) we find two possible
solutions:

1
AdSg:c1 =3, k=0, AdS4:c1 =2, 02:—§log2, k=—1. (2.46)

The first solution, as the name indicates, is simply the maximally supersymmetric AdSg
vacuum solution of the theory. The second solution corresponds to the AdS, near horizon
region of a constant curvature black brane solution found in [45]. This AdSy x ¥4 solution

exists only for k = —1 and has the following metric
9\ 3/2
ds? = (27> [2ds§ds4 + ds%g} : (2.47)

The full black brane solution which interpolates between the AdS4 near horizon region and
the asymptotically locally AdSg metric in the UV region can be constructed numerically
and is displayed in figure 2. Note that for large p the effect of the curvature of the Riemann
surface is negligible and we recover the AdSg behavior of f(p) in (2.46).
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Figure 2. Numerical solution of (2.44) for f(p) obtained by imposing the AdS, boundary conditions
as defined by (2.45) and (2.46). The figure shows '(p) which smoothly interpolates between the
AdS, value 2 and the AdSg value 3.

2.3.2 Perturbative analysis

Since we do not have a complete analytic constant curvature black brane solution of (2.44)
we cannot repeat the details of the four- and five-dimensional analysis in sections 2.1.2
and 2.2.2. Nevertheless, we can still perturb the numerical solution displayed in figure 2
by employing the Ansatz in (2.33) where the functions f and g satisfy (2.44) and the
eigenmodes Y, satisfy (2.15). Using this Ansatz as well as (2.44) we can linearize the PDE
in (2.42) to find the following differential equation for the functions ¢,:

~ (it +2) + X ((2F = 3)9, + 32) | onlp) = 0. (2.48)

While we cannot solve this equation without having an analytic expression for f(p) we can
still extract useful information from it by focusing on the IR region at p — —oo given by
the solution for f(p) in (2.46). Using this solution in (2.48) we find a simple ODE with an
unique regular solution

1

(= 1++/17 1 8uy) > 0. (2.49)

Pn = ane’}’np, Yn =

N |

As in four and five dimensions we observe that the perturbations of the Riemann surface
metric away from the constant curvature one vanish as we approach the IR region at p —
—o0. Therefore, despite the lack of an analytic solution to (2.46) we can convincingly estab-
lish the uniformizing behavior for the metric perturbations in the IR near horizon region.
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2.3.3 UV analysis

The UV analysis at p — oo of (2.42) can be performed similarly to the previous cases. The
general UV behaviour of the function ¢ is

1 .
p=p+30(my)+ ) e (@ y), (2.50)
n>2

where § determines the metric on the Riemann surface and is not constrained in the UV.
As in previous cases, we discover a second function, namely v = g3, that is unconstrained
in the UV region . All other functions g, with n # 3 in (2.50) are related algebraically to
(derivatives of) g(x,y) and v(x, y) when equation (2.42) is solved order by order in e ™* — 0.
We can then proceed to employ similar arguments to the one in section 2.1.3 to conclude
that the PDE in (2.42) leads to a uniformization flow for the metric on the Riemann surface
which approaches the constant curvature metric near the regular AdS4 near horizon region.

2.4 Seven dimensions

For completeness we present here also the universal black brane in the minimal seven-

dimensional gauged supergravity of [46]. This case was treated in section 3.2 of [7] to which

we refer for a detailed derivation of the BPS configuration.? The bosonic field content is

the same as in six dimensions, namely the metric, an SU(2) gauge field and a real scalar.
The static BPS black brane solutions are given by?

e2r ds2 B
A5t = 5 Nirs a,,gp)rzt/l; + (D)7 (dp? + e (da? + dy?))
1 2.51
4= [(0ap)dy — (0y0)da] 251
e 5 = Opp,
where ¢ satisfies
A + 30 (8gg0 + 4(0,p)? — 48,,90) =0. (2.52)

Note the similarity between this equation and the six-dimensional one in (2.42).

2.4.1 The constant curvature black 3-brane

As is familiar by now we look for a simple solution of (2.52) by assuming a separable form
of the function ¢

= ~(f(p) + g(z,v)) , (2.53)

=

where
Ag+re =0, A+ (f —4) =k, (2.54)

2The analysis in [7] was performed in the maximal seven-dimensional SO(5) gauged supergravity of
which the minimal theory in [46] is a consistent truncation.
3When comparing with [7], note that we have set m = 2 and pthere = 8¢@here — 6p + 210g(y).
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Figure 3. Numerical solution of (2.54) for f(p) obtained by imposing the AdS; boundary conditions
as defined by (2.55) and (2.56). The figure shows f'(p) which smoothly interpolates between the
AdSs value 3 and the AdS; value 4.

and k is the curvature of the Riemann surface (2.5). The equation for § in (2.54) does
not admit a general analytic solution, however we can again find simple solutions with a
constant scalar field which take the form

f=cip+co, c1#0, (2.55)

where ¢ 9 are undetermined constants. Using (2.55) in (2.54) we obtain two solutions:
1
AdS7:ci =4, k=0, AdSs: ¢ =3, 02:—510g3, k=—1. (2.56)

The first solution is the AdS7 supersymmetric vacuum solution of the gauged supergravity.
The AdSs x ¥4 solution with x = —1 represents the near horizon geometry of the constant
curvature black brane studied in [1]. In this case the seven-dimensional metric is given by

1/27\'°
ds = 8<2> [3dsidss +ds3, | - (2.57)

A numerical solution interpolating between the AdSs; and the AdS7 region of the black
brane geometry is displayed in figure 3. Note that for large p the effect of the curvature of
the Riemann surface is negligible and we recover the AdS7 behaviour of f(p) in (2.56).

2.4.2 Perturbative analysis

In the absence of a complete analytic solution of (2.54) we cannot find explicitly the
perturbations around the constant curvature black brane black. However, it is still possible
to perturb the solution displayed in figure 3 using the Ansatz in (2.33) where the functions
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f and g satisfy (2.54) and Y, are defined by (2.15). We can then linearize the PDE in (2.52)
and find the following differential equation for the perturbations

— (i +2) + X2 ((2f — 4)0, + aﬁ)] on(p) = 0. (2.58)

While we cannot solve this equation without an analytic expression for f(p) we can extract
the behavior of the perturbations in the IR region. to do this we use the IR solution for
f(p) given in (2.56) which reduces (2.58) to a simple ODE with a unique regular solution

On = ape’™’ v, = =1+ /74 3u, >0. (2.59)

As in all previous cases we observe that the perturbations of the constant curvature metric
on the Riemann surface vanish as we approach the AdSs near horizon region at p — —o0.
This is a manifestation of the uniformization behavior exhibited in [7].

2.4.3 UV analysis

The UV analysis at p — oo of the equation (2.52) can be performed similarly to previous
cases and was discussed in detail in [7]. The UV behavior of the function ¢ is

1A n—1 -
p=p+ 0@+ Y e gz, y), (2.60)
n>2 m=0

where g(x,y) determines the metric on the Riemann surface and is not constrained in the
UV. As in previous cases, we find another function, v = g2, that is unconstrained in the
UV and which has to be chosen appropriately in terms of §(z,y) to ensure regular solutions
in the IR region. All other functions g, ., are related algebraically to (derivatives of) g(x,y)
and v(x,y) when equation (2.52) is solved order by order in e™” — 0. In addition to this
perturbative evidence for the uniformization behavior of the metric on the Riemann surface
a global existence proof of these uniformizing solutions of (2.52) was provided in [7].

3 Black holes with scalar hair

After we have established the holographic uniformization principle for the black brane so-
lutions of gauged supergravity theories consisting only of the gravity multiplet it is natural
to generalize this analysis by coupling these theories to matter multiplets. We focus our at-
tention on matter coupled gauged supergravity models in four, five, and seven dimensions,
which arise as consistent truncation of ten- or eleven-dimensional supergravity. These so-
called STU models share several common features and which are reflected in similarities
in the analysis below. In particular, as discussed in [47], these theories arise as a Kaluza-
Klein reduction on a sphere from ten or eleven dimensions where one restricts to the gauge
field, and accompanying dilatonic scalar fields, associated with the Cartan subalgebra of
the isometries of the sphere. Using the results in [47] we can therefore uplift all solutions
discussed below to backgrounds in type IIB or eleven-dimensional supergravity.

The BPS equations for these STU models are more complicated than the ones in the
minimal supergravity discussed in the previous section. In particular we find that the BPS
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equations reduce to a coupled system of PDEs for functions of three variables. We study
these equations both in the IR and the UV region and establish that despite this more
involved structure the solutions still exhibit the expected uniformization behavior. The
solutions we study should be viewed as generalizations of the constant curvature black
branes in seven-dimensions [48, 49], black strings in five-dimensions [42, 50], and black
holes in four dimensions [17, 20, 32].

3.1 Seven-dimensional STU model

The solutions of interest are constructed in the U(1)? invariant sector of the maximal SO(5)
gauged supergravity of [51]. This truncation was studied in [52] and was used to construct
supersymmetric black brane solutions arising from Mb5-branes wrapped on X4 in [48, 49].
Following our general strategy we will generalize the solutions of [48, 49] by allowing for
the metric on X to be arbitrary.

The bosonic sector of the supergravity truncation we study consists of the metric, two
U(1) gauge fields Ab and Ai and two real scalar fields, o and 3. The Lagrangian of this
model is, see [1, 52],

L= R—50(a+B) - da - B) — e I9(FL)2 — 9 (F2, )2

_ 9(—8e2(a+) _ go-20-48 _ yo—1a=28 4 o~8(a+P)) (3.1)

)

where we are using conventions in which the AdSy length scale is set to 1. The supersym-
metry variations of this model take the form

1
81y, = [V +2(A, 012 + AZT3) + 2e*4(a+5>fyu + 577" B0+ B)

y ( —201F1 F12 _2BF51/F34) €

N | —

+
(3.2)
(1) _ |: OH-B)) _ 7,7Ma (3a+2ﬁ) ; —2a ;wFl 1—112:|

1
Sy = | (28 — o=4atB)y _ Z 19 (2 3 o268 ;wF2 34| ¢
X 2(e e ) '7 (20 +30) — ce
We are interested in static supersymmetric solutions of this model captured by the

following Ansatz

d82 — le(r,a:,y)dS%{LS + th(r,x,y)dTQ + e?g(r,a:,y) (dl’2 + dy2) ’
A = A(r,z,y)da + Ay(r, 2, y)dy, (33)
a:a(r,w,y), B:B(raxay)'

As discussed in appendix A.l1 it can be shown that the coordinate dependence of the
supersymmetry parameter in (3.2) takes the simple form e = ef/2¢y where € is a constant
spinor. In addition the spinor obeys the following projectors

: 12 34 :
Yr€O0 = €0, Yeg€o = €0, T €0 — r €0 — 1€ . (3.4)

Here I' are SO(5) gamma matrices and we have denoted tangent space indices with a hat.
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With this Ansatz at hand the spin-1/2 variations in (3.2) variations reduce to the
following PDEs

e "0, (3a + 28) — 2(e** — e Moty o2l — 0, (3.5)
(0z +i0y) (3 + 28) — ie ** M(F}, +iF},) =0, (3.6)
¢ "0, (20 + 38) — 2(e¥ — e 71O o722 — 0, (3.7)
(02 +10y) (20 + 3B) — i 2 M(F2, +iF2) =0 (3.8)

The ¢-component of the spin-3/2 supersymmetry variation lead to two differential con-
straints which determine that two combinations of the metric functions and the scalar
fields in the model are independent of the x,y coordinates on X4

(B +i0)(f+a+B) =0, (f+a+p)+erHoth =9, (3.9)
The other components of the spin-3/2 variation reduce to the differential equation
Or(g — da — 4F) — 3eh=4a+h) | geh+2a | 9eh+26 _ (3.10)
and the following expression for the gauge fields
1 2 1 1 2 1
Ap+ AL ==20y(g 4o = 4B), A + AY= 20:(g — da = 45). (3.11)

The equations in (3.5)—(3.11) are all constraints imposed on the bosonic fields of the Ansatz
in (3.3).

To analyze these equations it is helpful to use (3.9) to define a new radial coordinate
p via dp = —eh=4@+tB)dr. This in turn implies that f 4+« + 8 = p. It proves useful also to
define the following combinations

p=2g—8a— 83, E=6a+405, X = 4a+68. (3.12)

Equipped with this we arrive at the following set of BPS equations which ensure that the
configuration in (3.3) preserves 1/4 of the maximal supersymmetry.

3

Dy = 4<ef +eX — 2) , (3.13)
Ao =8(Fy, + F},), (3.14)
Opé +4(e* — 1) +2e ¥ CF), =0, (3.15)
ox +4(eX —1)+2e ¥ XF2 =0, (3.16)
(02 + 10y )6 = 2ie "HOHB(EL 4 iF) ), (3.17)
(0 +i0,)eX = 2ie " (2 +iF2). (3.18)

This system of equations can be further reduced to only two coupled PDEs given by
Dple?TX(Dpx + 4(eX — 1)) + LeX =0, (3.19)
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and
020 + 7 (Dpp)? + 32e9T2X — 481X 4 12e% — BePO,p(eX — 1) + Ap =0.  (3.20)

To derive these equations we made use of the Bianchi identity to eliminate the field
strengths from (3.16) and (3.18) and reorganized appropriately the equations in (3.13)-
(3.16).

Given a solution for x and ¢ of the two coupled PDEs (3.19) and (3.20) one can obtain
all fields in the background (3.3) using only derivatives and algebraic relations. Therefore
to find supersymmetric backgrounds described by (3.3) it is sufficient to focus on solutions
of (3.19) and (3.20). Notice that this is considerably more complicated than the situation
in minimal seven-dimensional supergravity where similar solutions were described by the
single PDE in (2.52).

3.1.1 IR analysis

We start with the analysis of the BPS equations in the IR region where we look for regular
AdSs solutions. We can solve (3.13)—(3.14), by making the Ansatz

&R = log &o, X1R =1og x0, ¢ = logyo —2g(z,y) . (3.21)

We find then that g(z,y) obeys the Liouville equation in (2.54) and thus describes a
Riemann surface of constant curvature x. We focus on the case k # 0 and use the notation
of [49] for the field strengths of the gauge fields*

Fl =pe20@y) 2 — ge=29(zy) (3.22)

Supersymmetry imposes a relation between the two magnetic fluxes which can be conve-
niently expressed by rewriting them in terms of a single parameter z

k(1 4+ 2) k(1 —2)
- _ = = 3.23
p s ¢ S (3.23)
Note that z should be quantized such that z(g — 1) € Z.

The two equations (3.13)—(3.14) then reduce to

Mo — 1)+ ——p =0 (3.24)
° fovo. '

A(xo— 1) + ~0, 3.25
(o =1)+ =g (3.25)

3
fot+xo—5=0. (3.26)

We thus find the IR solutions

14324+ kV14322

4z ’

 VITEE -k
_#.

X0 =

32 —1—kV1+ 322

o P

%0

4The case k = 0 can be analyzed analogously following appendix C of [49)].
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We have thus arrived at the family of AdS5 solutions with a constant curvature metric on
Y4 found in [49]. Note that to ensure regularity of the solution we need to restrict |z| > 1
for kK = 1. There is no upper or lower bound on the value of z for k = —1.

Our goal now is to expand (3.19) and (3.20) around these IR AdSs solutions in the
same way as before, by writing ¢ = ¢ + ¢ and expanding the small perturbation ¢ in
eigenfunctions of the constant curvature Laplacian as follows

o)
Y = QIR + Z (ﬁn(p)Yn@:v y)a Ag}/’n = _MnYn- (327)
n=0

We perform a similar expansion for the function x and use (3.19) and (3.20) to obtain the
following system of linear equations

O2%n + 4(2x0 — 1)0pXn + 4(x0 — 1)0pPn — tingy 'Xn = 0, (3.28)
02@n — 8(x0 — 1)p@n + (64x3 — 48x0)Xn — (1in — 2K)pg ' @n = 0. (3.29)

A regular solution of these takes the form

<§:) _ g (g) . (3.30)

where the real constants A and B are determined by solving the following matrix equation

4(xo — )vn V2440250 — 1) — pnpp 1\ (A o (3.31)
V2 —=8(x0 — 1)y — (i — 26)i05 64x2 — 480 B

The vanishing of the determinant of the matrix (3.31) leads to an equation for the constants
Yn- Importantly there are always two positive roots of this equation for k = —1,1 given
explicitly by

—h;+7\/1+322+6uni6\/1+322+2(m+\/1—|—322),un
—k+ V14322 '

We therefore conclude that indeed for each choice of eigenmode on X4 there is a regular so-

= 14 (3.32)

lution of the form (3.30) which describes a small deviation from the constant curvature solu-
tion. Note that for z = 0 and x = —1, the largest solution for 7, reduces to the one in (2.59).

3.1.2 UV analysis
In the UV region at p — oo the BPS equations (3.19) and (3.20) can be solved systemati-

cally order by order for any metric on the Riemann surface. The solution is given by

© = 2p+ @0 + p2e 2 + e + 4 167" p + higher order, (3:33)
X = x2¢ 2 + x4e~* + xa.1¢*p + higher order, ’
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where the functions po(x,y), @4(z,y), x2(x,y), and x4(z,y) can be chosen freely. The rest
of the UV expansion functions are determined in terms of these four. For example, we find

1 _
p2 = e 0 Ay,

1 _
Qa1 = —8x3 — dx2p2 — 1¢ A, (3.34)
1 _
X1 = 4X3 + 2x2002 — ¢ VAV

Taken together, the UV and the IR expansion discussed above strongly suggest that, for
arbitrary values of z and k, there indeed exist full nonlinear solutions of the BPS equations
of this seven-dimensional model which interpolate between the IR and UV region and
uniformize the arbitrary UV metric on the Riemann surface. For z = 0,1 and x = —1 this
statement was proven rigorously in [7].

3.2 Five-dimensional STU model

Here we study the well-known five-dimensional STU model of N/ = 2 five-dimensional
gauged supergravity which arises from a consistent truncation of type IIB supergravity on
S®, see [47]. The bosonic fields of this theory are the metric, three Abelian gauge fields
and two real scalars. The Lagrangian for these fields is given by, see for instance [1, 42],

3
1 1
L=R-— 5(aﬂqﬁl)Q — 5(au(pg)? + 12;)(,1

(3.35)

3
9 1
- > X2(FL)+ Ze“”o‘ﬁf’F,}VFgﬁAi .
a=1

The three gauge fields, A%, correspond to the Cartan generators of the SO(6) isometry
group of S°. It is also useful to define the “sections” X, which are related to the scalars
¢1 and ¢9 via

X1 :ef%f%, X2:e7¢716+¢722, X3:e2¢715, (3.36)

as well as their inverse .
X, = . 3.37
.= oz (337)

The fermionic supersymmetry variations of the supergravity are those of the two dilatini
X(j) and the gravitino ¢ and read

i 1 31

0y, = [Vu + gXa(VZp — 4557p)F3p + §XaVa7# — 2%/12} €,

3 3 . (3.38)
y i i

oxXG) = [8(5¢an)F5ﬂ” + 5 Va0, X* — 4 jkauﬁblﬂu} €

where 7 = 1,2 and V, = % We now proceed to analyze these equations to find static

supersymmetric black string solutions.
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3.2.1 BPS constraints

The Ansatz we consider is similar to the one used to construct the supersymmetric black
string solutions in [42, 50], however we now allow for a general metric on the Riemann
surface
d82 _ e2f(r,a:,y)d8%{1’1 + e2h(r,x,y)dr2 + e2g(r,az,y) (d:(}? + dy2) ’
A = Ag(r, z,y)dx + Ay(r, z, y)dy,

j;la—a(r,a:,y), %—5(7@%(@)7

(3.39)

Note that for convenience we have rescaled the scalar fields ¢ o by suitable constants. As is
familiar by now, the BPS equations of the model are then obtained after taking e = ef/2¢
and imposing the projectors

Yr€0 = €0, Yig€o = —iEo . (3.40)

We then find the following set of equations which ensure that the spin-1/2 supersym-
metry variations in (3.38) are obeyed

60, + 2" (X' + X? — 2X%) + 3e" (X, Y, — 3X3F2))
2(0, + i0y)a + e (Xo(Fl, + iFY,) — 3X3(Fo, +iF)))
20,8+ 2(X' — X?) + 3¢" "% (X\F}, — XoF2)

)

I

0
0,
0
0

(3.41)
y) —
2(0, +1i0y)B + 3ie (X1 (F), +iF},) — Xo(F2, +iF})) =
The t- and z-component of the gravitino variations yield
3
60,f + 2"y " X +3e29X, 2 =0,
& ; o (3.42)

2(0, +1i0,) f +ie " Xo(F, +iF5) =0,

The other components of the gravitino variation give the following constraints on the metric

functions
(Op +10y)(2f +h) =0, (3.43)
scalars ,
Or(2f +9)+e"Y X" =0, (3.44)
a=1
and gauge fields
3 3
SN AL=-0,2f+g), Y Al=0.02f+g). (3.45)
a=1 a=1

These BPS constraints can be written more compactly by using the relation in (3.43)
to define a new radial variable via dp = —e?f*"dr and then define the combinations

p=4f+2g9, &G =2f+a+p, &L=2f+a—-pF, &=2f —2a. (3.46)
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Indeed, we can now reduce the BPS constraints to the following set of equations

Dpp = 2(e™8 4782 478 (3.47)
3
23 FL —Dp=0 (3.48)
a=1
Ope bt +2e7 e 4o ¥FL =0, a=1,2,3 (3.49)
(0p +i0y)e 5 = i(Fl, +iF%)e 27, a=1,2,3. (3.50)

A few comments are in order. We note that the three gauge fields can develop independent
profiles along the radial flow. When we set all three of the gauge fields to be equal to each
other we see that the two scalars fields can be consistently set to zero and we then recover
the BPS equations of the minimal gauged supergravity discussed in section 2.2. In the two
special cases when F!' = F2 £ 0 and F? =0 or F! = F2 = 0 and F? # 0 we recover
the 1/4-BPS and 1/2-BPS solutions studied in [7]. For more general profiles of F'® the
solutions to the BPS equations above preserve 1/8 of the maximal supersymmetry.

To make progress in simplifying further the BPS equations we can invoke the Bianchi
identity for (3.49) and (3.50) to obtain

9,(e? (9,075 + 27 %)) + Ae %" =0, fora=1,2,3 (3.51)

The sum of the three equations (3.49) yields, in combination with (3.47), the following
equation for ¢
83@ + 4(67251 +e % 4 e*2§3) +e PAp=0. (3.52)

Due to (3.47) one of the four equations in (3.51) and (3.49) is redundant. We can therefore
use (3.47) to eliminate & and work with a system of two coupled PDEs for £, = £ and
& = x in addition to the following equation for ¢ obtained from (3.52)

Bie“” —4(eC F e M)dpe? +8eP(e X +e X L e X)) 4 Ap =0. (3.53)

Therefore we conclude that by solving the equations for ¢, x, and £ in (3.53) and (3.51)
we can find the most general supersymmetric background of the form in (3.39) in the
five-dimensional STU supergravity model.

3.2.2 IR analysis

We begin by deriving the AdSs x ¥4 IR solutions of [42] in our notation. To this end we
take

o =—logyo+2logp+2g9(x,y), & =—log&eo+logp. (3.54)

Here ¢g and &, o are constants and the function g has to obey the Liouville equation (2.28)
and thus determines a metric on X, of constant curvature x. The field strengths of the
three gauge are proportional to the volume form on X4

Fo = —nge®@¥dg Ady, (3.55)
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where, as described in [42], n, are constant magnetic flux parameters which need to be
quantized in terms of the genus g.

With this at hand we find that equations (3.47), (3.48), and (3.49) reduce to the
following algebraic constraints

10+ &%o+&0=1,

ny+mnz +ng=r, (3.56)
%00 —Nate =1, a=1,2,3.
a,0

For generic values of the parameters n, these equations can be solved to find

_ _ ni(ng —ng —ng)
Yo = _@ 5 51,0 - /) 5
(3.57)
£r0 = na2(—ny1 + na — n3) £30 = nz(—ni — ng + n3)
2,0 o » €30 ) )
where, as in [42], we have defined
IT = (—n1 + ng + n3)(n1 — no + n3)(n1 + ny — n3), (3.58)

O = n? 4+ n3 +n2 — 2(n1ng + nonz + nzny) .

We have thus recovered the supersymmetric AdSs solutions discussed in [42]. It is impor-
tant to emphasize that in order for these solutions to be physically acceptable the magnetic
fluxes n, have to obey certain positivity constraints. These arise since, due to (3.54), the
constants ¢g and {7 have to be positive. These constraints were thoroughly analyzed
in [42] and from now on we assume that we work with values of n, for which they are obeyed.

To study whether the constant curvature metric on ¥y can be deformed as we move
away from the IR region we proceed as in the previous sections. Namely, we expand
equations (3.51) and (3.53) around the IR AdS3 x 3, solution described above in terms
of eigenmodes of the constant curvature Laplacian on ¥4. The radial evolution of every
such eigenmode, with eigenvalue p,, can be obtained by linearizing the equations in (3.51)
and (3.53) to find

p28§€~n + 4§0p8pgn + (1 - Zfo)pap@n - QOO,Ungn =0,
P02 Xn + 4X0P0pXn + (1 = 2X0)p0pPn — PobtinXn =0,

~ ~ - . (3.59)
P28,2> n+4(1—& — XO)papSOn + 8(&0én (1 — 260 — x0) + Xx0Xa(l — &0 — 2Xx0))
_(,Un - 2“)8009571 =0.
The regular solutions of these equations in the IR region at p — 0 take the form
€n A
Xn|=p"|B], (3.60)
Pn c

where (A, B,C) are real integration constants and 7 should be a positive real number.
Note that the value of the constant v depends on n, i.e. on the choice of eigenmode.
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Plugging (3.60) in (3.59) we obtain the following algebraic equation

A
M|B|=0, (3.61)
C
where the matrix M is given by
72+ (48 — 1) = pno 0 ~(1 — 26)
M= 0 7 +7(4x0 — 1) — o (1 = 2xo)
8¢o(1 — 2& — Xo0) 8x0(1 =& —2x0) 7>+ (3 —4& — 4x0)

+¢0(2k — pn)
In order to show that for every eigenvalue p, there is a regular solution of the IR lin-
earization problem as in (3.60) we need to ensure that the algebraic equation detM = 0
always have a positive root. First we note that when the magnetic fluxes are equal, i.e.
ny = ne = ng, we find g = xo = & = % and recover the solution of the minimal gauged
supergravity with the value of v in (2.37). For general values of the flux parameters we

have to solve a sixth order polynomial equation of the form
det(M) =~° +~° + ... — o3p2 (un — 26) = 0. (3.62)

We do not have a closed form expression for the roots of this polynomial equations. Nev-
ertheless the structure of the terms we presented explicitly in (3.62) allows us to deduce
important information. In particular, the positivity constraints on ¢g and p, and the form
of the constant term in (3.62) imply that the product of the roots is negative. Since we
have a sixth order polynomial this in turn implies that at least one of the roots is posi-
tive for almost all values of x and p,. The only exceptions to this argument are the zero
modes po = 0 for all values of k and the mode p; = 2 when x = 1. In these two cases we
have checked numerically that for general values of n, allowed by the positivity constraints
in [42] there are three positive roots of the equation in (3.62). We have also analyzed the
polynomial equation (3.62) for more general values of u,, and k. We find that for values of
ne that obey the positivity constraints in [42], there are three positive real roots. Moreover
the corresponding solutions of the form (3.60) have C' # 0. This is important to ensure
that the metric on the Riemann surface is indeed perturbed since, due to (3.46), this per-
turbation is encoded in . The fact that there are three positive roots in general means
that not only the metric perturbations but also the scalar perturbations are washed out
as we approach the IR region. A special situation which necessitates a separate analysis
arises when two of the fluxes are equal. Then the polynomial in (3.62) factorizes into two
polynomials of degree 4 and 2, respectively. The degree 2 polynomial has two positive roots
corresponding to an eigenvector with C' = 0. These special modes leave the scalar fields and
the metric function f unperturbed and correspond to the marginal deformations discussed
around Equation (21) in [1]. The degree 4 polynomial however, still contains a positive
root corresponding to an eigenvector with C' # 0 which ensures that we can indeed perturb
the metric away from the constant curvature one as we move away from the IR region.
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3.2.3 UV analysis

In the UV region we encounter a familiar predicament. Namely, we can solve equation (3.51)
and (3.53) order by order in the p — oo limit and then find that the metric on the Riemann
surface can be arbitrary. We find the following UV expansion for the three unknown
functions that control the BPS black string solutions

@ =3logp+ o+ @11p logp+p1p”" + pa2p " (log p)?
+ po1p 2logp+pap + ..,

¢ =logp+log2+&1p ogp+&1p~" + &a2p 2 (log p)°
+&ap 2logp+&p it .,

X = —2logp +1og(2) + x1,1p " log p + x1p~ " + x2,20 2 (log p)?
+x21p 2 logp+x2p P+

(3.63)

where all of the coeflicients are functions of the two coordinates on the Riemann surface.
As in the UV expansion of the BPS equation in the minimal five-dimensional supergravity
discussed in section 2.2.3 we find two undetermined metric functions, g, 1. In addition
to that we have four other undetermined functions, &, x1, §1,1, and x1,1, which are due to
the presence of the additional matter fields in the STU model. The rest of the coefficients
in the UV expansion are determined in terms of these six unknown functions. For instance
for the first few coefficients in the expansion of £ we find

1
§20 = —55%,1 ;
1 _
§2= —5&l H 161 — erafun + 260, + 207 7(05 + 9 + 261, (3.64)
&1 =wv1,1&1,1 —&&i1 — 25%1 — e (02 + 83)52,1 -

while for the first two coefficients in ¢ we have

1
P22 = — <X%,1 +&+ 5@%1 —oralxi1 + &) + X1,1§1,1> ;

P11 =e (07 + )0 -

(3.65)

Similar expressions can be obtained for the low order coefficients in the expansion of y as
well.

As in the previous examples we studied we thus conclude that the metric on X is
arbitrary in the UV region and should approach the constant curvature one in the IR
region of these regular five-dimensional solution.

3.3 Four-dimensional STU model

We now proceed to study a large generalization of the black hole solution discussed in
section 2.1. To this end we focus on the STU model of four-dimensional A = 2 supergravity
which arises as a particular consistent truncation of eleven-dimensional supergravity on S”.
This model can also be constructed by adding three N' = 2 vector multiplets to the gravity
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multiplet of the minimal supergravity theory. Each of the vector multiplets contains an U(1)
gauge field and two complex scalars which can thought of as a scalar and a pseudoscalar.
For the magnetic black hole solutions of interest here it can be shown that the pseudoscalars
can be consistently set to zero. The bosonic Lagrangian of this model is given by®

4
_r_Log2 LS dadpe _
L=R- (007 - ;e F}—V(¢), (3.66)
where the potential is
V = —2(cosh ¢12 + cosh ¢13 + cosh ¢14) , (3.67)

and we have defined
(1,—-1,-1),  d=(-1,1,—1)

B} 2 (3.68)
ap=(—1,-1,1), ¢ = (12, ¢13, P14) -

We have not included the F' A F' terms in the Lagrangian (3.66) since they will not play
any role for the magnetic black hole solutions of interest here.

The STU model arises also as a consistent truncation of the ' = 8 SO(8) gauged super-
gravity. This embedding proves useful when studying the supersymmetry variations of the
theory. Im the A/ = 8 theory the fermions consist of the gravitini zp/{ and the spin-1/2 fields
% where I, J and K are SU(8) indices. In the A" = 2 STU model truncation the index
I should be thought of as corresponding to the pair (a,i) where a = 1,...,4 as in (3.66)
and ¢ = 1,2. With this notation the supersymmetry variations of the gravitini are given by

. 1 | Lo .
iyt = Ve — §QabAZe”eb] + 3 Z e_ab'¢/2%em
b

1 . o (3.69)
b
where ), is the matrix
11 1 1
1111 -1-1
in 111 -1 (3.70)
1-1-11

For the spin-1/2 variations, one finds §x® % % = §y@ k§abeii - gybaigbeeik 1 gy bigeacks
where
V2 5y = —’y“f)uqbabeijebj — Z Zachcdefad"b/Qeijebj
cd
+ Z Qadead'¢/2Fﬁl/y“’jebi )
d

(3.71)

®We follow closely [20] in our presentation, see also [17].
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Note that there is no sum over the repeated index b above. The tensor X, is defined as

|€ape| for a,b,c # 1,
Ope f =1,

Yabe = ’ o (372)
Oac forb=1,

0 otherwise .

3.3.1 BPS constraints

to construct the black hole solutions of interest here we consider the following Ansatz, for
a=1,2,3,4,

d82 — _62f('r,w,y)dt2 + th('r,:c,y)dTQ + e2g(r,z,y) (de + dy2) 7
A* = AL(r,z,y)da + Ay(r, @, y)dy, (3.73)
e~ d/2 — Xa(r,z,y) .

To recover the solutions in the minimal supergravity discussed in section 2.1 we need to
set the four gauge fields equal to each other and freeze the scalar fields by setting X, = 1.
The spinor generating the supersymmetry of this background again takes the simple form
e = el/ 2€8i, where egi are constant spinor parameters. Since the solutions preserve only
two real supercharges we take only the a = 1 components of the spinor to be non-vanishing.
In addition, we impose the projectors el = 66 and 7@66 = ¢l eg). By imposing that the
spin-1/2 supersymmetry variations vanish we then can derive the following constraints on
the bosonic fields

e "0rp1a + Qun Xy + e 90 X, FY, = 0, (3.74)
(0 + i0y) P10 + iQap X, (F), +iF,) = 0. (3.75)

From the t-component of the gravitino variations we find the relations
RO f 4 EQXy 4 Se 90X Y = 0 3.76
e rf+§ 1b b+§e wX, Fj, =0, (3.76)
"0y + 10 X (FY, +iFh) = 0 3.77
e(w+1y)f+2 162y (rx+Z ry)_ . ( )

The expressions above determine the sum of the field strengths which in turn can be used
to simplify the rest of the supersymmetry variations. The result for the constraints derived
from the other components of the gravitino variations reads

(Ox +1i0y)(f +h) =0, (3.78)
Or(f +9) + "X = 0, (3.79)
20,(f+9)+> AL =0, (3.80)

b
20,(f +9)— > AL =0. (3.81)
b
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These relations should be compatible with the ones in (3.76) and (3.77) which leads to the
following alternative expressions for the field strengths

Y FL—20(f+9) =0, (3.82)
b

i> (FY +iFp) +20,(0x +1i0y)(f +9) = 0. (3.83)
b

We have so far derived all constraints on the bosonic fields imposed by the vanishing of the
supersymmetry variations in (3.69) and (3.71). To simplify these BPS equations further
we use (3.78) to change coordinates by dp = —efTdr. We can then rewrite (3.74)(3.83)
in a simpler way upon defining® ¢ = 2f 4+ 2g and &, = f + d, - 5/2, for a =1,2,3,4. This
yields the following system of equations

Opp=> e b, (3.84)

Y Fi - Ap=0, (3.85)

8pe_5“ + e Ha 4 e ?ry, =0, a=1,2,3,4 (3.86)
ez + 1 e s =7 +1 e . a=1,2,9,4%. .

Oy +i0y)e = i(F% +iFS)e ™" 1,2,3,4 3.87

To simplify these equations even further we can eliminate the field strengths by imposing
the Bianchi identity
Or by, + 0 F . + Oy Fy, = 0. (3.88)

This allows us combine to (3.86) and (3.87) to get, for a = 1,2, 3,4,
Dple? (9,65 + e %) 4 Ne b =0, (3.89)

together with
D [0t te ) e P Ap =0, (3.90)
a
obtained from (3.85) and (3.86).

The equations in (3.89) and (3.90) encode the conditions imposed by supersymmetry on
the bosonic backgrounds of the form (3.73). We will use them to understand the behavior
of perturbations away from the constant curvature black hole solutions studied in [17, 20].
We note that not all of these equations are independent since the sum of the equations
in (3.89) gives us the radial derivative of (3.90).

3.3.2 IR analysis

In the IR region the only regular solutions are the AdSs for which the metric on Xy is
constant, see [17, 20, 32]. In our notation these backgrounds take the form

@ = —logyo +2logp+2g(x,y), &= —log&o+logp, (3.91)

5Note that the definition of ¢ here differs by a factor 4 from the one used in section 2.1.
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where ¢g and &, are constants. The function g(z,y) solves the Liouville equation in (2.6)
and determines a metric of constant curvature x on the Riemann surface. The field
strengths are then proportional to the volume form on the Riemann surface

Fo = —nge?@¥)dz A dy, (3.92)

where n, are the magnetic flux parameters that need to be quantized as discussed in [20].
The BPS equations for these AdSy x Yy solution then reduce to the following algebraic
relations

2K = Za:na, 2= zajga,o, € — n“fi,oo —1  fora=1,2,3,4 (3.93)
To solve these equations we proceed as in [20] and define

1
II= g(nl +ng —ng —ng)(ny —ng +ng —ng)(ny — ng —n3 +ny), (3.94)

together with

1 S
O = (Fa)® —dmngngny, Fo = 4<Zna> -3 za:ni. (3.95)

a

The solutions of the equations in (3.93) can then be written as

11 1 Fo+ng(ng +ng+ng+ng—2ng)
Yo = > ga,O =-=x .
S 2 20

(3.96)

To ensure that these AdSy x Xy solutions are well-defined the constants in (3.91) have to
obey certain positivity constraints. This in turn leads to constraints on the values of the
magnetic flux parameters n, which are analyzed in [20]. From now on we assume that we
always take the parameters n, to take values in the allowed regions of parameter space.

Our goal now is to study perturbations around this constant curvature solution away
from the IR region and show that the metric on X4 can deviate from the constant curvature
one as one moves towards the UV region. To this end we expand the functions in (3.89)
and (3.90) in eigenmodes of the Laplacian for the constant curvature metric on 34 and study
the behavior of these linearized perturbations. Since the equations in (3.89) and (3.90) are
not independent it is most convenient to work only with three out of the four equations
in (3.89) which yield the following linear equations for the eigenmodes éa,n and ¢,

an,gga,n + 2P€a,08pga,n + (1 - ga,O)pap(ﬁn - (PO,U'nga,n =0. (3~97)

The regular solutions of this system of equations is determined by the following vector of

solutions”

(glm €on &3 @n)T =p'U. (3.98)

"The solution for the modes €4 ., is not independent and is obtained by exploiting the relations between
the equations in (3.89) and (3.90).
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where the real constant v and the constant four-vector v depend on the choice of eigenmode
n. To find this solution we need to use (3.84), (3.89), and (3.90) along with the linearized
expansion described above. This results in a matrix equation of the form M - ¥ = 0 where
M is a 4 x 4 matrix whose explicit form is too unwieldy to present here. To analyze this
we proceed as in section 3.2.2 and find the constants v by solving the algebraic equations
det M = 0. This results in an eighth degree polynomial equation for ~ that is too com-
plicated to analyze analytically and we have resorted to a numerical analysis. We have
checked explicitly that for many choices of the magnetic flux parameters n, the algebraic
equation det M = 0 has four positive roots for the constants v. When we use these numer-
ical solutions in (3.98) we find that they correspond to perturbations of the metric and the
bosonic fields in the black hole solution (3.73) which deviate from the constant curvature
solution but are small and ultimately washed out near the AdSs region in the IR. Therefore
we once again observe the characteristic holographic uniformization behavior.

3.3.3 UV analysis

To complete our arguments in favor of the holographic uniformization behavior of the BPS
equations we analyze the solutions of the equations in (3.89),and (3.90) in the UV region
p — 00. The results of this analysis are familiar by now. We find that the metric on the
Riemann surface is indeed allowed to be arbitrary in this UV region. To be more explicit
we can expand ¢, & = €1, ¥ = &, and x = &3 in the following form

p=4logp+ Y walw,y)p™, E=logp+ > &ulz,y)p ™",
n

" (3.99)
Y=logp+ Y Uz, y)p™", x=logp+ > xn(z,y)p "

n

The functions g, p1 as well as &1, x1, %1 and &2,19, x2 in the expression above are left
undetermined by the BPS equations. The freedom to choose these functions arbitrarily
reflects the choice of metric on ¥4 in the UV region.

The higher order coefficients in the UV expansion are completely determined in terms
of these functions. For instance, we at second order we find the relation

1
0y = _56—%00(82 +82)p0 — (61 + 91 + X3 + &1 + Eoxa + xavr)

1 (3.100)
- 5@% +@1(§1 + 1 +x1) -
At third order we find
1 1 1 1
§3 = gf? - 18015% - 590152 - 56_%(33 + a;)fl ) (3.101)

with similar expressions for xs and 3. Also at this order, 3 is fixed in terms of the lower
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order coefficients as

1
w3 = &3+ x3 + Y3 + 6(5? + 97 +x1) — &€& — Yis — x1x2
+ %(51 +x1 U1 — 1) (6 + xT YT — 26 — 2x2 — 200 + do)

- é@l [p7 + 26191 + 201 x1 + 2161 + 202 — (E2 + Y2 + x2)] (3.102)

1 1
- 1801(5% + 97 +x1) + 5801(51 + 91 + x1)

1
+ 667%(82 + ) (61 + X1+ U1 — 1)

4 Conclusion

In this paper we showed that there are large families of supersymmetric asymptotically
locally AdS black brane solutions with a smooth Riemann surface horizon geometry in
gauged supergravity. At asymptotic infinity, i.e. the UV region of the geometry, the metric
on the Riemann surface can be chosen freely. However, the supergravity BPS equations
result in non-linear PDEs which uniformize the metric on the Riemann surface such that in
the near horizon region it is fixed to the constant curvature metric. These results generalize
and extend the holographic uniformization discussed in [7]. They also bear resemblance to
the well-known attractor mechanism for asymptotically flat black holes with the notable
difference that in our examples the moduli at asymptotic infinity are not scalar fields arising
from the internal dimensions of string or M-theory.

Our work presents a number of open questions and possible generalizations. Here we
list some of them.

e [t is desirable to perform a more mathematically rigorous analysis of the PDEs result-
ing from the supergravity BPS equations that we derive in this paper. This should
proceed using similar methods as the ones employed in [7] and should lead to a global
existence proof of the smooth uniformization solutions.

e All gauged supergravity solutions studied in this paper are in theories which arise as
consistent truncations from ten- or eleven-dimensional supergravity. It is therefore
possible to uplift the solutions we constructed above to string or M-theory and it will
be interesting to do so explicitly. This applies especially to the solutions discussed
in section 2 which admit various different embeddings in higher dimensions, see for
example [5] for a detailed discussion and a list of references.

e We have opted to study several specific gauged supergravity theories which are par-
ticularly simple and explicit and in addition can be embedded in string theory. Our
general results should apply more broadly and it should be possible to find black
brane solutions of more general matter coupled supergravity theories which exhibit
similar attractor mechanism for the horizon metric.
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e There is a large body of literature on studying the constraints imposed by supersym-
metry, and the resulting differential equations, for solutions of various supergravity
theories in different dimensions. We have not used these results to derive the BPS
equations and the resulting PDEs analyzed in this paper. Nevertheless, it should be
possible to rephrase our results in these more general terms. In particular the solu-
tions discussed in section 2 should fit into the classification results of [53-55], and [56]
for four-, five-, six-, and seven-dimensional minimal supergravity, respectively.

e An important assumption in our work is that the supergravity solutions we study
are static and the Riemann surface describing the horizon has a smooth metric. It
should be possible to relax both assumptions, for example by generalizing the four-
dimensional solutions with angular momentum discussed in [57, 58] and by studying
the solutions of [27] with a punctured Riemann surface away from the near horizon
region. More specifically, it is natural to speculate that there are generalizations of
the stationary black hole solutions studied in [57, 58] which posses the same near
horizon geometry but do not have a globally defined space-like Killing vector.

e Based on the physics of topologically twisted SCFTs on compact manifolds, one
should expect that the holographic uniformization principle is not limited to Rie-
mann surfaces. It would be very interesting to understand this vast generalization in
particular in the context of hyperbolic three-manifolds [59], as well as four-manifolds
where some initial studies were performed in [60, 61]. In this context holographic
uniformization and its generalizations offer another example of the close relation be-
tween the physics of RG flows and the mathematics of geometric flows, similar in
spirit to Ricci flow [62, 63].

e The uniformization nature of the black brane solutions we found ensures that the
metric of the horizon is the one with constant curvature and thus the horizon area and
black hole entropy do not depend on continuous moduli. This attractor mechanism
is an important feature of our solutions. Another important quantity for black hole
thermodynamics is the regularized on-shell action. For the four-dimensional constant
curvature black hole in section 2.1.1 it was shown in [22], see also [64], that the
regularized on-shell action is equal to the black hole entropy. It will be very interesting
to study whether this is true more generally for the black brane solutions studied here.
The results in [65], and their generalizations to higher dimensions, should prove useful
in establishing this question.

e In establishing the attractor behavior for the metric moduli near the black brane
horizon we assumed that the solution is supersymmetric. This is important for two
reasons. First, the BPS equations of supergravity are presumably technically simpler
to analyze then the full equations of motion. Second, the supersymmetry of the
near horizon AdS region ensures that the black hole solution is stable against small
perturbations. It will be very interesting to understand whether the general lessons
from our results are true for general non-supersymmetric charged black branes in
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AdS. Perhaps a natural starting point to address this questions is to study non-
supersymmetric extremal black brane solutions similar to the ones studied in [66—68].
Note however, that many such solutions suffer from perturbative instabilities [69, 70]
which sheds some doubt on their physical relevance.

e The holographic description of our supergravity solutions, when embedded in string or
M-theory, should be in terms of a partially topologically twisted SCF'T on a Riemann
surface. Understanding how the RG flow across dimensions in the SCF'T realizes the
uniformization of the Riemann surface metric is presumably a hard question in the
strongly coupled QFT description, see for example [9].

e The four-dimensional black hole solutions we studied have a near-horizon AdSy geom-
etry which is universal and independent of the Riemann surface metric away from the
horizon. The metric deformations of 3 can be interpreted as irrelevant operators in
the one-dimensional IR theory holographically dual to this near-horizon region which
determine the details of the deformations performed in the UV three-dimensional
SCFT. It will be interesting to understand whether our solutions have a relation to
the recent studies of near AdSs holography, see for example [71, 72].
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A Universal BPS equations

In this appendix we present some details on the derivation of the BPS equations in the
minimal four-, five-, and six-dimensional gauged supergravity theories used for the analysis
in section 2. The derivation of the BPS equations for the seven-dimensional minimal gauged
supergravity was presented in [49]. We also note that we have explicitly confirmed that
the equations of motion for the Ansatz we study are implied by the BPS equations.

A.1 Four dimensions

The Lagrangian for the bosonic fields of the minimal N = 2 four-dimensional gauged

supergravity is
3

L=R+6— ZFWF“V. (A.1)
The gravitino variations are given by
. ) 1 .1 L
oy, = Ve — Auee + 5’@6Z + 1 Y el (A.2)
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We consider the following Ansatz

d _le(rvxvy)dt2 + th(T7$7y)d7a2 + e291 (T,.T,y)de + e292(rﬂx7y)dy2 ,

2 __
5= (A.3)
A=A, (r,x,y)de + Ay(r,z,y)dy .

Notice that this is the most general static Ansatz assuming an isometry in the t-direction.
We are interested in solutions of this supergravity theory which preserve 1/4 of the super-
symmetry. This leads to the following projectors

i

V€' =€ and 'y@@ei = —gl¢ (A.4)

where we use a hat to denote tangent space indices. Notice that we allow for the spinor
parameter, €', to be depend on the coordinates (r,z,y). The BPS equations can be derived
by considering a linear combination of the supersymmetry variations for which no derivative
of the spinor parameter appears. In particular the combination

900" — 987 (A.5)
leads to the equations

ehtote (g, + i0y)f = —e?2F ., + ingQFTy ,
(0r +10y)(f+h) =0,
egl+926r91 — eh(eg1+gz _ ny)’

0r(g1—g2) =0,

(A.6)

where F.., F,,, and F,, are the non-trivial component of the gauge field 2-form flux
F = dA. The t-direction of the gravitino variation leads to one more condition:

o(f+aq) = —2¢", . (A.7)

Now it is easy to read off from the gravitino variation differential equations for the spinor
parameter itself

] .
8r,x,yel = 5(8T,$,yf)61 ) (A8)

as well as an equation for the gauge field
A — 1 91-92 5 A = 1 92—91§ A
w—_ge y(f +a91), y = 5‘3 o (f +92) - (A.9)

We can now solve these equations and show that they imply (2.2) and (2.3). First we
notice that

g2 = g1+ C(:E? y) ) (AlO)

for some function C' on the Riemann surface. We can always choose coordinates on the
Riemann surface such that C' = 0. This in turn implies

gI=¢=g. (A.11)
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This considerably simplifies the remaining equations. In particular, since f+h is a function
only of r we are free to change to a new radial coordinate p(r) defined by

dp f+h
— = A.12
dr “ ( )

In these new coordinates we obtain the following two equations by using F,, = 0, A, —0y A,
and (A.9) in addition to (A.6)

Qe_f _ap(f+g) = 07

2(—ef0,f +1) +e (2 + ) (f+9)=0. (4.13)

We also define the new function 2¢p = f 4+ ¢g. The first equation above then determines f
as a function of ¢ which allows us to write the metric and gauge field purely in terms of ¢
as in (2.2). The second equation reduces to a single PDE for ¢:

A + e (8290 + (6pg0)2> =0, (A.14)

where A = 92 + 85. This is the flow equation we use in section 2.1. Finally we note that
the supersymmetry spinor parameter can be found explicitly and takes the form

e =ef%e (A.15)
where 66 is a constant spinor obeying the projectors
vich =€y and  ypgeh = —eijeé. (A.16)

Note that the form of the spinor in (A.15) is compatible with the fact that the spinor
bilinear is proportional the time-like Killing vector 0; in (A.3).

Before we move on to the presentation of the derivation of the BPS equations in the
five- and six-dimensional supergravity theories we emphasize two important results. First,
we have shown that for both of these theories the functional dependence of the spinor on
(r,x,y) is fixed entirely in terms of the function f as in (A.15). Similarly we have shown
that the metric functions g; and go are always related as in (A.10). To simplify the analysis
and avoid repetition we will present the derivation of the BPS equations in five and six
dimensions with (A.15) and (A.10) implemented from the start.

A.2 Five dimensions

The bosonic part of the Lagrangian for the five-dimensional minimal gauged supergravity
is given by
3 1
L=R+12-FyF" + ZewﬁpzﬂwFWA,), (A.17)

and the gravitino variations are given by

i, y 1 3t
eSS (Vu + g(’)’up —46;7") Fup + 9T~ 2‘4#) €- (A.18)
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We consider the following Ansatz

ds% _ e2f(1ﬂ,x,y)ds%{L1 + th(r,x,y)er + eZg(r,x,y) (diL'2 + dy2) ’

(A.19)
A= AI(Tv x, y)dﬂf + Ay(T’, xz, y)dy ;

where dsf,tl’1 is the metric on the two-dimensional Minkowski space. Furthermore, we
impose the following projectors for the supersymmetry spinor parameter € = ef/2¢,

YFEQD = €0, 7@@60 == —iEo . (AQO)
The t-component of the gravitino variation then yields

200, f+2+e M, =0,

N (A.21)
2e"(0p +10y) f +i(Frp +iFy) = 0.

This determines the field strength in terms of the geometry. The other BPS constraints,
after having substituted the field strength wherever it appears, lead to the constraints

(9 +10,)(2f +h) =0,

b (A.22)
36 +a7”(2f+g) :07
together the following expression for the gauge fields
1 1
Ay = _gay(zf +9), Ay= gay(zf +9). (A.23)

Since 2f + h is a function only of the coordinate r we are free to choose a new radial
variable p(r) which is defined by dp = —e?/*"dr. Using this we obtain the system of
equations

6(—e*0,f +1) +e 29(02+ 02)(2f +9) =0,
372 =09,(2f +9).

The latter equation can be used to replace f by the new variable 3o = 2f + ¢ which due
to the first equation in (A.24) satisfies

(A.24)

A + 5% <8§(p + 2(@,@)2) ~0. (A.25)
This is the PDE used in the analysis in section 2.2.

A.3 Six dimensions

We work with the six-dimensional N' = 4 SU(2) gauged supergravity constructed in [44].
The bosonic sector of the theory contains a graviton ef,, three SU(2) gauge fields Alﬂ, one
Abelian gauge field a,, a two-index tensor gauge field B,, and a real scalar field «. For
the solutions of interest here we can consistently take the Abelian gauge field a, and the
tensor field B, to vanish. In addition we only need to turn on the Cartan generator of the
SU(2) gauge field, i.e. take only Ai to be non-zero. We note that there are two coupling
constants, g and m, in the construction of [44]. We are interested in the so called N’ = 4%
case, where g > 0 and m > 0 since this theory has a supersymmetric AdSg vacuum solution
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with g = 3m. We fix the length scale of AdSg by setting m = v/2. The resulting bosonic
Lagrangian is then given by®

L=R—40,a)* -2 2*F"E,, + (9e** +12e72* — ¢~ 0%). (A.26)

The supersymmetry transformations for the fermionic fields, with ¢ = 1,2, are

. 1 _ T _ y
0Mui = V€ — 3iAu€e + g(BeO‘ +e 30‘)%77@ + ge O‘(vup — 6059") FLu€i (r2)

5 .
b = 7' Ouaer — (" - e ) yre — %eﬂ’VWFW’W%

Here we consider the following Ansatz
ds? = e2f(r,x,y)d5%tl’2 + 2@y qr? 4 292 ) (d2? + dy?)
A= Am(r,x,y)dx —|—Ay(7’,x,y)dy, (A28)
a=cao(r,z,y),
where ds%{l,2 is the metric on the three-dimensional Minkowski space. Using this Ansatz

in the supersymmetry variations we obtain the BPS equations by taking ¢ = ef/2¢y and
imposing the projectors y7€q = y7€o and 7z4€0 = i€g. The spin-1/2 variations yield

(9 — i0,)a + %e_o‘_h(Fm —iF,,) =0, (A.29)
3 1
Ora — Zeh(ea —e %) — ieh_o‘_Qngy =0. (A.30)

We shall use these relations to replace the field strength wherever it appears in the spin-3 /2
variations. The variations with components along ds%l’z result in

(0r +i0))(f+a) =0, O (f+a)+e3*=0. (A.31)

This in turn implies that f + « and h — 3a do not depend on x,y. The other components
of the spin-3/2 variation then yield the constraint

— 2eM 3 L3¢t L 9 (g —3a) =0, (A.32)
together with the following expression for the gauge fields

Ar=—g0,(g—30), Ay= 0u(g—30). (A.33)

As is familiar by now we can change the radial coordinate by using dr = —e3*"dp to
obtain the pair of equations:

12730, + 9(e® — e 73Y) + e 29(92 + 65)(9 —3a) =0,

A.34
9,(g —3a) +2 —3¢* = 0. (4.34)

8Note that we use similar conventions to [4] and work in mostly plus signature.
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We can define 3p = g — 3ac + 2p and use the second equation in (A.34) to find
Dpip = et (A.35)

This relations determines uniquely « from ¢. Moreover, it enables us to rewrite the first
equation of (A.34) in terms of ¢ alone,

A + e (82<p +3(0,)? — 30,p) =0. (A.36)
This is the PDE used in the analysis in section 2.3.
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References
[1] J.M. Maldacena and C. Nufiez, Supergravity description of field theories on curved manifolds
and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[2] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B
463 (1996) 420 [hep-th/9511222] [INSPIRE].

[3] J.P. Gauntlett, Branes, calibrations and supergravity, Clay Math. Proc. 3 (2004) 79
[hep-th/0305074] [iNSPIRE].

[4] M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].

[5] N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography, JHEP
12 (2017) 065 [arXiv:1708.05052] INSPIRE].

[6] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353
[INSPIRE].

[7] M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic uniformization, Commun.
Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].

=)

D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [NSPIRE].

D. Gaiotto, G.W. Moore and Y. Tachikawa, On 6d N = (2,0) theory compactified on a
Riemann surface with finite area, PTEP 2013 (2013) 013B03 [arXiv:1110.2657] iNSPIRE].

. rerrara, . allosn an . tromlngen = extrema ac oles, Ys. ev.
10] S. F R. Kallosh and A. S i N=2 l black holes, Phys. Rev. D 52
(1995) R5412 [hep-th/9508072] INSPIRE].

=)

[11] A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996)
39 [hep-th/9602111] [INSPIRE].

[12] S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514
[hep-th/9602136] [INSPIRE].

[13] A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen.
Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

[14] J.D. Bekenstein, Black hole hair: 25-years after, in Physics. Proceedings, 2*% International
A.D. Sakharov conference, Moscow, Russia, 20-24 May 1996, pg. 216 [gr-qc/9605059]
[INSPIRE].

40 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0217751X01003935
https://arxiv.org/abs/hep-th/0007018
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007018
https://doi.org/10.1016/0550-3213(96)00026-0
https://doi.org/10.1016/0550-3213(96)00026-0
https://arxiv.org/abs/hep-th/9511222
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511222
https://arxiv.org/abs/hep-th/0305074
https://inspirehep.net/search?p=find+EPRINT+hep-th/0305074
https://arxiv.org/abs/hep-th/0206141
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206141
https://doi.org/10.1007/JHEP12(2017)065
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.05052
https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,117,353%22
https://doi.org/10.1007/s00220-013-1675-4
https://doi.org/10.1007/s00220-013-1675-4
https://arxiv.org/abs/1109.3724
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3724
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
https://doi.org/10.1093/ptep/pts047
https://arxiv.org/abs/1110.2657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2657
https://doi.org/10.1103/PhysRevD.52.R5412
https://doi.org/10.1103/PhysRevD.52.R5412
https://arxiv.org/abs/hep-th/9508072
https://inspirehep.net/search?p=find+EPRINT+hep-th/9508072
https://doi.org/10.1016/0370-2693(96)00711-3
https://doi.org/10.1016/0370-2693(96)00711-3
https://arxiv.org/abs/hep-th/9602111
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602111
https://doi.org/10.1103/PhysRevD.54.1514
https://arxiv.org/abs/hep-th/9602136
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602136
https://doi.org/10.1007/s10714-008-0626-4
https://doi.org/10.1007/s10714-008-0626-4
https://arxiv.org/abs/0708.1270
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1270
https://arxiv.org/abs/gr-qc/9605059
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9605059

[15] S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D
78 (2008) 065034 [arXiv:0801.2977] INSPIRE].

[16] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys.
Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[17] S.L. Cacciatori and D. Klemm, Supersymmetric AdSy black holes and attractors, JHEP 01
(2010) 085 [arXiv:0911.4926] [INSPIRE].

[18] G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N =2 U(1)
gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].

[19] K. Hristov and S. Vandoren, Static supersymmetric black holes in AdSy with spherical
symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].

[20] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdSy from supersymmetric
localization, JHEP 05 (2016) 054 [arXiv:1511.04085] INSPIRE].

[21] F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in
AdSy, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [iNSPIRE].

[22] F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of
black hole microstates in AdSy, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].

[23] A. Zaffaroni, Lectures on AdS black holes, holography and localization, arXiv:1902.07176
[INSPIRE].

[24] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional
supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].

[25] F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc.
Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].

[26] C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories,
JHEP 08 (2016) 059 [arXiv:1605.06531] INSPIRE].

[27] N. Bobev, P. Bomans and F.F. Gautason, Wrapped branes and punctured horizons, JHEP 06
(2020) 011 [arXiv:1912.04779] [INSPIRE].

[28] D.Z. Freedman and A.K. Das, Gauge internal symmetry in extended supergravity, Nucl.
Phys. B 120 (1977) 221 [INSPIRE].

[29] E.S. Fradkin and M.A. Vasiliev, Model of supergravity with minimal electromagnetic
interaction, LEBEDEV-76-197, (1976) [InSPIRE].

[30] M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, Nucl. Phys. B
545 (1999) 434 [hep-th/9808097] [INSPIRE].

[31] L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological
Einstein-Mazwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

[32] J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, Membranes wrapped on holomorphic
curves, Phys. Rev. D 65 (2002) 026003 [hep-th/0105250] [INSPIRE].

[33] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J.
Math. Phys. 35 (1994) 4217 [InSPIRE].

[34] C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques
d’aujourdui, Asterisque, France (1985), pg. 95.

_41 -


https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevD.78.065034
https://arxiv.org/abs/0801.2977
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2977
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
https://doi.org/10.1007/JHEP01(2010)085
https://doi.org/10.1007/JHEP01(2010)085
https://arxiv.org/abs/0911.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4926
https://doi.org/10.1007/JHEP03(2011)037
https://arxiv.org/abs/1012.3756
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3756
https://doi.org/10.1007/JHEP04(2011)047
https://arxiv.org/abs/1012.4314
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4314
https://doi.org/10.1007/JHEP05(2016)054
https://arxiv.org/abs/1511.04085
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04085
https://doi.org/10.1016/j.physletb.2017.05.076
https://arxiv.org/abs/1608.07294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07294
https://doi.org/10.1007/JHEP02(2018)054
https://arxiv.org/abs/1707.04257
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.04257
https://arxiv.org/abs/1902.07176
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.07176
https://doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03698
https://arxiv.org/abs/1605.06120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06120
https://doi.org/10.1007/JHEP08(2016)059
https://arxiv.org/abs/1605.06531
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06531
https://doi.org/10.1007/JHEP06(2020)011
https://doi.org/10.1007/JHEP06(2020)011
https://arxiv.org/abs/1912.04779
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.04779
https://doi.org/10.1016/0550-3213(77)90041-4
https://doi.org/10.1016/0550-3213(77)90041-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B120,221%22
https://inspirehep.net/search?p=find+R+LEBEDEV-76-197
https://doi.org/10.1016/S0550-3213(98)00846-3
https://doi.org/10.1016/S0550-3213(98)00846-3
https://arxiv.org/abs/hep-th/9808097
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808097
https://doi.org/10.1016/0550-3213(92)90684-4
https://arxiv.org/abs/hep-th/9203018
https://inspirehep.net/search?p=find+EPRINT+hep-th/9203018
https://doi.org/10.1103/PhysRevD.65.026003
https://arxiv.org/abs/hep-th/0105250
https://inspirehep.net/search?p=find+EPRINT+hep-th/0105250
https://doi.org/10.1063/1.530850
https://doi.org/10.1063/1.530850
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,35,4217%22
http://www.numdam.org/item/AST_1985__S131__95_0

[35] M.T. Anderson, Geometric aspects of the AdS/CFT correspondence, IRMA Lect. Math.
Theor. Phys. 8 (2005) 1 [hep-th/0403087] [INSPIRE].

[36] M. Cveti¢, S.S. Gubser, H. Lii and C.N. Pope, Symmetric potentials of gauged supergravities
in diverse dimensions and Coulomb branch of gauge theories, Phys. Rev. D 62 (2000) 086003
[hep-th/9909121] [INSPIRE].

[37] R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009
[hep-th/0109127] [iNSPIRE].

[38] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math.
Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

[39] R. D’Auria, E. Maina, T. Regge and P. Fré, Geometrical first order supergravity in five
space-time dimensions, Annals Phys. 135 (1981) 237 [INSPIRE].

[40] A.H. Chamseddine and H. Nicolai, Coupling the SO(2) supergravity through dimensional
reduction, Phys. Lett. B 96 (1980) 89 [Erratum ibid. B 785 (2018) 631] [arXiv:1808.08955]
[INSPIRE].

[41] D. Klemm and W.A. Sabra, Supersymmetry of black strings in D =5 gauged supergravities,
Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].

[42] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,
JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

[43] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP
07 (2016) 020 [arXiv:1511.09462] INSPIRE].

[44] L.J. Romans, The F(4) gauged supergravity in siz-dimensions, Nucl. Phys. B 269 (1986) 691
[INSPIRE].

[45] C. Nifiez, 1.Y. Park, M. Schvellinger and T.A. Tran, Supergravity duals of gauge theories
from F(4) gauged supergravity in siz-dimensions, JHEP 04 (2001) 025 [hep-th/0103080]
[INSPIRE].

[46] P.K. Townsend and P. van Nieuwenhuizen, Gauged seven-dimensional supergravity, Phys.
Lett. B 125 (1983) 41 [INSPIRE].

[47] M. Cveti¢ et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl.
Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[48] 1. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann
surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

[49] 1. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from Mb-branes, JHEP
06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[50] F. Benini and N. Bobev, Fzact two-dimensional superconformal R-symmetry and
c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].

[61] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged mazimally extended supergravity in
seven-dimensions, Phys. Lett. B 143 (1984) 103 [inSPIRE].

[52] J.T. Liu and R. Minasian, Black holes and membranes in AdS7, Phys. Lett. B 457 (1999) 39
[hep-th/9903269] [INSPIRE].

[63] M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N =2, D = 4 gauged
supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [INSPIRE].

— 492 —


https://arxiv.org/abs/hep-th/0403087
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403087
https://doi.org/10.1103/PhysRevD.62.086003
https://arxiv.org/abs/hep-th/9909121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9909121
https://doi.org/10.1088/1126-6708/2001/11/009
https://arxiv.org/abs/hep-th/0109127
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109127
https://doi.org/10.4310/ATMP.2000.v4.n3.a6
https://doi.org/10.4310/ATMP.2000.v4.n3.a6
https://arxiv.org/abs/hep-th/0002160
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002160
https://doi.org/10.1016/0003-4916(81)90155-X
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,135,237%22
https://doi.org/10.1016/0370-2693(80)90218-X
https://arxiv.org/abs/1808.08955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.08955
https://doi.org/10.1103/PhysRevD.62.024003
https://arxiv.org/abs/hep-th/0001131
https://inspirehep.net/search?p=find+EPRINT+hep-th/0001131
https://doi.org/10.1007/JHEP06(2013)005
https://arxiv.org/abs/1302.4451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4451
https://doi.org/10.1007/JHEP07(2016)020
https://doi.org/10.1007/JHEP07(2016)020
https://arxiv.org/abs/1511.09462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09462
https://doi.org/10.1016/0550-3213(86)90517-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B269,691%22
https://doi.org/10.1088/1126-6708/2001/04/025
https://arxiv.org/abs/hep-th/0103080
https://inspirehep.net/search?p=find+EPRINT+hep-th/0103080
https://doi.org/10.1016/0370-2693(83)91230-3
https://doi.org/10.1016/0370-2693(83)91230-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B125,41%22
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1016/S0550-3213(99)00419-8
https://arxiv.org/abs/hep-th/9903214
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903214
https://doi.org/10.1103/PhysRevD.85.121901
https://arxiv.org/abs/1112.5487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5487
https://doi.org/10.1007/JHEP06(2012)005
https://doi.org/10.1007/JHEP06(2012)005
https://arxiv.org/abs/1203.0303
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303
https://doi.org/10.1103/PhysRevLett.110.061601
https://arxiv.org/abs/1211.4030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4030
https://doi.org/10.1016/0370-2693(84)90813-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B143,103%22
https://doi.org/10.1016/S0370-2693(99)00500-6
https://arxiv.org/abs/hep-th/9903269
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903269
https://doi.org/10.1088/1126-6708/2003/09/019
https://arxiv.org/abs/hep-th/0307022
https://inspirehep.net/search?p=find+EPRINT+hep-th/0307022

[54]

[55]

[64]

[65]

J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged
supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004)
089901] [hep-th/0304064] [INSPIRE].

M. Cariglia and O.A.P. Mac Conamhna, The general form of supersymmetric solutions of
N = (1,0) U(1) and SU(2) gauged supergravities in siz-dimensions, Class. Quant. Grav. 21
(2004) 3171 [hep-th/0402055] [INSPIRE].

0O.A.P. Mac Conamhna, Refining G-structure classifications, Phys. Rev. D 70 (2004) 105024
[hep-th/0408203] [INSPIRE].

K. Hristov, S. Katmadas and C. Toldo, Rotating attractors and BPS black holes in AdSy,
JHEP 01 (2019) 199 [arXiv:1811.00292] [NSPIRE].

K. Hristov, S. Katmadas and C. Toldo, Matter-coupled supersymmetric Kerr-Newman-AdS,
black holes, Phys. Rev. D 100 (2019) 066016 [arXiv:1907.05192] [INSPIRE].

C. Beem, N. Bobev, F.F. Gautason and K. Parmentier, Holographic geometrization, work in
progress.

M. Fluder, Kdhler uniformization from holographic renormalization group flows of
Mb-branes, JHEP 08 (2018) 046 [arXiv:1710.09479] [NSPIRE].

M. Fluder, 4d N = 1/2d Yang-Mills duality in holography, JHEP 08 (2018) 038
[arXiv:1712.06596] [INSPIRE].

D. Friedan, Nonlinear models in 2 + € dimensions, Phys. Rev. Lett. 45 (1980) 1057 [INSPIRE].

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
math.DG/0211159.

A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy
functional and the holographic attractor mechanism, JHEP 05 (2018) 155
[arXiv:1712.01849] [INSPIRE].

P. Benetti Genolini, J.M. Perez Ipina and J. Sparks, Localization of the action in AdS/CF'T,
JHEP 10 (2019) 252 [arXiv:1906.11249] [INSPIRE].

E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088
[arXiv:0908.3875] [INSPIRE].

A. Almuhairi, AdSs and AdSs magnetic brane solutions, arXiv:1011.1266 INSPIRE].

A. Almuhairi and J. Polchinski, Magnetic AdSx R?: supersymmetry and stability,
arXiv:1108.1213 [INSPIRE].

A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string-
and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [iNnSPIRE].

N. Bobev, unpublished notes, (2011).

A. Almheiri and J. Polchinski, Models of AdSy backreaction and holography, JHEP 11 (2015)
014 [arXiv:1402.6334] [INSPIRE].

J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

43 —


https://doi.org/10.1103/PhysRevD.68.105009
https://doi.org/10.1103/PhysRevD.70.089901
https://doi.org/10.1103/PhysRevD.70.089901
https://arxiv.org/abs/hep-th/0304064
https://inspirehep.net/search?p=find+EPRINT+hep-th/0304064
https://doi.org/10.1088/0264-9381/21/13/006
https://doi.org/10.1088/0264-9381/21/13/006
https://arxiv.org/abs/hep-th/0402055
https://inspirehep.net/search?p=find+EPRINT+hep-th/0402055
https://doi.org/10.1103/PhysRevD.70.105024
https://arxiv.org/abs/hep-th/0408203
https://inspirehep.net/search?p=find+EPRINT+hep-th/0408203
https://doi.org/10.1007/JHEP01(2019)199
https://arxiv.org/abs/1811.00292
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.00292
https://doi.org/10.1103/PhysRevD.100.066016
https://arxiv.org/abs/1907.05192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.05192
https://doi.org/10.1007/JHEP08(2018)046
https://arxiv.org/abs/1710.09479
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.09479
https://doi.org/10.1007/JHEP08(2018)038
https://arxiv.org/abs/1712.06596
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06596
https://doi.org/10.1103/PhysRevLett.45.1057
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,45,1057%22
https://arxiv.org/abs/math.DG/0211159
https://doi.org/10.1007/JHEP05(2018)155
https://arxiv.org/abs/1712.01849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.01849
https://doi.org/10.1007/JHEP10(2019)252
https://arxiv.org/abs/1906.11249
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.11249
https://doi.org/10.1088/1126-6708/2009/10/088
https://arxiv.org/abs/0908.3875
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3875
https://arxiv.org/abs/1011.1266
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1266
https://arxiv.org/abs/1108.1213
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1213
https://doi.org/10.1088/0264-9381/29/19/194006
https://arxiv.org/abs/1112.4195
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4195
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6334
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01857

	Introduction
	Universal black holes 
	Four dimensions
	The constant curvature black hole
	Perturbative analysis
	UV analysis

	Five dimensions
	The constant curvature black string
	Perturbative analysis
	UV analysis

	Six dimensions
	The constant curvature black 2-brane
	Perturbative analysis
	UV analysis

	Seven dimensions
	The constant curvature black 3-brane
	Perturbative analysis
	UV analysis


	Black holes with scalar hair
	Seven-dimensional STU model
	IR analysis
	UV analysis

	Five-dimensional STU model
	BPS constraints
	IR analysis
	UV analysis

	Four-dimensional STU model
	BPS constraints
	IR analysis
	UV analysis


	Conclusion
	Universal BPS equations
	Four dimensions
	Five dimensions
	Six dimensions


