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Abstract 

In this work, the free vibration characteristics of flexbeam like structures, typically used in 

helicopter main or tail rotor blades, are investigated. The tapering effect in these laminated 

composite structures is introduced by terminating plies, which act as potential delamination sites. 

Delamination and uncertainties in material properties at various scales influence their dynamic 

behavior.  The Variational Asymptotic Method (VAM) is used as a mathematical framework to 

develop a model of a tapered composite beam with delamination. Subsequently, the modal 

characteristics are obtained by coupling the VAM model with the reduced 1D FE beam model. 

Stochastic natural frequencies are investigated by combining the source uncertainties in the 

delaminated structure. Following a detailed validation study, the model capability is demonstrated 

on flexbeams typically used in helicopter rotor blades. 
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1. Introduction 

Tapered composite structures find applications in helicopter blades, yokes, turbine blades, etc. 

These structures have variable stiffness that is exploited to meet the design requirements. The best 

example of such a requirement in aerospace applications is a flexbeam structure utilized in 

helicopter rotor-blade assembly. These flexbeams require higher stiffness at the hub end, and 

flexibility at the blade end to accommodate the flapping motions [1].  

Manufacturing of thickness-tapered composite beams is achieved by terminating or dropping the 

plies at pre-determined locations along the beam span [2]. The tapering effect in the beams reduces 

the stiffness due to the structural discontinuities formed because of ply dropping. In practice, the 

ply-dropping operation to terminate the plies generates resin pockets at the ply-drop locations, 

which are potential delamination nucleation sites. The combined influence of structural 

discontinuities in the tapered composite beams due to dropped-out plies and delamination strongly 

affects their static and dynamic performance. Hence, it is important to analyze their dynamic 

behavior since they are highly susceptible to vibrations [3]. This paper aims to focus on the free 

vibration analysis of tapered composite beams in healthy as well as delaminated conditions.  

The review of literature on the free vibration response of tapered composite beams shows scarcity 

in experimental work and very few researchers have attempted this problem using analytical or 

numerical approaches [4]–[8]. One of the initial analytical works on modal analysis of a tapered 

composite beam is presented by Rao and Ganesan [9]. They proposed a Higher-order Shear 

Deformation Theory (HSDT) based finite element (FE) model. To simplify the model, they 

neglected the interlaminar shear deformation. Subequently, in their follow-up work, First-order 

Shear Deformation (FSDT) theory-based FE model [10] was used. The incorporation of shear 

deformations reduces the overestimated natural frequencies as obtained in the earlier model. FE-
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based modeling of tapered composite beams was used by Gupta and Rao [11] to investigate the 

dynamic behavior of doubly tapered beams. Their study investigated the effect of beam width and 

thickness tapering. They noticed the strong influence of thickness tapering leading to the 

degradation of the cross-sectional stiffness and reduction in the beam's natural frequencies. In one 

more FE-based approach, the linearly tapered composite beam is modeled by a number of stepped 

Timoshenko beams, as presented by Tong et al.[12]. They validated their analytical model by 

comparing the free and forced vibration responses of beams with results available in the literature. 

In the development of numerical models of tapered composite beams, Zabihollah [13] 

implemented an advanced FE model based on which authors have presented the parametric results 

of natural frequencies for highlighting the influence of taper angle, boundary condition, and lay-

up of the stack. Lin [14] has presented the implementation of hierarchical finite element 

formulation, which can use fewer elements, resulting in computational efficiency. 

Few authors have reported advanced HSDT-based FE models indicating the vibration response of 

tapered laminated composite beams [13], [15], [16]. In these reported works, the tapered beams 

are modeled by considering three zones along the length of the beam: thick zone, thin zone, and 

tapered zone. Among these, the tapered zone contains the dropped-out plies, which are modeled 

as matrix-rich layers. One such work, based on HSDT formulation, is presented by Ganesan and 

co-authors [17] for analyzing the free vibration response of the tapered composite beams. In their 

extended work presented in [18], the effect of various parameters like taper angle, ply 

configurations, and boundary conditions are analyzed on the fundamental frequencies of thickness 

tapered composite beams. Also, the influence of various ply-dropping patterns on fundamental 

natural frequencies is presented in [18], suggesting an optimum choice of ply-dropping sequence 

to get comparatively lesser reductions in natural frequencies. In the experimental investigation of 
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tapered composite beams, one of the rarest studies on free vibration analysis is reported by 

Arumugam et al.[19] for a rotating beam. In this work, authors have also obtained the natural 

frequency results using HSDT-based analytical formulation which shows good agreement with the 

experimental investigation. The literature on free vibration analysis of delaminated tapered 

composite beams is very rare compared to that of delaminated uniform beams [20],[21]. One of 

the attempts to analyze the influence of delamination is addressed by Ghaffari et al. [22] and 

authors have presented the modal response of the thickness tapered composite beam for both 

healthy and delaminated conditions. Recently, Moorthy [23] has developed a surrogate-assisted 

algorithm that is designed based on the vibration response of a tapered composite beam to identify 

delamination severity. The reported literature on delaminated composite tapered beams highlights 

the influence of damage severity on the degradation of natural frequencies. This literature also 

highlights the complexities in modeling the delaminated configuration of tapered composite beams 

by using reported analytical frameworks or numerical models.  

Due to the complexity of the manufacturing processes of laminated composites, there are 

uncertainties in the elastic properties and mass densities of fiber and matrix [24]–[29], which in 

turn affects the dynamic performance of the composite beams [30]–[34]. The propagation of these 

uncertainties at the macro level and further into the component level strongly affects the reliability 

of the structures due to stochastic response bounds of natural frequencies [35]–[38],[39]. Very few 

authors have addressed the issue of uncertainty analysis in the case of tapered composite beams. 

Kamali et al.[40] have employed a reliability-based design optimization method for free vibration 

analysis of tapered composite beams. Stochastic free vibration analysis of tapered composite 

beams under the influence of random variation in elastic modulus and mass densities is presented 

by Thi et al.[41]. The shortcoming of these available models is that multiple uncertain variables 
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are not being considered at a time in a single simulation. Experimental investigations for 

addressing uncertainties will demand large no. of samples to be tested, and it will not be possible 

to consider simultaneous uncertainties in all the micro or macro-properties of the composites in a 

single experiment [42]. Hence, the development of a stochastic computational platform for 

analyzing the random variations in natural frequencies of the composite tapered beams is required. 

This is the primary motivation of the proposed paper. 

In this work, a computationally efficient VAM-based approach is proposed to simplify the problem 

into a 2D cross-sectional analysis and a 1D problem, similar to the framework presented in [43]. 

However, here the cross-sectional stiffness is determined at the uniform as well as the tapered 

sections in the presence of delamination. A simple 1D FE formulation is presented to showcase 

the model capability, similar to the work presented in [44],[45], but for a generic tapered composite 

structure. This coupled framework of VAM-1D FEM is easily extended to take the stochastic 

effects in uncertain material properties, and the respective stochastic distributions of natural 

frequencies are obtained. To the best of the author’s knowledge, a VAM-based approach to model 

delaminated tapered composite beam and their stochastic dynamic behavior due to uncertain micro 

or macro-mechanical properties has not been addressed in the literature. 

The structure of this paper hereafter is organized as follows: the proposed generalized five-layer 

cross-sectional stiffness model of the composite tapered beam is presented in section 2. The 

governing equations of motion are derived in section 3. The deterministic and stochastic frequency 

results are elaborately discussed and presented in section 4, and finally, the summarizing 

concluding remarks are included in section 5. The VAM-based cross-sectional stiffness terms 

derived for thick/thin and tapered zone sections of a tapered composite beam are elaborately given 

in the Appendix. 
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2. Generalized five-layer cross-sectional model of a tapered composite beam 

In the case of tapered composite beams, the dropped-out plies are modeled by matrix-rich layers. 

Hence, these beams exhibit non-homogeneity across the cross-section due to the presence of 

matrix-rich plies along with normal plies. Due to this non-homogeneity, the estimation of the 

cross-sectional stiffness matrix is not a straightforward task for the cross-sections carrying 

dropped-out plies. To tackle this issue, a generalized five-layer cross-section model is proposed in 

this work for the non-homogeneous cross-section of a tapered composite beam carrying matrix-

rich layers. This section particularly highlights how this proposed five-layer cross-section model 

works.  

The typical geometry of a tapered composite beam with internal ply drops across the beam span is 

shown in Fig. 1(a). It shows the geometry schematic with three zones of the beam along the span; 

thick, tapered, and thin. The schematic of a generalized five-layer cross-section model proposed 

in this work for the non-homogeneous tapered zone section carrying dropped-out plies is presented 

in Fig. 1(b).  

To implement the proposed five-layer model using the VAM framework, it is required to know 

the thicknesses of normal plies, dropped-out plies, and their corresponding positions measured 

from the mid-plane of a cross-section. In the symmetric ply drop model, as indicated in Fig. 1(b), 

few notations are used. The notation ‘d1’ represents the total thickness of normal plies present 

above the mid-plane, and ‘d2’ denotes the same below the mid-plane. The notation ‘h’ indicates 

the total thickness of normal plies present between two dropped-out plies that are adjacent to the 

mid-plane on the top and bottom sides of it. The total thicknesses of dropped-out plies above and 

below the mid-plane are indicated by notations’t1’ and ‘t2’ respectively. This generalized five-layer 
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cross-section model of the tapered composite beam can be applied to any ply drop configuration. 

The various configurations of ply dropping like external ply drop-off, middle ply drop-off, or 

internal ply drop-off are mentioned in a detailed review article on tapered composite beams in 

[21].  

In the case of symmetric-external ply drop-off, the model will be generalized with three layers due 

to the dropping of outer plies adjacent to the top and bottom surfaces of the cross-section. 

Similarly, in the case of internal ply drop-off with middle plies dropped configuration, ‘h’ value 

will be zero which makes the model generalized with four layers. In this way, this proposed model 

can be applied to delaminated sublaminates in the case of delaminated tapered composite beams.  

 

Fig.  1 Tapered composite beam geometry and modeling details: (a) Tapered beam geometry schematic 

showing different zones, (b) Proposed generalized five-layer cross-section model of taper zone, (c) 

Proposed FE model approach, (d) Beam cross-section representing delamination location, (e) schematic of 
the sublaminates formation due to Full-width delamination across the thickness of a cross-section, (f) 

Generalized ply lay-up sequence in the tapered zone of a beam showing layer numbers 

3. Governing equations of free vibration analysis of tapered composite beams 

In this section, the governing equations of the natural frequencies of free vibration of a thickness-

tapered composite beam are derived. The geometrical schematic of the composite tapered beam is 
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shown in Fig. 1(a). The coordinate system (x1,x2,x3) is considered where the length (L), width (B), 

and thickness (H) of a beam are taken along  x1, x2, and x3 coordinates, respectively, as shown in 

Fig. 1(a). The limits of coordinates are as: 0 ≤ x1 ≤ L, -B/2 ≤ x2 ≤ B/2, -H/2 ≤ x3 ≤ H/2.  

The proposed approach implements a coupled framework of VAM and 1D FEM for the estimation 

of the cross-sectional stiffness matrix and natural frequencies of composite tapered beams. For the 

convenience of FE-based modeling, the span of the thickness-tapered composite beam is divided 

into three zones: thick, tapered, and thin zones, as indicated in Fig. 1(a). As the tapered zone is 

non-homogeneous due to dropped-out plies, its cross-sectional stiffness estimation is more 

complex as compared to that of homogeneous thick/thin zones. Hence, this section presents the 

separate derivations for 1D cross-sectional stiffness terms of tapered as well as non-tapered zones 

of healthy and delaminated beams by using a VAM framework. For the derivation of cross-

sectional stiffness matrices using the VAM framework for thick, tapered, and thin zones of a 

tapered beam, each zone is considered as prismatic beam. Out of the three zones, thick and thin 

zones are homogeneous prismatic beam sections, whereas the tapered zone is a non-homogeneous 

prismatic beam section due to the presence of terminated plies which are modeled as matrix-rich 

layers. According to the no. of plies terminated in the tapered beam, the tapered zone is 

approximated by modeling it as a stepped section with multiple prismatic non-homogeneous cross-

sections, as shown in Fig. 1(c). The cross-sectional stiffness matrix terms of each zone are derived 

individually in the form of closed-form expressions, as elaborately discussed in subsequent 

discussions.  

Following the VAM approach, detailed in [46], [47] the strain energy formulation for the tapered 

composite beam is done by using the geometrical small parameter of its thickness-to-length ratio 

(δh) and material small parameters of maximum allowable strains (ε). To obtain the 3D strain 
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energy density expression for a single layer of any zone of a tapered composite beam, a tapered 

zone with a generalized ply lay-up of N laminae is considered, as shown in Fig. 1(f). For an 

arbitrary kth layer from a stack of generalized tapered zones of a beam, the 3D strain energy density 

(𝑈3𝐷
𝐾 ) is given in eq. (1). 
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(1) 

where, Г𝑖𝑗
𝑘  represents the 3D strains of a considered kth lamina, and 𝐶𝑖𝑗

𝑘  represents the material 

stiffness matrix terms of kth lamina.  The same expression of 3D strain energy density of a dropped-

out lamina, which is modeled as a matrix-rich layer, can be written similarly to eq. (1) but by just 

replacing the ply material stiffness matrix (𝐶𝑖𝑗
𝑘) with resin material stiffness matrix terms (𝐶𝑟𝑖𝑗

𝑘
). In 

the case of a lamina with an arbitrary ply angle (𝜃), the material stiffness matrix (𝐶𝑖𝑗
𝑘) of a lamina 

should be transformed from its material coordinate system to the global coordinate system of a 

beam. The transformed material stiffness matrix (𝐶𝑖𝑗
𝑘̅̅̅̅ ) for kth lamina with an arbitrary ply angle (𝜃) 

is given by eq. (2), 

   
k T k

ij ijC T C T =    
(2) 

where, T is the transformation matrix for the lamina, and the respective matrix terms of it are 

functions of ply angle 𝜃. The total 3D strain energy density of the considered tapered zone of a 

beam, as indicated in Fig. 1(f), is given in eq. (3). It is a sum of 3D strain energy densities of 
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normal plies and that of terminated plies (which are modeled as matrix-rich layers) present in the 

stack 
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where, 𝑈3𝐷  denotes the total 3D strain energy density of the considered tapered zone. By following 

the similar procedure given in eq. (1) - eq. (3) for the tapered zone, the 3D strain energy densities 

for thick and thin zones of a beam containing only normal plies, can also be calculated. The total 

3D strain energy density (𝑈3𝐷 ) for a particular zone of a beam is given by eq. (4). 
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(4) 

where 𝐶𝑖𝑗  represents transformed 3D material stiffness matrix terms for the thick/thin/tapered zone 

of a beam in global coordinates, and Г𝑖𝑗 terms represent respective 3D strains.  

The generalized expressions of 3D strain measures (Г𝑖𝑗 ) of a tapered beam zone which are 

expressed in terms of 1D strains (ϒ𝑖𝑗), 1D curvatures (𝐾𝑖), and cross-sectional warpings (𝑤𝑖) are 

explicitly presented in [46] and given in eq. (5). These expressions of 3D strains are obtained by 

considering the position vectors of any material point on a reference curve of the beam in its 

deformed and undeformed states. In the undeformed state, the position vector of a point on the 

reference curve of a beam is represented in the form of longitudinal and transverse shear strains. 
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However, in the deformed state, the position vectors are expressed in the form of bending and 

twisting curvatures as well as cross-sectional warpings. The deformation gradient tensor relates 

the position of a material point on the reference curve of a beam in the initial undeformed 

configuration with its respective position in the deformed configuration.  It is obtained by 

considering the covariant and contravariant bases of deformed and undeformed states of a beam. 

Based on the terms of deformation gradient tensor, the 3D strains are obtained as given in eq. (5) 

for a particular zone of a tapered beam. The detailed equations and illustrations on these 3D strain 

expressions can be referred to from [46]. 
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(5) 

where Г11, Г22 , Г33 are longitudinal 3D strains, ϒ𝑖𝑗 represent 1D strains (longitudinal and shear 

components), K1, K2, and K3 denote 1D curvatures (bending and twisting), and w1, w2, and w3 are 

cross-sectional warpings of a particular zone of composite tapered beam. In eq. (5), the underlined 

terms indicate non-linear terms arise due to moderate local rotations. The term ℎ̅ in the eq. (5) 

appears only in the case of delaminated beams as it represents the delamination location introduced 

across the thickness of a beam by shifting the x3 coordinate along the thickness direction according 
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to the sublaminate approach which is detailed in [43], [44], [48]. The superscripts 1 and 2 in the 

eq. (5) respectively indicate the sublaminate numbers 1 and 2 for a single delamination case 

forming two sublaminates as shown in Fig. 1(d) and 1(e). The expression of the term ℎ̅ in eq. (5) 

for sublaminate 1 as shown in Fig. 1(d) is given by eq. (6). 

1
2

2

H
h

h

−

=  

(6) 

where h1 denotes the delamination location across the thickness of a beam measured from the mid-

plane (refer to Fig. 1(d)). 

Before implementing the VAM framework, the order analysis is required to be carried out which 

helps to decide the appropriate terms that are to be considered in the formulation of strain energy. 

In this paper, zeroth order analysis is carried out which suggests the retention of only zeroth order 

strain energy terms from the strain energy expression. According to this, from eq. (5), only the 

non-underlined terms are considered in the further formulation. In zeroth order analysis, the order 

of warping is εH, where ε denotes the small strain parameter and H is the small characteristic 

dimension of the cross-section (thickness of the beam cross-section). The longitudinal strains 

(𝛾11 , 𝛾22,𝛾33) are of order ε, transverse shear strains (𝛾12, 𝛾23, 𝛾13 ) are of order εδh and the 

curvatures (K1, K2, K3) are of order ε/H. By following this zeroth order analysis, the reduced 

expressions of 3D strains in the form of 1D strains, 1D curvatures, and cross-sectional warping are 

expressed in eq. (7). 
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(7) 

By substituting eq. (7) into eq. (4), an expression for the 3D strain energy density of a particular 

zone of a tapered composite beam is obtained in the form of 1D strains (ϒ𝑖𝑗), 1D curvatures (𝐾𝑖), 

and cross-sectional warpings (𝑤𝑖). Because of six 1D generalized strain measures and three 

warping measures in the strain energy formulation, there are large no. of unknown variables in the 

model. To overcome this issue, a set of six constrained equations, collectively included in eq. (8) 

are imposed while solving for unknown warpings.  
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where, 𝑤2 and 𝑤3 are in-plane warpings and 𝑤1 represents out-of-plane warping for a cross-section 

of a beam. The expression of 1D strain energy density (𝑈1𝐷 ) which is directly derived from 3D 

strain energy density (𝑈3𝐷) is given in eq. (9). 
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For a particular zone of a tapered composite beam problem, 1D strain energy density (𝑈1𝐷 ) is 

expressed in the form of 1D strain measures as given in eq. (10).  
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(10) 

The closed-form expressions for the cross-sectional stiffness terms (𝑆𝑖𝑗) of thick, tapered, and thin 

zones of the tapered composite beam are extracted from the 1D strain energy density (𝑈1𝐷) 

expression given in eq. (10) by using eq. (11). 

1D
ij

i j

U
S



 
=  

(11) 

Here, 𝑆𝑖𝑗  is a 6 X 6 cross-sectional stiffness matrix of a particular zone of a tapered beam. The 

detailed formulation of elements of this matrix for tapered (with matrix-rich plies) and thick/thin 

(without matrix-rich plies) zones of a tapered composite beam are elaborately derived and 

presented in the next sub-section and Appendix. 

3.1 Formulation of the stiffness matrix of the non-tapered zone  

At first, the cross-section of the non-tapered zone without matrix-rich plies indicated by thick and 

thin zone sections of a tapered composite beam is considered for the analysis. The 3D strain energy 

density expression for a thick/thin zone of a beam is obtained as given in eq. (4). As per the VAM 
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procedure [43], the variational form of 3D strain energy gives a set of governing equations in the 

form of second-order partial differential equations (PDEs) and associated boundary conditions. 

These coupled partial differential equations are presented in eq. (12) in which 𝑤1, , 𝑤2 and 𝑤3 are 

the unknown warpings. 
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(12) 

As it is difficult to solve the coupled PDEs given in eq. (12) for unknown warpings, the solution 

polynomials are assumed for these in-plane (𝑤2 and 𝑤3) and out-of-plane (𝑤1) warpings 

separately. Here, for in-plane warpings power series solution polynomials in terms of material 

stiffness matrix terms (𝐶𝑖𝑗) and cross-sectional coordinates x2 and x3 are assumed. The out-of-plane 

warping is obtained by assuming a trigonometric solution polynomial. These assumed warping 

solutions for non-tapered (thick and thin zones) cross-sections are mentioned in the Appendix 

(refer to eq. (A5)). The accuracy of the choice of the warping solutions is verified by checking if 

they satisfy the PDEs obtained earlier.  

After substituting the assumed warping solutions in 3D strain energy density expression, the 

reduced 1D strain energy density (𝑈1𝐷 ) is obtained as discussed in eq, (9), and eq. (10). 

Corresponding to the assumed zeroth order warping solutions, the zeroth order cross -sectional 

stiffness matrix is derived by taking the second derivative of the 1D strain energy density 

concerning corresponding 1D strain energy measures. The stiffness matrix terms represented by 

𝑆𝑖𝑗
𝑛𝐻 in eq. (13) are elaborately given in Appendix (refer to eq. (A1)) for a non-tapered zone cross-
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section. Here, the superscript nH is used to denote the stiffness terms of a healthy non-tapered 

cross-section (healthy thick/thin sections of a tapered composite beam). The off-diagonal stiffness 

terms of matrix 𝑆𝑖𝑗
𝑛𝐻 are derived to be zero as the proposed formulation is derived for thick and 

thin zone sections of symmetric lay-up. 
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(13) 

3.2 Formulation of the stiffness matrix of the tapered zone 

In this sub-section, the stiffness matrix for the tapered zone of a beam, which contains normal 

layers along with the dropped-out plies, which are modeled as matrix-rich layers, is derived using 

VAM. Due to the non-homogeneity of the tapered zone, different warping solutions for different 

layers (matrix-rich or non-matrix-rich) are assumed. To make the model simpler, a set of 

generalized warping solutions individually for matrix-rich and non-matrix-rich layers is assumed 

in this proposed work. These assumed generalized solutions for three warpings are presented in 

Appendix (refer Appendix eq. A6). To accurately assume these warping solutions for a particular 

layer or group of layers, a generalized five-layer cross-section model is implemented, which is 

shown in Fig. 1(b) and discussed elaborately in section 2. 

The procedure of obtaining coupled PDEs and boundary conditions by implementing variational 

formulation is the same as that mentioned for the non-tapered zone in the earlier sub-section. The 

stiffness terms 𝑆𝑖𝑗
𝑚𝐻  presented in eq. (14) are obtained by taking the second derivative of the 1D 

strain energy density of a tapered zone of a beam concerning corresponding 1D strain measures as 
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given in eq. (11). The derived stiffness matrix terms (𝑆𝑖𝑗
𝑚𝐻) are elaborately expressed in eq. (A2) 

of Appendix for the tapered zone of a beam. Here superscript mH stands for healthy cross-section 

with matrix-rich plies (tapered zone). It is observed that along with diagonal stiffness terms, off-

diagonal stiffness terms like 𝑆15
𝑚𝐻and 𝑆24

𝑚𝐻 appear in the stiffness matrix of the tapered zone. This 

is due to the presence of structural couplings for a particular lay-up of a tapered zone of the beam. 

Also, these terms arise due to non-homogeneity and asymmetry of the tapered zone due to 

terminated plies.  
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(14) 

3.3 Stiffness matrix of a delaminated tapered beam 

After the determination of healthy cross-sectional stiffness matrix terms of a composite tapered 

beam, the damaged stiffness matrix terms of delaminated tapered beams are derived in this sub-

section. The estimation of cross-sectional stiffness terms of delaminated beams is done by 

following the sublaminate approach as mentioned in [44]. Two separate sublaminates formed due 

to full-width delamination are shown in Fig. 1(f). The 1D strain energy density for two sub-

laminates is given by eq. (15-a) and eq. (15-b). 
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(15-a) 

 

(15-b) 

where superscripts (1) and (2) indicate the respective strain energy densities for sublimates 1 and 

2, respectively. The terms 𝑥3𝑏 and 𝑥3𝑡  denote the positions of the bottommost layer and the topmost 

layer for the first sublaminate, while the notations 𝑥3𝑏2 and 𝑥3𝑡2 indicate the respective terms for 

sub-laminate 2. The proposed customized five-layer cross-section model is utilized for 

determining cross-sectional stiffnesses of delaminated sublaminates by using the VAM 

framework. Eq. (16) is used to obtain the cross-sectional stiffness terms from 1D strain energy 

expression for individual sub-laminates, which are clubbed together to obtain cross-sectional 

stiffness matrix terms of the delaminated tapered composite beam.  
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(16) 

For the case of partial width delamination, the strain energy density expression is to be written for 

small sub-intervals across the width due to delamination. The strain energy density for the 

delaminated (partial width) beam is given by eq. (17) in which superscripts (1) and (2) denote sub-

laminate numbers, 𝑥2𝑙 and 𝑥2𝑟 indicate the locations of delamination from the origin towards the 

left and right sides across the width.  
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The stiffness terms of delaminated sections are derived analytically by following the same 

approach as mentioned in the previous sections for determining the stiffness of healthy cross-

sections. The delaminated cross-sectional stiffness terms (𝑆𝑚𝐷) are given in the Appendix in eq. 

(A3), where superscript mD refers to the delaminated tapered section containing matrix-rich plies.  

3.4 Eigenvalue problem formulation for natural frequencies of free vibration 

For the reduced one-dimensional FE beam model, a generalized beam element with two nodes 

having six degrees of freedom per node is implemented. These six DOFs include three translations, 

two rotations, and one twist. The natural frequency of free vibration of the tapered composite beam 

is given by characteristic eq. (18) [44]. 

     2 0K M u − =   
(18) 

where [𝐾] and [𝑀]  are the global stiffness and mass matrices respectively of a tapered composite 

beam which are calculated by an assemblage of individual element stiffness matrices and 

individual mass matrices of thick, tapered, and thin zone sections. In eq. (18), {𝑢} denotes the nodal 

degree of freedom vector, and ω denotes the natural frequency vector of free vibration.  

The present work also addresses the uncertainties in micro-mechanical properties, because of 

which the natural frequencies of a tapered composite beam are stochastic. In this work, to account 

for uncertainties in fiber and matrix properties of tapered composite beams at the micro-scale, 

random virtual samples of each property are generated using Monte Carlo Simulations. To denote 

the uncertainty of a particular parameter, a notation (𝑆̅) is used in association with the uncertain 

parameter. For example, the uncertain property matrix at micro-scale is indicated as p(𝑆̅) and is 

given in eq. (19). 
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In eq. (19), all the micro-properties of fiber and matrix denoted by subscripts f and m respectively 

are uncertain, along with uncertainty in volume fraction (Vf) as well. Uncertainties at the micro-

scale are propagated to the macro-scale and eventually, material stiffness matrix terms are 

stochastic which can be denoted by 𝐶𝑖𝑗(𝑆̅). Due to uncertainties in the material stiffness matrix, 

the cross-sectional stiffness of the tapered composite beam is stochastic. The deterministic 

eigenvalue problem formulation for natural frequency expressed in characteristic eq. (18) is 

extended further to take uncertain inputs and the corresponding equation for stochastic frequencies 

is formulated as given in eq. (20). 

     2 0s s sK M u − =   

 

(20) 

where [𝐾𝑠] ,[𝑀𝑠], 𝜔𝑠 represent stochastic global stiffness matrix, stochastic mass matrix, and 

stochastic natural frequency vector, respectively. Stochasticity in global stiffness matrix ([𝐾𝑠]) is 

due to uncertainty in the cross-sectional stiffness matrix, as discussed earlier. The stochasticity in 

the mass matrix ([𝑀𝑠]) is due to consideration of uncertainty in mass densities of fiber (𝜌𝑓(𝑆̅)) and 

matrix (𝜌𝑚 (𝑆̅)) of a composite tapered beam. The graphical representation highlighting the 

stochastic analysis scheme proposed in this work in the form of a flow chart for analyzing the 

dynamic response of a tapered composite beam is presented in Fig. 2. 
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Fig.  2 Proposed stochastic dynamic analysis scheme for a tapered composite beam 

 

4. Results and discussions 

In this section, we present the free vibration response of composite tapered beams, which are 

modeled by dropping out the internal plies. This response is presented in the form of deterministic 

and stochastic results of natural frequencies. The implementation of a coupled computational 

framework based on a combination of VAM-based one-dimensional FE model is proposed here to 

estimate the natural frequencies of the healthy and delaminated tapered composite beams. First, 

the validation of the proposed model is carried out by comparing the natural frequencies of healthy 

and delaminated tapered composite beams with the results available in the literature [19], [22]. 

After the validation study, the proposed deterministic model is extended to the development of the 

stochastic dynamic analysis framework for the composite tapered beams.  

4.1 Validation study  
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In this sub-section, the deterministic dynamic response of healthy and delaminated composite 

tapered beams measured in the form of natural frequencies is validated with the experimental and 

analytical results reported in the literature. 

Table 1 Material and geometry details of tapered composite beams 

Attribute 
Arumugam et 

al.[19] 

Ghaffari et 

al.[22] 

Material details 

Longitudinal modulus (E1) 31.38 GPa 113.9 GPa 

Transverse modulus (E2) 7.15 GPa 7.9856 GPa 

Poisson’s ratio 0.276 0.288 

In-plane shear modulus (G12) 2.87 GPa 3.138 GPa 

Mass density 1745 kg/m3 1480 kg/m3 

Geometry details 

Lay-up of thick section [0/90]8s [0/90]9s 

Lay-up of thin section [0/90]4s [0/90]3s 

No. of dropped-out plies 16 24 

Length of a beam (L) 300 mm 129 mm 

Length of thick section  100 mm 50 mm 
Length of thin section  100 mm 50 mm 

Width (w) 50 mm 15 mm 

Ply thickness (tp) 0.19 mm 0.125 mm 

 

 

Fig.  3 Validation of tapered composite beams with experimental and 3D FEM results  

 

4.1.1 Validation for healthy tapered composite beam model 

In the deterministic analysis of a healthy composite tapered beam, at first, the validation study of 

a proposed model is carried out by comparing the fundamental natural frequency results with 

experimental investigations and analytical results presented by Arumugam et al. [15]. The details 
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of the geometry and material properties for the doubly tapered (tapering effect along width and 

thickness directions) glass-epoxy laminated composite beam are given in Table 1 (Arumugam et 

al.[19]). The fundamental natural frequency of free vibration under clamped-free boundary 

conditions and with three different width ratios are obtained by using the proposed model, and 

results are compared with reported results  [19] as shown in Fig. 3.  

The comparison shows very close agreement (within 10% deviations) of the fundamental natural 

frequencies obtained from the proposed model and published experimental as well as analytical 

results presented in [19]. The frequencies reported from the experimental work are relatively 

higher compared to the results from the proposed model. For three different width ratios mentioned 

in Fig. 3, the frequencies reported from the experimental work are 4.42%, 4.76%, and 6.49% higher 

as compared to fundamental frequency values from the proposed model. It is worthwhile to note 

from Fig. 3 that the percentage deviation in the fundamental natural frequencies obtained from the 

proposed model and reported analytical model, which also considers the transverse shear 

deformations, is within 5% for the range of width ratios investigated in the study. 

After this validation, another geometry of a tapered composite beam analyzed by Ghaffari et al. 

[22] in their vibration-based damage detection work is considered for further results of 

deterministic natural frequencies. The effect of delamination on the natural frequencies of a 

tapered composite beam is investigated in this work. The geometry and material property details 

of this tapered composite beam are mentioned in Table 1 (Ghaffari et al. [22]). The ply drop 

configuration of ‘D type’ as suggested in [22] is considered for modeling a tapering section with 

24 dropped-out plies. The natural frequency results are compared with published results in [22] 

which are based on higher-order FEM formulations and also with the 3D FE model of the tapered 

composite beam executed in this work. The deterministic dynamic analysis results highlighting the 
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first three bending natural frequencies of a cantilever tapered composite beam are shown in Fig. 4  

(a). The natural frequencies obtained from the proposed model by considering and ignoring 

transverse shear deformations across the thickness of the beam are included in Fig. 4 (a) for 

comparison.  

   

 (a)                                                                        (b) 

Fig.  4 Validation of deterministic natural frequency results of (a) healthy tapered composite  beam 
(b) delaminated tapered composite beam 

The natural frequencies of the first three bending modes obtained from the proposed model without 

the consideration of the transverse shear deformations in the model formulation indicate slightly 

higher values than the frequencies from the proposed model with the consideration of the shear 

deformations. The ignorance of shear deformations across the thickness of a beam leads to over-

estimation of natural frequencies. However, the proposed model with consideration of transverse 

shear deformations shows close agreements of the frequency values with reported data as shown 

in Fig. 4(a). These results show fewer deviations, around 2.22%, 5.56%, and 6.51%, respectively, 

for the first three flexural natural frequencies from the published results.  

The validity of these results is also checked with the modal response obtained from the 3D FEM 

of the tapered composite beam in this work. A 3D FE model is developed by using the Soild185 

element in ANSYS (total no. of elements: 54720). The convergence of the 3D FE model is 
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checked. In the 3D FE model, eight plies are dropped at one step of the tapered zone, and in this 

way, three steps are modeled to obtain the effect of 24 dropped-out plies. This ply-dropping 

sequence is in line with the ply-drop configuration of “D type” as mentioned in [22]. The dropped-

out plies in the tapered section are modeled as matrix-rich layers; the corresponding epoxy 

properties are taken from [22]. The fixed-free boundary condition is modeled by constraining one 

end of the beam in all degrees of freedom and keeping another end free. The comparison of natural 

frequencies from 3D FEM and proposed 1D FEM is presented in Fig. 4 (a) itself. It shows very 

good quantitative agreement between results, as the percentage deviation is within 7% for the first 

three flexural natural frequencies. 

4.1.2 Validation for delaminated tapered beam model 

After the validation of the proposed model for a healthy tapered composite beam, it is extended to 

investigate the influence of delamination damage. The combined effect of thickness tapering and 

delamination damage will show notable reductions in the natural frequencies of a tapered 

composite beam [49], [50]. For analyzing this delamination influence, the same tapered composite 

beam geometry, which was utilized earlier for healthy conditions, is considered, and its results are 

compared with the published natural frequency results reported in [22]. The tapered beam is 

analyzed for the clamped-free boundary condition. The full-width delamination is introduced 

partially across the length of the beam of size 40 mm. The delamination is present in the tapered 

zone, and it is extended towards the thin zone of a beam at the first interface from the top lamina. 

This delamination configuration is assumed, as mentioned in [22], for a direct comparison of the 

natural frequency results. The comparison of the first three flexural natural frequencies of a 

delaminated tapered composite beam with published results and 3D FEM results is shown in Fig. 
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4(b). For the delaminated beam, the natural frequencies from the proposed model considering and 

ignoring the shear effect are presented in Fig. 4(b) for comparison.  

It is observed that the proposed model (with shear) gives minor deviations (below 7%) for the first 

three natural frequencies as compared to the frequency values reported in [22]. The 3D FE model 

is also developed for a delaminated composite tapered beam on ANSYS by following the same 

procedure as described for a healthy beam in earlier discussions. The interfacial delamination of 

size 40 mm along the full length of the tapered zone and extending towards the partial length of 

the thin zone is modeled in ANSYS by disconnecting the respective nodes in that location at the 

first interface from the top lamina. The 3D FEM results for the first three flexural natural 

frequencies indicate respectively 0.56%, 6.21%, and 5.13% deviations from the published results 

in [22]. This shows a very good agreement between the proposed 1D FE model and the developed 

3D FE model for a delaminated beam as well. After this model validation, the stochastic dynamic 

analysis of composite tapered beams is carried out to address the stochasticity in natural 

frequencies due to uncertainties in material properties which will help to showcase more realistic 

dynamic behavior of tapered composite laminates.  

4.2 Stochastic analysis of tapered composite beams  

This sub-section presents the stochastic response for natural frequencies of tapered composite 

beams under the influence of material property uncertainties at various scales. The present work 

captures the scatter in the micromechanical properties, which include mass densities, elastic 

constants, Poisson’s ratios, and volume fractions measured at constituent levels. The affected 

dynamic performance of the tapered composite beams due to these uncertainties is presented in 

the form of stochastic distributions of natural frequencies based on a probabilistic modeling 

approach. The stochastic natural frequency results are presented for various healthy and 
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delaminated tapered composite beam cases. In all the stochastic simulations considered in this 

work, a clamped-free boundary condition is implemented. The micro-mechanical properties of the 

tapered composite beam are considered as continuous uncertain variables. A scatter of 5% and a 

sample size of 1000 are assumed in all the stochastic simulation studies presented here. The mean 

values of uncertain material inputs at the micro-scale, which are assumed to be normally 

distributed, are mentioned in Table 2, and the geometry details of the beam are taken from Table 

1 (Ghaffari et al.[22]). The choice of normal distribution fit for all the micro-properties of tapered 

composite beams is assumed by referring to probabilistic modeling approaches for composite 

laminates reported in [51], [52]. 

Table 2 Mean values of uncertain material properties 

Uncertain material properties 
Mean 

Value 

Longitudinal modulus of fiber (E1f) 189 GPa 

Transverse modulus of fiber (E2f) 30 GPa 

Shear modulus of fiber(G12f) 120 GPa 

Elastic modulus of matrix (Em) 3.93 GPa 

Shear modulus of matrix (Gm) 1.034 GPa 

Poisson’s ratio for fiber 0.3 

Poisson’s ratio for matrix 0.37 

Mass density for fiber 1800 kg/m3 

Mass density for matrix 1100 kg/m3 

Fiber volume fraction 0.62 

 

4.2.1 Stochastic dynamic response of healthy composite tapered beams 

In this sub-section, the influence of uncertainties in the micromechanical properties of a healthy 

tapered composite beam on the first three flexural frequencies is addressed. The source-induced 

uncertainties are quantified by analyzing the stochastic distributions of natural frequency outputs 
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of the tapered composite beams. Hereafter, in this paper, the first, second, and third flexural natural 

frequencies are presented and abbreviated as FNF, SNF, and TNF, respectively. 

 
(a)                                                                   (b) 

 

    (c) 

Fig.  5 Stochastic distribution of first three flexural natural frequencies of the tapered composite 
beam (a) FNF (389.90, 12.51) (b) SNF (1047.6,47.13) (c) TNF (3101.61,84.20)  

 

In the caption of Fig. 5(a), Fig. 5(b), and Fig. 5(c), the first value mentioned in the bracket indicates 

the mean value, and the second indicates the standard deviation of PDF plots of natural frequencies  

The stochastic distribution data of the first three natural frequencies is shown in Fig. 5(a), 5(b), 

and 5(c), respectively, in histogram form. Also, the best-fit and normal-fit curves for this 

distributed data are indicated in the same Fig. 5 for the first three flexural natural frequencies. It is 

observed from Fig. 5(a), 5(b), and 5(c) that the normally distributed fit curve for the stochastic 

frequency data closely overlaps with the best-fit curve, which indicates the close matching of their 

statistical variables. To check the accuracy of the normal distribution fit to the distributed natural 



29 
 

frequency data, an estimation of the R-squared value for the fits of FNF, SNF, and TNF is carried 

out. It gives a value of 0.9015, 0.9040, and 0.8745 for FNF, SNF, and TNF, respectively. These 

values, which are close to 1 indicate betterness of the fits. It illustrates that FNF, SNF, and TNF 

are normally distributed. 

The close observation of the PDF plots shown in Fig. 5(a), 5(b), and 5(c) indicate considerable 

reductions in PDF values corresponding to peak points of normally distributed PDF plots of  SNF 

and TNF as compared to FNF. Further observation on the response bound indicates a 63.72% 

increase in the standard deviation of SNF distribution as compared to that of FNF. The same 

observation for the standard deviation values of TNF shows a 59 % increase as compared to SNF. 

The collective interpretation of these reported observations indicates the increased influence of 

uncertainties in material properties for higher modes which is reflected in the form of a wider 

spread of natural frequencies.  

The influence of length ratio, which is measured by taking the ratio of the length of a thick section 

to the length of a thin section of a tapered composite beam, is found to be affecting the natural 

frequency distributions. Here the influence of three different length ratios of values 0.66, 1, and 

1.5 on stochastic distributions of the first three flexural frequencies are analyzed and presented. 

Fig. 6 (a), 6(b), and 6(c), respectively, indicate the PDF plots of the first three flexural frequencies 

for different length ratios.  
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(a) 

 

       (b)                                                                 (c) 

Fig.  6 Effect of length ratio on stochastic distribution of first three flexural natural frequencies 

(a) FNF (b) SNF (c) TNF 

It is observed that for the increase in the length ratio of a tapered composite beam from 0.66 to 1.5, 

almost 21.47%, 29.45%, and 15.58% increments are reported in the mean frequencies of FNF, 

SNF, and TNF, respectively. Also, the response bound is found to be increased by almost 30-35%. 

This indicates that the uncertainties in material properties show a dominating influence for the 

tapered beams with higher length ratios due to observed wider response bounds .  

Along with the length ratio, the thickness ratio is also an equally important geometrical parameter 

in the case of tapered composite beams. Fig. 7(a), 7(b), and 7(c), respectively, present the PDF 

plots for the first three flexural frequencies for three different thickness ratios. The thickness ratio 

of a tapered composite beam is defined as the ratio of the thickness of a thick section to the 

thickness of a thin section. It depends on the number of plies dropped in the tapered zone and 
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ultimately reflects the measure of the taper angle. Three thickness ratios of values 2,3, and 4 

obtained due to dropping of 8,16, and 24 plies, respectively,  are considered for the stochastic 

analysis. This consideration of thickness ratios is based on the correlation of taper angle with the 

no. of dropped-out plies mentioned in [13] for the composite tapered beam. 

 

(a) 

 

       (b)                                                                    (c)  

Fig.  7 Effect of thickness ratio on stochastic distribution of first three flexural frequencies (a) FNF 
(b) SNF (c) TNF 

It is observed from PDF plots of the first three natural frequencies that, along with response 

bounds, PDF plots also indicate considerable reductions in mean values of natural frequencies for 

increased thickness ratios. From Fig. 7(a), it is calculated that the reduction in the response bound 

of FNF for an increased thickness ratio value from 2 to 3 is around 13.21%. Whereas this decrease 

in response bound of FNF for increased thickness ratio from 3 to 4 is almost 18%. The close 

observation of probability density function values of FNF, SNF, and TNF stochastic plots also 

indicates decrements in the values for decreased thickness ratios. These observations interpret that 
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the thickness ratio of tapered composite beams which signifies the tapered angle closely affects 

the stochastic distributions of natural frequencies as considerable changes in their statistical 

parameters are reported. 

4.2.2 Stochastic response of a delaminated tapered composite beam 

The stochastic natural frequencies of a tapered composite beam with embedded full width and 

partial length delamination introduced across the length of a beam of size 30 mm (almost 23% of 

total length) in the tapered zone are analyzed. The coupled influence of uncertainties in micro-

properties and delamination damage conditions on stochastic natural frequencies of a composite 

tapered beam are presented in the form of PDF plots as shown in Fig. 8(a), 8(b), and 8(c) for the 

first three flexural frequencies respectively. The influence of extended delamination size of 23% 

of length in the thin zone of a beam, along with delamination presence in the tapered zone as well, 

is analyzed. The PDF plots of this larger delamination size of 46% of the length (23% in tapered 

zone +23% in thin zone) are also captured in the same Fig. 8. 

The general observation from all the PDF plots presented for the first three flexural frequencies in 

Fig. 8(a), 8(b), and 8(c), respectively, is that, as the delamination size increases, there are 

decrements in the mean natural frequency values and the response bound of stochastic distributions 

of natural frequencies for a tapered composite beam. For the considered delamination 

configuration, the reduction in the mean value of FNF for a 23% delaminated beam is found to be 

almost 22.58% as compared to a healthy beam. The corresponding reduction in mean FNF for 46% 

delaminated beam as compared to that of 23% delaminated beam is found to be drastically lesser 

(almost 3.13%). For the case of 23% delamination, the mean value of SNF shows almost 11.37% 

reduction, and that of TNF shows a 15.26% reduction as compared to the healthy frequency values 
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as observed from Fig. 8(b) and 8(c), respectively. The trend of standard deviations of the PDF 

plots addressed in Fig. 8(a), 8(b), and 8(c) shows almost 35% reduction in the case of FNF, and 

15-20% reductions are reported for SNF and TNF for delaminated beams as compared to healthy 

beams. These statistical observations demonstrate the dominance of delamination damage over 

uncertainties addressed at a micro level in which the delamination occurred in a tapered zone of a 

beam is a more sensitive location as that contributes more degradation in the natural frequencies.  

 

(a) 

   

           (b)                                                               (c) 

Fig.  8 PDF plots of first three flexural frequencies of a tapered beam with healthy and partially 

delaminated conditions (partial delamination sizes of 23% and 46% of length and full width) (a) 
FNF (b) SNF (c) TNF 

An effect of the degree of stochasticity (DOS) which indicates the amount of scatter in the 

uncertain inputs on the stochastic distribution of the first flexural natural frequency for healthy and 

23% delaminated cases are reported in Fig. 9(a) and 9(b) respectively in the form of PDF plots. A 

case of 23% delamination considered here represents the influence of delamination in the tapered 
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zone only. There are four simulations performed by varying the DOS percentage as: (i) case -1: 

DOS of 10% in micro-properties (ii) case-2: DOS of 20% in micro-properties (ii) case-3: DOS of 

10% in macro-properties (iv) case-4: DOS of 20% in macro-properties.  

4.2.3 Influence of degree of stochasticity in uncertain inputs on the stochastic natural 

frequency outputs of a healthy and delaminated tapered composite beam 

 

(a)                                                   (b) 

Fig.  9 Effect of degree of stochasticity in micro and macro mechanical properties on PDF plots of first 

natural frequency (a) Healthy (b) 23% delamination in the tapered zone 

It is observed from the PDF plots that as the DOS increases from 10% to 20%, there is an increase 

in the response bounds of the plots and a decrease in the probability density function values for all 

the DOS cases, as mentioned earlier. By analyzing the statistical parameters of the PDF plot for 

healthy beam case (Fig. 9(a)), almost 52% increment in the standard deviations and 50 -55% 

decrease in the probability density function values are reported when DOS in micro-properties is 

changed from 10% to 20%. An increase in DOS of macro-properties from 10% to 20% reports 

almost a 48% increase in stochastic bounds of PDF plots and more than 40% decrease in 

probability density function values for the first flexural frequency distribution. These notable 

observations interpret that multi-scale uncertainties addressed at micro and macro scales strongly 

influence the stochastic distributions of natural frequencies.  
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The close observation of the statistical parameters of the PDF plot of the first natural frequency 

for the delaminated beam, as shown in Fig. 9(b), indicates more than 30% reductions in response 

bounds for all DOS cases as compared to response bounds observed for healthy beam in Fig. 9(a). 

Also, the probability density function values show more than 30% increments than that of healthy 

frequency distribution values. These accountable observations illustrate that the influence of 

delamination damage dominates over uncertainties in the material properties of the beam. This 

dominance is more pronounced here due to the more sensitive location of delamination in the 

tapered zone. A similar trend of the statistical parameters is observed for the second and third 

natural frequencies of healthy and delaminated tapered composite beams for all the DOS cases  

(Refer to Fig. S1 in the supplementary material). The influence of uncertainties is more 

pronounced for healthy beam cases. Hence, to understand the most dominating uncertain input that 

strongly affects the frequency distribution output, a sensitivity analysis is carried out for a healthy 

tapered composite beam. 

4.3 Sensitivity analysis 

The quantification of uncertainties is carried out in this subsection for a healthy beam case based 

on the sensitivity analysis studies. First, local sensitivity indices (LSI) are calculated by 

considering the variation of one uncertain parameter at a time. In the sensitivity analysis studies, 

the same composite tapered beam configuration is used as that mentioned in the previous section. 

Fig.10 (a) shows the LSI plot obtained for the first six modes of a tapered composite beam for 

various important uncertain variables. It is observed from Fig. 10(a) that the micro-scale uncertain 

variable of volume fraction and macro-scale variable of the mass density of lamina are highly 

sensitive which contributes to more variations in all the six natural frequencies of the first six 

modes. Fig. 10 (a) also indicates higher sensitivity of uncertain shear modulus of the matrix that 
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contributes to notable variation of torsional frequency (mode-4), whereas uncertainty in elastic 

modulus of the matrix shows higher sensitivity indices for initial bending and torsion modes 

(mode-1, 2, 3, 4). This discussion illustrates that the uncertainty in volume fractions, mass densities 

of a lamina, elastic modulus of the matrix, and shear modulus of the matrix are highly sensitive 

which contribute to more variations in the natural frequency outputs . Hence for further global 

sensitivity analysis (GSA) study, only these variables are taken into consideration.  

The global sensitivity index (GSI) calculations are carried out as per the variance-based sensitivity 

analysis as mentioned in [53]. The most important advantage of GSA is that it addresses 

simultaneous variations in the uncertain parameters of the system [54]. A variance-based 

formulation for first and total order sensitivity indices is referred to from Ref. [55]. In the GSA, 

first, the sensitivities of fiber and matrix properties of a tapered composite beam are calculated 

based on a first-order sensitivity index plot as indicated in Fig. 10(b). This first-order sensitivity 

analysis is carried out by varying all fiber properties at a time and keeping all matrix properties 

constant in one iteration. Whereas, in another iteration, all fiber properties are kept constant, and 

all matrix properties are varied. Though it shows higher sensitivities of uncertain fiber properties 

over matrix properties, the SI values of uncertain matrix properties are also observed to be 

accountable from Fig. 10(b). This observation regarding matrix properties is obvious in the case 

of composite tapered beams because the dropped-out plies of the tapered beams are modeled by 

the matrix/resin layers.  

The first-order and total-order GSI plots for four important uncertain variables obtained from 

earlier LSA are presented in Fig. 10(c) for the first flexural frequency. For the calculations of first 

and total order sensitivity indices, the variance-based formulation reported in [53] is referred. GSA 

plot of these variables interprets that the elastic modulus of the matrix is the most sensitive variable 
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as it gives higher first and total order indices indicating the higher fractional contribution of this 

variable towards variance in frequency outputs of the tapered composite beam. The uncertainty in 

the mass density of lamina also exhibits notable first and total order SI values indicating its higher 

sensitivity. However, the first and total order SI values of the variable volume fraction and shear 

modulus of the matrix are considerably lower. It indicates that these variables interact strongly 

with other uncertain variables and hence their individual uncertainty is less sensitive than their 

interacting capability with other uncertain parameters. The local and global sensitivity analysis 

results presented in this section help to understand the most important uncertain parameters from 

various scales of material properties of tapered composite beams which are dominantly responsible 

for stochastic variation in natural frequencies. 

 

(a) 

    

(b)                                                                       (c) 

Fig.  10 Sensitivity index plots of for tapered beam (a) local sensitivity index plot for individual 
uncertainty in various variables (b) RCOV values of uncertain fiber and uncertain matrix properties 

(c) Global sensitivity index plot for important uncertain variables 
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4.4 Implementation of the proposed model to realistic application: flexbeam structures 

In this sub-section, additional dynamic analysis results are showcased for one of the actual 

applications of tapered composite beams as a flexbeam structure in a helicopter rotorcraft 

assembly.  This realistic application is identified from the Ref. [1]. In this work, the authors have 

investigated interlaminar stresses at ply drop locations which eventually lead to potential sites of 

delamination occurrences. Hence, to dynamically analyze such a realistic example by the proposed 

model, the same flexbeam is considered to portray its deterministic and stochastic results of natural 

frequencies for healthy and delaminated conditions. The material and geometry details for  this 

flexbeam are taken from [1] and are mentioned in Table 3 (Fish et al. [1]). The cantilever boundary 

condition is assumed for the determination of natural frequencies. 

Table 3 Material and geometry attributes of rotor hub flexbeams 

Material property details 

Attribute Fish et al. [1] Murri et al. [56] 

Longitudinal modulus (E1) 44.1 GPa 131.1 GPa 

Transverse modulus (E2) 12.4 GPa 5.90 GPa 

Poisson’s ratio 0.28 0.361 

In-plane shear modulus (G12) 4.48 GPa 4.24 GPa 

Mass density 1600 kg/m3 1480 kg/m3 

Geometrical attributes details 

Lay-up of thick section [0]28 [09/(45/-45)3/(45/-45)2]s 

Lay-up of thin section [0]16 [09/(45/-45)2]s 

No. of dropped-out plies 12 12 

Length of a beam (L) 184 mm 254 mm 
Length of thick section  96.38 mm 84.66 mm 

Length of thin section  61.33 mm 84.66 mm 

Width (w) 21 mm 25.4 mm 

Ply thickness (tp) 0.216 mm 0.203 mm 

 

The deterministic natural frequency results obtained from proposed 1D FE and 3D FE models for 

the first three flexural modes of healthy and delaminated flexbeams are tabulated in Table 4. For 

damaged conditions, an embedded, full-width delamination is assumed at the midplane of the 
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beam. Here, the midplane location is considered for delamination damage as it exhibits higher 

degradations in the cross-sectional stiffness matrix of composite laminates. Along the span, a 

partially introduced delamination of size 15% of the length of a beam is considered in the tapered 

zone. The ply drop sequence is modeled by referring to the “overlapped-dispersed” taper model 

configuration as mentioned in [1]. The proposed 1D FE model results are validated with the 3D 

FE model of the flexbeam developed in this work on ANSYS. The procedure of 3D model 

development is the same as that discussed in the previous sub-section 4.1.1 for another tapered 

beam configuration. The comparison of these results obtained for a healthy and 15% delaminated 

beam shows a very close agreement between the reduced 1D FE model values and the 3D FE 

model. The deviations between the 1D FE model and 3D FEM results are within 10% for the f irst 

three flexural natural frequencies of healthy as well as delaminated beams.  

Table 4 Deterministic natural frequencies of first three flexural modes of rotor-hub 

flexbeam for healthy and delaminated conditions (flexbeam with 00 plies) 

Frequency 
modes 

Healthy 
beam-1D 

FEM 

Healthy 
beam- 

    3D FEM 

15% 
delamination- 

1D FEM 

15% 
delamination-

3D FEM 

Mode-1 258.24 237.39 227.72 225.15 
Mode-2 1061.04 974.94 921.99 913.92 

Mode-3 2846.84 2619.6 2439.29 2411 

 

After observing accountable degradations in fundamental natural frequencies (around 12-15%) of 

a realistic delaminated flexbeam for a very small size delamination (15% of the length), the 

combined influence of delamination with associated source uncertainties of the flexbeam is 

analyzed. By referring to the sensitivity analysis results reported earlier in sub-section 4.3 for the 

composite tapered beam only those sensitive parameters are considered as uncertain inputs for the 

stochastic simulation of a flexbeam. These sensitive parameters are volume fraction (micro-scale), 

mass density (macro-scale), elastic modulus of matrix (micro-scale), and shear modulus of matrix 
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(micro-scale). A scatter of 10% is assumed in all these uncertain inputs, and stochastic distributions 

of the first three flexural frequencies are presented in the form of PDF plots in Fig. 11 (a), (b), and 

(c), respectively. In the stochastic simulation, an influence of increased delamination size, which 

is extended in a thin zone of the beam (30% and 45% of the spans),  is also analyzed. 

 

                                            (a)                                                                    (b)  

 

         (c) 

Fig.  11 Stochastic distributions of natural frequencies of a flexbeam example (a) first flexural 
mode, (b) second flexural mode, (c) third flexural mode 

 

The observations of these stochastic results indicate comparatively higher degradations in mean 

natural frequencies of the second flexural mode, which is the major axis bending mode for the 

considered flexbeam as indicated in Fig. 11(b). This observation is obvious because a drastic 

reduction in major axis bending stiffness is reported as a result of the combined influence of the 

tapering effect and delamination damage degradation. The normalized stiffness degradation plots 
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for healthy and delaminated flexbeams are provided in the supplementary material (refer to Fig. 

S2 (a) and S2(b)). Fig. 11(a) and 11(c) represent the stochastic distributions of natural frequencies 

corresponding to minor axis bending. These two plots comparatively show lesser deviations in 

mean values and response bounds of natural frequencies for healthy and delaminated conditions 

of flexbeams.  

Additionally, it is interesting to note from Fig. 11(a), 11(b), and 11(c) that the increase in the size 

of delamination in the thin zone minorly affects the stochastic distributions of natural frequencies. 

This observation is made by looking at very minor deviations in standard deviation and mean 

values for 30% and 45% delamination sizes. 

 

Fig.  12 Deterministic and stochastic natural frequency results of angle-ply flexbeam with healthy 
and delaminated configurations (a) mode 1 deterministic (b) mode 2 deterministic (c) mode 3 
deterministic (d) stochastic frequency distribution mode 1 (e) stochastic frequency distribution 

mode 2 (f) stochastic frequency distribution mode 3 

One more realistic application of the tapered composite beam reported in the literature as a rotor-

hub flexbeam is addressed by Murri et al.[56]. The authors have tested the probable delamination 

sites in the case of tapered composite laminates of Graphite epoxy material with internal ply drops 

at NASA Langley Research Center. The same tapered composite beam configuration is considered 
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for dynamic analysis by implementing the VAM-based proposed model in this work. The reason 

for selecting this application of tapered composite beam lies in its specialized angle ply lay -up 

with 450 and -450 plies, and a group of 00 plies is present as a belt plies group. The geometry, lay-

up, and material property details of this flexbeam are given in Table 3 (Murri et al. [56]). For the 

estimation of natural frequencies, a clamped-free boundary condition is considered. 

The first three deterministic natural frequencies for healthy and delaminated configurations of the 

angle-ply flexbeam are presented in Fig. 12 (a), 12(b), and 12(c) respectively. In Fig. 12 (a), 12(b), 

and 12(c), cases 1, 2, 3 represent the delamination cases. Case-1 represents delamination in core 

plies of tapered zone, case-2 indicates delamination in a dropped ply and normal ply of the tapered 

zone, and case-3 shows delamination between two dropped plies of the tapered zone. These cases 

are taken concerning full-width embedded delamination introduced partially across the span of a 

beam. In all the cases, delamination is introduced between the 450 and -450 plies, and the partial 

delamination size across the beam span is 33.33% of the total length of the beam,  which represents 

the occurrence of delamination in the tapered zone only .  

It is observed from Fig. 12(a), 12(b), and 12(c) that up to 30% degradation in the natural 

frequencies of the first two modes and 48% degradation in the third frequency mode is reported 

for case-3 delamination (the delamination presence in core plies between 450 and -450 laminae). 

For case 2, where the delamination is present between one dropped and one normal ply, almost the 

same trend is observed in the degradation of the first three natural frequencies. Comparatively 

lesser but still notable degradations in the first three natural frequencies are observed for case-1, 

where delamination is introduced slightly away from the mid-plane and present between two 

dropped-out plies. The maximum degradation in the first three natural frequencies is observed for 

case-3 delamination as it is the location in the core plies close to the midplane. Third natural 
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frequencies for all delamination cases show the major degradation in the values (torsional mode 

of vibration). This is because the combined influence of delamination and tapering effect is found 

to degrade the torsional stiffness by almost 62% for case 3 delamination as compared to healthy 

and non-tapered sections. The same degradation in the flexural stiffness is found to be almost 

54.16% for most sensitive case-3 delamination. This degradation in flexural stiffness is reflected 

in the decrements of the first two natural frequencies. The normalized degradation in torsional and 

flexural stiffness terms of the tapered zone section due to delamination is provided in Fig, S3 of 

the supplementary material. 

To portray the more realistic natural frequency results of the angle-ply flexbeam, the influence of 

uncertainties in the macro-mechanical properties of the composite laminated flexbeam is analyzed 

for healthy and delaminated conditions of the beam. The scatter of 10% is assumed in the macro-

properties of the ply, which include elastic modulus (E1), transverse modulus (E2), Poisson’s ratio 

(v12), shear modulus (G12), and mass density (ρ). The corresponding mean values of these macro-

properties are taken from Table 3 (Murri et al. [56]), and all of them are assumed to be normally 

distributed. The stochastic natural frequency results for healthy and delaminated configurations 

(cases 1,2,3) are presented as PDF plots for the first three modes in Fig. 12 (d), 12(e), and 12(f). It 

is observed from stochastic distributions that the mean values and response bounds of the first 

three natural frequencies are drastically reduced for all delamination cases as compared to healthy 

cases. It is interesting here to address the stochastic frequency distribution for the torsional 

frequency mode (mode-3) which shows a dominant reduction in the mean frequency, response 

bound, and probability density function values (Fig. 12(f)). This notable stochastic frequency result 

for torsional frequency, which is highly influenced by material properties uncertainties and 

delamination conditions, is observed for this flexbeam application due to its specialized angle ply 
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lay-up. The consideration of delamination between 450 and -450 plies in all cases in the most 

sensitive tapered zone is also responsible for getting more degradations in the natural frequencies.  

The results discussed highlight the measurable influence of uncertain material properties, 

delamination conditions, and lay-up on stochastic frequency distributions of healthy as well as 

delaminated angle-ply flexbeams.  It also helps to highlight the more realistic dynamic response 

of the realistic applications of the tapered composite beams as flexbeams.  

Stochastic analysis of systems, like structures with uncertain design variables, is computationally 

expensive. This is especially true if a traditional method like the Monte-Carlo (MC) method is 

used in the analysis. Although there are improvements to the MC method that can aid faster 

analysis, the problem is still computationally challenging due to the large number of simulations 

that must be repeated for the design variables.  The stochastic analysis becomes doubly challenging 

if the underlying model used in the simulations is computationally demanding. A straightforward 

approach to alleviate this problem is to use a surrogate model in the simulations. However, 

predictions from surrogate models are questionable if an appropriate choice based on the 

mechanics of the problem is not made. For a problem with geometrical complexity like flexbeam 

having a number of design variables this is major challenge. To a large extent, a VAM based 

stochastic framework used in this work overcomes the challenges mentioned abo ve.  

A VAM based structural model is a reduced order model. For the flexbeam problem, the model 

gives exact analytical solution of the cross-sectional stiffness with the representation of all the 

design variables appearing in all the stiffness terms. This significantly reduces the computational 

time. Additionally, since it is an asymptotically correct reduced order model, the results closely 

mimick the simulation results from an explicit 3D numerical approach. The structural responses 
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are relatable to design variables, which may not be possible easily if the simulations are based on 

a direct 3D numerical approach, and lends naturally to linearization (following an order-based 

asymptotic approach), making it computationally economical. Please refer to Refs. [52], [57] that 

highlight the computational efficiency of a VAM-based stochastic analysis framework. On the 

contrary, extending the VAM-based approach to more complex geometrical configurations is 

difficult. For complex geometrical configurations, like strips/beams with airfoil shapes or other 

open or closed cross-sections, it is not possible to determine the cross-sectional stiffness terms 

analytically. One has to pursue either a semi-analytical or a numerical approach; however, the 

framework will still be computationally economical compared to a direct numerical approach, but 

interpreting the direct influence of design variables on the structural response is likely to be 

difficult. Finally, the current framework's efficacy is only demonstrated for investigating the linear 

dynamical behavior of a flexbeam. Its veracity to investigate the stochastic nonlinear dynamics of 

a flexbeam has yet to be explored in detail.  

Conclusions 

In this paper, the free vibration responses of healthy and delaminated tapered composite beams are 

analyzed by implementing a computationally accurate VAM framework coupled with a reduced 

1D FE model. An asymptotically correct closed-form solution is derived for cross-sectional 

stiffness terms of healthy and delaminated tapered composite beams using the VAM framework. 

As delamination damage is observed most likely to occur in the case of tapered composite 

laminates, its combined influence with source uncertainties is analyzed in the form of stochastic 

frequency distributions. The deterministic and stochastic natural frequency results of the realistic 

applications of tapered composite beams as flexbeam structures in the helicopter rotor-blade 

assembly are presented and discussed. The concluding remarks are as follows: 
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1. The proposed VAM-based formulation can be applied to thin, or moderately thick sections 

of a tapered composite beam as it accounts for the transverse shear deformations in the 

formulation. The specialty of the proposed work lies in the development of a generalized 

five-layer cross-sectional stiffness model for the non-homogeneous tapered zone of a 

beam, which can be easily implemented in any ply drop configuration and delaminated 

sub-laminates.  

2. The natural frequency results for healthy and delaminated configurations are strongly 

dependent on the lay-up of the beam. The full-width delamination in the lay-up with 00 

plies of a flexbeam shows moderate reductions in flexural stiffness which is reflected in 

respective moderate degradation in major axis flexural frequency mode. But, in the case of 

angle-ply flexbeam with 450 and –450 plies in the lay-up, the full-width delamination 

introduced between 450 and –450 plies strongly degrades the torsional stiffness, followed 

by flexural stiffness terms. Hence, the natural frequencies of this flexbeam show drastic 

reductions in flexural as well as torsional frequency modes.  

3. The global sensitivity results taken for quantification of uncertainties in micro-properties 

of the tapered composite beams exhibit the notable contributions of uncertainties in matrix 

properties in the variations of natural frequency outputs. The stochastic frequency 

distributions of tapered composite beams with healthy configuration show a more 

pronounced effect of source uncertainties addressed at the fiber and matrix level of the 

composite laminates. Whereas the respective stochastic frequency distributions for 

delaminated configuration show the dominance of delamination due to reported reductions 

in the response bounds as compared to healthy beams.   
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4. The stochastic frequency distributions for the extended delamination case in the thin zone 

from the tapered zone indicate maximum degradations in the mean frequency values for 

the delamination case introduced in the tapered zone of a beam. It indicates the tapered 

zone as the most sensitive delamination location. 

The proposed results showcase the dynamic analysis response of more realistic composite 

structures by presenting the natural frequency results under more realistic conditions of 

uncertainties in the case of tapered composite laminates. Also, it accounts for the most probable 

damage sites of delamination especially pronounced in the case of tapered composite laminates 

due to termination of the plies.  
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Appendix 

A1- Cross-sectional stiffness terms of healthy, non-tapered cross-section (for thick/thin 

zones of tapered beam) 
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(A1) 

A2- Cross-sectional stiffness terms of healthy, tapered cross-section (for the tapered zone of 

tapered beam carrying matrix-rich plies) 
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A4- Cross-sectional stiffness terms for the delaminated condition of non-tapered cross-

sections (thick/thin zones) 
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Note for delaminated stiffness terms in A3 and A4:  

All the stiffness terms will be functions of width (B) and thickness (H) after putting appropriate limits for 
delamination size in x2 and x3 directions. For example, for full width delamination conditions, the limits of x2 

direction are taken as: x2l=x2l2=-B/2 and x2r=x2r2=B/2. Whereas for delamination at midplane of the stack 

condition, the limits of x3 are taken as: x3b=x3b2=-H/2 and x3t=x3t2=H/2 
 
 

Assumed zeroth order cross-sectional warping solutions for non-tapered cross-sections 

(thick/thin zones) 
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Assumed zeroth order cross-sectional warping solutions for tapered cross-sections  
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Here the notations wini and wimi (i=1,2,3) are utilized to represent the warping solution for non-

matrix-rich and matrix-rich layers respectively present in the tapered zone of a beam. The notations 

x3t and x3b represent the position of the considered layer/layers from mid-plane where suffix letters 

t and b represent the top and bottom positions of a layer or group of layers from mid-plane. 
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