Stochastic dynamic response of delaminated flexbeam like structures
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Abstract

In this work, the free vibration characteristics of flexbeam like structures, typically used in
helicopter main or tail rotor blades, are investigated. The tapering effect in these laminated
composite structures is introduced by terminating plies, which act as potential delamination sites.
Delamination and uncertainties in material properties at various scales influence their dynamic
behavior. The Variational Asymptotic Method (VAM) is used as a mathematical framework to
develop a model of a tapered composite beam with delamination. Subsequently, the modal
characteristics are obtained by coupling the VAM model with the reduced 1D FE beam model.
Stochastic natural frequencies are investigated by combining the source uncertainties in the

delaminated structure. Following a detailed validation study, the model capability is demonstrated

on flexbeams typically used in helicopter rotor blades.
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1. Introduction

Tapered composite structures find applications in helicopter blades, yokes, turbine blades, etc.
These structures have variable stiffness that is exploited to meet the design requirements. The best
example of such a requirement in aerospace applications is a flexbeam structure utilized in
helicopter rotor-blade assembly. These flexbeams require higher stiffness at the hub end, and

flexibility at the blade end to accommodate the flapping motions [1].

Manufacturing of thickness-tapered composite beams is achieved by terminating or dropping the
pliesat pre-determined locationsalong the beam span [2]. The tapering effectin the beams reduces
the stiffness due to the structural discontinuities formed because of ply dropping. In practice, the
ply-dropping operation to terminate the plies generates resin pockets at the ply-drop locations,
which are potential delamination nucleation sites. The combined influence of structural
discontinuities in the tapered composite beams due to dropped-out plies and delamination strongly
affects their static and dynamic performance. Hence, it is important to analyze their dynamic
behavior since they are highly susceptible to vibrations [3]. This paper aims to focus on the free

vibration analysis of tapered composite beams in healthy as well as delaminated conditions.

The review of literature on the free vibration response of tapered composite beams shows scarcity
in experimental work and very few researchers have attempted this problem using analytical or
numerical approaches [4]-[8]. One of the initial analytical works on modal analysis of a tapered
composite beam is presented by Rao and Ganesan [9]. They proposed a Higher-order Shear
Deformation Theory (HSDT) based finite element (FE) model. To simplify the model, they
neglected the interlaminar shear deformation. Subequently, in their follow-up work, First-order
Shear Deformation (FSDT) theory-based FE model [10] was used. The incorporation of shear

deformations reduces the overestimated natural frequencies as obtained in the earlier model. FE-



based modeling of tapered composite beams was used by Gupta and Rao [11] to investigate the
dynamic behavior of doubly tapered beams. Their study investigated the effect of beam width and
thickness tapering. They noticed the strong influence of thickness tapering leading to the
degradation of the cross-sectional stiffness and reduction in the beam’s natural frequencies. In one
more FE-based approach, the linearly tapered composite beam is modeled by a number of stepped
Timoshenko beams, as presented by Tong et al.[12]. They validated their analytical model by
comparing the free and forced vibration responses of beams with results available in the literature.
In the development of numerical models of tapered composite beams, Zabihollah [13]
implemented an advanced FE model based on which authors have presented the parametric results
of natural frequencies for highlighting the influence of taper angle, boundary condition, and lay-
up of the stack. Lin [14] has presented the implementation of hierarchical finite element

formulation, which can use fewer elements, resulting in computational efficiency.

Few authors have reported advanced HSDT-based FE models indicating the vibration response of
tapered laminated composite beams [13], [15], [16]. In these reported works, the tapered beams
are modeled by considering three zones along the length of the beam: thick zone, thin zone, and
tapered zone. Among these, the tapered zone contains the dropped-out plies, which are modeled
as matrix-rich layers. One such work, based on HSDT formulation, is presented by Ganesan and
co-authors [17] for analyzing the free vibration response of the tapered composite beams. In their
extended work presented in [18], the effect of various parameters like taper angle, ply
configurations, and boundary conditions are analyzed on the fundamental frequencies of thickness
tapered composite beams. Also, the influence of various ply-dropping patterns on fundamental
natural frequencies is presented in [18], suggesting an optimum choice of ply-dropping sequence

to get comparatively lesser reductions in natural frequencies. In the experimental investigation of



tapered composite beams, one of the rarest studies on free vibration analysis is reported by
Arumugam et al.[19] for a rotating beam. In this work, authors have also obtained the natural
frequency resultsusingHSDT-based analytical formulation which shows good agreementwith the
experimental investigation. The literature on free vibration analysis of delaminated tapered
composite beams is very rare compared to that of delaminated uniformbeams [20],[21]. One of
the attempts to analyze the influence of delamination is addressed by Ghaffari et al. [22] and
authors have presented the modal response of the thickness tapered composite beam for both
healthy and delaminated conditions. Recently, Moorthy [23] has developed a surrogate-assisted
algorithm that is designed based on the vibration response of a tapered composite beam to identify
delamination severity. The reported literature on delaminated composite tapered beams highlights
the influence of damage severity on the degradation of natural frequencies. This literature also
highlights the complexities in modelingthe delaminated configuration of tapered composite beams

by using reported analytical frameworks or numerical models.

Due to the complexity of the manufacturing processes of laminated composites, there are
uncertainties in the elastic properties and mass densities of fiber and matrix [24]-[29], which in
turn affects the dynamic performance of the composite beams [30]-{34]. The propagation of these
uncertainties at the macro level and further into the component level strongly affects the reliability
of the structures due to stochastic response bounds of natural frequencies [35]-[38],[39]. Very few
authors have addressed the issue of uncertainty analysis in the case of tapered composite beams.
Kamali et al.[40] have employed a reliability-based design optimization method for free vibration
analysis of tapered composite beams. Stochastic free vibration analysis of tapered composite
beams under the influence of random variation in elastic modulus and mass densities is presented

by Thi et al.[41]. The shortcoming of these available models is that multiple uncertain variables



are not being considered at a time in a single simulation. Experimental investigations for
addressing uncertainties will demand large no. of samples to be tested, and it will not be possible
to consider simultaneous uncertainties in all the micro or macro-properties of the composites in a
single experiment [42]. Hence, the development of a stochastic computational platform for
analyzing the random variations in natural frequencies of the composite tapered beams is required.

This is the primary motivation of the proposed paper.

In this work, acomputationally efficient VAM-based approachis proposedto simplify the problem
into a 2D cross-sectional analysis and a 1D problem, similar to the framework presented in [43].
However, here the cross-sectional stiffness is determined at the uniform as well as the tapered
sections in the presence of delamination. A simple 1D FE formulation is presented to showcase
the model capability, similar to the work presented in [44],[45], butforageneric tapered composite
structure. This coupled framework of VAM-1D FEM is easily extended to take the stochastic
effects in uncertain material properties, and the respective stochastic distributions of natural
frequencies are obtained. To the best of the author’s knowledge, a VAM-based approach to model
delaminated tapered composite beam and their stochastic dynamic behavior dueto uncertain micro

or macro-mechanical properties has not been addressed in the literature.

The structure of this paper hereafter is organized as follows: the proposed generalized five-layer
cross-sectional stiffness model of the composite tapered beam is presented in section 2. The
governingequations of motion are derivedin section 3. The deterministic and stochastic frequency
results are elaborately discussed and presented in section 4, and finally, the summarizing
concluding remarks are included in section 5. The VAM-based cross-sectional stiffness terms
derived for thick/thin and tapered zone sections of a tapered composite beam are elaborately given

in the Appendix.



2. Generalized five-layer cross-sectional model of a tapered composite beam

In the case of tapered composite beams, the dropped-out plies are modeled by matrix-rich layers.
Hence, these beams exhibit non-homogeneity across the cross-section due to the presence of
matrix-rich plies along with normal plies. Due to this non-homogeneity, the estimation of the
cross-sectional stiffness matrix is not a straightforward task for the cross-sections carrying
dropped-out plies. To tackle this issue, a generalized five-layer cross-section model is proposed in
this work for the non-homogeneous cross-section of a tapered composite beam carrying matrix-
rich layers. This section particularly highlights how this proposed five-layer cross-section model

works.

The typical geometry of a tapered composite beam with internal ply drops across the beam span is
shown in Fig. 1(a). It shows the geometry schematic with three zones of the beam along the span;
thick, tapered, and thin. The schematic of a generalized five-layer cross-section model proposed
in this work for the non-homogeneous tapered zone section carryingdropped-out plies is presented

in Fig. 1(b).

To implement the proposed five-layer model using the VAM framework, it is required to know
the thicknesses of normal plies, dropped-out plies, and their corresponding positions measured
from the mid-plane of a cross-section. In the symmetric ply drop model, as indicated in Fig. 1(b),
few notations are used. The notation ‘d;’ represents the total thickness of normal plies present
above the mid-plane, and ‘d,’ denotes the same below the mid-plane. The notation ‘h’ indicates
the total thickness of normal plies present between two dropped-out plies that are adjacent to the
mid-plane on the top and bottom sides of it. The total thicknesses of dropped-out plies above and

belowthe mid-plane are indicated by notations’t;” and ‘t,” respectively. This generalized five-layer



cross-section model of the tapered composite beam can be applied to any ply drop configuration.
The various configurations of ply dropping like external ply drop-off, middle ply drop-off, or
internal ply drop-off are mentioned in a detailed review article on tapered composite beams in

[21].

In the case of symmetric-external ply drop-off, the model will be generalized with three layers due
to the dropping of outer plies adjacent to the top and bottom surfaces of the cross-section.
Similarly, in the case of internal ply drop-off with middle plies dropped configuration, ‘h’ value
will be zero which makes the model generalized with four layers. In this way, this proposed model

can be applied to delaminated sublaminates in the case of delaminated tapered composite beams.
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Fig. 1 Tapered composite beam geometry and modeling details: (a) Tapered beam geometry schematic
showing different zones, (b) Proposed generalized five-layer cross-section model of taper zone, (¢)
Proposed FE model approach, (d) Beam cross-section representing delamination location, (e) schematic of
the sublaminates formation due to Full-width delamination across the thickness of a cross-section, (f)
Generalized ply lay-up sequence in the tapered zone of a beam showing layer numbers

3. Governing equations of free vibration analysis of tapered composite beams

In this section, the governing equations of the natural frequencies of free vibration of a thickness-

tapered composite beam are derived. The geometrical schematic of the composite tapered beamis



shown in Fig. 1(a). The coordinate system (X1,X2,X3) is considered where the length (L), width (B),
and thickness (H) of a beam are taken along X3, X, and x3 coordinates, respectively, as shown in

Fig. 1(a). The limits of coordinates are as: 0 < x; <L, -B/2 < x, <B/2, -H/2 < x3 < H/2.

The proposed approach implementsacoupled framework of VAMand 1D FEM for the estimation
of the cross-sectional stiffness matrix and natural frequencies of composite tapered beams. For the
convenience of FE-based modeling, the span of the thickness-tapered composite beam is divided
into three zones: thick, tapered, and thin zones, as indicated in Fig. 1(a). As the tapered zone is
non-homogeneous due to dropped-out plies, its cross-sectional stiffness estimation is more
complex as compared to that of homogeneous thick/thin zones. Hence, this section presents the
separate derivationsfor 1D cross-sectional stiffness terms of tapered as well as non-tapered zones
of healthy and delaminated beams by using a VAM framework. For the derivation of cross-
sectional stiffness matrices using the VAM framework for thick, tapered, and thin zones of a
tapered beam, each zone is considered as prismatic beam. Out of the three zones, thick and thin
zones are homogeneous prismatic beam sections, whereas the tapered zone is a non-homogeneous
prismatic beam section due to the presence of terminated plies which are modeled as matrix-rich
layers. According to the no. of plies terminated in the tapered beam, the tapered zone is
approximated by modelingitasa stepped section with multiple prismatic non-homogeneous cross-
sections, as shown in Fig. 1(c). The cross-sectional stiffness matrix terms of each zone are derived
individually in the form of closed-form expressions, as elaborately discussed in subsequent

discussions.

Following the VAM approach, detailed in [46], [47] the strain energy formulation for the tapered
composite beam is done by using the geometrical small parameter of its thickness-to-length ratio

(o) and material small parameters of maximum allowable strains (¢). To obtain the 3D strain



energy density expression for a single layer of any zone of a tapered composite beam, a tapered
zone with a generalized ply lay-up of N laminae is considered, as shown in Fig. 1(f). For an
arbitrary kth layer from a stack of generalized tapered zones of abeam, the 3D strain energy density

(UX) is given in eq. (1).
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where, F{-‘j represents the 3D strains of a considered kth lamina, and C{‘j represents the material
stiffness matrix terms of kth lamina. The same expressionof 3D strain energy density ofadropped-
out lamina, which is modeled as a matrix-rich layer, can be written similarly to eq. (1) but by just
replacing the ply material stiffness matrix (Cl-"j) with resin material stiffness matrix terms (Crfj). In
the case of a lamina with an arbitrary ply angle (8), the material stiffness matrix (C{‘j) of a lamina
should be transformed from its material coordinate system to the global coordinate system of a

beam. The transformed material stiffness matrix (C_{j) for kth lamina with an arbitrary ply angle (6)

is given by eq. (2),

=k T k 2

Cj ={T} [Cij J{T} ()
where, T is the transformation matrix for the lamina, and the respective matrix terms of it are

functions of ply angle 6. The total 3D strain energy density of the considered tapered zone of a

beam, as indicated in Fig. 1(f), is given in eq. (3). It is a sum of 3D strain energy densities of



normal plies and that of terminated plies (which are modeled as matrix-rich layers) present in the

stack
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where, U3, denotesthe total 3D strain energy density of the considered tapered zone. By following
the similar procedure given in eg. (1) - eq. (3) for the tapered zone, the 3D strain energy densities
for thick and thin zones of a beam containing only normal plies, can also be calculated. The total

3D strain energy density (Usp ) for a particular zone of a beam is given by eq. (4).
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where C;; represents transformed 3D material stiffness matrix terms for the thick/thin/tapered zone

of a beam in global coordinates, and T';; terms represent respective 3D strains.

The generalized expressions of 3D strain measures (I';;) of a tapered beam zone which are
expressed in terms of 1D strains (Y;;), 1D curvatures (K;), and cross-sectional warpings (w;) are
explicitly presented in [46] and given in eq. (5). These expressions of 3D strains are obtained by
considering the position vectors of any material point on a reference curve of the beam in its
deformedand undeformed states. In the undeformed state, the position vector of a point on the

reference curve of a beam is represented in the form of longitudinal and transverse shear strains.

10



However, in the deformed state, the position vectors are expressed in the form of bending and
twisting curvatures as well as cross-sectional warpings. The deformation gradient tensor relates
the position of a material point on the reference curve of a beam in the initial undeformed
configuration with its respective position in the deformed configuration. It is obtained by
considering the covariant and contravariant bases of deformed and undeformed states of a beam.
Based on the terms of deformation gradient tensor, the 3D strains are obtained as given in eg. (5)
for a particular zone of a tapered beam. The detailed equations and illustrations on these 3D strain

expressions can be referred to from [46].
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where I'y; I';, 33 are longitudinal 3D strains, Y;; represent 1D strains (longitudinal and shear
components), Ky, K, and K3 denote 1D curvatures (bending and twisting), and wy, wy, and w; are
cross-sectional warpings of a particular zone of composite tapered beam. In eqg. (5), the underlined
terms indicate non-linear terms arise due to moderate local rotations. The term h in the eq. (5)

appearsonly inthe case of delaminatedbeams as itrepresents the delamination location introduced

acrossthe thickness of abeam by shiftingthe x; coordinate alongthe thickness direction according

11



to the sublaminate approach which is detailed in [43], [44], [48]. The superscripts 1 and 2 in the
eq. (5) respectively indicate the sublaminate numbers 1 and 2 for a single delamination case
forming two sublaminates as shown in Fig. 1(d) and 1(e). The expression of the term h in eq. (5)

for sublaminate 1 as shown in Fig. 1(d) is given by eq. (6).

’ (6)
F_2

where h; denotesthe delamination locationacross the thickness of abeam measured from the mid-

plane (refer to Fig. 1(d)).

Before implementing the VAM framework, the order analysis is required to be carried out which
helps to decide the appropriate terms that are to be considered in the formulation of strain energy.
In this paper, zeroth order analysis is carried out which suggests the retention of only zeroth order
strain energy terms from the strain energy expression. Accordingto this, fromeq. (5), only the
non-underlined terms are considered in the further formulation. In zeroth order analysis, the order
of warping is ¢H, where € denotes the small strain parameter and H is the small characteristic
dimension of the cross-section (thickness of the beam cross-section). The longitudinal strains

(Y11, Y22,Y33) are of order ¢, transverse shear strains (yy,,v,3,¥13) are of order &, and the

curvatures (Kj, Ky, K3) are of order ¢/H. By following this zeroth order analysis, the reduced
expressions of 3D strains in the form of 1D strains, 1D curvatures, and cross-sectional warping are

expressed in eq. (7).
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By substituting eq. (7) into eq. (4), an expression for the 3D strain energy density of a particular
zone of a tapered composite beam is obtained in the form of 1D strains (Y;;), 1D curvatures (K;),
and cross-sectional warpings (w;). Because of six 1D generalized strain measures and three
warping measures in the strain energy formulation, there are large no. of unknown variables in the
model. To overcome this issue, a set of six constrained equations, collectively included in eq. (8)
are imposed while solving for unknown warpings.

H/2 B/2

[ Wi %, %, )dx,dx, =0.......(1=1,2,3)
—-H/2-B/2 (8)

T [2mtsmn) 2 esx)
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where, w, and wsare in-plane warpings and wy represents out-of-planewarpingfora cross-section

of a beam. The expression of 1D strain energy density (U;p) which is directly derived from 3D

strain energy density (Usp) is given in eq. (9).
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For a particular zone of a tapered composite beam problem, 1D strain energy density (U;p) is

expressed in the form of 1D strain measures as given in eq. (10).
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The closed-form expressions for the cross-sectional stiffnessterms (S;;) of thick, tapered, and thin

zones of the tapered composite beam are extracted from the 1D strain energy density (U;p)

expression given in eq. (10) by using eq. (11).

s - Y (1)
! 07,67,

Here, S;; is a 6 X 6 cross-sectional stiffness matrix of a particular zone of a tapered beam. The

detailed formulation of elements of this matrix for tapered (with matrix-rich plies) and thick/thin
(without matrix-rich plies) zones of a tapered composite beam are elaborately derived and

presented in the next sub-section and Appendix.
3.1 Formulation of the stiffness matrix of the non-tapered zone

At first, the cross-section of the non-tapered zone without matrix-rich plies indicated by thick and
thin zone sections of atapered composite beamis considered for the analysis. The 3D strain energy

density expression for a thick/thin zone of a beam is obtained as given in eq. (4). As per the VAM

14



procedure [43], the variational form of 3D strain energy gives a set of governing equations in the
form of second-order partial differential equations (PDEs) and associated boundary conditions.
These coupled partial differential equations are presented in eq. (12) in which wy, , w,and w; are

the unknown warpings.

o*w o*w
~Css 8x321 ~Ces 8x221 =0
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As it is difficult to solve the coupled PDEs given in eq. (12) for unknown warpings, the solution
polynomials are assumed for these in-plane (w, and w3) and out-of-plane (w;) warpings
separately. Here, for in-plane warpings power series solution polynomials in terms of material
stiffness matrix terms (C; ;) and cross-sectional coordinates x, and xs are assumed. The out-of-plane
warping is obtained by assuminga trigonometric solution polynomial. These assumed warping
solutions for non-tapered (thick and thin zones) cross-sections are mentioned in the Appendix
(referto eq. (As)). The accuracy of the choice of the warping solutions is verified by checking if

they satisfy the PDEs obtained earlier.

After substituting the assumed warping solutions in 3D strain energy density expression, the
reduced 1D strain energy density (U;p) is obtained as discussed in eq, (9), and eq. (10).
Corresponding to the assumed zeroth order warping solutions, the zeroth order cross-sectional
stiffness matrix is derived by taking the second derivative of the 1D strain energy density
concerning corresponding 1D strain energy measures. The stiffness matrix terms represented by

S{}H in eq. (13) are elaborately given in Appendix (refer to eq. (A;)) for a non-tapered zone cross-

15



section. Here, the superscript nH is used to denote the stiffness terms of a healthy non-tapered
cross-section (healthy thick/thin sections of a tapered composite beam). The off-diagonal stiffness

terms of matrix S}}H are derived to be zero as the proposed formulation is derived for thick and

thin zone sections of symmetric lay-up.
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3.2 Formulation of the stiffness matrix of the tapered zone

In this sub-section, the stiffness matrix for the tapered zone of a beam, which contains normal
layers along with the dropped-out plies, which are modeled as matrix-rich layers, is derived using
VAM. Due to the non-homogeneity of the tapered zone, different warping solutions for different
layers (matrix-rich or non-matrix-rich) are assumed. To make the model simpler, a set of
generalized warping solutions individually for matrix-rich and non-matrix-rich layers is assumed
in this proposed work. These assumed generalized solutions for three warpings are presented in
Appendix (refer Appendix eq. Ag). To accurately assume these warping solutions for a particular
layer or group of layers, a generalized five-layer cross-section model is implemented, which is

shown in Fig. 1(b) and discussed elaborately in section 2.

The procedure of obtaining coupled PDEs and boundary conditions by implementing variational
formulation is the same as that mentioned for the non-tapered zone in the earlier sub-section. The

stiffness terms S{;f” presented in eq. (14) are obtained by taking the second derivative of the 1D

strain energy density of a tapered zone of a beam concerning corresponding 1D strain measures as

16



given in eq. (11). The derived stiffness matrix terms (S{;?H) are elaborately expressed in eg. (Ay)
of Appendix for the tapered zone of a beam. Here superscript mH stands for healthy cross-section
with matrix-rich plies (tapered zone). Itis observed that along with diagonal stiffness terms, off-
diagonal stiffness terms like STt and S72¥ appear in the stiffness matrix of the tapered zone. This
is due to the presence of structural couplings for a particular lay-up of a tapered zone of the beam.
Also, these terms arise due to non-homogeneity and asymmetry of the tapered zone due to

terminated plies.
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3.3 Stiffness matrix of a delaminated tapered beam

After the determination of healthy cross-sectional stiffness matrix terms of a composite tapered
beam, the damaged stiffness matrix terms of delaminated tapered beams are derived in this sub-
section. The estimation of cross-sectional stiffness terms of delaminated beams is done by
following the sublaminate approach as mentioned in [44]. Two separate sublaminates formed due
to full-width delamination are shown in Fig. 1(f). The 1D strain energy density for two sub-

laminates is given by eq. (15-a) and eq. (15-b).

17



Xq B/2 (15-a)
UlD(l) = I I U3DdX2dX3

Xap —B/2

X3t B/2 (l5-b)
U,? = J' j U, dx,dx,

Xapz —BI2

where superscripts (1) and (2) indicate the respective strain energy densities for sublimates 1 and
2, respectively. The terms x 33, and x5, denotethe positions of the bottommost layer and the topmost
layer for the first sublaminate, while the notations x5, and x3;, indicate the respective terms for
sub-laminate 2. The proposed customized five-layer cross-section model is utilized for
determining cross-sectional stiffnesses of delaminated sublaminates by using the VAM
framework. Eq. (16) is used to obtain the cross-sectional stiffness terms from 1D strain energy
expression for individual sub-laminates, which are clubbed together to obtain cross-sectional
stiffness matrix terms of the delaminated tapered composite beam.

o_ U o _ UG (16)
ij 1 j
0y:07 ; 0y,07 ;

S
For the case of partial width delamination, the strain energy density expression is to be written for
small sub-intervals across the width due to delamination. The strain energy density for the
delaminated (partial width) beam s given by eq. (17) in which superscripts (1) and (2) denote sub-

laminate numbers, x,; and x,,. indicate the locations of delamination from the origin towards the

left and right sides across the width.

H/2 =Xy H/2 =X, H/2 B/2 (17)
U, = I juégdxzdx3+ I IUédezdx3+ J juélD)dxzdx3+...
—H/2-B/2 —H/2 =Xy “HI2 Xy,
H/2 =X H/2 X H/2 B/2
J' J'Us‘é)dxzdstr J. Iuégdxzdx3+ I J'Us(lgdxzdx3

—H/2 —xy, —H/2 -y —H/2 Xy,
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The stiffness terms of delaminated sections are derived analytically by following the same
approach as mentioned in the previous sections for determining the stiffness of healthy cross-
sections. The delaminated cross-sectional stiffness terms (S™P) are given in the Appendix in eq.

(As), where superscript mD refers to the delaminated tapered section containing matrix-rich plies.
3.4 Eigenvalue problem formulation for natural frequencies of free vibration

For the reduced one-dimensional FE beam model, a generalized beam element with two nodes
havingsix degrees of freedom pernode is implemented. These six DOFs include three translations,
two rotations, and one twist. The natural frequency of freevibration of the tapered composite beam

is given by characteristic eq. (18) [44].
[[K]-[M]o? Jiu} <0 (49

where [K]and [M] are the global stiffness and mass matrices respectively of a tapered composite
beam which are calculated by an assemblage of individual element stiffness matrices and
individual mass matrices of thick, tapered, and thin zonesections. Ineq. (18), {u} denotes the nodal

degree of freedom vector, and » denotes the natural frequency vector of free vibration.

The present work also addresses the uncertainties in micro-mechanical properties, because of
which the natural frequencies of a tapered composite beam are stochastic. In this work, to account
for uncertainties in fiber and matrix properties of tapered composite beams at the micro-scale,
random virtual samples of each property are generated using Monte Carlo Simulations. To denote
the uncertainty of a particular parameter, a notation (S) is used in association with the uncertain
parameter. For example, the uncertain property matrix at micro-scale is indicated as p(S) and is

given in eq. (19).
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P(S)={E () Ex1 (8). G (8) v (5).En(8),8u (8):van () Vi () (19)
Ineq. (19), all the micro-properties of fiber and matrix denoted by subscripts fand m respectively
are uncertain, along with uncertainty in volume fraction (Vs) as well. Uncertainties at the micro-
scale are propagated to the macro-scale and eventually, material stiffness matrix terms are
stochastic which can be denoted by Cl-j(_S). Due to uncertainties in the material stiffness matrix,
the cross-sectional stiffness of the tapered composite beam is stochastic. The deterministic
eigenvalue problem formulation for natural frequency expressed in characteristic eq. (18) is
extended further to take uncertain inputs and the corresponding equation for stochastic frequencies

is formulated as given in eg. (20).

[[K]-[M,]e? [{u} =0 (20)

where [K,] ,[M], w, represent stochastic global stiffness matrix, stochastic mass matrix, and
stochastic natural frequency vector, respectively. Stochasticity in global stiffness matrix ([K,]) is
due to uncertainty in the cross-sectional stiffness matrix, as discussed earlier. The stochasticity in

the mass matrix ([M,]) is due to consideration of uncertainty in mass densities of fiber (o5 (S)) and

matrix (pn, (S)) of a composite tapered beam. The graphical representation highlighting the
stochastic analysis scheme proposed in this work in the form of a flow chart for analyzing the

dynamic response of a tapered composite beam is presented in Fig. 2.
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Fig. 2 Proposed stochastic dynamic analysis scheme for a tapered composite beam

4. Results and discussions

In this section, we present the free vibration response of composite tapered beams, which are
modeled by dropping out the internal plies. This response is presented in the form of deterministic
and stochastic results of natural frequencies. The implementation of a coupled computational
framework based on a combination of VAM-based one-dimensional FE model is proposed here to
estimate the natural frequencies of the healthy and delaminated tapered composite beams. First,
the validation of the proposed model is carried outby comparingthe natural frequencies of healthy
and delaminated tapered composite beams with the results available in the literature [19], [22].
After the validation study, the proposed deterministic model is extended to the development of the

stochastic dynamic analysis framework for the composite tapered beams.

4.1 Validation study
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In this sub-section, the deterministic dynamic response of healthy and delaminated composite

tapered beams measured in the form of natural frequencies is validated with the experimental and

analytical results reported in the literature.

Table 1 Material and geometry details of tapered composite beams

. Arumugam et Ghaffari et
Attribute al.[19] al.[22]
Material details
Longitudinal modulus (E1) 31.38 GPa 113.9 GPa
Transverse modulus (Ez) 7.15 GPa 7.9856 GPa
Poisson’s ratio 0.276 0.288
In-plane shear modulus (G12) 2.87 GPa 3.138 GPa
Mass density 1745 kg/m3 1480 kg/m3
Geometry details
Lay-up of thick section [0/90]ss [0/90]9s
Lay-up of thin section [0/90]4s [0/90]3s
No. of dropped-out plies 16 24
Length of a beam (L) 300 mm 129 mm
Length of thick section 100 mm 50 mm
Length of thin section 100 mm 50 mm
Width (w) 50 mm 15 mm
Ply thickness (tp) 0.19 mm 0.125 mm

=)
=1

[s=] 17 = w
S o o o
T T

First natural frequency (Hz)

,_
(=1
T

=1

1 1.25 1.67
Width ratio

Experimental (Anand et al.)
/I Analytical-HSDT (Anand et al.)
Il Present model-1D FEM

Fig. 3 Validation of tapered composite beams with experimental and 3D FEM results

4.1.1 Validation for healthy tapered composite beam model

In the deterministic analysis of a healthy composite tapered beam, at first, the validation study of

a proposed model is carried out by comparing the fundamental natural frequency results with

experimental investigations and analytical results presented by Arumugam et al. [15]. The details
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of the geometry and material properties for the doubly tapered (tapering effect along width and
thickness directions) glass-epoxy laminated composite beam are given in Table 1 (Arumugam et
al.[19]). The fundamental natural frequency of free vibration under clamped-free boundary
conditions and with three different width ratios are obtained by using the proposed model, and

results are compared with reported results [19] as shown in Fig. 3.

The comparison shows very close agreement (within 10% deviations) of the fundamental natural
frequencies obtained fromthe proposed model and published experimental as well as analytical
results presented in [19]. The frequencies reported from the experimental work are relatively
higher compared to the results from the proposed model. For three different width ratios mentioned
in Fig. 3, the frequenciesreportedfrom the experimental work are 4.42%, 4.76%, and 6.49% higher
as compared to fundamental frequency values from the proposed model. It is worthwhile to note
from Fig. 3 that the percentage deviation in the fundamental natural frequencies obtained from the
proposed model and reported analytical model, which also considers the transverse shear

deformations, is within 5% for the range of width ratios investigated in the study.

After this validation, another geometry of a tapered composite beam analyzed by Ghaffari et al.
[22] in their vibration-based damage detection work is considered for further results of
deterministic natural frequencies. The effect of delamination on the natural frequencies of a
tapered composite beam is investigated in this work. The geometry and material property details
of this tapered composite beam are mentioned in Table 1 (Ghaffari et al. [22]). The ply drop
configuration of ‘D type’ as suggested in [22] is considered for modeling a tapering section with
24 dropped-out plies. The natural frequency results are compared with published results in [22]
which are based on higher-order FEM formulations and also with the 3D FE model of the tapered
composite beam executed in thiswork. The deterministic dynamic analysis results highlighting the
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first three bending natural frequencies of a cantilever tapered composite beam are shown in Fig. 4
(a). The natural frequencies obtained from the proposed model by considering and ignoring

transverse shear deformations across the thickness of the beam are included in Fig. 4 (a) for

comparison.
4000 . : : 3000 ——————
N Ghaffari et al. ™ Ghaffari et ‘Ttl'
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Fig. 4 Validation of deterministic natural frequency results of (a) healthy tapered composite beam
(b) delaminated tapered composite beam

The natural frequencies of the firstthree bendingmodes obtained from the proposed model without
the consideration of the transverse shear deformations in the model formulation indicate slightly
higher values than the frequencies from the proposed model with the consideration of the shear
deformations. The ignorance of shear deformations across the thickness of a beam leads to over-
estimation of natural frequencies. However, the proposed model with consideration of transverse
shear deformations shows close agreements of the frequency values with reported data as shown
in Fig. 4(a). These results show fewer deviations, around 2.22%, 5.56%, and 6.51%, respectively,

for the first three flexural natural frequencies from the published results.

The validity of these results is also checked with the modal response obtained from the 3D FEM
of the tapered composite beam in this work. A 3D FE model is developed by using the Soild185

element in ANSYS (total no. of elements: 54720). The convergence of the 3D FE model is
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checked. In the 3D FE model, eight plies are dropped at one step of the tapered zone, and in this
way, three steps are modeled to obtain the effect of 24 dropped-out plies. This ply-dropping
sequence is in line with the ply-drop configuration of “D type” as mentioned in [22]. The dropped-
out plies in the tapered section are modeled as matrix-rich layers; the corresponding epoxy
properties are taken from [22]. The fixed-free boundary condition is modeled by constraining one
end of the beam in all degrees of freedom and keepinganotherend free. The comparison of natural
frequencies from 3D FEM and proposed 1D FEM is presented in Fig. 4 (a) itself. It shows very
good quantitative agreement between results, as the percentage deviation is within 7% for the first

three flexural natural frequencies.

4.1.2 Validation for delaminated tapered beam model

After the validation of the proposed model for a healthy tapered composite beam, it is extended to
investigate the influence of delamination damage. The combined effect of thickness tapering and
delamination damage will show notable reductions in the natural frequencies of a tapered
composite beam [49], [50]. For analyzing this delamination influence, the same tapered composite
beam geometry, which was utilized earlier for healthy conditions, is considered, and its results are
compared with the published natural frequency results reported in [22]. The tapered beam is
analyzed for the clamped-free boundary condition. The full-width delamination is introduced
partially across the length of the beam of size 40 mm. The delamination is present in the tapered
zone, and it is extended towards the thin zone of a beam at the first interface from the top lamina.
This delamination configuration is assumed, as mentioned in [22], for a direct comparison of the
natural frequency results. The comparison of the first three flexural natural frequencies of a

delaminated tapered composite beam with published results and 3D FEM results is shown in Fig.
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4(b). For the delaminated beam, the natural frequencies from the proposed model considering and

ignoring the shear effect are presented in Fig. 4(b) for comparison.

It is observed that the proposed model (with shear) gives minor deviations (below 7%) for the first
three natural frequenciesas compared to the frequency values reported in [22]. The 3D FE model
is also developed for a delaminated composite tapered beam on ANSYS by following the same
procedure as described for a healthy beam in earlier discussions. The interfacial delamination of
size 40 mm along the full length of the tapered zone and extending towards the partial length of
the thin zone is modeled in ANSYS by disconnecting the respective nodes in that location at the
first interface from the top lamina. The 3D FEM results for the first three flexural natural
frequencies indicate respectively 0.56%, 6.21%, and 5.13% deviations from the published results
in [22]. This shows a very good agreement between the proposed 1D FE model and the developed
3D FE model for a delaminated beam as well. After this model validation, the stochastic dynamic
analysis of composite tapered beams is carried out to address the stochasticity in natural
frequencies due to uncertainties in material properties which will help to showcase more realistic

dynamic behavior of tapered composite laminates.

4.2 Stochastic analysis of tapered composite beams

This sub-section presents the stochastic response for natural frequencies of tapered composite
beams under the influence of material property uncertainties at various scales. The present work
captures the scatter in the micromechanical properties, which include mass densities, elastic
constants, Poisson’s ratios, and volume fractions measured at constituent levels. The affected
dynamic performance of the tapered composite beams due to these uncertainties is presented in
the form of stochastic distributions of natural frequencies based on a probabilistic modeling

approach. The stochastic natural frequency results are presented for various healthy and
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delaminated tapered composite beam cases. In all the stochastic simulations considered in this
work, a clamped-free boundary condition is implemented. The micro-mechanical properties of the
tapered composite beam are considered as continuous uncertain variables. A scatter of 5% and a
sample size of 1000 are assumed in all the stochastic simulation studies presented here. The mean
values of uncertain material inputs at the micro-scale, which are assumed to be normally
distributed, are mentioned in Table 2, and the geometry details of the beam are taken from Table
1 (Ghaffari et al.[22]). The choice of normal distribution fit for all the micro-properties of tapered
composite beams is assumed by referring to probabilistic modeling approaches for composite

laminates reported in [51], [52].

Table 2 Mean values of uncertain material properties

Uncertain material properties \I\/A;?JZ
Longitudinal modulus of fiber (E1r) 189 GPa
Transverse modulus of fiber (E2r) 30 GPa
Shear modulus of fiber(Gi2s) 120 GPa
Elastic modulus of matrix (Em) 3.93 GPa
Shear modulus of matrix (Gm) 1.034 GPa
Poisson’s ratio for fiber 0.3
Poisson’s ratio for matrix 0.37
Mass density for fiber 1800 kg/m3
Mass density for matrix 1100 kg/m?
Fiber volume fraction 0.62

4.2.1 Stochastic dynamic response of healthy composite tapered beams

In this sub-section, the influence of uncertainties in the micromechanical properties of a healthy
tapered composite beam on the first three flexural frequencies is addressed. The source-induced

uncertainties are quantified by analyzing the stochastic distributions of natural frequency outputs
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of the tapered composite beams. Hereafter, in this paper, the first, second, andthird flexural natural

frequencies are presented and abbreviated as FNF, SNF, and TNF, respectively.
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Fig. 5 Stochastic distribution of first three flexural natural frequencies of the tapered composite
beam (a) FNF (389.90, 12.51) (b) SNF (1047.6,47.13) (c) TNF (3101.61,84.20)

In the caption of Fig. 5(a), Fig. 5(b), and Fig. 5(c), the first value mentioned in the bracket indicates
the mean value, and the second indicates the standard deviation of PDF plots of natural frequencies
The stochastic distribution data of the first three natural frequencies is shown in Fig. 5(a), 5(b),
and 5(c), respectively, in histogram form. Also, the best-fit and normal-fit curves for this
distributed data are indicated in the same Fig. 5 for the first three flexural natural frequencies. It is
observed from Fig. 5(a), 5(b), and 5(c) that the normally distributed fit curve for the stochastic
frequency data closely overlaps with the best-fit curve, which indicates the close matching of their

statistical variables. To check the accuracy of the normal distribution fit to the distributed natural
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frequency data, an estimation of the R-squared value for the fits of FNF, SNF, and TNF is carried
out. It gives a value of 0.9015, 0.9040, and 0.8745 for FNF, SNF, and TNF, respectively. These
values, which are close to 1 indicate betterness of the fits. It illustrates that FNF, SNF, and TNF

are normally distributed.

The close observation of the PDF plots shown in Fig. 5(a), 5(b), and 5(c) indicate considerable
reductions in PDF values corresponding to peak points of normally distributed PDF plots of SNF
and TNF as compared to FNF. Further observation on the response bound indicates a 63.72%
increase in the standard deviation of SNF distribution as compared to that of FNF. The same
observation for the standard deviation values of TNF shows a 59 % increase as compared to SNF.
The collective interpretation of these reported observations indicates the increased influence of
uncertainties in material properties for higher modes which is reflected in the form of a wider

spread of natural frequencies.

The influence of length ratio, which is measured by taking the ratio of the length of a thick section
to the length of a thin section of a tapered composite beam, is found to be affecting the natural
frequency distributions. Here the influence of three different length ratios of values 0.66, 1, and
1.5 on stochastic distributions of the first three flexural frequenciesare analyzed and presented.
Fig. 6 (a), 6(b), and 6(c), respectively, indicate the PDF plots of the first three flexural frequencies

for different length ratios.
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Fig. 6 Effect of length ratio on stochastic distribution of first three flexural natural frequencies
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Itis observed that for the increase in the length ratio of a tapered composite beam from 0.66 to 1.5,
almost 21.47%, 29.45%, and 15.58% increments are reported in the mean frequencies of FNF,
SNF, and TNF, respectively. Also, the response bound is found to be increased by almost 30-35%.
This indicates that the uncertainties in material properties show a dominating influence for the

tapered beams with higher length ratios due to observed wider response bounds.

Along with the length ratio, the thickness ratio is also an equally important geometrical parameter
in the case of tapered composite beams. Fig. 7(a), 7(b), and 7(c), respectively, present the PDF
plots for the first three flexural frequencies for three different thickness ratios. The thickness ratio
of a tapered composite beam is defined as the ratio of the thickness of a thick section to the

thickness of a thin section. It depends on the number of plies dropped in the tapered zone and
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ultimately reflects the measure of the taper angle. Three thickness ratios of values 2,3, and 4
obtained due to dropping of 8,16, and 24 plies, respectively, are considered for the stochastic
analysis. This consideration of thickness ratios is based on the correlation of taper angle with the

no. of dropped-out plies mentioned in [13] for the composite tapered beam.
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Fig. 7 Effectof thickness ratio on stochastic distribution of firstthree flexural frequencies (a) FNF
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It is observed from PDF plots of the first three natural frequencies that, along with response
bounds, PDF plots also indicate considerable reductions in mean values of natural frequencies for
increased thickness ratios. From Fig. 7(a), it is calculated that the reduction in the response bound
of FNF for an increased thickness ratio value from 2 to 3 is around 13.21%. Whereas this decrease
in response bound of FNF for increased thickness ratio from 3 to 4 is almost 18%. The close
observation of probability density function values of FNF, SNF, and TNF stochastic plots also

indicates decrements in the values for decreased thickness ratios. These observations interpret that
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the thickness ratio of tapered composite beams which signifies the tapered angle closely affects
the stochastic distributions of natural frequencies as considerable changes in their statistical

parameters are reported.

4.2.2 Stochastic response of a delaminated tapered composite beam

The stochastic natural frequencies of a tapered composite beam with embedded full width and
partial length delamination introduced acrossthe length of a beam of size 30 mm (almost 23% of
total length) in the tapered zone are analyzed. The coupled influence of uncertainties in micro-
properties and delamination damage conditions on stochastic natural frequencies of a composite
tapered beam are presented in the form of PDF plots as shown in Fig. 8(a), 8(b), and 8(c) for the
first three flexural frequencies respectively. The influence of extended delamination size of 23%
of length in the thin zone of a beam, along with delamination presence in the tapered zone as well,
Is analyzed. The PDF plots of this larger delamination size of 46% of the length (23% in tapered

zone +23% in thin zone) are also captured in the same Fig. 8.

The general observation fromall the PDF plots presented for the first three flexural frequencies in
Fig. 8(a), 8(b), and 8(c), respectively, is that, as the delamination size increases, there are
decrements in the mean natural frequency values and the responsebound of stochastic distributions
of natural frequencies for a tapered composite beam. For the considered delamination
configuration, the reduction in the mean value of FNF for a 23% delaminated beam is found to be
almost22.58% as comparedto a healthy beam. The correspondingreductionin mean FNFfor 46%
delaminated beam as compared to that of 23% delaminated beam is found to be drastically lesser
(almost 3.13%). For the case of 23% delamination, the mean value of SNF shows almost 11.37%

reduction, and thatof TNF shows a 15.26% reduction as compared to the healthy frequency values
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as observed from Fig. 8(b) and 8(c), respectively. The trend of standard deviations of the PDF
plots addressed in Fig. 8(a), 8(b), and 8(c) shows almost 35% reduction in the case of FNF, and
15-20% reductions are reported for SNF and TNF for delaminated beams as compared to healthy
beams. These statistical observations demonstrate the dominance of delamination damage over
uncertainties addressed at a micro level in which the delamination occurred in a tapered zone of a

beam is a more sensitive location as that contributes more degradation in the natural frequencies.
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An effect of the degree of stochasticity (DOS) which indicates the amount of scatter in the
uncertain inputs on the stochastic distribution of the first flexural natural frequency for healthy and

23% delaminated cases are reported in Fig. 9(a) and 9(b) respectively in the form of PDF plots. A

case of 23% delamination considered here represents the influence of delamination in the tapered
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zone only. There are four simulations performed by varying the DOS percentage as: (i) case-1:
DOS of 10% in micro-properties (ii) case-2: DOS of 20% in micro-properties (ii) case-3: DOS of

10% in macro-properties (iv) case-4: DOS of 20% in macro-properties.

4.2.3 Influence of degree of stochasticity in uncertain inputs on the stochastic natural

frequency outputs of a healthy and delaminated tapered composite beam
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Fig. 9 Effect of degree of stochasticity in micro and macro mechanical properties on PDF plots of first
natural frequency (a) Healthy (b) 23% delamination in the tapered zone

It is observed from the PDF plots that as the DOS increases from 10% to 20%, there is an increase
in the response bounds of the plots and a decrease in the probability density function values for all
the DOS cases, as mentioned earlier. By analyzing the statistical parameters of the PDF plot for
healthy beam case (Fig. 9(a)), almost 52% increment in the standard deviations and 50-55%
decrease in the probability density function values are reported when DOS in micro-properties is
changed from 10% to 20%. An increase in DOS of macro-properties from 10% to 20% reports
almost a 48% increase in stochastic bounds of PDF plots and more than 40% decrease in
probability density function values for the first flexural frequency distribution. These notable
observations interpret that multi-scale uncertainties addressed at micro and macro scales strongly

influence the stochastic distributions of natural frequencies.
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The close observation of the statistical parameters of the PDF plot of the first natural frequency
for the delaminated beam, as shown in Fig. 9(b), indicates more than 30% reductions in response
bounds for all DOS cases as compared to response bounds observed for healthy beam in Fig. 9(a).
Also, the probability density function values show more than 30% increments than that of healthy
frequency distribution values. These accountable observations illustrate that the influence of
delamination damage dominates over uncertainties in the material properties of the beam. This
dominance is more pronounced here due to the more sensitive location of delamination in the
tapered zone. A similar trend of the statistical parameters is observed for the second and third
natural frequencies of healthy and delaminated tapered composite beams for all the DOS cases
(Refer to Fig. S1 in the supplementary material). The influence of uncertainties is more
pronounced for healthy beamcases. Hence, to understand the mostdominatinguncertain input that
strongly affects the frequency distribution output, a sensitivity analysis is carried out for a healthy

tapered composite beam.

4.3 Sensitivity analysis

The quantification of uncertainties is carried out in this subsection for a healthy beam case based
on the sensitivity analysis studies. First, local sensitivity indices (LSI) are calculated by
considering the variation of one uncertain parameter at a time. In the sensitivity analysis studies,
the same composite tapered beam configuration is used as that mentioned in the previous section.
Fig.10 (a) shows the LSI plot obtained for the first six modes of a tapered composite beam for
various important uncertain variables. It is observed from Fig. 10(a) that the micro-scale uncertain
variable of volume fraction and macro-scale variable of the mass density of lamina are highly
sensitive which contributes to more variations in all the six natural frequencies of the first six

modes. Fig. 10 (a) also indicates higher sensitivity of uncertain shear modulus of the matrix that
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contributes to notable variation of torsional frequency (mode-4), whereas uncertainty in elastic
modulus of the matrix shows higher sensitivity indices for initial bending and torsion modes
(mode-1,2,3,4). Thisdiscussion illustrates that the uncertainty in volume fractions, mass densities
of a lamina, elastic modulus of the matrix, and shear modulus of the matrix are highly sensitive
which contribute to more variations in the natural frequency outputs. Hence for further global

sensitivity analysis (GSA) study, only these variables are taken into consideration.

The global sensitivity index (GSI) calculations are carried out as per the variance-based sensitivity
analysis as mentioned in [53]. The most important advantage of GSA is that it addresses
simultaneous variations in the uncertain parameters of the system [54]. A variance-based
formulation for first and total order sensitivity indices is referred to from Ref. [55]. In the GSA,
first, the sensitivities of fiber and matrix properties of a tapered composite beam are calculated
based on a first-order sensitivity index plot as indicated in Fig. 10(b). This first-order sensitivity
analysis is carried out by varying all fiber properties at a time and keeping all matrix properties
constant in one iteration. Whereas, in another iteration, all fiber properties are kept constant, and
all matrix properties are varied. Though it shows higher sensitivities of uncertain fiber properties
over matrix properties, the Sl values of uncertain matrix properties are also observed to be
accountable fromFig. 10(b). This observation regarding matrix properties is obvious in the case
of composite tapered beams because the dropped-out plies of the tapered beams are modeled by

the matrix/resin layers.

The first-order and total-order GSI plots for four important uncertain variables obtained from
earlier LSA are presented in Fig. 10(c) for the first flexural frequency. For the calculations of first
and total order sensitivity indices, the variance-based formulation reported in [53] isreferred. GSA
plotof these variables interprets that the elastic modulus of the matrix is the mostsensitive variable

36



as it gives higher first and total order indices indicating the higher fractional contribution of this
variable towards variance in frequency outputs of the tapered composite beam. The uncertainty in
the mass density of lamina also exhibits notable first and total order Sl values indicating its higher
sensitivity. However, the first and total order Sl values of the variable volume fraction and shear
modulus of the matrix are considerably lower. It indicates that these variables interact strongly
with other uncertain variables and hence their individual uncertainty is less sensitive than their
interacting capability with other uncertain parameters. The local and global sensitivity analysis
results presented in this section help to understand the most important uncertain parameters from
various scales of material properties of tapered composite beams whichare dominantly responsible

for stochastic variation in natural frequencies.
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Fig. 10 Sensitivity index plots of for tapered beam (a) local sensitivity index plot for individual
uncertainty in various variables (b) RCOV values of uncertain fiber and uncertainmatrix properties
(c) Global sensitivity index plot for important uncertain variables
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4.4 Implementation of the proposed model to realistic application: flexbeam structures

In this sub-section, additional dynamic analysis results are showcased for one of the actual
applications of tapered composite beams as a flexbeam structure in a helicopter rotorcraft
assembly. This realistic application is identified from the Ref. [1]. In this work, the authors have
investigated interlaminar stresses at ply drop locations which eventually lead to potential sites of
delamination occurrences. Hence, to dynamically analyze sucharealistic example by the proposed
model, the same flexbeamis consideredto portray its deterministic and stochastic results of natural
frequencies for healthy and delaminated conditions. The material and geometry details for this
flexbeam are taken from [1] and are mentioned in Table 3 (Fish et al. [1]). The cantilever boundary

condition is assumed for the determination of natural frequencies.

Table 3 Material and geometry attributes of rotor hub flexbeams

Material property details

Attribute Fish et al. [1] Murri et al. [56]
Longitudinal modulus (E1) 44.1 GPa 131.1 GPa
Transverse modulus (Ez) 12.4 GPa 5.90 GPa
Poisson’s ratio 0.28 0.361
In-plane shear modulus (G12) 4.48 GPa 4.24 GPa
Mass density 1600 kg/m3 1480 kg/m3

Geometrical attributes details
Lay-up of thick section [0]2¢ [09/(45/-45)3/(45/-45)2]s
Lay-up of thin section [0]16 [09/(45/-45)]s
No. of dropped-out plies 12 12
Length of a beam (L) 184 mm 254 mm
Length of thick section 96.38 mm 84.66 mm
Length of thin section 61.33 mm 84.66 mm
Width (w) 21 mm 25.4 mm
Ply thickness (tp) 0.216 mm 0.203 mm

The deterministic natural frequency results obtained from proposed 1D FE and 3D FE models for
the first three flexural modes of healthy and delaminated flexbeams are tabulated in Table 4. For

damaged conditions, an embedded, full-width delamination is assumed at the midplane of the
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beam. Here, the midplane location is considered for delamination damage as it exhibits higher
degradations in the cross-sectional stiffness matrix of composite laminates. Along the span, a
partially introduced delamination of size 15% of the length of a beam is considered in the tapered
zone. The ply drop sequence is modeled by referring to the “overlapped-dispersed” taper model
configuration as mentioned in [1]. The proposed 1D FE model results are validated with the 3D
FE model of the flexbeam developed in this work on ANSYS. The procedure of 3D model
development is the same as that discussed in the previous sub-section 4.1.1 for another tapered
beam configuration. The comparison of these results obtained for a healthy and 15% delaminated
beam shows a very close agreement between the reduced 1D FE model values and the 3D FE
model. The deviations between the 1D FE model and 3D FEM results are within 10% for the first

three flexural natural frequencies of healthy as well as delaminated beams.

Table 4 Deterministic natural frequencies of first three flexural modes of rotor-hub
flexbeam for healthy and delaminated conditions (flexbeam with 0° plies)

Frequency Healthy Healthy 15% 15%
modes beam-1D beam- delamination- delamination-
FEM 3D FEM 1D FEM 3D FEM
Mode-1 258.24 237.39 227.72 225.15
Mode-2 1061.04 974.94 921.99 913.92
Mode-3 2846.84 2619.6 2439.29 2411

After observing accountable degradations in fundamental natural frequencies (around 12-15%) of
a realistic delaminated flexbeam for a very small size delamination (15% of the length), the
combined influence of delamination with associated source uncertainties of the flexbeam is
analyzed. By referring to the sensitivity analysis results reported earlier in sub-section 4.3 for the
composite tapered beam only those sensitive parameters are considered as uncertain inputs for the
stochastic simulation of a flexbeam. These sensitive parameters are volume fraction (micro-scale),
mass density (macro-scale), elastic modulus of matrix (micro-scale), and shear modulus of matrix
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(micro-scale). A scatter of 10% isassumed in all these uncertaininputs, and stochastic distributions
of the first three flexural frequencies are presented in the form of PDF plots in Fig. 11 (a), (b), and
(c), respectively. In the stochastic simulation, an influence of increased delamination size, which

is extended in a thin zone of the beam (30% and 45% of the spans), is also analyzed.
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Fig. 11 Stochastic distributions of natural frequencies of a flexbeam example (a) first flexural
mode, (b) second flexural mode, (c) third flexural mode

The observations of these stochastic results indicate comparatively higher degradations in mean
natural frequencies of the second flexural mode, which is the major axis bending mode for the
considered flexbeam as indicated in Fig. 11(b). This observation is obvious because a drastic
reduction in major axis bending stiffness is reported as a result of the combined influence of the

tapering effect and delamination damage degradation. The normalized stiffness degradation plots
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for healthy and delaminated flexbeamsare provided in the supplementary material (refer to Fig.
S2 (a) and S2(b)). Fig. 11(a) and 11(c) represent the stochastic distributions of natural frequencies
corresponding to minor axis bending. These two plots comparatively show lesser deviations in
mean values and response bounds of natural frequencies for healthy and delaminated conditions

of flexbeams.

Additionally, itis interesting to note from Fig. 11(a), 11(b), and 11(c) that the increase in the size
of delamination in the thin zone minorly affects the stochastic distributions of natural frequencies.
This observation is made by looking at very minor deviations in standard deviation and mean

values for 30% and 45% delamination sizes.
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Fig. 12 Deterministic and stochastic natural frequency results of angle-ply flexbeam with healthy
and delaminated configurations (a) mode 1 deterministic (b) mode 2 deterministic (¢) mode 3
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mode 2 (f) stochastic frequency distribution mode 3

One more realistic application of the tapered composite beam reported in the literature as a rotor-
hub flexbeam is addressed by Murri et al.[56]. The authors have tested the probable delamination
sites in the case of tapered composite laminates of Graphite epoxy material with internal ply drops
at NASA Langley Research Center. The same tapered composite beam configuration is considered
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for dynamic analysis by implementing the VAM-based proposed model in this work. The reason
for selecting this application of tapered composite beam lies in its specialized angle ply lay-up
with 45%and -459 plies, and a group of 0° plies is present as a belt plies group. The geometry, lay-
up, and material property details of this flexbeam are given in Table 3 (Murri et al. [56]). For the

estimation of natural frequencies, a clamped-free boundary condition is considered.

The first three deterministic natural frequencies for healthy and delaminated configurations of the
angle-ply flexbeam are presented in Fig. 12 (a), 12(b), and 12(c) respectively. In Fig. 12 (a), 12(b),
and 12(c), cases 1, 2, 3 represent the delamination cases. Case-1 represents delamination in core
plies of tapered zone, case-2 indicates delamination in a dropped ply and normal ply of the tapered
zone, and case-3 shows delamination between two dropped plies of the tapered zone. These cases
are taken concerning full-width embedded delamination introduced partially across the span of a
beam. In all the cases, delamination is introduced between the 459 and -450 plies, and the partial
delamination size across the beam span is 33.33% of the total length of the beam, which represents

the occurrence of delamination in the tapered zone only.

It is observed from Fig. 12(a), 12(b), and 12(c) that up to 30% degradation in the natural
frequencies of the first two modes and 48% degradation in the third frequency mode is reported
for case-3 delamination (the delamination presence in core plies between 45° and -45° laminae).
For case 2, where the delamination is present between one dropped and one normal ply, almost the
same trend is observed in the degradation of the first three natural frequencies. Comparatively
lesser but still notable degradations in the first three natural frequenciesare observed for case-1,
where delamination is introduced slightly away from the mid-plane and present between two
dropped-out plies. The maximum degradation in the first three natural frequencies is observed for
case-3 delamination as it is the location in the core plies close to the midplane. Third natural
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frequencies for all delamination cases show the major degradation in the values (torsional mode
of vibration). This is because the combined influence of delamination and tapering effect is found
to degrade the torsional stiffness by almost 62% for case 3 delamination as compared to healthy
and non-tapered sections. The same degradation in the flexural stiffness is found to be almost
54.16% for most sensitive case-3 delamination. This degradation in flexural stiffness is reflected
in the decrements of the first two natural frequencies. The normalized degradation in torsional and
flexural stiffness terms of the tapered zone section due to delamination is provided in Fig, S3 of

the supplementary material.

To portray the more realistic natural frequency results of the angle-ply flexbeam, the influence of
uncertainties in the macro-mechanical properties of the composite laminated flexbeam is analyzed
for healthy and delaminated conditions of the beam. The scatter of 10% is assumed in the macro-
properties of the ply, which include elastic modulus (E;), transverse modulus (E;), Poisson’s ratio
(v12), shear modulus (G12), and mass density (p). The corresponding mean values of these macro-
properties are taken from Table 3 (Murri et al. [56]), and all of them are assumed to be normally
distributed. The stochastic natural frequency results for healthy and delaminated configurations
(cases 1,2,3) are presented as PDF plots for the first three modes in Fig. 12 (d), 12(e), and 12(f). It
is observed from stochastic distributions that the mean values and response bounds of the first
three natural frequencies are drastically reduced for all delamination cases as compared to healthy
cases. It is interesting here to address the stochastic frequency distribution for the torsional
frequency mode (mode-3) which shows a dominant reduction in the mean frequency, response
bound, and probability density functionvalues (Fig. 12(f)). This notable stochastic frequency result
for torsional frequency, which is highly influenced by material properties uncertainties and

delamination conditions, is observed for this flexbeam application due to its specialized angle ply
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lay-up. The consideration of delamination between 459 and -45° plies in all cases in the most

sensitive tapered zone is also responsible for getting more degradations in the natural frequencies.

The results discussed highlight the measurable influence of uncertain material properties,
delamination conditions, and lay-up on stochastic frequency distributions of healthy as well as
delaminated angle-ply flexbeams. Italso helps to highlight the more realistic dynamic response

of the realistic applications of the tapered composite beams as flexbeams.

Stochastic analysis of systems, like structures with uncertain design variables, is computationally
expensive. This is especially true if a traditional method like the Monte-Carlo (MC) method is
used in the analysis. Although there are improvements to the MC method that can aid faster
analysis, the problem is still computationally challenging due to the large number of simulations
thatmustbe repeated for the design variables. The stochastic analysis becomes doubly challenging
if the underlying model used in the simulations is computationally demanding. A straightforward
approach to alleviate this problem is to use a surrogate model in the simulations. However,
predictions from surrogate models are questionable if an appropriate choice based on the
mechanics of the problem is not made. For a problem with geometrical complexity like flexbeam
having a number of design variables this is major challenge. To a large extent, a VAM based

stochastic framework used in this work overcomes the challenges mentioned above.

A VAM based structural model is a reduced order model. For the flexbeam problem, the model
gives exact analytical solution of the cross-sectional stiffness with the representation of all the
design variables appearing in all the stiffness terms. This significantly reduces the computational
time. Additionally, since it is an asymptotically correct reduced order model, the results closely

mimick the simulation results from an explicit 3D numerical approach. The structural responses
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are relatable to design variables, which may not be possible easily if the simulations are based on
a direct 3D numerical approach, and lends naturally to linearization (following an order-based
asymptotic approach), making it computationally economical. Please refer to Refs. [52], [57] that
highlight the computational efficiency of a VAM-based stochastic analysis framework. On the
contrary, extending the VAM-based approach to more complex geometrical configurations is
difficult. For complex geometrical configurations, like strips/beams with airfoil shapes or other
open or closed cross-sections, it is not possible to determine the cross-sectional stiffness terms
analytically. One has to pursue either a semi-analytical or a numerical approach; however, the
framework will still be computationally economical compared to a direct numerical approach, but
interpreting the direct influence of design variables on the structural response is likely to be
difficult. Finally, the current framework's efficacy is only demonstrated for investigatingthe linear
dynamical behavior of a flexbeam. Its veracity to investigate the stochastic nonlinear dynamics of

a flexbeam has yet to be explored in detail.

Conclusions

In this paper, the free vibration responses of healthy and delaminated tapered composite beams are
analyzed by implementing a computationally accurate VAM framework coupled with a reduced
1D FE model. An asymptotically correct closed-form solution is derived for cross-sectional
stiffness terms of healthy and delaminated tapered composite beams using the VAM framework.
As delamination damage is observed most likely to occur in the case of tapered composite
laminates, its combined influence with source uncertainties is analyzed in the form of stochastic
frequency distributions. The deterministic and stochastic natural frequency results of the realistic
applications of tapered composite beams as flexbeam structures in the helicopter rotor-blade
assembly are presented and discussed. The concluding remarks are as follows:
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1. The proposed VAM-based formulation can be applied to thin, or moderately thick sections
of a tapered composite beam as it accounts for the transverse shear deformations in the
formulation. The specialty of the proposed work lies in the development of a generalized
five-layer cross-sectional stiffness model for the non-homogeneous tapered zone of a
beam, which can be easily implemented in any ply drop configuration and delaminated
sub-laminates.

2. The natural frequency results for healthy and delaminated configurations are strongly
dependent on the lay-up of the beam. The full-width delamination in the lay-up with Q°
plies of a flexbeam shows moderate reductions in flexural stiffness which is reflected in
respective moderate degradation in major axis flexural frequency mode. But, in the case of
angle-ply flexbeam with 459 and —45° plies in the lay-up, the full-width delamination
introduced between 450 and —450 plies strongly degrades the torsional stiffness, followed
by flexural stiffnessterms. Hence, the natural frequencies of this flexbeam show drastic
reductions in flexural as well as torsional frequency modes.

3. The global sensitivity results taken for quantification of uncertainties in micro-properties
of the tapered composite beams exhibit the notable contributions of uncertainties in matrix
properties in the variations of natural frequency outputs. The stochastic frequency
distributions of tapered composite beams with healthy configuration show a more
pronounced effect of source uncertainties addressed at the fiber and matrix level of the
composite laminates. Whereas the respective stochastic frequency distributions for
delaminated configuration show the dominance of delamination due to reported reductions

in the response bounds as compared to healthy beams.
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4. The stochastic frequency distributions for the extended delamination case in the thin zone
from the tapered zone indicate maximum degradations in the mean frequency values for
the delamination case introduced in the tapered zone of a beam. It indicates the tapered

zone as the most sensitive delamination location.

The proposed results showcase the dynamic analysis response of more realistic composite
structures by presenting the natural frequency results under more realistic conditions of
uncertainties in the case of tapered composite laminates. Also, it accounts for the most probable
damage sites of delamination especially pronounced in the case of tapered composite laminates

due to termination of the plies.
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Appendix

A:- Cross-sectional stiffness terms of healthy, non-tapered cross-section (for thick/thin
zones of tapered beam)
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1 4CZZC33CruZCr12x2|23x3b2 _3C122C33C"122X2|23X3nz + 4C22C330r112cr1zxzr23x3nz +3C122C33C|122X2r23X3n2 +
SemeD = 6(C °_c.C )(Cr, +Cr, )z 8023ZCr1220r55x2,2x3b23 —8C22C33CI’122CI’55X2|2X3b23 + +3C122C33Cr112X2|3X3( - 20232(:',113)(2'3)(3[ +

® e " " 2022C33cr113)(2|3x3: + 6C122C33(:r11cr12)(2|3x3: *402320"1120"12X2|3X3: + 4szcaacrnzcrlz>(2|3xst +
3C122C33CI’122X2|3X3‘ + 4CZ3ZCI’123X2I3X3( - 4szcasc"123X2|3X3t - 3C122C3scr112 X2r3X3t + 2C2320r113x2,3x3‘ -
2C22C330r113)(2r3x31 - chzcaacrncru X2r3X3( + 4C2320r1120r12x2,3x3, - 4C22C330r 112C|'12X2r3X31 -
3C122C33CI’122X2r3X3‘ - 4C232Cl’123X2,3X3[ + 4C22C33C|'123X2r3X31 78C2320r122Cr55x2, X3|3 + 8c22C33C"122C"55X2| X3|3 +
8C23ZCI’122CI'55X2,X3‘3 78C22C330r1220r55x2,x3(3 + Zczazcrualezaxa‘z +2C,C 3acr113X2|23X312 + 6C122C 3acr11C'12X2|23X3x2 -

2 2 3 2 3 2 2 3
4C23 qu CHZXZIZ X3t2 +4C22C33CI11 CrlZXZIZ X3|2 +3C12 C33cr12 X2|2 X3|2

As- Cross-sectional stiffness terms for the delaminated condition of non-tapered cross-
sections (thick/thin zones)

_ X1 Xst Xo12%5t2 | XoraXata j 1
2
2 2 (Czs _szcaa)

chzclaczs(le =Xy )(_XSb + Xst) + 2C12C13C23 (X2| - X2r)(_x3b + X3l) + C132C22 (le - er)(_xsb + X3I) +

X, X
nD _ 2r A3t
811 - C11 [XZIX% — X5 Xgp + 2 j+ C11 [XZIZXBbZ — X2 X3 —

(C122C33(X2| - XZr)(_X3b + X3t) + C132C22 (X2|z - XZrZ)(_XabZ + thz) + C122C33(X2|2 - X2r2)(_X3b2 + X3t2) +
(2C12C13C23 (X2|2 - X2r2)(_X3b2 + X3t2))

nD
S =2 Ce Xy Xgp =2 Cog Xp Xgy +2 Cog Xpp Xgpp =2 Cg X Xy -
2 Cos Xg X +2 Cog Xy Xt =2 Cg Xopp Xgp + 2 Cg Xpp Xy

nD
Sgz =2 Cos X Xgp =2 Cog Xp Xgp +2 Cg Xpp Xy =2 Cog Xpp Xgpp -
2 Cos X Xgp +2 Cos X Xg =2 Cog Xop Xgpp +2 Cyg X Xy

3 3 3 3 3 3 3
C55X2|X3b _C55X2rx3b +C66X2IX3b _C66X2rx3h + C55X2|2 Xgpp + C55X2r2 Xgpp + C66X2I2X3b2 -

nD __
S44 - E C 66 X

3 3
C66X2I2X3t2 + C66X2r2x3t2

3 3 3 3 3 3 3
2r2 %302 _C55X2I Xg¢ +C55X2r X3t _C66X2IX3t +Ceexzrxst _C55X2|2 X3t +C55X2r2 Xgtp ~ e

nb __ 2 2 2 2 2 2
S24 __C66X2IX3b +Ceexzrxsb _C66X2I2X3b2 +C66X2r2x3b2 +CeesX2|X3t _C66X2rx3t
1
nD _ 3 3 3 3 3 3 3 3
S _gcll(lex3b X Xay T XooXana F XoraXapy T XpXer T Xor X = XpoXay F X0 X310 )+

1

3((:232 -C,C.) (2C12013C 23 (o1 =Xy )(_)(3b3 + X3t3) +2C,CC 0 (X1, — XZrz)(_X3bz3 + X3123))
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C12(:130233(X2|3 - X2r3)(x3b - X31) +
C132C22 (le3 - X2r3)(x3b = Xg)) + +..
C12C13C23 (le3 - X2r3)(_x3b + XSt))

1
3(C232 - C22033)

1
nD 3 3 3 3
S66™ =2 ECM(XZI Xgp = Xor Xap = Xop Xgp + Xy X3t)+

3 3 3
C12C13C23 (lez —Xar2 )(X3b2 - X3t2) +

1 3 3 3 3 1 2 3 3
2 ECn(lez Xana ~ Xar2 Xab2 = Xz Xar2 T Xar2 X3t2)+W C13 sz(lez ~ X )(Xabz - X312)) +
( 23 T V2 33) 3 3
C12C13C23(X2|2 ~Xor2 )(_X3b + X3t))

Note for delaminated stiffness terms in As and As:

All the stiffness terms will be functions of width (B) and thickness (H) after putting appropriate limits for
delamination size in x; and xs directions. For example, for full width delamination conditions, the limits of x.
direction are taken as: xa=xz2=-B/2 and xa=X2r2=B/2. Whereas for delamination at midplane of the stack

condition, the limits of xs are taken as: Xa=Xsp2=-H/2 and Xz=Xzp=H/2

Assumed zeroth order cross-sectional warping solutions for non-tapered cross-sections
(thick/thin zones)

B\ . (7#X ). (7% 1 3Bz . (3mx; ). . (37X,
AN sech H sin R sinh o —Esech e sin H sin H +...

W, [ X, X,, X, [ = —X,X, |k
LRRY 2|1 (587:) . (mesj : [5;zx3j 1 [78;;) . (7nxgj . (77[X3j i
——sech| —— |sin sin ———sech| —— |sin| —= |sin
125 2H H H 343 2H H H
((Clsczz _Clacza)( H? _12)(32) K3 _(Clacza _Clzcaa)(_24xz (711 + Xus)_ BZKa +12X22K3))
Wy [ X, %, X, | = 2
24 (szcaa - Czs) (AS)

3 [ ) ]7 ((C13C23—C12C33)(Bz _12X§)K2_(C13C22 —Clzc33)(_24xg(7/11_Xsz)_HZKZ +12X§K2))
(%% %, 24(C,,C,y -CZ)

Assumed zeroth order cross-sectional warping solutions for tapered cross-sections

2
%sech B sin| 22 |sinh| 2% |- (Aﬁ)
T 2d, d, d,
—(2Cy —Cry)(2t2 +1, (%, — 2X
Wlm[Xi,Xz,X3]: ( SSCr (1dl)J(rh1)+3C5 SEX )3))}/13+k1 %sech(—?’;ﬂ]sin[SZngsinh[szzJ+ —(%xz(—dl—g+2x3)kl)
11 1 55 3b 1 1 1

isech 5Bz sin 5%, sinh 5%,
125 2d, d, d,
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4—L‘jsech [ﬁjs in [ﬁjsinh [LXZJ _
4 2t t, t,

W [ %%, %] = —(ZCSEC—rC(rg)J(ritl):;C(XSE;Z)xa))yn +k, %sech[s’;—fjsin[&:&jsinh[ﬂ} {%xz(—dl—tﬁng)klj

1 (55;:} ) [57[X3] . [s;rxz]
——sech| —— |sin sinh
125 2t t, t,

1 B? (C13Cza - C12C33) Ks+ 4[

C13C23 Ks,)(z2 (3X§ - X§b + XXt — ng ) +] +
24(-C2,+C,,Cyy)

— 2 2 2
Woni [X1’ Xz Xs] - Cmcza K3 (_3)(3 T Xap = Xap Xy + Xy, )

3C,CxK, (_stz + 2( KX, + 711))

~(Cr Ky (B? +1256 4G, + dxyx, — 4 )
24(Cr, +Cry,)

Wzm.[xvxzr)%]:

—3C,Cp5K, X5 +3C,CysKyXE +CiiCoy (6K X,%; ) +
1

m 82 (C13023 _Cizcas) Kz +4 Kz ((_3)(3? + Xs?b - X3bX3[ + X32:)+3(_2X3 + Xab + X31))711 -

Wapi [vazxxs]:

X2+ X2 = Xy Xy, + X2 )+
—C,Cps (6K3X2X3)+ K, ( oo e 31) Y11
3(—2%; + Xy + Xy )
Wy [ X0 X, %, ] = ¢(—BZK2 +4(6K3x2x3 +K, (3% =35 + X5, + Xy Xy + X, )))
24(Cr, +Cr,)

Here the notations wj,; and wiy; (i=1,2,3) are utilized to represent the warping solution for non-
matrix-rich and matrix-rich layers respectively presentin the tapered zone of a beam. The notations
xztand Xz, represent the position of the considered layer/layers from mid-plane where suffix letters

tand b represent the top and bottom positions of a layer or group of layers from mid-plane.
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