
J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

Published for SISSA by Springer

Received: April 18, 2020

Accepted: May 19, 2020

Published: June 15, 2020

Holographic uniformization and black hole attractors

Nikolay Bobev,a Fridrik Freyr Gautasona,b and Klaas Parmentiera,c

aInstituut voor Theoretische Fysica, KU Leuven,

Celestijnenlaan 200D, 3001 Leuven, Belgium
bUniversity of Iceland, Science Institute,

Dunhaga 3, 107 Reykjav́ık, Iceland
cDepartment of Physics, Columbia University,

538 West 120th Street, New York, NY 10027, U.S.A.

E-mail: nikolay.bobev@kuleuven.be, ffg@kuleuven.be,

k.parmentier@columbia.edu

Abstract: We establish an attractor mechanism for the horizon metric of asymptotically

locally AdS4 supersymmetric black holes. The horizon is a smooth Riemann surface with

arbitrary metric at asymptotic infinity which is fixed to the constant curvature metric in

the near horizon region. We show how this mechanism is realized for four-dimensional

N = 2 gauged supergravity coupled to vector multiplets by focusing on the STU model. A

similar analysis is performed for gauged supergravity theories in five, six, and seven dimen-

sions where we establish the same mechanism by extending previous results on holographic

uniformization.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory

ArXiv ePrint: 2004.05110

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2020)095

mailto:nikolay.bobev@kuleuven.be
mailto:ffg@kuleuven.be
mailto:k.parmentier@columbia.edu
https://arxiv.org/abs/2004.05110
https://doi.org/10.1007/JHEP06(2020)095


J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

Contents

1 Introduction 2

2 Universal black holes 4

2.1 Four dimensions 5

2.1.1 The constant curvature black hole 5

2.1.2 Perturbative analysis 7

2.1.3 UV analysis 8

2.2 Five dimensions 10

2.2.1 The constant curvature black string 10

2.2.2 Perturbative analysis 11

2.2.3 UV analysis 12

2.3 Six dimensions 12

2.3.1 The constant curvature black 2-brane 13

2.3.2 Perturbative analysis 14

2.3.3 UV analysis 15

2.4 Seven dimensions 15

2.4.1 The constant curvature black 3-brane 15

2.4.2 Perturbative analysis 16

2.4.3 UV analysis 17

3 Black holes with scalar hair 17

3.1 Seven-dimensional STU model 18

3.1.1 IR analysis 20

3.1.2 UV analysis 21

3.2 Five-dimensional STU model 22

3.2.1 BPS constraints 23

3.2.2 IR analysis 24

3.2.3 UV analysis 27

3.3 Four-dimensional STU model 27

3.3.1 BPS constraints 29

3.3.2 IR analysis 30

3.3.3 UV analysis 32

4 Conclusion 33

A Universal BPS equations 35

A.1 Four dimensions 35

A.2 Five dimensions 37

A.3 Six dimensions 38

– 1 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

1 Introduction

The dynamics of the branes in string and M-theory at low energy is captured by the

physics of supersymmetric quantum field theories. An alternative vantage point on the same

physics is offered by the supergravity solutions obtained by considering a large number of

branes and studying their near horizon limit. This dichotomy is the basis of the AdS/CFT

correspondence and its many generalizations and applications. A prominent set of explicit

examples of AdS/CFT, which is the main focus of this work, arises from the dynamics of

branes wrapped on compact manifolds [1, 2], see [3, 4] for a review and a number of explicit

solutions.

Our interest here is in situations where the branes are wrapped on a smooth compact

Riemann surface Σg. In order to preserve supersymmetry, the QFT on the world-volume of

the branes has to be partially topologically twisted. As reviewed in [5] this topological twist

leads to an RG flow across dimensions interpolating between the (d+1)-dimensional QFT in

the UV and a (d−1)-dimensional QFT in the IR. Here we consider situations in which both

the UV and the IR QFTs are superconformal. The supergravity description of this setup is

captured by a domain wall solution which interpolates between an asymptotically locally

AdSd+2 region in the UV and an AdSd near horizon region in the IR. This holographic RG

flow solution can also be viewed as a black brane background in d + 2 dimensions with a

horizon topology determined by Σg.

Whenever the partial topological twist of an SCFT with a continuous R-symmetry is

well-defined, it can be performed for an arbitrary metric on the Riemann surface while still

preserving the same amount of supersymmetry [6]. When interpreted holographically this

immediately implies that the black brane solutions should exist for any choice of metric on

Σg. Indeed, this was shown to be the case in [7] where several examples of such holographic

RG flows arising from wrapped D3- and M5-branes were studied in detail. The main result

in [7] is that while the metric on Σg can be arbitrary in the asymptotically locally AdSd+2

UV region, the supergravity BPS equations act as a geometric flow which uniformizes

the metric on the Riemann surface. In other words only the constant curvature metric is

allowed in the near horizon AdSd region.

This uniformization behavior of the holographic RG flows across dimensions in [7]

confirms, in a non-trivial manner, two important physical expectations. First, it was

conjectured in [8], see also [9], that the Kähler moduli of the Riemann surface should

appear as irrelevant deformations of the (d − 1)-dimensional IR CFT. This conjecture is

explicitly confirmed for the examples analyzed in [7]. This in turn is compatible with the

more general expectation that the number of degrees of freedom in a QFT should decrease

along an RG flow from the UV to the IR. Second, the black brane solutions have non-trivial

entropy and general arguments from black hole thermodynamics dictate that this entropy

should not depend on continuous parameters. This is akin to the situation in asymptotically

flat black holes in string theory for which the attractor mechanism, see [10–12] and [13] for

a nice review, ensures that this conundrum does not arise. Therefore, the solutions studied

in [7] can also be interpreted as an explicit realization of an attractor mechanism for the

moduli associated with the horizon geometry of asymptotically AdS black branes.

– 2 –
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Our goal in this paper is to generalize and extend the results of [7] to other wrapped

brane solutions in string and M-theory and thus establish a myriad of novel examples

of holographic uniformization. We study numerous new holographic RG flow solutions

arising from M2-, D2-, D4-, and M5-branes wrapped on Σg. We perform these studies

in appropriate consistent truncations of ten- and eleven-dimensional supergravity to a

gauged supergravity theory in lower dimensions. In all cases we analyze, we find that the

supergravity BPS equations admit arbitrary smooth metrics on Σg in the asymptotically

AdSd+2 UV region. On the other hand, in the near horizon AdSd IR region the only regular

solutions are the ones with a constant curvature metric on the Riemann surface. This

behavior is precisely the same as the holographic uniformization, or attractor mechanism,

for the metric on Σg expected from the results in [7].

We separate the technical analysis of the supergravity BPS equations into two main

parts. For the minimal gauged supergravity solutions in four, five, six, and seven dimensions

the BPS equations reduce to a single non-linear PDE for a function of three variables which

determines the metric and matter fields in the full supergravity background. One can then

analyze this single PDE and arrive at the uniformization behavior described above. This

is very similar to the results in [7]. We also study solutions of matter coupled supergravity

theories in four, five, and seven dimensions. In these examples the BPS equations are con-

siderably more involved and take the form of a system of coupled PDEs for functions of three

variables. Nevertheless we are able to analyze these BPS equations in the UV and IR regions

of the geometry and establish the expected uniformization behavior in all cases we studied.

Our results in four-dimensional gauged supergravity deserve some additional com-

ments. In this case we find asymptotically locally AdS4 supersymmetric static black holes

with a Σg horizon. The freedom to choose an arbitrary metric on Σg at asymptotic infinity

can be interpreted as black hole “hair”, see [14] for a review of the “no-hair” conjectures.

The possibility to have black hole “hair” in asymptotically AdS4 solutions is well-known,

in particular in the context of holographic superconductors [15, 16]. However, our solu-

tions are distinct from holographic superconductors since we do not employ charged scalar

fields to construct them. The attractor mechanism for asymptotically AdS4 black holes

with scalar fields has been discussed extensively in the literature, starting with [17–19].

We note that these results have a very different character than the attractor mechanism

for asymptotically flat black holes. The reason is that in the asymptotically AdS4 region,

the values of the scalar fields are typically fixed to specific values determined by the struc-

ture of the potential of the gauged supergravity theory. Therefore, these scalars do not

represent continuous parameters on which the AdS4 black hole entropy can depend. In

contrast, the metric moduli associated to Σg we study here are continuous and therefore

holographic uniformization can be viewed as a more direct analog of the attractor mecha-

nism for asymptotically flat black holes. Finally, we note that one can use supersymmetric

localization results to account for the black hole entropy of large classes of static supersym-

metric asymptotically locally AdS4 black holes, see [20–22] and [23] for a recent review.

These results were established by studying black hole solutions with constant curvature

metric on Σg. Our more general black hole solutions have the same area of the horizon as

the solutions in [20, 22] and therefore carry the same entropy. This in turn is compatible
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with the fact that the metric on Σg is a Q-exact deformation of the topologically twisted

index used to account for the black hole entropy [24–26].

We organize the presentation of our results as follows. In the next section we explain

in some detail our main results by focusing on the so called universal black holes as defined

in [5]. In section 3 we extend these results by coupling the supergravity theory to additional

matter fields. We discuss a number of generalizations and open problems that stem from

our work in section 4. In the appendix we present in some detail the derivation of the

supergravity BPS equations for the universal black holes discussed in section 2.

2 Universal black holes

The simplest examples of the asymptotically locally AdSd+2 black hole and black brane

solutions we are interested in are the so-called universal RG flows across dimensions studied

in [5]. The supergravity solutions realize a partial topological twist of a (d+1)-dimensional

SCFT with a continuous R-symmetry placed on the manifold Rd−1×Σg. In this construc-

tion some supersymmetry is preserved by cancelling the curvature of the U(1)Σ structure

group of the Riemann surface Σg by a background gauge field for the U(1)R subgroup of

the R-symmetry. Spinor parameters that are singlet with respect to the twisted group

diag[U(1)Σ × U(1)R] lead to preserved supersymmetry [6]. As shown in [1] these partial

topological twists can be realized holographically by asymptotically locally AdSd+2 super-

gravity solutions with an Rd−1 × Σg boundary and a non-trivial magnetic flux for the

dynamical gauge field dual to the Abelian R-current.

In this section we will present such supergravity solutions in four, five, six and seven

dimensions. To illustrate our construction we focus on the minimal gauged supergravity

theories which allow for this type of solutions. These theories contain the dynamical bulk

fields in the gravity multiplet which are dual to the energy momentum multiplet of the

dual SCFT. We study more general supergravity theories coupled to matter multiplets in

section 3. An important difference between our analysis and the discussion in [5] is that

we allow for the metric on the Riemann surface to be arbitrary. A general metric on the

Riemann surface is compatible with the topological twist and does not break additional

supersymmetry and is therefore natural to consider in supergravity. Indeed, this was

explored in a holographic context in [7] and our analysis and results bear resemblance

to [7]. We have assumed that the metric on the Riemann surface is smooth throughout

our calculations, see [27] for a recent discussion of similar supergravity solutions that have

Riemann surfaces with point-like singularities.

While the details of our construction depend on the dimension in which the super-

gravity theory lives there are notable similarities in the derivation of the BPS equations

that follow from the supersymmetry variations of the theory. We present the details of the

derivation of these BPS equations in appendix A. Here we note that the supersymmetric

solutions we study have supersymmetry transformation parameter that obey projectors of

the following schematic form

γx̂ŷε = Γε , γρ̂ε = ε . (2.1)
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Here γµ̂ are space-time gamma matrices, x, y denote local coordinates on the Riemann

surface, ρ is the radial coordinate of AdS, and Γ is a matrix that acts on the internal

indices of the spinor ε associated with the R-symmetry.

We now proceed with the analysis of the BPS equations and their solutions for each

of these four minimal gauged supergravities.

2.1 Four dimensions

We start our exploration with the minimal N = 2 gauged supergravity theory in four

dimensions [28, 29]. The bosonic field content consists of the metric and a Maxwell field

A. We present the bosonic Lagrangian of the theory in (A.1). As described above we look

for static supersymmetric solutions which realize the partial topological twist in the dual

SCFT. The derivation of the BPS equations is carried out in appendix A.1 and here we only

display the results. The complete supersymmetric solution can be written in terms of a

single function, ϕ, which depends on the radial coordinate ρ as well as the Riemann surface

coordinates x and y. The metric and the gauge field of these supersymmetric solutions take

the compact form

ds2
4 = − dt2

(∂ρϕ)2
+ (∂ρϕ)2

(
dρ2 + e4ϕ(dx2 + dy2)

)
,

A = (∂xϕ)dy − (∂yϕ)dx ,

(2.2)

where ϕ satisfies the non-linear partial differential equation

4ϕ+ e4ϕ
(
∂2
ρϕ+ (∂ρϕ)2

)
= 0 , (2.3)

and we have defined 4 ≡ ∂2
x + ∂2

y .

2.1.1 The constant curvature black hole

An exact analytic solution of the equation in (2.3) is given by the black hole solution of [30],

see also [31, 32], which has a constant curvature metric on the Riemann surface. To obtain

this solution we write the function ϕ as a sum of ρ-dependent function, f(ρ), and a function

on the Riemann surface g(x, y)

ϕ =
1

2

(
f(ρ) + g(x, y)

)
. (2.4)

The function g(x, y) defines a metric on the Riemann surface

ds2
Σg

= e2g(dx2 + dy2) . (2.5)

Using the separable Ansatz (2.4) in (2.3) yields the following differential equations

4g + κ e2g = 0 , e2f
(
2f′′ + (f′)2

)
= 2κ , (2.6)

where the prime denotes a derivative with respect to ρ. The constant κ is initially intro-

duced to separate the equation (2.3) but has a simple geometric interpretation. The sign of

κ determines the curvature of the Riemann surface in (2.5), indeed the Ricci scalar of the

– 5 –
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metric ds2
Σg

is simply 2κ. Shifting the function f by a constant it is possible to normalize

κ such that it takes the values κ = −1, 0, 1. In this paper we assume that the Riemann

surface is compact and smooth which means that if the genus g = 0 then κ = 1, if g = 1

then κ = 0, and if g ≥ 2 then κ = −1. More explicitly the solutions of the first equation

in (2.6) for the constant curvature metric on the covering space of the Riemann surface

can be written as
g(x, y) = − log y , g ≥ 2 ,

g(x, y) = const , g = 1 ,

g(x, y) = − log(1 + x2 + y2) + log 2 , g = 0 .

(2.7)

The solution of the second equation in (2.6), up to shifts in the radial coordinate ρ and

rescaling of the time coordinate, is

ef = ρ2 +
κ

2
. (2.8)

With this explicit solution for ϕ in (2.4) we find the following metric and gauge field

ds2
4 = −

(
ρ+

κ

2ρ

)2

dt2 +

(
ρ+

κ

2ρ

)−2

dρ2 + ρ2ds2
Σg ,

F = −κ
2

e2gdx ∧ dy .

(2.9)

For ρ → ∞ we have an asymptotically locally AdS4 spacetime with R1,1 × Σg boundary.

As ρ decreases we encounter a naked singularity for κ ≥ 0 at ρ = 0 [31]. Since we are

interested in regular black hole solutions we take κ = −1 which has an AdS2 near horizon

region located at ρ2 = 1/2 around which the function f takes the form

ef =
√

2ρ− 1 +O(
√

2ρ− 1)2 . (2.10)

The near horizon metric then reads

ds2
4 =

1

4
ds2

AdS2
+

1

2
ds2

Σg
, (2.11)

where both two-dimensional metrics ds2
AdS2

and ds2
Σg

are normalized such that their Ricci

scalar equals −2. We refer to this supersymmetric black hole solution with κ = −1 and f

given in (2.8) as the constant curvature black hole. Borrowing terminology from holography

we will refer to the asymptotically AdS4 region as “the UV region” and the near horizon

AdS2 region as “the IR region”. The black hole in (2.9) has a finite Bekenstein-Hawking

entropy which, in the semiclassical approximation, can be accounted for microscopically

by embedding it in string or M-theory and employing holography and supersymmetric

localization [22]. Note also that it follows from (2.6) that complex structure deformations

of the metric on Σg leave the solution invariant and do not affect the horizon area and thus

the black hole entropy.

Our next goal is to analyze small perturbations around the constant curvature black

hole solution that satisfy the equation (2.3).

– 6 –
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2.1.2 Perturbative analysis

We consider linearized perturbations around the solution (2.4) and (2.8). We write

ϕ =
1

2

(
log(ρ2 − 1/2) + g(x, y)

)
+ δϕ , 4g − e2g = 0 , (2.12)

where we have chosen κ = −1 and δϕ(ρ, x, y) represents a small fluctuation. Inserting this

expression into (2.3) and expanding to linear order in δϕ, we obtain the partial differential

equation [
(e−2g4− 2) + 2ρ(ρ2 − 1/2)∂ρ + (ρ2 − 1/2)2∂2

ρ

]
δϕ = 0 . (2.13)

To solve this differential equation it is useful to define the operator

4g = e−2g4 , (2.14)

which is the Laplacian on the Riemann surface Σg with metric (2.5). Since (2.13) is linear,

it is useful to decompose the fluctuations into eigenmodes of the Laplacian as follows:

δϕ(ρ, x, y) =

∞∑
n=0

ϕn(ρ)Yn(x, y) , 4gYn = −µnYn, µn ≥ 0 . (2.15)

Note that since we have a smooth and compact metric on the Riemann surface the eigen-

values of the Laplacian µn are non-negative.1 Using orthogonality of the eigenfunctions Yn
the equations for ϕn(ρ) take the form[

− (µn + 2) + 2ρ(ρ2 − 1/2)∂ρ + (ρ2 − 1/2)2∂2
ρ

]
ϕn(ρ) = 0 . (2.16)

This equation admits the following analytic solution which depends on two sets of integra-

tion constants

ϕn(ρ) = an

(√
2ρ− 1√
2ρ+ 1

)γn
+ bn

(√
2ρ− 1√
2ρ+ 1

)−γn
, γn =

√
1 +

µn
2
. (2.17)

Notice that γn > 0 and since the deformation must be regular at the horizon
√

2ρ→ 1 we

should choose the integration constants bn = 0. The linearized perturbation around the

constant curvature black hole solution is therefore

δϕ =

∞∑
n=0

an

(√
2ρ− 1√
2ρ+ 1

)γn
Yn(x, y) , (2.18)

where an are undetermined real constants which should be small in order to ensure that

validity of the linearized approximation. In general the constants γn are irrational numbers

and one may worry whether the corresponding solutions have curvature singularities. We

have checked explicitly that this is not the case.

The perturbative solution in (2.18) demonstrates clearly the general behavior the BPS

solutions we study in this work. In the UV region, ρ→∞, the perturbations are completely

1There may be stronger lower bounds on the eigenvalues µn, see [33], which will not be important for

our analysis.

– 7 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

IR

UV

Figure 1. The uniformizing nature of the equation (2.3) demonstrated in a cartoon. A generic

point on the moduli space of solutions represents a choice of metric on the Riemann surface which

is not constant curvature in the UV region. In the IR all these solutions approach the constant

curvature black hole solution and thus the metric on the Riemann surface is uniformized.

unconstrained and are controlled by the constants an. The choice of constants an represents

a choice of a metric on the Riemann surface Σg in the UV. Instead of the constant curvature

metric g that obeys (2.6), the UV metric is determined by

gUV = g + 2

∞∑
n=0

anYn(x, y) . (2.19)

Clearly this function does not satisfy the Liouville equation (2.6) and is therefore not a

constant curvature metric. The metric in (2.19) represents a single point on the moduli

space of metrics we can choose on the Riemann surface. As ρ decreases and we approach the

IR region, the perturbations in (2.18) get smaller and smaller and ultimately vanish near

the horizon at ρ→ 1/
√

2. In this sense the metric on the Riemann surface is uniformized by

the PDE in (2.3) as we approach the IR region. This qualitative behavior is illustrated in

figure 1. Here we demonstrated this uniformizing behavior using a linearized approximation

around the constant curvature black hole solution. Nevertheless, based on the results in [7],

we expect the same result to hold for arbitrary perturbations of the UV metric. To support

this expectation we now perform a general UV expansion of the equation (2.3).

2.1.3 UV analysis

Another simple exact solution of the PDE in (2.3) with metric as in (2.2) is provided by

the AdS4 vacuum given by

ϕ = log ρ . (2.20)

The black hole solution in (2.9) is asymptotically locally AdS4 which is manifested by the

following UV expansion of the function ϕ as ρ→∞

ϕ = log ρ+
1

2
g(x, y) +O(1/ρ2) , (2.21)

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

where g(x, y) is the constant curvature metric on the Riemann surface. We now demon-

strate that a general solution of (2.3) has exactly the same type of UV expansion where the

function g is not constrained to satisfy the Liouville equation in (2.6). To avoid confusion

we will denote this more general metric by ĝ(x, y). In other words, any smooth metric is

permitted on the Riemann surface in the UV. In the UV region a general solution of (2.3)

can be written as the following expansion

ϕ = log ρ+
1

2
ĝ(x, y) +

1

ρ
v(x, y) +

∑
n≥2

ρ−ngn(x, y) . (2.22)

Solving (2.3) order by order in ρ as ρ→∞ we find, that ĝ(x, y) as well as v(x, y) are un-

constrained. However, all other functions gn(x, y) are all algebraically determined in terms

of (derivatives of) ĝ(x, y) and v(x, y). For instance, the first two functions take the form

g2 = −1

2
v2 − 1

4
4ĝ ĝ ,

g3 =
1

3
v3 +

1

2
v4ĝ ĝ −

1

6
4ĝv .

(2.23)

The existence of two free functions in this UV expansion is compatible with general expec-

tations for asymptotically locally AdS4 solutions that follow from the Fefferman-Graham

expansion [34, 35]. These two functions can also be interpreted in the dual field theory.

The function ĝ(x, y) deforms the metric on the Riemann surface and thus serves as a source

for the energy momentum tensor in the dual SCFT, while the function v controls the vev

of this operator which in turn determines the state of the IR QFT. For generic choice

of functions ĝ and v we expect the full solution of (2.3) to be singular in the IR region.

This intuition is based on previous studies of charged supersymmetric asymptotically AdS

solutions in string theory [36, 37], as well as previous results on holographic RG flows [38].

However, if the vev function v(x, y) is carefully chosen, the flow solution of the PDE in (2.3)

will reach the unique regular AdS2×Σg solution, with metric (2.11), in the IR region. This

result is compatible with intuition from the dual QFT where it is expected that to arrive at

conformal dynamics for the IR theory one has to carefully tune the vev of the relevant op-

erators triggering the RG flow in the UV. Let us see how this pans out for the perturbative

solution in (2.18). Expanding this solution in the UV region we find

ϕ = log ρ+
1

2
g(x, y) +

∞∑
n=0

anYn(x, y)− 1

ρ

∞∑
n=0

an
√

2 + µnYn(x, y) +O(1/ρ2) . (2.24)

This explicitly demonstrates that for supergravity solutions which approach the AdS2×Σg

solution in the IR region the function v in (2.22) is precisely determined by the metric

on the Riemann surface, given by the first two terms on the right-hand-side of (2.24). If

we change the function of (x, y) in the ρ−1 term in (2.24) the resulting solution will be

singular in the IR. This singular behaviour should be captured by keeping both the an and

bn coefficients in the perturbative solution (2.17).

We can summarize our results as follows. We have an initial value problem in the

UV region for the PDE in (2.3) which is controlled by two arbitrary functions of the Rie-

mann surface, ĝ(x, y) and v(x, y), in (2.22). The solutions of this PDE that lead to regular
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supergravity backgrounds are such that in the IR the metric on the Riemann surface is

uniformized to the constant curvature one. To be more precise we can formulate this holo-

graphic uniformization principle as follows: given any smooth metric on the Riemann sur-

face, ĝ(x, y), there exists a unique function v(x, y) such that the solution to the BPS equa-

tion (2.3) with ĝ and v as initial values is regular and approaches the near horizon metric

in (2.11). An alternative formulation of the same statement is that the constant curvature

metric of the black hole horizon in (2.11) is an attractor in the moduli space of metrics for all

supersymmetric static black holes with regular horizons. We emphasize the need to tune the

subleading term in the Fefferman-Graham expansion in order to obtain a regular IR solution

is by no means a special feature of our supergravity solutions. This is a general property

of holographic RG flows which is perhaps more familiar in the context discussed in [38].

As explained around (2.18), we have established a perturbative proof of this uniformiza-

tion principle. A non-perturbative global proof should be constructed using methods similar

to the ones employed in [7]. After illustrating the general behavior of the uniformization

flows we are interested in we move on to discuss supersymmetric black brane solutions in

higher dimensions which exhibit similar structure.

2.2 Five dimensions

In this section we repeat the analysis above for supersymmetric static solutions of the

minimal N = 2 supergravity in five dimensions [39, 40]. The bosonic content of the theory

is the same as in four dimensions, see appendix A.2 for the explicit form of the bosonic

Lagrangian. The analysis of the BPS equations and their solutions is very similar to the

one above and thus we keep the discussion brief.

The derivation of the BPS solution is carried out in appendix A.2. This results in the

following solution for the bosonic fields

ds2
5 =

ds2
R1,1

(∂ρϕ)
+ (∂ρϕ)2

(
dρ2 + e6ϕ(dx2 + dy2)

)
,

A = (∂xϕ)dy − (∂yϕ)dx ,

(2.25)

where ϕ satisfies the partial differential equation

4ϕ+ e6ϕ
(
∂2
ρϕ+ 2(∂ρϕ)2

)
= 0 . (2.26)

Notice the similarity with (2.3) which only differs from (2.26) by numerical factors.

2.2.1 The constant curvature black string

We start our analysis by studying the analytic black string solution found in [1, 41], see

also [42, 43]. This solution is again obtained by assuming that ϕ can be written as a sum

ϕ =
1

3

(
f(ρ) + g(x, y)

)
. (2.27)

The function g(x, y) defines a metric on the Riemann surface as in (2.5). Assuming that

the equation (2.26) is separable leads

4g + κ e2g = 0 , e2f
(
2f′′ + 3(f′)2

)
= 3κ , (2.28)

– 10 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

where κ denotes the curvature of the Riemann surface and the explicit form of the metric

on the covering space is given in (2.7). The equation for f can be solved explicitly by first

changing coordinates as follows

r(ρ) ≡ 1

3
ef(ρ)f′(ρ) , (2.29)

which, using (2.28), implies

dρ =
3efdr

3r2 + κ
, ∂rf =

9r

3r2 + κ
. (2.30)

The five-dimensional solution then takes the explicit form

ds2
5 = r

1
2

(
r +

κ

3r

) 3
2

dsR1,1 +

(
r +

κ

3r

)−2

dr2 + r2ds2
Σg
,

F = −κ
3

e2gdx ∧ dy .

(2.31)

where we have absorbed the only integration constant into redefinitions of the coordinates

on R1,1. This metric is singular for κ = 0, 1 but has a smooth horizon given by a hyperbolic

Riemann surface of constant curvature for κ = −1. As expected, for a supersymmetric

black string solution the metric in the near horizon region, r → 3−1/2, has an AdS3 factor

and takes the form

ds2
5 =

4

9
ds2

AdS3
+

1

3
ds2

Σg
, (2.32)

where both metrics are normalized such that Rij = −(d− 1)gij .

2.2.2 Perturbative analysis

We now study linearized perturbations around the solution (2.31) using the equation (2.26).

As in four dimensions it is convenient to expand the perturbations in eigenfunctions of the

Laplacian on the Riemann surface as in (2.15). Our starting point is therefore

ϕ =
1

3

(
f(ρ) + g(x, y)

)
+

∞∑
n=0

ϕn(ρ)Yn(x, y) , (2.33)

where f and g define the constant curvature black string and Yn are defined in (2.15). We

assume that the functions ϕn remain small for all values of ρ. Linearizing (2.26) we then

find the following differential equation for ϕn[
− (µn + 2) +

1

3
e2f(4f′∂ρ + 3∂2

ρ)

]
ϕn(ρ) = 0 . (2.34)

Using the coordinate transformation (2.29), we obtain the equation[
− (µn + 2) +

1

9
(3r2 − 1)(9r∂r + (3r2 − 1)∂2

r )

]
ϕn(r) = 0 . (2.35)

This equation has only one regular solution given by

ϕn = an(3r2 − 1)γn2F1

[
γn, γn + 1;

3

2
+ 2γn; 1− 3r2

]
, (2.36)
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where we have defined

γn =

√
25 + 12µn − 1

4
(2.37)

and an are arbitrary real constants. Note that since µn ≥ 0 we find that the constants γn
are positive. In the IR region we have r → 3−1/2 and therefore from (2.36) we find

ϕn → an(3r2 − 1)γn → 0 , (2.38)

since γn > 0. This shows that the perturbations vanish in the IR and the metric uniformizes

to the constant curvature one in (2.32).

2.2.3 UV analysis

The UV analysis is very similar to the one performed in section 2.1.3 and leads to the same

conclusions. In the UV region, ρ→∞, the general solution to (2.26) takes the form

ϕ =
1

2
log ρ+

1

3
ĝ(x, y) +

1

ρ
v(x, y) +

∑
n≥1

n−1∑
m=1

ρ−n(log ρ)mgn,m(x, y) . (2.39)

We can then solve (2.26) order by order for large ρ. This leads to relations between the

function gn,m and the unconstrained functions ĝ(x, y) and v(x, y). All functions gn,m(, y)

can be expressed algebraically in terms of (derivatives of) ĝ(x, y) and v(x, y). For example

the lowest order function is

g1,1 =
1

3
4ĝ ĝ . (2.40)

A notable difference between the expansion in (2.39) and the four-dimensional one in (2.22)

is the presence of log ρ terms in (2.39). These terms are characteristic for the Fefferman-

Graham expansion for odd-dimensional asymptotically locally AdS spaces and their pres-

ence can be traced to the conformal anomaly in the dual quantum field theory.

This UV expansion leads to the same conclusion as in section 2.1.3. Namely, we find

that in the UV region the metric on the Riemann surface can be arbitrary and is not

constrained to obey the Liouville equation. To find regular solutions one needs to adjust

the function v(x, y) appropriately and then one finds that in the IR region the solutions

approaches the near horizon geometry of the supersymmetric black string in (2.32) with

a constant curvature metric on the Riemann surface. We thus conclude that the PDE

in (2.26) leads to the same uniformization behavior as discussed below (2.24).

2.3 Six dimensions

We now turn to supersymmetric black brane solutions of the six-dimensional minimal

gauged supergravity constructed in [44]. The difference here with respect to the two previ-

ous examples is that the minimal supergravity in six dimensions has a larger gravity multi-

plet with bosonic content a scalar field in addition to the metric and an SU(2) gauge field.
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We present the derivation of the BPS equations for this theory in appendix A.3. The

result is the following configuration for the bosonic fields

ds2
6 =

e2ρ ds2
R1,2

(∂ρϕ)1/2
+ (∂ρϕ)3/2

(
dρ2 + e6ϕe−4ρ(dx2 + dy2)

)
,

A3 =
1

2

[
(∂xϕ)dy − (∂yϕ)dx

]
,

e4α = ∂ρϕ ,

(2.41)

where the index 3 on the gauge field indicates that we are turning only the U(1) Cartan

generator of the SU(2) gauge group. As before, ϕ satisfies a single partial differential

equation

4ϕ+ e6ϕe−4ρ
(
∂2
ρϕ+ 3(∂ρϕ)2 − 3∂ρϕ

)
= 0 . (2.42)

Notice that the structure of this PDE is somewhat different from the corresponding PDEs

in four (2.3) and five dimensions (2.26). This difference can be traced to the presence of

the extra scalar field in the six-dimensional supergravity theory.

2.3.1 The constant curvature black 2-brane

A simple solution of (2.42) corresponding to a constant curvature black brane is obtained

by assuming a separable solution of the form

ϕ =
1

3

(
f(ρ) + g(x, y)

)
, (2.43)

where

4g + κ e2g = 0 , e2f−4ρ
(
f′′ + f′(f′ − 3)

)
= κ , (2.44)

and κ is the curvature of the Riemann surface (2.5). The equation for f in (2.44) does

not admit a general analytic solution. However there are two special solutions which are

singled out by the fact that the scalar α takes a constant value. These solutions take the

simple form

f = c1ρ+ c2 , c1 6= 0 , (2.45)

where c1,2 are undetermined constants. Inserting (2.45) into (2.44) we find two possible

solutions:

AdS6: c1 = 3 , κ = 0 , AdS4: c1 = 2 , c2 = −1

2
log 2 , κ = −1 . (2.46)

The first solution, as the name indicates, is simply the maximally supersymmetric AdS6

vacuum solution of the theory. The second solution corresponds to the AdS4 near horizon

region of a constant curvature black brane solution found in [45]. This AdS4×Σg solution

exists only for κ = −1 and has the following metric

ds2
6 =

(
2

27

)3/2[
2ds2

AdS4
+ ds2

Σg

]
, (2.47)

The full black brane solution which interpolates between the AdS4 near horizon region and

the asymptotically locally AdS6 metric in the UV region can be constructed numerically

and is displayed in figure 2. Note that for large ρ the effect of the curvature of the Riemann

surface is negligible and we recover the AdS6 behavior of f(ρ) in (2.46).
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Figure 2. Numerical solution of (2.44) for f(ρ) obtained by imposing the AdS4 boundary conditions

as defined by (2.45) and (2.46). The figure shows f′(ρ) which smoothly interpolates between the

AdS4 value 2 and the AdS6 value 3.

2.3.2 Perturbative analysis

Since we do not have a complete analytic constant curvature black brane solution of (2.44)

we cannot repeat the details of the four- and five-dimensional analysis in sections 2.1.2

and 2.2.2. Nevertheless, we can still perturb the numerical solution displayed in figure 2

by employing the Ansatz in (2.33) where the functions f and g satisfy (2.44) and the

eigenmodes Yn satisfy (2.15). Using this Ansatz as well as (2.44) we can linearize the PDE

in (2.42) to find the following differential equation for the functions ϕn:

[
− (µn + 2) + e2f−4ρ

(
(2f′ − 3)∂ρ + ∂2

ρ

)]
ϕn(ρ) = 0 . (2.48)

While we cannot solve this equation without having an analytic expression for f(ρ) we can

still extract useful information from it by focusing on the IR region at ρ → −∞ given by

the solution for f(ρ) in (2.46). Using this solution in (2.48) we find a simple ODE with an

unique regular solution

ϕn = aneγnρ, γn =
1

2

(
− 1 +

√
17 + 8µn

)
> 0 . (2.49)

As in four and five dimensions we observe that the perturbations of the Riemann surface

metric away from the constant curvature one vanish as we approach the IR region at ρ→
−∞. Therefore, despite the lack of an analytic solution to (2.46) we can convincingly estab-

lish the uniformizing behavior for the metric perturbations in the IR near horizon region.
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2.3.3 UV analysis

The UV analysis at ρ→∞ of (2.42) can be performed similarly to the previous cases. The

general UV behaviour of the function ϕ is

ϕ = ρ+
1

3
ĝ(x, y) +

∑
n≥2

e−nρgn(x, y) , (2.50)

where ĝ determines the metric on the Riemann surface and is not constrained in the UV.

As in previous cases, we discover a second function, namely v ≡ g3, that is unconstrained

in the UV region . All other functions gn with n 6= 3 in (2.50) are related algebraically to

(derivatives of) ĝ(x, y) and v(x, y) when equation (2.42) is solved order by order in e−ρ → 0.

We can then proceed to employ similar arguments to the one in section 2.1.3 to conclude

that the PDE in (2.42) leads to a uniformization flow for the metric on the Riemann surface

which approaches the constant curvature metric near the regular AdS4 near horizon region.

2.4 Seven dimensions

For completeness we present here also the universal black brane in the minimal seven-

dimensional gauged supergravity of [46]. This case was treated in section 3.2 of [7] to which

we refer for a detailed derivation of the BPS configuration.2 The bosonic field content is

the same as in six dimensions, namely the metric, an SU(2) gauge field and a real scalar.

The static BPS black brane solutions are given by3

ds2
7 =

e2ρ ds2
R1,3

(∂ρϕ)2/5
+ (∂ρϕ)8/5

(
dρ2 + e8ϕe−6ρ(dx2 + dy2)

)
,

A3 =
1

2

[
(∂xϕ)dy − (∂yϕ)dx

]
,

e−5φ = ∂ρϕ ,

(2.51)

where ϕ satisfies

4ϕ+ e8ϕe−6ρ
(
∂2
ρϕ+ 4(∂ρϕ)2 − 4∂ρϕ

)
= 0 . (2.52)

Note the similarity between this equation and the six-dimensional one in (2.42).

2.4.1 The constant curvature black 3-brane

As is familiar by now we look for a simple solution of (2.52) by assuming a separable form

of the function ϕ

ϕ =
1

4

(
f(ρ) + g(x, y)

)
, (2.53)

where

4g + κ e2g = 0 , e2f−6ρ
(
f′′ + f′(f′ − 4)

)
= κ , (2.54)

2The analysis in [7] was performed in the maximal seven-dimensional SO(5) gauged supergravity of

which the minimal theory in [46] is a consistent truncation.
3When comparing with [7], note that we have set m = 2 and ϕthere = 8ϕhere − 6ρ+ 2 log(y).
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Figure 3. Numerical solution of (2.54) for f(ρ) obtained by imposing the AdS5 boundary conditions

as defined by (2.55) and (2.56). The figure shows f′(ρ) which smoothly interpolates between the

AdS5 value 3 and the AdS7 value 4.

and κ is the curvature of the Riemann surface (2.5). The equation for f in (2.54) does

not admit a general analytic solution, however we can again find simple solutions with a

constant scalar field which take the form

f = c1ρ+ c2 , c1 6= 0 , (2.55)

where c1,2 are undetermined constants. Using (2.55) in (2.54) we obtain two solutions:

AdS7: c1 = 4 , κ = 0 , AdS5: c1 = 3 , c2 = −1

2
log 3 , κ = −1 . (2.56)

The first solution is the AdS7 supersymmetric vacuum solution of the gauged supergravity.

The AdS5×Σg solution with κ = −1 represents the near horizon geometry of the constant

curvature black brane studied in [1]. In this case the seven-dimensional metric is given by

ds2
7 =

1

8

(
27

2

)1/5[
3ds2

AdS5
+ ds2

Σg

]
. (2.57)

A numerical solution interpolating between the AdS5 and the AdS7 region of the black

brane geometry is displayed in figure 3. Note that for large ρ the effect of the curvature of

the Riemann surface is negligible and we recover the AdS7 behaviour of f(ρ) in (2.56).

2.4.2 Perturbative analysis

In the absence of a complete analytic solution of (2.54) we cannot find explicitly the

perturbations around the constant curvature black brane black. However, it is still possible

to perturb the solution displayed in figure 3 using the Ansatz in (2.33) where the functions
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f and g satisfy (2.54) and Yn are defined by (2.15). We can then linearize the PDE in (2.52)

and find the following differential equation for the perturbations[
− (µn + 2) + e2f−6ρ

(
(2f′ − 4)∂ρ + ∂2

ρ

)]
ϕn(ρ) = 0 . (2.58)

While we cannot solve this equation without an analytic expression for f(ρ) we can extract

the behavior of the perturbations in the IR region. to do this we use the IR solution for

f(ρ) given in (2.56) which reduces (2.58) to a simple ODE with a unique regular solution

ϕn = aneγnρ, γn = −1 +
√

7 + 3µn > 0 . (2.59)

As in all previous cases we observe that the perturbations of the constant curvature metric

on the Riemann surface vanish as we approach the AdS5 near horizon region at ρ→ −∞.

This is a manifestation of the uniformization behavior exhibited in [7].

2.4.3 UV analysis

The UV analysis at ρ → ∞ of the equation (2.52) can be performed similarly to previous

cases and was discussed in detail in [7]. The UV behavior of the function ϕ is

ϕ = ρ+
1

4
ĝ(x, y) +

∑
n≥2

n−1∑
m=0

e−2nρρmgn,m(x, y) , (2.60)

where ĝ(x, y) determines the metric on the Riemann surface and is not constrained in the

UV. As in previous cases, we find another function, v ≡ g2,0, that is unconstrained in the

UV and which has to be chosen appropriately in terms of ĝ(x, y) to ensure regular solutions

in the IR region. All other functions gn,m are related algebraically to (derivatives of) ĝ(x, y)

and v(x, y) when equation (2.52) is solved order by order in e−ρ → 0. In addition to this

perturbative evidence for the uniformization behavior of the metric on the Riemann surface

a global existence proof of these uniformizing solutions of (2.52) was provided in [7].

3 Black holes with scalar hair

After we have established the holographic uniformization principle for the black brane so-

lutions of gauged supergravity theories consisting only of the gravity multiplet it is natural

to generalize this analysis by coupling these theories to matter multiplets. We focus our at-

tention on matter coupled gauged supergravity models in four, five, and seven dimensions,

which arise as consistent truncation of ten- or eleven-dimensional supergravity. These so-

called STU models share several common features and which are reflected in similarities

in the analysis below. In particular, as discussed in [47], these theories arise as a Kaluza-

Klein reduction on a sphere from ten or eleven dimensions where one restricts to the gauge

field, and accompanying dilatonic scalar fields, associated with the Cartan subalgebra of

the isometries of the sphere. Using the results in [47] we can therefore uplift all solutions

discussed below to backgrounds in type IIB or eleven-dimensional supergravity.

The BPS equations for these STU models are more complicated than the ones in the

minimal supergravity discussed in the previous section. In particular we find that the BPS
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equations reduce to a coupled system of PDEs for functions of three variables. We study

these equations both in the IR and the UV region and establish that despite this more

involved structure the solutions still exhibit the expected uniformization behavior. The

solutions we study should be viewed as generalizations of the constant curvature black

branes in seven-dimensions [48, 49], black strings in five-dimensions [42, 50], and black

holes in four dimensions [17, 20, 32].

3.1 Seven-dimensional STU model

The solutions of interest are constructed in the U(1)2 invariant sector of the maximal SO(5)

gauged supergravity of [51]. This truncation was studied in [52] and was used to construct

supersymmetric black brane solutions arising from M5-branes wrapped on Σg in [48, 49].

Following our general strategy we will generalize the solutions of [48, 49] by allowing for

the metric on Σg to be arbitrary.

The bosonic sector of the supergravity truncation we study consists of the metric, two

U(1) gauge fields A1
µ and A2

µ and two real scalar fields, α and β. The Lagrangian of this

model is, see [1, 52],

L = R− 5∂(α+ β)2 − ∂(α− β)2 − e−4α(F 1
µν)2 − e−4β(F 2

µν)2

− 2(−8e2(α+β) − 4e−2α−4β − 4e−4α−2β + e−8(α+β)) ,
(3.1)

where we are using conventions in which the AdS7 length scale is set to 1. The supersym-

metry variations of this model take the form

δψµ =

[
∇µ + 2(A1

µΓ12 +A2
µΓ34) +

1

2
e−4(α+β)γµ +

1

2
γµγ

ν∂ν(α+ β)

+
1

2
γν(e−2αF 1

µνΓ12 + e−2βF 2
µνΓ34)

]
ε ,

δχ(1) =

[
1

2
(e2α − e−4(α+β))− 1

4
γµ∂µ(3α+ 2β)− 1

8
e−2αγµνF 1

µνΓ12

]
ε ,

δχ(2) =

[
1

2
(e2β − e−4(α+β))− 1

4
γµ∂µ(2α+ 3β)− 1

8
e−2βγµνF 2

µνΓ34

]
ε .

(3.2)

We are interested in static supersymmetric solutions of this model captured by the

following Ansatz

ds2 = e2f(r,x,y)ds2
R1,3 + e2h(r,x,y)dr2 + e2g(r,x,y)(dx2 + dy2) ,

Aa = Aax(r, x, y)dx+Aay(r, x, y)dy ,

α = α(r, x, y), β = β(r, x, y) .

(3.3)

As discussed in appendix A.1 it can be shown that the coordinate dependence of the

supersymmetry parameter in (3.2) takes the simple form ε = ef/2ε0 where ε0 is a constant

spinor. In addition the spinor obeys the following projectors

γr̂ε0 = ε0, γx̂ŷε0 = iε0, Γ12ε0 = Γ34ε0 = iε0 . (3.4)

Here Γ are SO(5) gamma matrices and we have denoted tangent space indices with a hat.
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With this Ansatz at hand the spin-1/2 variations in (3.2) variations reduce to the

following PDEs

e−h∂r(3α+ 2β)− 2(e2α − e−4(α+β))− e−2α−2gF 1
xy = 0 , (3.5)

(∂x + i∂y)(3α+ 2β)− ie−2α−h(F 1
rx + iF 1

ry) = 0 , (3.6)

e−h∂r(2α+ 3β)− 2(e2β − e−4(α+β))− e−2β−2gF 2
xy = 0 , (3.7)

(∂x + i∂y)(2α+ 3β)− ie−2β−h(F 2
rx + iF 2

ry) = 0 . (3.8)

The t-component of the spin-3/2 supersymmetry variation lead to two differential con-

straints which determine that two combinations of the metric functions and the scalar

fields in the model are independent of the x, y coordinates on Σg

(∂x + i∂y)(f + α+ β) = 0, ∂r(f + α+ β) + eh−4(α+β) = 0 . (3.9)

The other components of the spin-3/2 variation reduce to the differential equation

∂r(g − 4α− 4β)− 3eh−4(α+β) + 2eh+2α + 2eh+2β = 0 , (3.10)

and the following expression for the gauge fields

A1
x +A2

x = −1

4
∂y(g − 4α− 4β) , A1

y +A2
y =

1

4
∂x(g − 4α− 4β) . (3.11)

The equations in (3.5)–(3.11) are all constraints imposed on the bosonic fields of the Ansatz

in (3.3).

To analyze these equations it is helpful to use (3.9) to define a new radial coordinate

ρ via dρ = −eh−4(α+β)dr. This in turn implies that f + α+ β = ρ. It proves useful also to

define the following combinations

ϕ ≡ 2g − 8α− 8β , ξ ≡ 6α+ 4β , χ ≡ 4α+ 6β . (3.12)

Equipped with this we arrive at the following set of BPS equations which ensure that the

configuration in (3.3) preserves 1/4 of the maximal supersymmetry.

∂ρϕ = 4

(
eξ + eχ − 3

2

)
, (3.13)

4ϕ = 8(F 1
xy + F 2

xy) , (3.14)

∂ρξ + 4(eξ − 1) + 2e−ϕ−ξF 1
xy = 0 , (3.15)

∂ρχ+ 4(eχ − 1) + 2e−ϕ−χF 2
xy = 0 , (3.16)

(∂x + i∂y)e
ξ = 2ie−h+4α+4β(F 1

rx + iF 1
ry) , (3.17)

(∂x + i∂y)e
χ = 2ie−h+4α+4β(F 2

rx + iF 2
ry) . (3.18)

This system of equations can be further reduced to only two coupled PDEs given by

∂ρ[e
ϕ+χ(∂ρχ+ 4(eχ − 1))] +4eχ = 0 , (3.19)
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and

eϕ∂2
ρϕ+ eϕ(∂ρϕ)2 + 32eϕ+2χ − 48eϕ+χ + 12eϕ − 8eϕ∂ρϕ(eχ − 1) +4ϕ = 0 . (3.20)

To derive these equations we made use of the Bianchi identity to eliminate the field

strengths from (3.16) and (3.18) and reorganized appropriately the equations in (3.13)–

(3.16).

Given a solution for χ and ϕ of the two coupled PDEs (3.19) and (3.20) one can obtain

all fields in the background (3.3) using only derivatives and algebraic relations. Therefore

to find supersymmetric backgrounds described by (3.3) it is sufficient to focus on solutions

of (3.19) and (3.20). Notice that this is considerably more complicated than the situation

in minimal seven-dimensional supergravity where similar solutions were described by the

single PDE in (2.52).

3.1.1 IR analysis

We start with the analysis of the BPS equations in the IR region where we look for regular

AdS5 solutions. We can solve (3.13)–(3.14), by making the Ansatz

ξIR = log ξ0, χIR = logχ0, ϕIR = logϕ0 − 2g(x, y) . (3.21)

We find then that g(x, y) obeys the Liouville equation in (2.54) and thus describes a

Riemann surface of constant curvature κ. We focus on the case κ 6= 0 and use the notation

of [49] for the field strengths of the gauge fields4

F 1
xy = pe−2g(x,y), F 2

xy = qe−2g(x,y) . (3.22)

Supersymmetry imposes a relation between the two magnetic fluxes which can be conve-

niently expressed by rewriting them in terms of a single parameter z

p = −κ(1 + z)

8
, q = −κ(1− z)

8
. (3.23)

Note that z should be quantized such that z(g− 1) ∈ Z.

The two equations (3.13)–(3.14) then reduce to

4(ξ0 − 1) +
2

ξ0ϕ0
p = 0 , (3.24)

4(χ0 − 1) +
2

χ0ϕ0
q = 0 , (3.25)

ξ0 + χ0 −
3

2
= 0 . (3.26)

We thus find the IR solutions

ξ0 =
1 + 3z + κ

√
1 + 3z2

4z
, χ0 =

3z − 1− κ
√

1 + 3z2

4z
, ϕ0 =

√
1 + 3z2 − κ

6
.

4The case κ = 0 can be analyzed analogously following appendix C of [49].
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We have thus arrived at the family of AdS5 solutions with a constant curvature metric on

Σg found in [49]. Note that to ensure regularity of the solution we need to restrict |z| > 1

for κ = 1. There is no upper or lower bound on the value of z for κ = −1.

Our goal now is to expand (3.19) and (3.20) around these IR AdS5 solutions in the

same way as before, by writing ϕ = ϕIR + ϕ̃ and expanding the small perturbation ϕ̃ in

eigenfunctions of the constant curvature Laplacian as follows

ϕ = ϕIR +
∞∑
n=0

ϕ̃n(ρ)Yn(x, y), 4gYn = −µnYn. (3.27)

We perform a similar expansion for the function χ and use (3.19) and (3.20) to obtain the

following system of linear equations

∂2
ρχ̃n + 4(2χ0 − 1)∂ρχ̃n + 4(χ0 − 1)∂ρϕ̃n − µnϕ−1

0 χ̃n = 0 , (3.28)

∂2
ρϕ̃n − 8(χ0 − 1)∂ρϕ̃n + (64χ2

0 − 48χ0)χ̃n − (µn − 2κ)ϕ−1
0 ϕ̃n = 0 . (3.29)

A regular solution of these takes the form(
ϕ̃n
χ̃n

)
= eγnρ

(
A

B

)
. (3.30)

where the real constants A and B are determined by solving the following matrix equation(
4(χ0 − 1)γn γ2

n + 4(2χ0 − 1)− µnϕ−1
0

γ2
n − 8(χ0 − 1)γn − (µn − 2κ)ϕ−1

0 64χ2
0 − 48χ0

)(
A

B

)
= 0 . (3.31)

The vanishing of the determinant of the matrix (3.31) leads to an equation for the constants

γn. Importantly there are always two positive roots of this equation for κ = −1, 1 given

explicitly by

γn = −1 +

√√√√−κ+ 7
√

1 + 3z2 + 6µn ± 6
√

1 + 3z2 + 2(κ+
√

1 + 3z2)µn

−κ+
√

1 + 3z2
. (3.32)

We therefore conclude that indeed for each choice of eigenmode on Σg there is a regular so-

lution of the form (3.30) which describes a small deviation from the constant curvature solu-

tion. Note that for z = 0 and κ = −1, the largest solution for γn reduces to the one in (2.59).

3.1.2 UV analysis

In the UV region at ρ→∞ the BPS equations (3.19) and (3.20) can be solved systemati-

cally order by order for any metric on the Riemann surface. The solution is given by

ϕ = 2ρ+ ϕ0 + ϕ2e−2ρ + ϕ4e−4ρ + ϕ4,1e−4ρρ+ higher order,

χ = χ2e−2ρ + χ4e−4ρ + χ4,1e−4ρρ+ higher order,
(3.33)
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where the functions ϕ0(x, y), ϕ4(x, y), χ2(x, y), and χ4(x, y) can be chosen freely. The rest

of the UV expansion functions are determined in terms of these four. For example, we find

ϕ2 =
1

4
e−ϕ04ϕ0 ,

ϕ4,1 = −8χ2
2 − 4χ2ϕ2 −

1

4
e−ϕ04ϕ2 ,

χ4,1 = 4χ2
2 + 2χ2ϕ2 −

1

2
e−ϕ04χ2 .

(3.34)

Taken together, the UV and the IR expansion discussed above strongly suggest that, for

arbitrary values of z and κ, there indeed exist full nonlinear solutions of the BPS equations

of this seven-dimensional model which interpolate between the IR and UV region and

uniformize the arbitrary UV metric on the Riemann surface. For z = 0, 1 and κ = −1 this

statement was proven rigorously in [7].

3.2 Five-dimensional STU model

Here we study the well-known five-dimensional STU model of N = 2 five-dimensional

gauged supergravity which arises from a consistent truncation of type IIB supergravity on

S5, see [47]. The bosonic fields of this theory are the metric, three Abelian gauge fields

and two real scalars. The Lagrangian for these fields is given by, see for instance [1, 42],

L = R− 1

2
(∂µφ1)2 − 1

2
(∂µφ2)2 + 12

3∑
a=1

Xa

− 9

4

3∑
a=1

X2
a(F aµν)2 +

1

4
εµναβσF 1

µνF
2
αβA

3
σ .

(3.35)

The three gauge fields, Aa, correspond to the Cartan generators of the SO(6) isometry

group of S5. It is also useful to define the “sections” Xa which are related to the scalars

φ1 and φ2 via

X1 = e
− φ1√

6
− φ2√

2 , X2 = e
− φ1√

6
+
φ2√
2 , X3 = e

2
φ1√
6 , (3.36)

as well as their inverse

Xa =
1

3Xa
. (3.37)

The fermionic supersymmetry variations of the supergravity are those of the two dilatini

χ(j) and the gravitino ψ and read

δψµ =

[
∇µ +

i

8
Xa(γ

νρ
µ − 4δνµγ

ρ)F aνρ +
1

2
XaVaγµ −

3i

2
VaA

a
µ

]
ε ,

δχ(j) =

[
3

8
(∂φjXa)F

a
µνγ

µν +
3i

2
Va∂φjX

a − i

4
δjk∂µφkγ

µ

]
ε ,

(3.38)

where j = 1, 2 and Va = 1
3 . We now proceed to analyze these equations to find static

supersymmetric black string solutions.
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3.2.1 BPS constraints

The Ansatz we consider is similar to the one used to construct the supersymmetric black

string solutions in [42, 50], however we now allow for a general metric on the Riemann

surface
ds2 = e2f(r,x,y)ds2

R1,1 + e2h(r,x,y)dr2 + e2g(r,x,y)(dx2 + dy2) ,

Aa = Aax(r, x, y)dx+Aay(r, x, y)dy ,

φ1√
6

= α(r, x, y),
φ2√

2
= β(r, x, y) ,

(3.39)

Note that for convenience we have rescaled the scalar fields φ1,2 by suitable constants. As is

familiar by now, the BPS equations of the model are then obtained after taking ε = ef/2ε0
and imposing the projectors

γr̂ε0 = ε0 , γx̂ŷε0 = −iε0 . (3.40)

We then find the following set of equations which ensure that the spin-1/2 supersym-

metry variations in (3.38) are obeyed

6∂rα+ 2eh(X1 +X2 − 2X3) + 3eh−2g(XaF
a
xy − 3X3F

3
xy) = 0 ,

2(∂x + i∂y)α+ ie−h(Xa(F
a
rx + iF ary)− 3X3(F 3

rx + iF 3
ry)) = 0 ,

2∂rβ + 2(X1 −X2) + 3eh−2g(X1F
1
xy −X2F

2
xy) = 0 ,

2(∂x + i∂y)β + 3ie−h(X1(F 1
rx + iF 1

ry)−X2(F 2
rx + iF 2

ry)) = 0 .

(3.41)

The t- and z-component of the gravitino variations yield

6∂rf + 2eh
3∑

a=1

Xa + 3eh−2gXaF
a
xy = 0 ,

2(∂x + i∂y)f + ie−hXa(F
a
rx + iF ary) = 0 ,

(3.42)

The other components of the gravitino variation give the following constraints on the metric

functions

(∂x + i∂y)(2f + h) = 0 , (3.43)

scalars

∂r(2f + g) + eh
3∑

a=1

Xa = 0 , (3.44)

and gauge fields

3∑
a=1

Aax = −∂y(2f + g),

3∑
a=1

Aay = ∂x(2f + g) . (3.45)

These BPS constraints can be written more compactly by using the relation in (3.43)

to define a new radial variable via dρ = −e2f+hdr and then define the combinations

ϕ ≡ 4f + 2g, ξ1 ≡ 2f + α+ β, ξ2 ≡ 2f + α− β, ξ3 ≡ 2f − 2α . (3.46)
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Indeed, we can now reduce the BPS constraints to the following set of equations

∂ρϕ = 2(e−ξ1 + e−ξ2 + e−ξ3) (3.47)

2
3∑

a=1

F axy −4ϕ = 0 (3.48)

∂ρe
−ξa + 2e−2ξa + e−ϕF axy = 0, a = 1, 2, 3 (3.49)

(∂x + i∂y)e
−ξa = i(F arx + iF ary)e

−h−2f , a = 1, 2, 3. (3.50)

A few comments are in order. We note that the three gauge fields can develop independent

profiles along the radial flow. When we set all three of the gauge fields to be equal to each

other we see that the two scalars fields can be consistently set to zero and we then recover

the BPS equations of the minimal gauged supergravity discussed in section 2.2. In the two

special cases when F 1 = F 2 6= 0 and F 3 = 0 or F 1 = F 2 = 0 and F 3 6= 0 we recover

the 1/4-BPS and 1/2-BPS solutions studied in [7]. For more general profiles of F a the

solutions to the BPS equations above preserve 1/8 of the maximal supersymmetry.

To make progress in simplifying further the BPS equations we can invoke the Bianchi

identity for (3.49) and (3.50) to obtain

∂ρ(e
ϕ(∂ρe

−ξa + 2e−2ξa)) +4e−ξa = 0, for a = 1, 2, 3 (3.51)

The sum of the three equations (3.49) yields, in combination with (3.47), the following

equation for ϕ

∂2
ρϕ+ 4(e−2ξ1 + e−2ξ2 + e−2ξ3) + e−ϕ4ϕ = 0. (3.52)

Due to (3.47) one of the four equations in (3.51) and (3.49) is redundant. We can therefore

use (3.47) to eliminate ξ1 and work with a system of two coupled PDEs for ξ2 = ξ and

ξ3 = χ in addition to the following equation for ϕ obtained from (3.52)

∂2
ρeϕ − 4(e−ξ + e−χ)∂ρe

ϕ + 8eϕ(e−2ξ + e−2χ + e−ξ−χ) +4ϕ = 0 . (3.53)

Therefore we conclude that by solving the equations for ϕ, χ, and ξ in (3.53) and (3.51)

we can find the most general supersymmetric background of the form in (3.39) in the

five-dimensional STU supergravity model.

3.2.2 IR analysis

We begin by deriving the AdS3 × Σg IR solutions of [42] in our notation. To this end we

take

ϕ = − logϕ0 + 2 log ρ+ 2g(x, y) , ξa = − log ξa,0 + log ρ . (3.54)

Here ϕ0 and ξa,0 are constants and the function g has to obey the Liouville equation (2.28)

and thus determines a metric on Σg of constant curvature κ. The field strengths of the

three gauge are proportional to the volume form on Σg

F a = −nae2g(x,y)dx ∧ dy , (3.55)
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where, as described in [42], na are constant magnetic flux parameters which need to be

quantized in terms of the genus g.

With this at hand we find that equations (3.47), (3.48), and (3.49) reduce to the

following algebraic constraints

ξ1,0 + ξ2,0 + ξ3,0 = 1 ,

n1 + n2 + n3 = κ ,

2ξa,0 − na
ϕ0

ξa,0
= 1, a = 1, 2, 3 .

(3.56)

For generic values of the parameters na these equations can be solved to find

ϕ0 = − Π

Θ2
, ξ1,0 =

n1(n1 − n2 − n3)

Θ
,

ξ2,0 =
n2(−n1 + n2 − n3)

Θ
, ξ3,0 =

n3(−n1 − n2 + n3)

Θ
,

(3.57)

where, as in [42], we have defined

Π = (−n1 + n2 + n3)(n1 − n2 + n3)(n1 + n2 − n3) ,

Θ = n2
1 + n2

2 + n2
3 − 2(n1n2 + n2n3 + n3n1) .

(3.58)

We have thus recovered the supersymmetric AdS3 solutions discussed in [42]. It is impor-

tant to emphasize that in order for these solutions to be physically acceptable the magnetic

fluxes na have to obey certain positivity constraints. These arise since, due to (3.54), the

constants ϕ0 and ξI,0 have to be positive. These constraints were thoroughly analyzed

in [42] and from now on we assume that we work with values of na for which they are obeyed.

To study whether the constant curvature metric on Σg can be deformed as we move

away from the IR region we proceed as in the previous sections. Namely, we expand

equations (3.51) and (3.53) around the IR AdS3 × Σg solution described above in terms

of eigenmodes of the constant curvature Laplacian on Σg. The radial evolution of every

such eigenmode, with eigenvalue µn, can be obtained by linearizing the equations in (3.51)

and (3.53) to find

ρ2∂2
ρ ξ̃n + 4ξ0ρ∂ρξ̃n + (1− 2ξ0)ρ∂ρϕ̃n − ϕ0µnξ̃n = 0 ,

ρ2∂2
ρχ̃n + 4χ0ρ∂ρχ̃n + (1− 2χ0)ρ∂ρϕ̃n − ϕ0µnχ̃n = 0 ,

ρ2∂2
ρϕ̃n + 4(1− ξ0 − χ0)ρ∂ρϕ̃n + 8(ξ0ξ̃n(1− 2ξ0 − χ0) + χ0χ̃n(1− ξ0 − 2χ0))

−(µn − 2κ)ϕ0ϕ̃n = 0 .

(3.59)

The regular solutions of these equations in the IR region at ρ→ 0 take the form ξ̃nχ̃n
ϕ̃n

 = ργ

AB
C

 , (3.60)

where (A,B,C) are real integration constants and γ should be a positive real number.

Note that the value of the constant γ depends on n, i.e. on the choice of eigenmode.
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Plugging (3.60) in (3.59) we obtain the following algebraic equation

M

AB
C

 = 0 , (3.61)

where the matrix M is given by

M =



γ2 + γ(4ξ0 − 1)− µnϕ0 0 γ(1− 2ξ0)

0 γ2 + γ(4χ0 − 1)− µnϕ0 γ(1− 2χ0)

8ξ0(1− 2ξ0 − χ0) 8χ0(1− ξ0 − 2χ0) γ2 + γ(3− 4ξ0 − 4χ0)

+ϕ0(2κ− µn)


.

In order to show that for every eigenvalue µn there is a regular solution of the IR lin-

earization problem as in (3.60) we need to ensure that the algebraic equation detM = 0

always have a positive root. First we note that when the magnetic fluxes are equal, i.e.

n1 = n2 = n3, we find ϕ0 = χ0 = ξ0 = 1
3 and recover the solution of the minimal gauged

supergravity with the value of γ in (2.37). For general values of the flux parameters we

have to solve a sixth order polynomial equation of the form

det(M) = γ6 + γ5 + . . .− ϕ3
0µ

2
n(µn − 2κ) = 0 . (3.62)

We do not have a closed form expression for the roots of this polynomial equations. Nev-

ertheless the structure of the terms we presented explicitly in (3.62) allows us to deduce

important information. In particular, the positivity constraints on ϕ0 and µn and the form

of the constant term in (3.62) imply that the product of the roots is negative. Since we

have a sixth order polynomial this in turn implies that at least one of the roots is posi-

tive for almost all values of κ and µn. The only exceptions to this argument are the zero

modes µ0 = 0 for all values of κ and the mode µ1 = 2 when κ = 1. In these two cases we

have checked numerically that for general values of na allowed by the positivity constraints

in [42] there are three positive roots of the equation in (3.62). We have also analyzed the

polynomial equation (3.62) for more general values of µn and κ. We find that for values of

na that obey the positivity constraints in [42], there are three positive real roots. Moreover

the corresponding solutions of the form (3.60) have C 6= 0. This is important to ensure

that the metric on the Riemann surface is indeed perturbed since, due to (3.46), this per-

turbation is encoded in ϕ. The fact that there are three positive roots in general means

that not only the metric perturbations but also the scalar perturbations are washed out

as we approach the IR region. A special situation which necessitates a separate analysis

arises when two of the fluxes are equal. Then the polynomial in (3.62) factorizes into two

polynomials of degree 4 and 2, respectively. The degree 2 polynomial has two positive roots

corresponding to an eigenvector with C = 0. These special modes leave the scalar fields and

the metric function f unperturbed and correspond to the marginal deformations discussed

around Equation (21) in [1]. The degree 4 polynomial however, still contains a positive

root corresponding to an eigenvector with C 6= 0 which ensures that we can indeed perturb

the metric away from the constant curvature one as we move away from the IR region.
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3.2.3 UV analysis

In the UV region we encounter a familiar predicament. Namely, we can solve equation (3.51)

and (3.53) order by order in the ρ→∞ limit and then find that the metric on the Riemann

surface can be arbitrary. We find the following UV expansion for the three unknown

functions that control the BPS black string solutions

ϕ = 3 log ρ+ ϕ0 + ϕ1,1ρ
−1 log ρ+ ϕ1ρ

−1 + ϕ2,2ρ
−2(log ρ)2

+ ϕ2,1ρ
−2 log ρ+ ϕ2ρ

−2 + . . . ,

ξ = log ρ+ log 2 + ξ1,1ρ
−1 log ρ+ ξ1ρ

−1 + ξ2,2ρ
−2(log ρ)2

+ ξ2,1ρ
−2 log ρ+ ξ2ρ

−2 + . . . ,

χ = −2 log ρ+ log(2) + χ1,1ρ
−1 log ρ+ χ1ρ

−1 + χ2,2ρ
−2(log ρ)2

+ χ2,1ρ
−2 log ρ+ χ2ρ

−2 + . . . ,

(3.63)

where all of the coefficients are functions of the two coordinates on the Riemann surface.

As in the UV expansion of the BPS equation in the minimal five-dimensional supergravity

discussed in section 2.2.3 we find two undetermined metric functions, ϕ0, ϕ1. In addition

to that we have four other undetermined functions, ξ1, χ1, ξ1,1, and χ1,1, which are due to

the presence of the additional matter fields in the STU model. The rest of the coefficients

in the UV expansion are determined in terms of these six unknown functions. For instance

for the first few coefficients in the expansion of ξ we find

ξ2,2 = −1

2
ξ2

1,1 ,

ξ2 = −1

2
ξ2

1 + ϕ1ξ1,1 − ϕ1,1ξ1,1 + 2ξ2
1,1 + 2e−ϕ0(∂2

x + ∂2
y)ξ1,1 + 2ξ2,1 ,

ξ2,1 = ϕ1,1ξ1,1 − ξ1ξ1,1 − 2ξ2
1,1 − e−ϕ0(∂2

x + ∂2
y)ξ2,1 .

(3.64)

while for the first two coefficients in ϕ we have

ϕ2,2 = −
(
χ2

1,1 + ξ2
1,1 +

1

2
ϕ2

1,1 − φ1,1(χ1,1 + ξ1,1) + χ1,1ξ1,1

)
,

ϕ1,1 = e−ϕ0(∂2
x + ∂2

y)ϕ0 .

(3.65)

Similar expressions can be obtained for the low order coefficients in the expansion of χ as

well.

As in the previous examples we studied we thus conclude that the metric on Σg is

arbitrary in the UV region and should approach the constant curvature one in the IR

region of these regular five-dimensional solution.

3.3 Four-dimensional STU model

We now proceed to study a large generalization of the black hole solution discussed in

section 2.1. To this end we focus on the STU model of four-dimensional N = 2 supergravity

which arises as a particular consistent truncation of eleven-dimensional supergravity on S7.

This model can also be constructed by adding three N = 2 vector multiplets to the gravity
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multiplet of the minimal supergravity theory. Each of the vector multiplets contains an U(1)

gauge field and two complex scalars which can thought of as a scalar and a pseudoscalar.

For the magnetic black hole solutions of interest here it can be shown that the pseudoscalars

can be consistently set to zero. The bosonic Lagrangian of this model is given by5

L = R− 1

2
(∂~φ)2 − 1

4

4∑
a=1

e~aa·
~φF 2

a − V (φ) , (3.66)

where the potential is

V = −2(coshφ12 + coshφ13 + coshφ14) , (3.67)

and we have defined

~a1 = (1, 1, 1), ~a2 = (1,−1,−1), ~a3 = (−1, 1,−1)

~a4 = (−1,−1, 1), ~φ = (φ12, φ13, φ14) .
(3.68)

We have not included the F ∧ F terms in the Lagrangian (3.66) since they will not play

any role for the magnetic black hole solutions of interest here.

The STU model arises also as a consistent truncation of the N = 8 SO(8) gauged super-

gravity. This embedding proves useful when studying the supersymmetry variations of the

theory. Im the N = 8 theory the fermions consist of the gravitini ψIµ and the spin-1/2 fields

χIJK where I, J and K are SU(8) indices. In the N = 2 STU model truncation the index

I should be thought of as corresponding to the pair (a, i) where a = 1, . . . , 4 as in (3.66)

and i = 1, 2. With this notation the supersymmetry variations of the gravitini are given by

δψaiµ = ∇µεai −
1

2
ΩabA

b
µε
ijεbj +

1

8

∑
b

e−~ab·
~φ/2γµε

ai

+
1

8

∑
b

Ωabe
~ab·~φ/2F bνλγ

νλγµε
ijεaj ,

(3.69)

where Ωab is the matrix

Ω =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 . (3.70)

For the spin-1/2 variations, one finds δχai bj ck = δχa ckδaβεij + δχb aiδbcεjk + δχc bjδcaεki

where √
2 δχa bi = −γµ∂µφabεijεbj −

∑
cd

ΣabcΩcde
−~ad·~φ/2εijεbj

+
∑
d

Ωade
~ad·~φ/2F dµνγ

µνεbi .
(3.71)

5We follow closely [20] in our presentation, see also [17].
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Note that there is no sum over the repeated index b above. The tensor Σabc is defined as

Σabc =


|εabc| for a, b, c 6= 1 ,

δbc for a = 1 ,

δac for b = 1 ,

0 otherwise .

(3.72)

3.3.1 BPS constraints

to construct the black hole solutions of interest here we consider the following Ansatz, for

a = 1, 2, 3, 4,

ds2 = −e2f(r,x,y)dt2 + e2h(r,x,y)dr2 + e2g(r,x,y)(dx2 + dy2) ,

Aa = Aax(r, x, y)dx+Aay(r, x, y)dy ,

e−~aa·
~φ/2 = Xa(r, x, y) .

(3.73)

To recover the solutions in the minimal supergravity discussed in section 2.1 we need to

set the four gauge fields equal to each other and freeze the scalar fields by setting Xa = 1.

The spinor generating the supersymmetry of this background again takes the simple form

εai = ef/2εai0 , where εai0 are constant spinor parameters. Since the solutions preserve only

two real supercharges we take only the a = 1 components of the spinor to be non-vanishing.

In addition, we impose the projectors γr̂ε
i
0 = εi0 and γx̂ŷε

i
0 = −εijεj0. By imposing that the

spin-1/2 supersymmetry variations vanish we then can derive the following constraints on

the bosonic fields

e−h∂rφ1a + ΩabXb + e−2gΩabX
−1
b F bµν = 0 , (3.74)

eh(∂x + i∂y)φ1a + iΩabX
−1
b (F brx + iF bry) = 0 . (3.75)

From the t-component of the gravitino variations we find the relations

e−h∂rf +
1

2
Ω1bXb +

1

2
e−2gΩ1bX

−1
b F bxy = 0 , (3.76)

eh(∂x + i∂y)f +
i

2
Ω1bX

−1
b (F brx + iF bry) = 0 . (3.77)

The expressions above determine the sum of the field strengths which in turn can be used

to simplify the rest of the supersymmetry variations. The result for the constraints derived

from the other components of the gravitino variations reads

(∂x + i∂y)(f + h) = 0 , (3.78)

∂r(f + g) + ehΩ1bXb = 0 , (3.79)

2∂y(f + g) +
∑
b

Abx = 0 , (3.80)

2∂x(f + g)−
∑
b

Aby = 0 . (3.81)
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These relations should be compatible with the ones in (3.76) and (3.77) which leads to the

following alternative expressions for the field strengths∑
b

F bxy − 24(f + g) = 0 , (3.82)

i
∑
b

(F brx + iF bry) + 2∂r(∂x + i∂y)(f + g) = 0 . (3.83)

We have so far derived all constraints on the bosonic fields imposed by the vanishing of the

supersymmetry variations in (3.69) and (3.71). To simplify these BPS equations further

we use (3.78) to change coordinates by dρ = −ef+hdr. We can then rewrite (3.74)–(3.83)

in a simpler way upon defining6 ϕ = 2f + 2g and ξa = f +~aa · ~φ/2, for a = 1, 2, 3, 4. This

yields the following system of equations

∂ρϕ =
∑
a

e−ξa , (3.84)∑
a

F axy −4ϕ = 0 , (3.85)

∂ρe
−ξa + e−2ξa + e−ϕF axy = 0 , a = 1, 2, 3, 4 (3.86)

(∂x + i∂y)e
−ξa = i(F arx + iF ary)e

−f−h . a = 1, 2, 3, 4. (3.87)

To simplify these equations even further we can eliminate the field strengths by imposing

the Bianchi identity

∂rF
a
xy + ∂xF

a
yr + ∂yF

a
rx = 0 . (3.88)

This allows us combine to (3.86) and (3.87) to get, for a = 1, 2, 3, 4,

∂ρ[e
ϕ(∂ρe

−ξa + e−2ξa)] +4e−ξa = 0 , (3.89)

together with ∑
a

[∂ρe
−ξa + e−2ξa ] + e−ϕ4ϕ = 0 , (3.90)

obtained from (3.85) and (3.86).

The equations in (3.89) and (3.90) encode the conditions imposed by supersymmetry on

the bosonic backgrounds of the form (3.73). We will use them to understand the behavior

of perturbations away from the constant curvature black hole solutions studied in [17, 20].

We note that not all of these equations are independent since the sum of the equations

in (3.89) gives us the radial derivative of (3.90).

3.3.2 IR analysis

In the IR region the only regular solutions are the AdS2 for which the metric on Σg is

constant, see [17, 20, 32]. In our notation these backgrounds take the form

ϕ = − logϕ0 + 2 log ρ+ 2g(x, y), ξa = − log ξa,0 + log ρ , (3.91)

6Note that the definition of ϕ here differs by a factor 4 from the one used in section 2.1.
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where ϕ0 and ξa,0 are constants. The function g(x, y) solves the Liouville equation in (2.6)

and determines a metric of constant curvature κ on the Riemann surface. The field

strengths are then proportional to the volume form on the Riemann surface

F a = −nae2g(x,y)dx ∧ dy , (3.92)

where na are the magnetic flux parameters that need to be quantized as discussed in [20].

The BPS equations for these AdS2 × Σg solution then reduce to the following algebraic

relations

2κ =
∑
a

na , 2 =
∑
a

ξa,0 , ξa,0 − na
ϕ0

ξa,0
= 1 for a = 1, 2, 3, 4 (3.93)

To solve these equations we proceed as in [20] and define

Π =
1

8
(n1 + n2 − n3 − n4)(n1 − n2 + n3 − n4)(n1 − n2 − n3 + n4) , (3.94)

together with

Θ = (F2)2 − 4n1n2n3n4, F2 =
1

4

(∑
a

na

)2

− 1

2

∑
a

n2
a . (3.95)

The solutions of the equations in (3.93) can then be written as

ϕ0 =
Π

Θ
, ξa,0 =

1

2
± F2 + na(n1 + n2 + n3 + n4 − 2na)

2
√

Θ
. (3.96)

To ensure that these AdS2 × Σg solutions are well-defined the constants in (3.91) have to

obey certain positivity constraints. This in turn leads to constraints on the values of the

magnetic flux parameters na which are analyzed in [20]. From now on we assume that we

always take the parameters na to take values in the allowed regions of parameter space.

Our goal now is to study perturbations around this constant curvature solution away

from the IR region and show that the metric on Σg can deviate from the constant curvature

one as one moves towards the UV region. To this end we expand the functions in (3.89)

and (3.90) in eigenmodes of the Laplacian for the constant curvature metric on Σg and study

the behavior of these linearized perturbations. Since the equations in (3.89) and (3.90) are

not independent it is most convenient to work only with three out of the four equations

in (3.89) which yield the following linear equations for the eigenmodes ξ̃a,n and ϕ̃n

ρ2∂2
ρ ξ̃a,n + 2ρξa,0∂ρξ̃a,n + (1− ξa,0)ρ∂ρϕ̃n − ϕ0µnξ̃a,n = 0 . (3.97)

The regular solutions of this system of equations is determined by the following vector of

solutions7 (
ξ̃1,n ξ̃2,n ξ̃3,n ϕ̃n

)ᵀ
= ργ~v. (3.98)

7The solution for the modes ξ4,n is not independent and is obtained by exploiting the relations between

the equations in (3.89) and (3.90).
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where the real constant γ and the constant four-vector ~v depend on the choice of eigenmode

n. To find this solution we need to use (3.84), (3.89), and (3.90) along with the linearized

expansion described above. This results in a matrix equation of the form M · ~v = 0 where

M is a 4 × 4 matrix whose explicit form is too unwieldy to present here. To analyze this

we proceed as in section 3.2.2 and find the constants γ by solving the algebraic equations

detM = 0. This results in an eighth degree polynomial equation for γ that is too com-

plicated to analyze analytically and we have resorted to a numerical analysis. We have

checked explicitly that for many choices of the magnetic flux parameters na the algebraic

equation detM = 0 has four positive roots for the constants γ. When we use these numer-

ical solutions in (3.98) we find that they correspond to perturbations of the metric and the

bosonic fields in the black hole solution (3.73) which deviate from the constant curvature

solution but are small and ultimately washed out near the AdS2 region in the IR. Therefore

we once again observe the characteristic holographic uniformization behavior.

3.3.3 UV analysis

To complete our arguments in favor of the holographic uniformization behavior of the BPS

equations we analyze the solutions of the equations in (3.89),and (3.90) in the UV region

ρ → ∞. The results of this analysis are familiar by now. We find that the metric on the

Riemann surface is indeed allowed to be arbitrary in this UV region. To be more explicit

we can expand ϕ, ξ = ξ1, ψ = ξ2, and χ = ξ3 in the following form

ϕ = 4 log ρ+
∑
n

ϕn(x, y)ρ−n , ξ = log ρ+
∑
n

ξn(x, y)ρ−n ,

ψ = log ρ+
∑
n

ψn(x, y)ρ−n , χ = log ρ+
∑
n

χn(x, y)ρ−n .
(3.99)

The functions ϕ0, ϕ1 as well as ξ1, χ1, ψ1 and ξ2, ψ2, χ2 in the expression above are left

undetermined by the BPS equations. The freedom to choose these functions arbitrarily

reflects the choice of metric on Σg in the UV region.

The higher order coefficients in the UV expansion are completely determined in terms

of these functions. For instance, we at second order we find the relation

ϕ2 = −1

2
e−ϕ0(∂2

x + ∂2
y)ϕ0 − (ξ2

1 + ψ2
1 + χ2

1 + ξ1ψ1 + ξ1χ1 + χ1ψ1)

− 1

2
ϕ2

1 + ϕ1(ξ1 + ψ1 + χ1) .

(3.100)

At third order we find

ξ3 =
1

3
ξ3

1 −
1

4
ϕ1ξ

2
1 −

1

2
ϕ1ξ2 −

1

2
e−ϕ0(∂2

x + ∂2
y)ξ1 , (3.101)

with similar expressions for χ3 and ψ3. Also at this order, ϕ3 is fixed in terms of the lower

– 32 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

order coefficients as

ϕ3 = ξ3 + χ3 + ψ3 +
1

6
(ξ3

1 + ψ3
1 + χ3

1)− ξ1ξ2 − ψ1ψ2 − χ1χ2

+
1

2
(ξ1 + χ1 + ψ1 − ϕ1)(ξ2

1 + χ2
1 + ψ2

1 − 2ξ2 − 2χ2 − 2ψ2 + 4ϕ2)

− 1

6
ϕ1[ϕ2

1 + 2ξ1ψ1 + 2ψ1χ1 + 2χ1ξ1 + 2ϕ2 − (ξ2 + ψ2 + χ2)]

− 1

4
ϕ1(ξ2

1 + ψ2
1 + χ2

1) +
1

3
ϕ1(ξ1 + ψ1 + χ1)

+
1

6
e−ϕ0(∂2

x + ∂2
y)(ξ1 + χ1 + ψ1 − ϕ1) .

(3.102)

4 Conclusion

In this paper we showed that there are large families of supersymmetric asymptotically

locally AdS black brane solutions with a smooth Riemann surface horizon geometry in

gauged supergravity. At asymptotic infinity, i.e. the UV region of the geometry, the metric

on the Riemann surface can be chosen freely. However, the supergravity BPS equations

result in non-linear PDEs which uniformize the metric on the Riemann surface such that in

the near horizon region it is fixed to the constant curvature metric. These results generalize

and extend the holographic uniformization discussed in [7]. They also bear resemblance to

the well-known attractor mechanism for asymptotically flat black holes with the notable

difference that in our examples the moduli at asymptotic infinity are not scalar fields arising

from the internal dimensions of string or M-theory.

Our work presents a number of open questions and possible generalizations. Here we

list some of them.

• It is desirable to perform a more mathematically rigorous analysis of the PDEs result-

ing from the supergravity BPS equations that we derive in this paper. This should

proceed using similar methods as the ones employed in [7] and should lead to a global

existence proof of the smooth uniformization solutions.

• All gauged supergravity solutions studied in this paper are in theories which arise as

consistent truncations from ten- or eleven-dimensional supergravity. It is therefore

possible to uplift the solutions we constructed above to string or M-theory and it will

be interesting to do so explicitly. This applies especially to the solutions discussed

in section 2 which admit various different embeddings in higher dimensions, see for

example [5] for a detailed discussion and a list of references.

• We have opted to study several specific gauged supergravity theories which are par-

ticularly simple and explicit and in addition can be embedded in string theory. Our

general results should apply more broadly and it should be possible to find black

brane solutions of more general matter coupled supergravity theories which exhibit

similar attractor mechanism for the horizon metric.
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• There is a large body of literature on studying the constraints imposed by supersym-

metry, and the resulting differential equations, for solutions of various supergravity

theories in different dimensions. We have not used these results to derive the BPS

equations and the resulting PDEs analyzed in this paper. Nevertheless, it should be

possible to rephrase our results in these more general terms. In particular the solu-

tions discussed in section 2 should fit into the classification results of [53–55], and [56]

for four-, five-, six-, and seven-dimensional minimal supergravity, respectively.

• An important assumption in our work is that the supergravity solutions we study

are static and the Riemann surface describing the horizon has a smooth metric. It

should be possible to relax both assumptions, for example by generalizing the four-

dimensional solutions with angular momentum discussed in [57, 58] and by studying

the solutions of [27] with a punctured Riemann surface away from the near horizon

region. More specifically, it is natural to speculate that there are generalizations of

the stationary black hole solutions studied in [57, 58] which posses the same near

horizon geometry but do not have a globally defined space-like Killing vector.

• Based on the physics of topologically twisted SCFTs on compact manifolds, one

should expect that the holographic uniformization principle is not limited to Rie-

mann surfaces. It would be very interesting to understand this vast generalization in

particular in the context of hyperbolic three-manifolds [59], as well as four-manifolds

where some initial studies were performed in [60, 61]. In this context holographic

uniformization and its generalizations offer another example of the close relation be-

tween the physics of RG flows and the mathematics of geometric flows, similar in

spirit to Ricci flow [62, 63].

• The uniformization nature of the black brane solutions we found ensures that the

metric of the horizon is the one with constant curvature and thus the horizon area and

black hole entropy do not depend on continuous moduli. This attractor mechanism

is an important feature of our solutions. Another important quantity for black hole

thermodynamics is the regularized on-shell action. For the four-dimensional constant

curvature black hole in section 2.1.1 it was shown in [22], see also [64], that the

regularized on-shell action is equal to the black hole entropy. It will be very interesting

to study whether this is true more generally for the black brane solutions studied here.

The results in [65], and their generalizations to higher dimensions, should prove useful

in establishing this question.

• In establishing the attractor behavior for the metric moduli near the black brane

horizon we assumed that the solution is supersymmetric. This is important for two

reasons. First, the BPS equations of supergravity are presumably technically simpler

to analyze then the full equations of motion. Second, the supersymmetry of the

near horizon AdS region ensures that the black hole solution is stable against small

perturbations. It will be very interesting to understand whether the general lessons

from our results are true for general non-supersymmetric charged black branes in

– 34 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
5

AdS. Perhaps a natural starting point to address this questions is to study non-

supersymmetric extremal black brane solutions similar to the ones studied in [66–68].

Note however, that many such solutions suffer from perturbative instabilities [69, 70]

which sheds some doubt on their physical relevance.

• The holographic description of our supergravity solutions, when embedded in string or

M-theory, should be in terms of a partially topologically twisted SCFT on a Riemann

surface. Understanding how the RG flow across dimensions in the SCFT realizes the

uniformization of the Riemann surface metric is presumably a hard question in the

strongly coupled QFT description, see for example [9].

• The four-dimensional black hole solutions we studied have a near-horizon AdS2 geom-

etry which is universal and independent of the Riemann surface metric away from the

horizon. The metric deformations of Σg can be interpreted as irrelevant operators in

the one-dimensional IR theory holographically dual to this near-horizon region which

determine the details of the deformations performed in the UV three-dimensional

SCFT. It will be interesting to understand whether our solutions have a relation to

the recent studies of near AdS2 holography, see for example [71, 72].
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A Universal BPS equations

In this appendix we present some details on the derivation of the BPS equations in the

minimal four-, five-, and six-dimensional gauged supergravity theories used for the analysis

in section 2. The derivation of the BPS equations for the seven-dimensional minimal gauged

supergravity was presented in [49]. We also note that we have explicitly confirmed that

the equations of motion for the Ansatz we study are implied by the BPS equations.

A.1 Four dimensions

The Lagrangian for the bosonic fields of the minimal N = 2 four-dimensional gauged

supergravity is

L = R+ 6− 3

4
FµνF

µν . (A.1)

The gravitino variations are given by

δψiµ = ∇µεi −Aµεijεj +
1

2
γµε

i +
1

4
Fνλγ

νλγµε
ijεj . (A.2)
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We consider the following Ansatz

ds2
4 = −e2f(r,x,y)dt2 + e2h(r,x,y)dr2 + e2g1(r,x,y)dx2 + e2g2(r,x,y)dy2 ,

A = Ax(r, x, y)dx+Ay(r, x, y)dy .
(A.3)

Notice that this is the most general static Ansatz assuming an isometry in the t-direction.

We are interested in solutions of this supergravity theory which preserve 1/4 of the super-

symmetry. This leads to the following projectors

γr̂ε
i = ε and γx̂ŷε

i = −εijεj , (A.4)

where we use a hat to denote tangent space indices. Notice that we allow for the spinor

parameter, εi, to be depend on the coordinates (r, x, y). The BPS equations can be derived

by considering a linear combination of the supersymmetry variations for which no derivative

of the spinor parameter appears. In particular the combination

γx̂ŷδψ
i − εijδψj , (A.5)

leads to the equations

eh+g1+g2(∂x + i∂y)f = −e2g2Frx + ie2g2Fry ,

(∂x + i∂y)(f + h) = 0 ,

eg1+g2∂rg1 = eh(eg1+g2 − Fxy) ,
∂r(g1 − g2) = 0 ,

(A.6)

where Frx, Fry, and Fxy are the non-trivial component of the gauge field 2-form flux

F = dA. The t-direction of the gravitino variation leads to one more condition:

∂r(f + g1) = −2eh, . (A.7)

Now it is easy to read off from the gravitino variation differential equations for the spinor

parameter itself

∂r,x,yε
i =

1

2
(∂r,x,yf)εi , (A.8)

as well as an equation for the gauge field

Ax = −1

2
eg1−g2∂y(f + g1) , Ay =

1

2
eg2−g1∂x(f + g2) . (A.9)

We can now solve these equations and show that they imply (2.2) and (2.3). First we

notice that

g2 = g1 + C(x, y) , (A.10)

for some function C on the Riemann surface. We can always choose coordinates on the

Riemann surface such that C = 0. This in turn implies

g1 = g2 ≡ g . (A.11)
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This considerably simplifies the remaining equations. In particular, since f+h is a function

only of r we are free to change to a new radial coordinate ρ(r) defined by

dρ

dr
≡ −ef+h , (A.12)

In these new coordinates we obtain the following two equations by using Fxy = ∂xAy−∂yAx
and (A.9) in addition to (A.6)

2e−f − ∂ρ(f + g) = 0 ,

2(−ef∂ρf + 1) + e−2g(∂2
x + ∂2

y)(f + g) = 0 .
(A.13)

We also define the new function 2ϕ = f + g. The first equation above then determines f

as a function of ϕ which allows us to write the metric and gauge field purely in terms of ϕ

as in (2.2). The second equation reduces to a single PDE for ϕ:

4ϕ+ e4ϕ
(
∂2
ρϕ+ (∂ρϕ)2

)
= 0 , (A.14)

where 4 = ∂2
x + ∂2

y . This is the flow equation we use in section 2.1. Finally we note that

the supersymmetry spinor parameter can be found explicitly and takes the form

εi = ef/2εi0 , (A.15)

where εi0 is a constant spinor obeying the projectors

γr̂ε
i
0 = εi0 and γx̂ŷε

i
0 = −εijεj0 . (A.16)

Note that the form of the spinor in (A.15) is compatible with the fact that the spinor

bilinear is proportional the time-like Killing vector ∂t in (A.3).

Before we move on to the presentation of the derivation of the BPS equations in the

five- and six-dimensional supergravity theories we emphasize two important results. First,

we have shown that for both of these theories the functional dependence of the spinor on

(r, x, y) is fixed entirely in terms of the function f as in (A.15). Similarly we have shown

that the metric functions g1 and g2 are always related as in (A.10). To simplify the analysis

and avoid repetition we will present the derivation of the BPS equations in five and six

dimensions with (A.15) and (A.10) implemented from the start.

A.2 Five dimensions

The bosonic part of the Lagrangian for the five-dimensional minimal gauged supergravity

is given by

L = R+ 12− 3

4
FµνF

µν +
1

4
εµναβρFµνFαβAρ , (A.17)

and the gravitino variations are given by

δψµ =

(
∇µ +

i

8
(γνρµ − 4δνµγ

ρ)Fνρ +
1

2
γµ −

3i

2
Aµ

)
ε . (A.18)
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We consider the following Ansatz

ds2
5 = e2f(r,x,y)ds2

R1,1 + e2h(r,x,y)dr2 + e2g(r,x,y)(dx2 + dy2) ,

A = Ax(r, x, y)dx+Ay(r, x, y)dy ,
(A.19)

where ds2
R1,1 is the metric on the two-dimensional Minkowski space. Furthermore, we

impose the following projectors for the supersymmetry spinor parameter ε = ef/2ε0

γr̂ε0 = ε0, γx̂ŷε0 = −iε0 . (A.20)

The t-component of the gravitino variation then yields

2e−h∂rf + 2 + e−2gFxy = 0 ,

2eh(∂x + i∂y)f + i(Frx + iFry) = 0 .
(A.21)

This determines the field strength in terms of the geometry. The other BPS constraints,

after having substituted the field strength wherever it appears, lead to the constraints

(∂x + i∂y)(2f + h) = 0 ,

3eh + ∂r(2f + g) = 0 ,
(A.22)

together the following expression for the gauge fields

Ax = −1

3
∂y(2f + g) , Ay =

1

3
∂y(2f + g) . (A.23)

Since 2f + h is a function only of the coordinate r we are free to choose a new radial

variable ρ(r) which is defined by dρ = −e2f+hdr. Using this we obtain the system of

equations
6(−e2f∂ρf + 1) + e−2g(∂2

x + ∂2
y)(2f + g) = 0 ,

3e−2f = ∂ρ(2f + g) .
(A.24)

The latter equation can be used to replace f by the new variable 3ϕ = 2f + g which due

to the first equation in (A.24) satisfies

4ϕ+ e6ϕ
(
∂2
ρϕ+ 2(∂ρϕ)2

)
= 0 . (A.25)

This is the PDE used in the analysis in section 2.2.

A.3 Six dimensions

We work with the six-dimensional N = 4 SU(2) gauged supergravity constructed in [44].

The bosonic sector of the theory contains a graviton eaµ, three SU(2) gauge fields AIµ, one

Abelian gauge field aµ, a two-index tensor gauge field Bµν and a real scalar field α. For

the solutions of interest here we can consistently take the Abelian gauge field aµ and the

tensor field Bµν to vanish. In addition we only need to turn on the Cartan generator of the

SU(2) gauge field, i.e. take only A3
µ to be non-zero. We note that there are two coupling

constants, g and m, in the construction of [44]. We are interested in the so called N = 4+

case, where g > 0 and m > 0 since this theory has a supersymmetric AdS6 vacuum solution
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with g = 3m. We fix the length scale of AdS6 by setting m =
√

2. The resulting bosonic

Lagrangian is then given by8

L = R− 4(∂µα)2 − 2e−2αFµνFµν + (9e2α + 12e−2α − e−6α) . (A.26)

The supersymmetry transformations for the fermionic fields, with i = 1, 2, are

δψµi = ∇µεi − 3iAµεi +
1

8
(3eα + e−3α)γµγ7εi +

i

8
e−α(γνρµ − 6δµν γ

ρ)Fµνεi ,

δχi = γµ∂µαε1 −
3

4
(eα − e−3α)γ7ε−

i

4
e−αγµνFµνγ7εi ,

(A.27)

Here we consider the following Ansatz

ds2 = e2f(r,x,y)ds2
R1,2 + e2h(r,x,y)dr2 + e2g(r,x,y)(dx2 + dy2) ,

A = Ax(r, x, y)dx+Ay(r, x, y)dy ,

α = α(r, x, y) ,

(A.28)

where ds2
R1,2 is the metric on the three-dimensional Minkowski space. Using this Ansatz

in the supersymmetry variations we obtain the BPS equations by taking ε = ef/2ε0 and

imposing the projectors γr̂ε0 = γ7ε0 and γx̂ŷε0 = iε0. The spin-1/2 variations yield

(∂x − i∂y)α+
i

2
e−α−h(Frx − iFry) = 0 , (A.29)

∂rα−
3

4
eh(eα − e−3α)− 1

2
eh−α−2gFxy = 0 . (A.30)

We shall use these relations to replace the field strength wherever it appears in the spin-3/2

variations. The variations with components along ds2
R1,2 result in

(∂x + i∂y)(f + α) = 0, ∂r(f + α) + eh−3α = 0 . (A.31)

This in turn implies that f + α and h− 3α do not depend on x, y. The other components

of the spin-3/2 variation then yield the constraint

− 2eh−3α + 3eh+α + ∂r(g − 3α) = 0 , (A.32)

together with the following expression for the gauge fields

Ax = −1

6
∂y(g − 3α) , Ay =

1

6
∂x(g − 3α) . (A.33)

As is familiar by now we can change the radial coordinate by using dr = −e3α−hdρ to

obtain the pair of equations:

12e−3α∂ρα+ 9(eα − e−3α) + e−α−2g(∂2
x + ∂2

y)(g − 3α) = 0 ,

∂ρ(g − 3α) + 2− 3e4α = 0 .
(A.34)

8Note that we use similar conventions to [4] and work in mostly plus signature.
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We can define 3ϕ = g − 3α+ 2ρ and use the second equation in (A.34) to find

∂ρϕ = e4α . (A.35)

This relations determines uniquely α from ϕ. Moreover, it enables us to rewrite the first

equation of (A.34) in terms of ϕ alone,

4ϕ+ e6ϕe−4ρ
(
∂2
ρϕ+ 3(∂ρϕ)2 − 3∂ρϕ

)
= 0 . (A.36)

This is the PDE used in the analysis in section 2.3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[39] R. D’Auria, E. Maina, T. Regge and P. Fré, Geometrical first order supergravity in five

space-time dimensions, Annals Phys. 135 (1981) 237 [INSPIRE].

[40] A.H. Chamseddine and H. Nicolai, Coupling the SO(2) supergravity through dimensional

reduction, Phys. Lett. B 96 (1980) 89 [Erratum ibid. B 785 (2018) 631] [arXiv:1808.08955]

[INSPIRE].

[41] D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities,

Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].

[42] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,

JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

[43] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP

07 (2016) 020 [arXiv:1511.09462] [INSPIRE].

[44] L.J. Romans, The F (4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691

[INSPIRE].
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