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Abstract: We develop some of the ingredients needed for string theory on noncommuta-
tive spacetimes, proposing an axiomatic formulation of T-duality as well as establishing
a very general formula for D-brane charges. This formula is closely related to a noncom-
mutative Grothendieck-Riemann-Roch theorem that is proved here. Our approach relies
on a very general form of Poincaré duality, which is studied here in detail. Among the
technical tools employed are calculations with iterated products in bivariant K-theory
and cyclic theory, which are simplified using a novel diagram calculus reminiscent of
Feynman diagrams.
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Introduction

As proposed by [63] and elaborated in [37,44,64,66,86], D-brane charges and RR-fields
in string theory are classified by the K-theory of spacetime X , or equivalently by the
K-theory of the C∗-algebra C0(X) of continuous functions on X vanishing at infinity.
Recently, in a far-sighted suggestion at KITP, I.M. Singer suggested working out string
theory and duality on spacetimes that are general noncommutative C∗-algebras, with
some minimal assumptions. This paper can be viewed as a preliminary step towards this
goal. Some of our main results are a formula for the charges of D-branes in noncommu-
tative spacetime and a fairly complete treatment of a general framework for T-duality.
The main technical tools are a study of Poincaré duality in both KK-theory and bivari-
ant cyclic theories, a definition of Gysin (“wrong-way”) maps, and a version of the
Grothendieck-Riemann-Roch theorem.

Previous work ([9,59], among many other references) already showed that a good
formulation of T-duality requires the use of noncommutative algebras. We develop a
formalism for dealing with T-duality in the context of general separable C∗-algebras
and in Sect. 6 we give an axiomatic definition. This includes the requirement that the
RR-fields and D-brane charges of A should be in bijective correspondence with the RR-
fields and D-brane charges of the T-dual T(A), and that T-duality applied twice yields
a C∗-algebra which is physically equivalent to the C∗-algebra that we started out with.
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This general T-duality formalism can be viewed as a noncommutative version of the
[topological aspects of the] Fourier-Mukai transform.

In the classical case, D-brane charges are expressed in terms of the Chern character in
K-homology (see [75]), as formulated topologically by the Baum-Douglas construction
of [6]. In formulating the notions of D-brane charges and RR-fields on arbitrary C∗-
algebras, one is faced with the problem of developing Poincaré duality and constructing
characteristic classes in this general setting. In [21], Connes initiated this study, pointing
out that the analogue of a spinc structure for a C∗-algebra A is a fundamental class �
for its K-theory, whereas the analogue of a spin structure is a fundamental class for its
KO-theory. In [65], Moscovici gives an elegant application of Poincaré duality, deriving
an analogue of the Vafa-Witten inequalities for spectral triples that implement Poincaré
duality, under a finite topological type hypothesis. One of the goals of this paper is to
define the Todd class and Todd genus for a spinc C∗-algebra A, which generalize the
notion of the classical Todd class and Todd genus of a compact spinc manifold X . If� is
a fundamental class for the K-theory of the spinc C∗-algebra A and � is a fundamental
class in bivariant cyclic homology of A (which is the analogue of an orientation for a
smooth manifold), then we define in Sect. 7.1, the Todd class of A to be the invertible
element

Todd(A) = �∨ ⊗Ao ch(�)

in bivariant cyclic homology of the algebra A. (The notations are explained below; �∨
is the dual fundamental class to � and Ao is the opposite algebra to A.) In the special
case when A is a spin C∗-algebra and the K-theory fundamental class � comes from a
fundamental class in KO-theory, the characteristic class as defined above is called the
Atiyah-Hirzebruch class ̂A(A). One of our main results, Theorem 7.10, shows that the
Todd class as defined above is exactly the correction factor needed in the noncommutative
Grothendieck-Riemann-Roch formula.

Our final main result, the D-brane charge formula of Sect. 8.2, is a noncommuta-
tive analogue of the well-known formula (1.1) in [63] (cf. [44,64,66,86]). It takes the
familiar form,

Qξ = ch( f!(ξ))⊗A

√

Todd(A),

for a D-brane B in a noncommutative spacetime A with given weakly K-oriented mor-
phism f : A→ B and Chan-Paton bundle ξ ∈ K•(B), where f! denotes the Gysin map
associated to f . With this modification of the Chern character, one obtains an isometry
between the natural intersection pairings in K-theory and cyclic theory of A. There is
also a similar dual formula for the charge of a D-brane given by a Fredholm module,
representing the Chern-Simons coupling of D-branes with RR-fields.

The central mathematical technique of the paper is the development of a novel dia-
gram calculus for KK theory and the analogous diagram calculus for bivariant cyclic
theory, in Appendix B. The rules of this diagram calculus are reminiscent of those for
the calculus of Feynman diagrams, and are likely to become an important tool for sim-
plifying iterated sequences of intersection products in KK-theory and in cyclic theory,
and for establishing identities in these theories.

1. D-Branes and Ramond-Ramond Charges

In this section we give a detailed mathematical description of brane charges in the lan-
guage of topological K-homology and singular cohomology. Our aim later on is then
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to generalize these constructions to analytic K-homology and cyclic cohomology suit-
able to generic noncommutative settings, some examples of which we describe below.
For a description of D-branes in terms of K-theory see [63,64,66,86], and in terms of
K-homology see [1,75,84].

1.1. Flat D-branes. Let X be a spin manifold of dimension d = 10 with metric. In
Type II superstring theory, X is called the spacetime. If X is non-compact, appropri-
ate compact support conditions are always implicitly understood throughout. In our
later applications we can typically relax some of these requirements and only assume
that X is a finite-dimensional Hausdorff space which has the homotopy type of a finite
CW-complex.

Definition 1.1. A flat D-brane in X is a triple (W, E, φ), where φ : W ↪→ X is a
closed, embedded spinc submanifold and E ∈ K0(W ). The submanifold W is called the
worldvolume and the class E the Chan-Paton bundle of the D-brane.

When E is the stable isomorphism class of a complex vector bundle over W , we
assume that it is equipped with a connection and refer to the triple as a brane system.
When E is only a virtual bundle, say E = E+− E−, we can loosely regard it as the class
of a complex Z2-graded bundle E+⊕E− equipped with a superconnection and the triple
is called a brane-antibrane system. The requirement that a D-brane (W, E, φ) be invari-
ant under processes involving brane-antibrane creation and annihilation is the statement
of stable isomorphism of Chan-Paton bundles. Physical quantities which are invariant
under deformations of E thereby depend only on its K-theory class in K0(W ) [86].
Deformation invariance, gauge symmetry enhancement and the possibility of branes
within branes then imply that any D-brane (W, E, φ) should be subjected to the usual
equivalence relations of topological K-homology [6], i.e., bordism, direct sum and vector
bundle modification, respectively [75]. We will not distinguish between a D-brane and
its K-homology class in K•(X), nor between the Chan-Paton bundle and its isomorphism
class in K0(W ).

To define the charge of a flat D-brane in the spacetime manifold X , we begin by
introducing a natural bilinear pairing on the K-theory of X ,

〈−,−〉 : K0(X)× K0(X)
⊗−→ K0(X)

index(D/ (−))−−−−−−→ Z, (1.1)

where D/ N : C∞(X,S+
X ⊗ N ) → C∞(X,S−X ⊗ N ) is the twisted Dirac operator on

X , with respect to a chosen connection on the complex vector bundle N → X , and
S±X → X are the two half-spinor bundles over X . When tensored over Q the pairing
(1.1) is nondegenerate, which is equivalent to Poincaré duality in rational K-theory. In
the topological setting, Poincaré duality is generically determined by the bilinear cap
product

K0(X)⊗ K•(X)
∩−→ K•(X) (1.2)

defined for any complex vector bundle F → X and any D-brane (W, E, φ) in X by

F ∩ (W, E, φ) = (W, E ⊗ φ∗F, φ). (1.3)

The index pairing K0(X)⊗K•(X)→ Z is then provided by the Dirac operator on W as

F ⊗ (W, E, φ) �−→ index(D/ E⊗φ∗F ) . (1.4)
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On the other hand, in cohomology the natural bilinear pairing is given by the inter-
section form

(−,−) : Hp(X,Z)× Hd−p(X,Z)
∪−→ Hd(X,Z)

(−)[X ]−−−−→ Z. (1.5)

Again nondegeneracy of this pairing over Q is equivalent to the Poincaré duality theorem
of classical rational cohomology theory [7, p. 44]. For a compact oriented manifold X ,
the pairing between cohomology groups of complementary degrees leads to the duality

Hp(X,Q) ∼=
(

Hd−p(X,Q)
)∨ ∼= Hd−p(X,Q). (1.6)

It is important to realize that this pairing is determined purely in terms of the topology
of X , while the index pairing between K-theory and K-homology uses both the knowl-
edge of the topology of X and the analysis of the Dirac operator D/ . This difference will
become important when we compare the two pairings using the Chern character below.
The statement of cohomological Poincaré duality in the non-oriented case requires the
use of twisted coefficients, while in K-theory the Poincaré pairing involves twisting
whenever X is not spinc. This links very importantly with twisted K-theory [3].

Recall that the Atiyah-Hirzebruch class ̂A(X) of the manifold X is invertible with
respect to the cup product on cohomology [55, p. 257]. An application of the Atiyah-
Singer index theorem (recalling that X is spin) then immediately gives the following
fundamental result.

Proposition 1.2. The modified Chern isomorphism

Ch : K0(X)⊗Q −→ Heven(X,Q) =
⊕

n≥0

H2n(X,Q) (1.7)

defined by

Ch(N ) = ch(N ) ∪ ̂A(X)1/2 (1.8)

is an isometry with respect to the natural inner products (1.1) and (1.5),
〈

N , N ′
〉 = (

Ch(N ), Ch(N ′ )
)

. (1.9)

Note that the ordinary Chern character ch preserves the addition and multiplication on
K-theory and cohomology, but not the bilinear forms. The modified Chern character Ch
preserves addition but not the cup products. A similar statement is also true for the Chern
character on K−1(X) ⊗ Q → Hodd(X,Q) = ⊕

n≥0 H2n+1(X,Q). However, because
of the suspension isomorphism K−1(X) ∼= K0(X × R) it will suffice to work explicitly
with K0 groups alone in the following. In string theory terms this means that we work
only with Type IIB D-branes, the analogous results for Type IIA branes being obtainable
by T-duality (see Sect. 6).

There is an elementary but useful alternative interpretation of Proposition 1.2. Since
the ̂A-class is an even degree (inhomogeneous) class in the cohomology ring Heven(X ,
Q), with non-zero constant term, its square root ̂A(X)1/2 is also invertible. It follows
that taking products with this class produces an isomorphism h : Heven(X,Q) →
Heven(X,Q) which is given explicitly by

ω �−→ ω ∪ ̂A(X)1/2. (1.10)
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When we combine this isomorphism with the pairing given by Poincaré duality, we obtain
a new nondegenerate pairing (−,−)h : Heven(X,Q)× Heven(X,Q)→ R defined by

(

α, α′
)

h :=
(

α ∪ ̂A(X)1/2, α′ ∪ ̂A(X)1/2
)

=
(

α ∪ ̂A(X)1/2 ∪ α′ ∪ ̂A(X)1/2
)

[X ]
= (

α ∪ α′ ∪ ̂A(X)
) [X ], (1.11)

where we have used commutativity of the cup product. It is now easy to see that the
classical Chern character is an isometry with respect to the two pairings (1.1) and (1.11),

〈

N , N ′
〉 = (

ch(N ), ch(N ′ )
)

h . (1.12)

From this point of view the isomorphism h transforms the purely topological pairing
(−,−) to the “index” pairing (−,−)h, where the latter contains the information about
the extra piece of index machinery given by the Atiyah-Hirzebruch class.

For any closed oriented embedding φ : W ↪→ X of dimension p, we denote by
[W ] its orientation cycle in Hp(X,Z), by PdX (W ) = PdW ↪→X = ([X ] ∩ )−1[W ]
its Poincaré dual in Hd−p(X,Z), and by φ! : K•(W )→ K•+d−p(X) the corresponding
K-theoretic Gysin homomorphism. Recall that on cohomology, the Gysin map is given
explicitly by φ! = PdX ◦ φ∗ ◦ Pd−1

W : H•(W,Z)→ H•+d−p(X,Z).

Definition 1.3. The Ramond-Ramond charge (RR-charge for short) of a D-brane (W, E,
φ) in X is the modified Chern characteristic class Ch(φ!E) ∈ H•(X,Q). If (W ′, E ′, φ′ )
is any other D-brane in X, then the (W ′, E ′, φ′ )-charge of (W, E, φ) is the integer

QW ′,E ′,φ′(W, E, φ) = (

PdX (W
′ ), Ch(φ!E)

) = φ′ ∗Ch(φ!E)[W ′ ]. (1.13)

When (W ′, E ′, φ′ ) = (W, E, φ), we write simply QW,E,φ = QW,E,φ(W, E, φ) for the
charge of the D-brane (W, E, φ) itself. Note that this charge formula for a D-brane is
written entirely in terms of spacetime quantities.

Let us momentarily assume, for simplicity, that the spacetime manifold X is com-
pact. Let C(X) denote the C∗-algebra of continuous complex-valued functions on X . A
standard construction in K-homology then provides the following result.

Proposition 1.4. There is a one-to-one correspondence between flat D-branes in X,
modulo Baum-Douglas equivalence, and stable homotopy classes of Fredholm modules
over the algebra C(X).

Proof. Consider a D-brane (W, E, φ) such that dim(W ) is odd. The worldvolume W
inherits a metric from X and its Chan-Paton bundle E is equipped with a (super)con-
nection ∇. Let SW → W be the spinor bundle over W , and consider the usual twisted
Dirac operator D/ E : C∞(W,SW ⊗ E)→ C∞(W,SW ⊗ E) with respect to the chosen
connection ∇. Using the metric we can complete the vector space of smooth sections
C∞(W,SW ⊗ E) of the twisted spinor bundle and view D/ E : H → H as an unbounded
self-adjoint Fredholm operator on the separable Hilbert space

H = L2(W,SW ⊗ E). (1.14)
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Let us now define a unital algebra ∗-homomorphism ρ : C(X)→ B(H) as pointwise
multiplication on H via

ρ( f ) = m f ◦φ ⊗ 11SW⊗E , ∀ f ∈ C(X), (1.15)

where mg : C(W ) → C(W ) is the pointwise multiplication operator h �→ g h. Since
the Dirac operator is closable, we can thereby form an odd Fredholm module (H, ρ, F)
over the algebra C(X), where F = D/ E/|D/ E | is the partial isometry in the polar decom-
position of D/ E . Similarly, when W is even-dimensional, we can form an even Fredholm
module (H, ρ, F), where the Z2-grading H = H+⊕H− on the Hilbert space (1.14) is
given by

H± = L2(W,S±W ⊗ E) (1.16)

with S±W → W the two half-spinor bundles over W , the odd bounded Fredholm
operator F constructed as above from the corresponding twisted Dirac operator D/ E :
C∞(W,S+

W ⊗ E)→ C∞(W,S−W ⊗ E), and the even ∗-homomorphism ρ : C(X)→
B(H±) defined as in (1.15). The clases of the Fredholm modules built in this way are
independent of the choice of metric on X and connection ∇ on E .

Conversely, allow arbitrary coefficient classes in K-theory (this requires certain care
with the defining equivalence relations [48,75]). Then the K-homology class of the cycle
(X, E, idX ) is the Poincaré dual of E , which can be any class in K•(X). We conclude
that all classes in the K-homology K•(A) = KK•(A,C) of the algebra A = C(X) can
be obtained by using an appropriate D-brane. ��

Proposition 1.4 of course simply establishes the equivalence between the analytic
and topological descriptions of K-homology. Any Fredholm module over the C∗-alge-
bra C(X) is therefore a flat D-brane in the spacetime X . The usefulness of this point of
view is that it can be extended to more general brane configurations (that we describe in
the following) which are represented by noncommutative algebras. Namely, a D-brane
may be generically regarded as the homotopy class of a suitable Fredholm module over
an algebra A. In what follows we will reformulate the description of D-brane charge in
the language of cyclic cocycles. This will require, in particular, an analytic reformulation
of the natural pairings introduced above. More precisely, one of our main goals in this
paper is to provide a generic, noncommutative version of the result (1.12).

1.2. Ramond-Ramond fields. Closely related to the definition of D-brane charge given
above is the notion of a Ramond-Ramond field. In what follows we use the cup product
∪ when multiplying together cohomology classes, and exterior products ∧ when mul-
tiplying arbitrary differential forms. In a similar vein to what we have done before, we
will not distinguish between (co)homology classes and their explicit representatives.

Let Fred = Fred(H) be the space of Fredholm operators on a separable Hilbert
space H. Then Fred is a classifying space for K-theory of X and any vector bundle
E → X can be obtained as the index bundle of a map into Fred. Let c be a choice
of cocycle representative for the universal Chern character. If fE : X → Fred is the
classifying map of a bundle E → X , then ch(E) = f ∗E c ∈ Heven(X,R).

Consider triples ( f,C, ω), where f ∈ [X,Fred], ω is an inhomogeneous form of
even degree, and C is an inhomogeneous cochain of odd degree satisfying

dC = ω − f ∗c. (1.17)
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The collection of all such triples is denoted K0(X). Two elements ( f0,C0, ω0) and
( f1,C1, ω1) of K0(X) are called equivalent if there is a triple ( f,C, ω) on X × [0, 1],
withω constant on {x}×[0, 1] for each x ∈ X , such that ( f,C, ω)|X×{0} = ( f0,C0, ω0)

and ( f,C, ω)|X×{1} = ( f1,C1, ω1). The set of equivalence classes forms an abelian
group under addition of triples called the differential K-theory group K̆0(X), cf. §4 in
[43]. It fits into the short exact sequence

0 −→ K−1(X)⊗ R/Z −→ K̆0(X) −→ A0(X) −→ 0, (1.18)

where A0(X) is defined by the pullback square

A0(X)

��

�� 	even
cl (X) = ⊕

n≥0
	2n

cl (X)

��
K0(X)

ch
�� Heven(X,R)

(1.19)

with 	2n
cl (X) the space of closed 2n-forms on X .

The RR-fields (of Type IIA superstring theory) are closed even degree forms associ-
ated to elements of K0(X) [36,64].

Definition 1.5. The Ramond-Ramond field (RR-field for short) G associated to an ele-
ment of K0(X) which maps to (E, ω) ∈ A0(X) under (1.18) is the closed differential
form

G(E, ω) = ω ∧ ̂A(X)1/2. (1.20)

The topological equivalence class of the RR-field is the D-brane charge regarded as
an element of the appropriate K-theory group. The D-branes “couple” to RR-fields,
and another way to define D-brane charge is through the pairings of their characteristic
classes with these differential forms.

Definition 1.6. The Chern-Simons coupling of a D-brane (W, E, φ) to an RR-field
corresponding to the element ( f,C, ω) ∈ K0(X) is the spacetime integral

SCS(W, E, φ|C) =
∫

X

C ∧ Ch(φ!E). (1.21)

Given this notion, we can now formulate an alternative homological definition of D-brane
charge.

Definition 1.7. The dual Ramond-Ramond charge (dual RR-charge for short) of a
D-brane (W, E, φ) in X is the rational homology class Ch(W, E, φ) ∈ H•(X,Q) such
that

SCS(W, E, φ|C) =
∫

Ch(W,E,φ)

C (1.22)

for all RR-fields on X.
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Evidently, the natural framework for the Chern-Simons couplings of D-branes is
K-homology. The Chern character in topological K-homology is the isomorphism

ch : K•(X)⊗Q −→ H•(X,Q) (1.23)

defined by

ch(W, E, φ) = φ∗ ◦ Pd−1
W (ch(E) ∪ Todd(W )) (1.24)

for any D-brane (W, E, φ) in X . The Todd class is related to the Atiyah-Hirzebruch
class by

Todd(W ) = e−d(W ) ∪ ̂A(W ), (1.25)

where d(W ) ∈ H2(W,Z) is a characteristic class whose reduction modulo 2 is the sec-
ond Stiefel-Whitney class w2(W ) ∈ H2(W,Z2). This specifies the spinc structure on
the brane worldvolume W as follows. The spinc groups Spinc(n) = Spin(n)×Z2 U (1)
fit into a commutative diagram

1

��
U (1)

j

��

z �→ z2

������������

1 �� Spin(n)
ı ��

λ ������������� Spinc(n)
l ��

λ

��

U (1) �� 1

SO(n)

��
1

(1.26)

whose row and column are exact sequences. The map λ : Spin(n) → SO(n) is the
universal cover of the group SO(n), while j : U (1) ↪→ Spinc(n) and ı : Spin(n) ↪→
Spinc(n) are natural inclusions. The homomorphism l : Spinc(n) → U (1) is defined
by (g, z) �→ z2. It induces a map H1(W, Spinc(n))→ H1(W,U (1)) and thus we may
associate a complex line bundle L → W with the worldvolume W . The corresponding
Chern class is the characteristic class d(W ) := c1(L).

The homological Chern character preserves sums, as well as the cap product in the
sense that

ch (F ∩ (W, E, φ)) = ch(F) ∩ ch(W, E, φ) (1.27)

for any complex vector bundle F → X . This follows from its definition (1.24), the multi-
plicativity of the cohomological Chern character, the index theorem, and the
Atiyah-Hirzebruch version of the Riemann-Roch theorem,

φ! (ch(E) ∪ Todd(W )) = ch(φ!E) ∪ ̂A(X), (1.28)
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which together give

ch(F) � ch(W, E, φ) = ch(F) ∪ φ! (ch(E) ∪ Todd(W )) [X ]
= ch(F ⊗ φ!E) ∪ ̂A(X)[X ]
= index(D/ F⊗φ!E ) (1.29)

with � : H•(X,Z)×H•(X,Z) the pairing between cohomology and homology. This is
just the index pairing (1.4).

As the notation suggests, the dual charge of a D-brane is a modification of the homo-
logical Chern character analogous to the modification in the case of cohomology.

Proposition 1.8. The dual RR-charge Ch(W, E, φ) ∈ H•(X,Q)of a D-brane (W, E, φ)
in X can be represented by

Ch(W, E, φ) = Pd−1
X

(

PdX ◦ ch(W, E, φ) ∪ ̂A(X)−1/2
)

. (1.30)

Proof. We use (1.28) along with (1.8) to rewrite the D-brane charge as

Ch(φ!E) = φ! (ch(E) ∪ Todd(W )) ∪ ̂A(X)−1/2. (1.31)

Along with the definition (1.24), we can use (1.31) to rewrite the Chern-Simons coupling
(1.21) in the form

SCS(W, E, φ|C) =
∫

X

C ∧
(

PdX ◦ ch(W, E, φ) ∪ ̂A(X)−1/2
)

. (1.32)

By comparing this with the definition (1.22) of the dual charge, (1.30) follows. ��

1.3. Noncommutative D-branes. There are many sorts of noncommutative D-branes,
i.e., D-branes modeled as Fredholm modules over a noncommutative algebra, and here
we will discuss only a few special instances. To motivate the first generalization of our
definition of a D-brane given above, we look at an alternative way of regarding the embed-
ding φ : W ↪→ X of a flat D-brane into spacetime. Consider a tubular neighbourhood
W ′ of W in X . For any point u ∈ W , there is an isomorphism Tu X ∼= Tu W⊕Nu(X/W ),
where N (X/W )→ W is the normal bundle, which can be identified withφ∗(T X)/T W ,
in terms of the proper differentiable map φ : W ↪→ X . Let � : W ′ → N (X/W ) be the
diffeomorphism which identifies the normal bundle N (X/W ) with the tubular neigh-
bourhood W ′. Then ̂φ := � ◦ φ is the zero section of N (X/W )→ W , and in this way
we may identify the embedding of the worldvolume into spacetime as a smooth section
of the corresponding normal bundle, ̂φ ∈ C∞(W, N (X/W )).

Definition 1.9. A flat nonabelian D-brane in X is a quadruple (W, E, φ,̂φ ), where φ :
W ↪→ X is a closed, embedded spinc submanifold, E ∈ K0(W ), and
̂φ ∈ C∞(W, N (X/W )⊗ End(E)).
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When E is a complex line bundle, we identify ̂φ = φ and in this case the nonabelian
D-brane is the same object that we defined above. Nonabelian D-branes are classified by
the same K-theory as abelian ones. In general, the algebra A = C(X)⊗C∞(W,End(E))
acts on the Hilbert spaces (1.14) or (1.16), and so one can formulate this definition in
the language of Fredholm modules over an algebra which is Morita equivalent to C(X).

A related notion arises within the framework of Fredholm modules when one replaces
the algebra of functions on spacetime with an appropriate noncommutative algebra.

Definition 1.10. A flat noncommutative D-brane in X is a Fredholm module over a
deformation Aθ of the algebra A = C(X).

For the most part, noncommutative D-branes are classified by the same K-theory as
commutative ones. However, this assumes that K-theory is preserved under deformation
[79], which is not always the case. See [56] for an interesting counterexample.

Example 1.11. Consider X = R
2n (with compactly-supported cohomology groups),

and let S(R2n) be the space of complex Schwartz functions on R
2n . Let θ = (θ i j ) be

a real, invertible skew-symmetric 2n × 2n matrix. For f, g ∈ S(R2n), we define the
corresponding twisted product

f �θ g(x) := (2π)−2n
∫∫

f
(

x − 1
2 θ u

)

g (x + v) e− i u·v d2nu d2nv, (1.33)

where d2nu is the Lebesgue measure on R
2n . The deformed algebra Aθ is then defined

as

Aθ =
(

S(R2n), �θ

)

. (1.34)

This is an associative Fréchet algebra which defines a noncommutative space that is often
called the Moyal n-plane or noncommutative Euclidean space. D-branes may be con-
structed analogously to the commutative case. For instance, for f ∈ Aθ let mθf : Aθ →
Aθ denote the left multiplication operator g �→ f �θ g, and let H = L2(R2n)⊗C

2n
be

the Hilbert space of ordinary square-integrable spinors on R
2n . Let D/ be the ordinary

Euclidean Dirac operator, and define a ∗-representation ρθ : Aθ → B(H) by ρθ ( f ) =
mθf ⊗ 112n . Then (H, ρθ , F), with F = D/ /|D/ |, is a Fredholm module over the algebra
(1.34).

Example 1.12. Let X be a closed Riemannian spin manifold equipped with a smooth
isometric action of a 2n-torus T

2n . The periodic action of T
2n on X induces by pullback

an action of T
2n by automorphisms τ on the algebra A = C∞(X) of smooth functions on

X . The orbits on which T
2n acts freely determine maps σs : C∞(X)→ C∞(T2n). Let

T2n
θ := (C∞(T2n), �θ ) be the noncommutative torus defined as the algebra of smooth

functions on the ordinary torus endowed with the periodised version of the twisted
product (1.33). Pulling back this deformation by the maps σs gives rise to an algebra
Aθ := (C∞(X),×θ ). This defines a broad class of noncommutative spaces known as
toric noncommutative manifolds. The product f ×θ g is given by a periodic twisted
product just like (1.33), with the non-periodic translations replaced by the periodic T

2n-
action. Alternatively, Aθ may be defined as the fixed point subalgebra of C∞(X) ⊗̂T2n

θ

under the action of the automorphism τ ⊗ τ−1 (with ⊗̂ the projective tensor product of
Fréchet algebras). The construction of D-branes in these cases again parallels that of the
commutative case and Example 1.11 above.
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The special classes of noncommutative branes given by Examples 1.11 and 1.12 above
will be referred to as isospectral deformations of flat D-branes. Other interesting exam-
ples may be found in [23] and [22].

1.4. Twisted D-branes. A very important instance in which noncommutative D-branes
arise is through the formulation of the notion of a curved D-brane. These arise when
the spacetime manifold X carries certain topologically non-trivial characteristics in the
following sense. Recall that a gerbe over X is an infinite rank principal bundle over X
with projective unitary structure group and characteristic class H . A gerbe connection
is a Deligne cohomology class on X with top form H .

Definition 1.13. A B-field (X, H) is a gerbe with one-connection over X and charac-
teristic class H ∈ H3(X,Z) called an NS–NS H -flux.

For any oriented submanifold W ⊂ X , we denote by W3(W ) ∈ H3(W,Z) the third
integer Stiefel-Whitney class of its normal bundle N (X/W ). It is the obstruction to a
spinc structure on W .

Definition 1.14. A curved or twisted D-brane in a B-field (X, H) is a triple (W, E, φ),
where φ : W ↪→ X is a closed, embedded oriented submanifold with φ∗H = W3(W ),
and E ∈ K0(W ).

The condition on the brane embedding is required to cancel the global Freed-Witten
anomalies [37] arising in the worldsheet functional integral. Suitable equivalence clas-
ses of curved D-branes take values in the twisted topological K-homology K•(X, H)
[84]. For H = 0, the worldvolume W is spinc and the definition reduces to that of the flat
case. One should also require that the brane worldvolume W carry a certain projective
structure that reduces for H = 0 to the usual characteristic class d(W ) ∈ H2(W,Z)
specifying a spinc structure on W .

A B-field can be realized by a bundle of algebras over X whose sections define
a noncommutative C∗-algebra. When H ∈ Tor(H3(X,Z)) is a torsion class, this is
known as an Azumaya algebra bundle [13]. Via the Sen-Witten construction, D-branes
in (X, H)may then be realized in terms of n D9 brane-antibrane pairs carrying a principal
SU (n)/Zn = U (n)/U (1) Chan-Paton bundle. Cancellation of anomalies then requires
n H = 0. To accommodate non-torsion characteristic classes, one must consider a certain
n →∞ limit which can be realized as follows.

Let us fix a separable Hilbert space H, and denote by PU (H) = U (H)/U (1) the
group of projective unitary automorphisms of H. Let K(H) be the C∗-algebra of com-
pact operators on H. For any g ∈ U (H), the map Adg : K(H) → K(H) defined by
Adg(T ) = g T g−1 is an automorphism. The assignment g �→ Adg defines a continuous
epimorphism Ad : U (H) → Aut(K(H)) with respect to the strong operator topology
on U (H) and the point-norm topology on Aut(K(H)) with ker(Ad) = U (1). It follows
that one can identify the group PU (H) with Aut(K(H)) under this homomorphism.

The exact sequence of sheaves of germs of continuous functions on X given by

1 −→ U (1)
X
−→ U (H)

X
−→ PU (H)

X
−→ 1 (1.35)

induces a long exact sequence of sheaf cohomology groups as

−→ H1
(

X, U (H)
X

)

−→ H1
(

X, PU (H)
X

)

δ1−→ H2
(

X, U (1)
X

)

−→ .

(1.36)
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Since the unitary group U (H) is contractible with respect to the strong operator topol-
ogy, the sheaf U (H)

X
is soft and so H j (X, U (H)

X
) = 0 for all j ≥ 1. It follows that

the map δ1 is an isomorphism. From the exact sequence of groups

1 −→ Z −→ R −→ U (1) −→ 1 (1.37)

we obtain the long exact cohomology sequence

−→ H2 (X, R X

) −→ H2
(

X, U (1)
X

)

δ2−→ H3 (X, Z) −→ H3 (X, R X

) −→ .

Again, since R X is a fine sheaf, one has H j (X, R X ) = 0 for all j ≥ 1 and so the map
δ2 is an isomorphism.

The map

δX = δ2 ◦ δ1 : H1
(

X, PU (H)
X

)

−→ H3 (X, Z) (1.38)

is thus an isomorphism on stable equivalence classes of principal PU (H)-bundles over
the spacetime X . If P → X is a PU (H)-bundle and [P] ∈ H1(X, PU (H)

X
) is

its isomorphism class, then δX (P) := δX ([P]) ∈ H3(X,Z) is called the Dixmier-
Douady invariant of P [13,15,61]. The set of isomorphism classes of locally triv-
ial bundles over X with structure group Aut(K(H)) and fibre K(H) form a group
Br∞(X) under tensor product called the infinite Brauer group of X . Using the identi-
fication PU (H) ∼= Aut(K(H)), it follows that such algebra bundles are also classified
by H3(X,Z). If E is a bundle of this kind, then the corresponding element of H3(X,Z)
is also called the Dixmier-Douady invariant of E [61] and denoted δX (E).

Given a B-field (X, H), there corresponds a unique, locally trivial C∗-algebra bun-
dle EH → X with fibre K(H) and structure group PU (H) whose Dixmier-Douady
invariant is

δX (EH ) = H. (1.39)

Let C0(X,EH ) be the C∗-algebra of continuous sections, vanishing at infinity, of this
algebra bundle. The twisted K-theory K•(X, H) = K•(C0(X,EH )) [3,78] may then
be computed as the set of stable homotopy classes of sections of an associated alge-
bra bundle PH ×PU (H) Fred(H), where PH is a principal PU (H)-bundle over X and
Fred(H) is the algebra of (self-adjoint) Fredholm operators on H with PU (H) acting
by conjugation. On the other hand, one can define Dixmier-Douady classes over any
D-brane worldvolume W in complete analogy with (1.38) and show that [69]

W3 (W ) = δW (Cliff(N (X/W ))) , (1.40)

where Cliff(N (X/W )) → W is the Clifford algebra bundle of the normal bundle
N (X/W ). The Dixmier-Douady class δW (Cliff(N (X/W ))) is the global obstruction
to existence of a spinor bundle SW with

Cliffp (N (X/W )) ∼= Endp (SW ) (1.41)

for p ∈ W . This observation leads to the following result.

Proposition 1.15. There is a one-to-one correspondence between twisted D-branes in
(X, H) and stable homotopy classes of Fredholm modules over the algebra C0(X,EH ).
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The proof of Proposition 1.15 fixes the appropriate equivalence relations required for
twisted topological K-homology. One of these equivalence relations (in addition to the
appropriate twisted analogs of bordism, direct sum and vector bundle modification) is
based on the observation [57] that while a triple (W ′, E ′, φ′ )may violate the embedding
condition of a curved D-brane, one can still cancel the Freed-Witten anomalies on the
submanifold W ′ by adding a “source” in W ′ corresponding to a twisted D-brane. This
D-brane can be unstable and decay due to the configuration (W ′, E ′, φ′ ). This physical
process can be stated more precisely as follows.

Lemma 1.16 (Stabilization). Let (W, E, φ) be a twisted D-brane in (X, H) whose ori-
entation cycle [W ] is non-trivial in H•(X,Z). Suppose that there exists a closed, embed-
ded oriented submanifold φ′ : W ′ ↪→ X such that W is a codimension 3 submanifold
of W ′ and its Poincaré dual PdW ↪→W ′ satisfies the equation

φ′ ∗H = W3(W
′ ) + PdW ↪→W ′ (1.42)

in H3(W ′,Z). Then (W, E, φ) is trivial in K•(X, H) (up to twisted vector bundle mod-
ification).

The structure of D-branes in torsion B-fields simplifies drastically. When H ∈
Tor(H3(X,Z)) the algebra C0(X,EH ) is Morita equivalent to an Azumaya algebra bun-
dle over X , i.e., a bundle whose fibres are Azumaya algebras with local trivializations
reducing them to n × n matrix algebras Mn(C). Two Azumaya bundles E,F over X
are called equivalent if there are vector bundles E, F over X such that E ⊗ End(E) is
isomorphic to F⊗End(F). The set of equivalence classes is a group Br(X) under tensor
product called the Brauer group of X . There is also a notion of Dixmier-Douady invariant
δ′X for Azumaya bundles over X , which is constructed using the same local description
as above but now with H a finite-dimensional complex vector space. By Serre’s theorem
one has Br(X) ∼= Tor(H3(X,Z)). This gives two descriptions of Tor(H3(X,Z)), one in
terms of locally trivial bundles over X with fibre K(H) and structure group Aut(K(H)),
and the other in terms of Azumaya bundles. They are related by the following result
from [61].

Proposition 1.17. If X is a compact manifold and E is a locally trivial bundle over X
with fibre K(H) and structure group Aut(K(H)), then the algebra C(X,E) is stably
unital if and only if its Dixmier-Douady invariant is a torsion element in H3(X,Z).

These constructions allow us to describe the K-theory of the noncommutative
C∗-algebra C(X,EH ) [61]. Morita equivalence induces an isomorphism between the
K-theories of C0(X,EH ) and C0(X,AH ), where AH is an Azumaya bundle associated
to EH via the Dixmier-Douady invariant [13]. A geometric description of this K-theory is
provided by the notion of projective vector bundle [61], while in the infinite-dimensional
setting of a non-torsion B-field one needs to introduce the notions of bundle gerbes and
bundle gerbe modules [8].

2. Poincaré Duality

A crucial point of our construction of flat D-brane charges in Sect. 1.1 was the role
played by Poincaré duality. With an eye to generalizing the construction to the more
general settings described above, in this section we will explore how and to what extent
this classical notion of topology can be generalized to generic C∗-algebras in the context
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of KK-theory. We will describe various criteria which guarantee the duality. There are
several natural inequivalent versions of Poincaré duality, which we define and study, giv-
ing many purely noncommutative examples. Our examples range from those of classical
spaces to noncommutative deformations of spinc manifolds, and also the more general
examples of Poincaré duality spaces such as those arising in the case of the free group
acting on its boundary or, more generally, for hyperbolic groups acting on their Gromov
boundaries.

2.1. Exterior products in K-theory. To describe Poincaré duality generically in K-theory,
we first need to make some important remarks concerning the product structure. Let A1
and A2 be unital C∗-algebras. If p1 ∈ Mk(A1) is a projection representing a Murray-
von Neumann equivalence class in K0(A1) and a projection p2 ∈ Ml(A2) represents a
class in K0(A2), then the tensor product p1⊗ p2 is a projection in Mk(A1)⊗Ml(A2) ∼=
Mk l(A1 ⊗ A2) for any C∗-tensor product and so it represents a class in K0(A1 ⊗ A2)

(in this section we will work mostly with the maximal tensor product). In this way we
obtain a map

K0(A1)× K0(A2) −→ K0(A1 ⊗A2). (2.1)

This definition extends to non-unital algebras in a standard way [41, p. 104]. In the
special case A1 = A2 = A we obtain a map

K0(A)× K0(A) −→ K0(A⊗A). (2.2)

It is important to note that, in contrast to the topological case, it is not possible in
general to make K0(A) into a ring. We recall that for a compact topological space X
there is an exterior product map

K0(X)× K0(X) −→ K0(X × X) (2.3)

which is defined using the exterior tensor product of vector bundles. The diagonal map
X → X × X induces a natural transformation K0(X × X)→ K0(X). The composition
of the two maps thereby leads to the product

K0(X)× K0(X) −→ K0(X). (2.4)

If A = C(X) is the algebra of continuous functions on X , then the diagonal map trans-
lates into the product map

m : A⊗A −→ A (2.5)

on the algebra A given by m(a⊗ b) = a b for all a, b ∈ A. Since A is commutative, the
multiplication (2.5) is an algebra homomorphism and there is an induced map

m∗ : K0(A⊗A) −→ K0(A). (2.6)

For a noncommutative C∗-algebra the multiplication map is not an algebra homomor-
phism and so we cannot expect that in general the map (2.6) will be defined.

Recall that the suspension of a generic C∗-algebra A is the C∗-algebra �(A) :=
C0(R) ⊗ A. By definition one has Kp(A) = K0(�

p(A)) = K0(C0(R
p) ⊗ A). Bott
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periodicity ensures that up to isomorphism there are only two distinct K-theory groups
K0(A) and K1(A). One has

�k(A1)⊗�l(A2) =
(

C0(R
k)⊗A1

)

⊗
(

C0(R
l)⊗A2

)

∼= C0(R
k+l)⊗ (A1 ⊗A2)

= �k+l(A1 ⊗A2). (2.7)

If we combine this formula with the exterior product (2.1) defined for K0-groups then
we obtain the general exterior product

Kk(A1)× Kl(A2) −→ Kk+l(A1 ⊗A2). (2.8)

See [41, §4.7] for more details and examples.
Many important statements in K-theory admit a concise formulation in terms of the

product structure. For example, there exists a canonical class β ∈ K2(C) = K0(C0(R
2)),

called the Bott generator, such that the exterior product with β defines a map

K0(A)
⊗β−−→ K2(A⊗ C) = K2(A). (2.9)

This provides the isomorphism required by the Bott periodicity theorem [41, §4.9].
These observations all find their most natural generalisation in Kasparov’s KK-theory
[51], which we now proceed to describe. (See [5, Ch. VIII] for a more detailed exposi-
tion.)

2.2. KK-theory. Let B be a C∗-algebra. A Hilbert B-module H is a module over B
equipped with a B-valued inner product

H×H −→ B, (ζ, ζ ′ ) �−→ 〈ζ | ζ ′ 〉 ∈ B (2.10)

which satisfies similar properties to those of an inner product with values in C [54].
We denote by L(H) the algebra of linear operators on H which admit an adjoint with
respect to this inner product. The closed subalgebra generated by all rank 1 operators
of the form θζ,ζ ′ : ξ �→ ζ 〈ζ ′ | ξ 〉 is denoted K(H) and called the algebra of compact
operators on H. The algebra K(H) is a closed ideal in L(H).

Definition 2.1. Let A and B be C∗-algebras. An odd A–B Kasparov bimodule is a triple
(H, ρ, F),whereH is a countably generated HilbertB-module, the mapρ : A→ L(H)
is a ∗-homomorphism, and F ∈ L(H) is a self-adjoint operator such that for each a ∈ A
one has

ρ(a)
(

idH− F2
)

∈ K(H) and F ρ(a)− ρ(a) F ∈ K(H). (2.11)

An even A–B Kasparov bimodule is a triple (H, ρ, F) where H = H+ ⊕ H− is
Z2-graded, φ is an even degree map, F is an odd map, and the compactness condi-
tions (2.11) are satisfied. In both cases a triple is called degenerate if the operators
ρ(a) (idH− F2) and F ρ(a)− ρ(a) F are zero for all a ∈ A.
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We denote by E0(A,B) and E1(A,B) the sets of isomorphism classes of even and odd
Kasparov bimodules, respectively. These two sets are made into semi-groups using the
direct sum of Kasparov bimodules. Two triples (H, ρ, F) and (H, ρ′, F ′ ) are regarded
as equivalent if (by adding a degenerate triple to both if necessary) F ′ can be obtained
from F via operator homotopy. Imposing these equivalence relations on E0(A,B) and
E1(A,B) yields two abelian groups KK0(A,B) and KK1(A,B). The functor KK•(A,B)
is homotopy invariant and satisfies excision in both variables with respect to C-split exact
sequences of C∗-algebras.

The special case where B = C is important. A Hilbert C-module H is just a Hilbert
space, and the algebra L(H) is in this case the C∗-algebra of bounded linear operators on
H. The compactness conditions (2.11) provide an abstraction of the essential properties
of elliptic operators [2], and a Kasparov bimodule in this case is just a Fredholm module.
Thus we can define the K-homology of the C∗-algebra A as

K•(A) = KK•(A,C). (2.12)

One can also show that KK•(C,A) is isomorphic to the K-theory K•(A) of the algebra A.
The key property of the bivariant functor KK•(A,B) is the existence of an associative

product

⊗B : KKi (A,B)× KK j (B,C) −→ KKi+ j (A,C) (2.13)

induced by the composition of bimodules, which is additive in both variables. This prod-
uct is called the composition or intersection product and it is compatible with algebra
homomorphisms in the following sense. There is a functor from the category of separable
C∗-algebras to an additive category KK whose objects are separable C∗-algebras and
whose morphisms A→ B are precisely the elements of KK•(A,B). An algebra homo-
morphism φ : A→ B thus defines an element KK(φ) ∈ KK0(A,B), and if ψ : B→ C
is another homomorphism then

KK(ψ ◦ φ) = KK(φ)⊗B KK(ψ) ∈ KK0(A,C). (2.14)

The intersection product makes KK•(A,A) into a Z2-graded ring whose unit element is
1A :=KK(idA), the element of KK0(A,A) determined by the identity map idA :A→A.

The operation of taking the composition product by a fixed element α ∈ KK0(A,B)
gives a map

KKi (C,A) −→ KKi (C,B), (2.15)

i.e., a homomorphism α∗ : Ki (A)→ Ki (B) in K-theory, and also a map

KKi (B,C) −→ KKi (A,C), (2.16)

i.e., a homomorphism of K-homology groups α∗ : Ki (B)→ Ki (A). If α is the class of a
bimodule (H, ρ, F), then (2.15) is the index map indexF : Ki (A)→ Ki (B). In general,
we will say that the element α is invertible if there exists β ∈ KK0(B,A) such that
α ⊗B β = 1A ∈ KK0(A,A) and β ⊗A α = 1B ∈ KK0(B,B). We call β the inverse
of α and write β = α−1. An invertible element of KK0(A,B) gives an isomorphism
Ki (A) ∼= Ki (B) of K-theory groups and of K-homology groups Ki (A) ∼= Ki (B). This
construction will be generalized in Sect. 3.1.

The composition product (2.13), along with the natural map KKi (A,B)→ KKi (A⊗
C,B⊗C) given byα �→ α⊗1C, imply the existence of a more general associative product
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in KK-theory called the Kasparov product. For any collection of separable C∗-algebras
A1,B1,A2,B2 and D there is a bilinear map

KKi (A1,B1 ⊗D)⊗D KK j (D⊗A2,B2) −→ KKi+ j (A1 ⊗A2,B1 ⊗B2). (2.17)

This product can be thought of as a mixture between the usual cup and cap products.
For D = C it specializes to the exterior product (also written ×):

KKi (A1,B1)⊗ KK j (A2,B2) −→ KKi+ j (A1 ⊗A2,B1 ⊗B2). (2.18)

When A1 = A2 = C, (2.18) is just the exterior product on K-theory that we discussed
in Sect. 2.1 above. On the other hand, when we put B1 = C and A1 = C in (2.17) we
recover the original composition product (2.13) in the form

KKi (A1,D)⊗D KK j (D,B2) −→ KKi+ j (A1,B2). (2.19)

Various technical details of the Kasparov product, useful for explicit computations, are
collected in Appendix A, and a pictorial method for keeping track of these is given in
Appendix B.

2.3. Strong Poincaré duality. Poincaré duality for C∗-algebras was defined by Connes
[20,21] in the context of real KK-theory as a means of defining noncommutative spinc

manifolds. It was subsequently extended to more general situations by Kaminker and
Putnam [50], Emerson [32,33], amongst others. These latter works motivate our first
definition of the duality in the context of complex KK-theory.

Definition 2.2 (Strong Poincaré Duality). A pair of separable C∗-algebras (A,B) is
said to be a strong Poincaré dual pair (strong PD pair for short) if there exists a
class � ∈ KKd(A ⊗ B,C) = Kd(A ⊗ B) in the K-homology of A ⊗ B and a class
�∨ ∈ KK−d(C,A⊗B) = K−d(A⊗B) in the K-theory of A⊗B with the properties

�∨ ⊗B� = 1A ∈ KK0(A,A) and �∨ ⊗A� = (−1)d 1B ∈ KK0(B,B).

(2.20)

The element � is called a fundamental K-homology class for the pair (A,B) and �∨
is called its inverse. A separable C∗-algebra A is said to be a strong Poincaré duality
algebra (strong PD algebra for short) if (A,Ao) is a strong PD pair, where Ao denotes
the opposite algebra of A, i.e., the algebra with the same underlying vector space as A
but with the product reversed.

Remark 2.3. The use of the opposite algebra in this definition is to describe A-bimodules
as (A⊗Ao)-modules. We will see this explicitly in Sect. 2.5 below.

Let us indicate how Definition 2.2 is used to implement Poincaré duality. First of all,
we note that the tensor product algebra A⊗B is canonically isomorphic to the algebra
B⊗A through the “flip” map A⊗B→ B⊗A which interchanges the two factors. Thus
Kd(A⊗B) ∼= Kd(B⊗A) and K−d(A⊗B) ∼= K−d(B⊗A). With this observation, we
can use the Kasparov product (2.17) to induce a map

⊗A : KKd(A⊗B,C)⊗ Ki (A) ∼= KKd(B⊗A,C)⊗ KKi (C,A)

−→ KKd+i (B,C) = Kd+i (B). (2.21)
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Thus taking the product on the right with the element � ∈ KKd(A⊗B,C) produces a
map

Ki (A)
⊗A�−−−→ Ki+d(B) (2.22)

from the K-theory Ki (A) of the algebra A to the K-homology Ki+d(B) of the algebra B.
Since the element � has an inverse �∨ ∈ KK−d(C,A⊗B), using the exterior product
again we can define a map

⊗B : KK−d(C,A⊗B)⊗ KKi (B,C) −→ KK−d+i (C,A) = K−d+i (A). (2.23)

Thus multiplying on the left by the element �∨ establishes a map

Ki (B)
�∨⊗B−−−−→ Ki−d(A) (2.24)

from the K-homology of B to the K-theory of A.
Since � and �∨ are inverses to each other, for any x ∈ Ki (A) one has

�∨ ⊗B (x ⊗A�) =
(

�∨ ⊗B�
)⊗A x

= 1A⊗A x

= x . (2.25)

As a consequence the two maps (2.22) and (2.24) are inverse to each other, up to the sign
given in (2.20) which results from graded commutativity of the exterior product (2.18).
(See [20, p. 588] and [32, §3] for further details.) Thus when (A,B) is a strong PD pair,
the elements � and �∨ establish isomorphisms

Ki (A) ∼= Ki+d(B) and Ki (B) ∼= Ki−d(A), (2.26)

which is the fundamental property of any form of Poincaré duality.
More generally, for any pair of separable C∗-algebras (C,D), the maps

�⊗A : KKi (C,A⊗D) −→ KKi+d(C⊗B,D),

�∨⊗B : KKi (C,B⊗D) −→ KKi−d(C⊗A,D) (2.27)

are also isomorphisms, showing that Poincaré duality with arbitrary coefficients holds
in this case (Compare [20]). By setting C,D equal to various choices from the collection
of algebras C,A,B, we may infer from (2.27) that the four maps

�⊗A : KKi (A,A) −→ KKi+d(A⊗B,C),

�∨⊗B : KKi (B,B) −→ KKi−d(B⊗A,C),
(2.28)

�⊗A : KKi (C,A⊗B) −→ KKi+d(B,B),

�∨⊗B : KKi (C,B⊗A) −→ KKi−d(A,A)

are all isomorphisms. It follows that if (A,B) is a strong PD pair, then a fundamental
class for (A,B) induces isomorphisms

Ki+d(A⊗B) ∼= KKi (A,A) ∼= KKi (B,B) ∼= Ki+d(A⊗B). (2.29)

Proposition 2.4. Let A and B be separable C∗-algebras. Then:

(1) A is a strong PD algebra if and only if Ao is a strong PD algebra; and



662 J. Brodzki, V. Mathai, J. Rosenberg, R. J. Szabo

(2) If A is Morita equivalent to B, then A is a strong PD algebra if and only if B is a
strong PD algebra.

Proof. (1) follows easily since � is a fundamental class for A if and only if it is a fun-
damental class for Ao, where we identify the KK-groups of A ⊗ Ao with those of the
flip Ao ⊗A. The proof of (2) is in [52, §4 Theorem 7]. ��
Example 2.5. Let X be a complete oriented manifold. Then the two pairs of C∗-algebras
(C0(X), C0(T ∗X)) and (C0(X), C0(X,Cliff(T ∗X))) are both strong PD pairs, where
Cliff(T ∗X) is the Clifford algebra bundle of the cotangent bundle T ∗X . If in addition X
is spinc then C0(Cliff(T ∗X)) and C0(X) are Morita equivalent, and so C0(X) is a strong
PD algebra. If moreover X is compact with boundary ∂X equipped with the induced
spinc structure, then the K-homology connecting homomorphism takes the fundamental
class of X to the fundamental class of ∂X . It follows that (C(X), C(X, ∂X)) is a strong
PD pair, where C(X, ∂X) is the C∗-algebra of continuous functions on X which vanish
at the boundary ∂X .

Example 2.6. Let� be a K-amenable, torsion-free discrete group whose classifying space
B� is a smooth oriented manifold. Suppose that � has the Dirac-dual Dirac property,
i.e., for any proper �–C∗-algebra A, a Dirac element α ∈ KK�0 (A,C) in the �-equivari-
ant K-homology of A and a dual Dirac element β ∈ KK�0 (C,A) in the �-equivariant
K-theory of A satisfy the conditions

α ⊗C β = 1A ∈ KK�0 (A,A) and β ⊗A α = 1C ∈ KK�0 (C,C). (2.30)

The Dirac element α is constructed using a spinc Dirac operator. Recall that a multiplier
σ on the group � is a normalized, U (1)-valued group 2-cocycle on �. Its Dixmier-Dou-
ady invariant δ�(σ ) ∈ H3(�,Z) is induced in the usual way via the short exact sequence
of coefficients in (1.37). Given σ we consider the reduced twisted group C∗-algebra
C∗r (�, σ ). Then (C0(T ∗B�), C∗r (�, σ )) is a strong PD pair for every multiplier σ on
� with trivial Dixmier-Douady invariant (we have used the fact that the Baum-Connes
conjecture holds for � in this case). In particular, this holds whenever � is:

• A torsion-free, discrete subgroup of SO(n, 1) or of SU (n, 1); or
• A torsion-free, amenable group.

If moreover B� is spinc, then C0(T ∗B�) is a strong PD algebra and hence C∗r (�, σ ) is
a strong PD algebra for every multiplier σ on � with trivial Dixmier-Douady invariant.
In particular, we conclude that the noncommutative torus T2n

θ is a strong PD algebra,
and more generally the noncommutative higher genus Riemann surface R

g
θ is a strong

PD algebra. We will consider these latter examples in more detail in Sect. 2.6.

2.4. Duality groups. We will now determine how many fundamental classes a given
strong PD pair admits.

Proposition 2.7. Let (A,B) be a strong PD pair, and let � ∈ Kd(A ⊗ B) be a fun-
damental class with inverse �∨ ∈ K−d(A ⊗ B). Let � ∈ KK0(A,A) be an invert-
ible element. Then � ⊗A� ∈ Kd(A ⊗ B) is another fundamental class, with inverse
�∨ ⊗A �

−1 ∈ K−d(A⊗B).
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A
−1

A A A

∆
C
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◦ C

B
1B

B

◦

Fig. 2.1. Diagram representing the proof of Proposition 2.7

Proof. Using associativity of the Kasparov product along with the flip isomorphism
A⊗B→ B⊗A, we compute

(

�∨ ⊗A �
−1

)

⊗A (�⊗A�) = �∨ ⊗A

(

�−1 ⊗A �
)

⊗A�

= �∨ ⊗A (1A⊗A�)

= �∨ ⊗A�

= (−1)d 1B. (2.31)

The calculation in the other direction is similar, but slightly trickier because of notational
quirks in the way the Kasparov product is written. The calculation goes as follows:

(

�∨ ⊗A �
−1

)

⊗B (�⊗A�) = �⊗A
(

�∨ ⊗B�
)⊗A �

−1

= �⊗A 1A⊗A �
−1

= �⊗A �
−1

= 1A. (2.32)

It would appear that we needed to reorder many of the factors in the product, but in
fact, all we are really using is the associativity of the product, in the form discussed
in Appendix B. In terms of the diagram calculus discussed there, we simply need to
consider the diagram depicted in Fig. 2.1. ��

This result has a converse.

Proposition 2.8. Let (A,B) be a strong PD pair, and let �1,�2 ∈ Kd(A⊗B) be fun-
damental classes with inverses�∨1 ,�∨2 ∈ K−d(A⊗B). Then�∨1 ⊗B�2 is an invertible
element in KK0(A,A), with inverse given by (−1)d �∨2 ⊗B�1 ∈ KK0(A,A).

Proof. As above we compute
(

�∨1 ⊗B�2

)⊗A
(

�∨2 ⊗B�1

) = �∨1 ⊗B
(

�∨2 ⊗A�2

)⊗B�1

= �∨1 ⊗B (−1)d 1B⊗B�1

= (−1)d �∨1 ⊗B�1

= (−1)d 1A, (2.33)

and similarly with �1 and �2 interchanged. ��
As an immediate consequence of Propositions 2.7 and 2.8 above, we deduce the

following.
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Corollary 2.9. Let (A,B) be a strong PD pair. Then the moduli space of fundamen-
tal classes for (A,B) is isomorphic to the group of invertible elements in the ring
KK0(A,A).

We now make some clarifying comments concerning the corollary above. In the physics
literature, K-orientations on a smooth manifold X are generally linked to spinc structures,
which (once an orientation has been fixed) are an affine space modeled on the second
integral cohomology of X , H2(X,Z), i.e., the isomorphism classes of line bundles over
X . However, the space of K-orientations of X is in general much larger, being a principal
homogeneous space for the abelian group of units in the ring K•(X), consisting of stable
isomorphism classes of virtual vector bundles over X of virtual rank equal to 1, and with
group operation given by tensor product. The space of all fundamental classes of X in
KK-theory is in general still larger, being a principal homogeneous space for the abelian
group of units of KK0(C(X),C(X)), which in turn by [80] is an extension of Aut K•(X)
by ExtZ(K•(X),K•+1(X)).

Recall that in the situation of Corollary 2.9 there is an isomorphism KK0(A,A) ∼=
KK0(B,B). This moduli space is called the duality group of the pair (A,B) and is
denoted KK0(A,A)

−1. It can be computed explicitly using (2.29) from either the K-the-
ory or the K-homology of the algebra A⊗B. We will now describe two illustrative and
broad classes of examples of strong PD algebras.

2.5. Spectral triples. There is a natural object that encodes the geometry of a D-brane
whose construction can be motivated by the observation that bounded Kasparov modules
are not the most useful ones in practical applications of KK-theory, especially when it
comes to defining the Kasparov product (2.17) [4]. A zeroth order elliptic pseudodiffer-
ential operator F on a smooth closed manifold X determines a class in the K-homology
of X , i.e., a class in KK•(C(X),C). However, the product of two such operators need
not be a pseudodifferential operator. The Kasparov product is handled better when one
uses first order operators instead. But a first order elliptic pseudodifferential operator
D will not in general extend to a bounded operator on L2(X) and so will not generally
provide a class in KK•(C(X),C). The trick here, due to Kasparov and reformulated by
Baaj and Julg [4], is to replace D by the operator D (1 + D2)−1/2 which gives rise to
a bounded Fredholm module and so produces a class in KK•(C(X),C). The Baaj-Julg
construction generalises to noncommutative C∗-algebras.

Definition 2.10. A spectral triple over a unital C∗-algebraA is a triple (A,H, D), where
the algebra A is represented faithfully on a Hilbert space H and D is an unbounded
self-adjoint operator on H with compact resolvent such that the commutator [D, a] is
bounded for all a ∈ A. In the even case we assume that the Hilbert space H is Z2-graded
and that D is an odd operator with respect to this grading, i.e., there is an involution γ
on H which implements the grading and which anticommutes with D.

One can prove [4] that all classes in the K-homology of A are obtained from such spec-
tral triples, which in this context are also called unbounded K-cycles. Together with
Connes’ axioms [21] such a K-cycle defines a noncommutative spinc manifold. We will
not enter into a detailed account of this latter characterization but refer to [21] and [39,
Chap. 10] for a thorough discussion. In the example of a flat D-brane (W, E, φ) in the
spacetime X , the spectral triple is (C(X), L2(W,SW ⊗ E), D/ E ) as specified in the
proof of Proposition 1.4. This definition can be generalized to provide unbounded A–B
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bimodules, which have the property that every element of KK•(A,B) arises from such
an unbounded bimodule.

Let (A,H, D) be an unbounded spectral triple. This fixes our noncommutative space-
time. Let Ao be the opposite algebra of the algebra A. The action of the algebra A⊗Ao

on the Hilbert space H is described by using commuting actions of the algebras A and
Ao, making H into a bimodule over the algebra A. The action of A is provided by the
representation of A on H which is part of the data given by the spectral triple (A,H, D).
The algebra Ao is assumed to act by means of operators bo for b ∈ A. We assume that
the two actions commute, i.e., [a, bo] = 0 for all a, b ∈ A, and that [D, bo] is bounded
for all b ∈ A.

Definition 2.11. The index class of the noncommutative spacetime (A,H, D) is the
class�D ∈ Kd(A⊗Ao) given by the data (A⊗Ao,H, D). If the index class is also a
fundamental class for A, then its inverse �∨D ∈ K−d(A⊗ Ao) is called the Bott class
of A.

One advantage of the spectral triple formulation is that under suitable circumstances
it enables the straightforward construction of a smooth subalgebra A∞ of a C∗-algebra
A. This is a dense ∗-subalgebra of A which is stable under holomorphic functional cal-
culus, i.e., if a ∈ A∞ with a = a∗ and a > 0, then f (a) ∈ A∞ for every holomorphic
function f on a neighbourhood of the spectrum Spec(a). By the Karoubi density theo-
rem (see for example [19]), the inclusion homomorphism ι : A∞ ↪→ A then induces an
isomorphism in K-theory. Given a spectral triple (A,H, D), we assume that the smooth
domain

H∞ =
⋂

k∈N

Dom
(

Dk
)

(2.34)

of the operator D is an A∞-bimodule for some smooth subalgebra A∞ ⊂ A, or equiv-
alently an A∞ ⊗ (A∞)o-module. We further assume that A∞ is a Fréchet algebra for
the family of semi-norms

qk(a) =
∥

∥

∥δ
k(a)

∥

∥

∥ (2.35)

provided by the derivation δ : a �→ [ |D|, a] on A. The usage of smooth subalgebras, and
in particular topological algebras, will be important later on when we start employing
cyclic theory.

Example 2.12. Let X be a compact spinc manifold of dimension d. Let A∞ = C∞(X)
be the Fréchet algebra of smooth functions on X . It acts by pointwise multiplication
on the Hilbert space H = L2(X,SX ) of square integrable spinors on X . This Hilbert
space is Z2-graded when d is even, with the usual grading operator γ defining the split
SX = S+

X ⊕ S−X into irreducible half-spinor bundles, and ungraded in the odd case.
For the operator D we take the usual spinc Dirac operator D = D/ acting on H. Then
(A∞,H, D/ ) defines a cycle [D/ ] in Kd(A) [39, Theorem 9.20]. This data determines
the index class in Kd(A⊗Ao). Because the algebra A is commutative in this case, one
has A = Ao and the multiplication map (2.5) is an algebra homomorphism. Since the
K-homology functor is contravariant, there is a map

m∗ : Kd(A) −→ Kd(A⊗A) (2.36)

induced by (2.5). The image of the class [D/ ] under this homomorphism is the index
class �D/ [39, p. 488].
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2.6. Twisted group algebra completions of surface groups. The noncommutative two-
torus T2

θ provides the original example of noncommutative Poincaré duality which was
described by Connes [21] in the context of real spectral triples. It is the specialization
to genus one of the example that we present here. Let �g be the fundamental group of a
compact, oriented Riemann surface �g of genus g ≥ 1. It has the presentation

�g =
{

U j , Vj , j = 1, . . . , g
∣

∣

∣

g
∏

j=1
[U j , Vj ] = 1

}

, (2.37)

and B�g = �g is a smooth spin manifold. Since H2(�g,U (1)) ∼= R/Z, for each
θ ∈ [0, 1)we can identify a unique multiplierσθ on�g up to isomorphism. Let C(�g, σθ )

be the σθ -twisted convolution algebra of finitely supported maps �g → C, which is
spanned over C by a set of formal letters δγ , γ ∈ �g satisfying δγ δµ = σθ (γ, µ) δγ µ.
Let ‖ f ‖ denote the operator norm of the operator on �2(�g) given by left convolution
with f ∈ �g . Then the completion of C(�g, σθ )with respect to this norm is the reduced
twisted group C∗-algebra C∗r (�g, σθ ). It can also be viewed as the C∗-algebra generated
by unitaries U j and Vj satisfying the commutation relation

g
∏

j=1

[U j , Vj ] = exp(2π i θ). (2.38)

On C∗r (�g, σθ ) there is a canonical trace τ defined by evaluation at the identity element
of �g .

Let D be the operator defined by

Dδγ = �(γ ) δγ , (2.39)

where �(γ ) ∈ [0,∞) is the word length of γ ∈ �g . Let δ = ad(D) denote the commu-
tator [D,−]. Then δ is an unbounded closed derivation on the reduced twisted group
C∗-algebra C∗r (�g, σθ ). Consider the smooth subalgebra

R∞(�g, σθ ) :=
⋂

k∈N

Dom
(

δk
)

. (2.40)

Since R∞(�g, σθ ) contains δγ ∀γ ∈ �g , it contains C(�g, σθ ). Hence it is dense in
C∗r (�g, σθ ). Since R∞(�g, σθ ) is defined as a domain of derivations, it is closed under
holomorphic functional calculus. Because�g is a surface group, it follows from a variant
of a result by Jolissaint [49] that there exists k ∈ N and a positive constant C ′ such that
for all f ∈ C(�g, σθ ) one has the Haagerup inequality,

‖ f ‖ ≤ C ′ νk( f ), (2.41)

where

νk( f ) =
⎛

⎝

∑

γ∈�g

(1 + �(γ ))2k | f (γ )|2
⎞

⎠

1/2

. (2.42)

Using this, it is routine to show that R∞(�g, σθ ) is a Fréchet algebra, complete in the
semi-norms (2.42) induced by δk .
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To define the fundamental class of the noncommutative Riemann surface R
g
θ :=

R∞(�g, σθ ), we recall from §8 [16], the K-theory of C∗r (�g, σθ ). For any θ , the multi-
plier σθ has trivial Dixmier-Douady invariant, as δ�g (σθ ) ∈ H3(�g,Z) = 0, and so (via
the Baum-Connes assembly map) K0(C∗r (�g, σθ )) ∼= K0(�g) = Z

2. For irrational θ ,
the algebras C∗r (�g, σθ ) are distinguished for different values of θ by the image of the
trace map induced on K-theory by the trace τ . In a basis e0, e1 of K0(C∗r (�g, σθ )) the
trace is given by

τ(n e0 + m e1) = n + m θ. (2.43)

We choose e0 = [1], the class of the identity element, and e1 such that τ(e1) = θ .
Another result in §8 [16] is K1(C∗r (�g, σθ )) ∼= K1(�g) = Z

2g . Moreover, the unitaries
U j and Vj form a basis for K1(C∗r (�g, σθ )), §6 [58]. Then the inverse fundamental class
of C∗r (�g, σθ ) is given by

�∨ = e0 ⊗ eo
1 − e1 ⊗ eo

0 +
g

∑

j=1

(

U j ⊗ V o
j − Vj ⊗U o

j

)

. (2.44)

The trace τ also leads to an inner product on R
g
θ defined by (a, b) = τ(b∗ a) for

a, b ∈ R
g
θ . Let L2(R

g
θ ) denote the completion of R

g
θ with respect to this inner product,

and define H := L2(R
g
θ ) ⊕ L2(R

g
θ ). Then the element (2.44) is the Bott class of the

spectral triple (Rg
θ ,H, D), with R

g
θ acting diagonally on H by left multiplication and D

odd with respect to the canonical Z2-grading γ on H.

2.7. Other notions of Poincaré duality. We now return to the general theory and intro-
duce some alternative weaker forms of the duality described in Sect. 2.3 above, all of
which imply the fundamental property (2.26). We start with a “pointwise” version of
Definition 2.2.

Definition 2.13 (Weak Poincaré Duality). A pair of separable C∗-algebras (A,B) is
said to be a weak Poincaré duality pair (weak PD pair for short) if there exists a
class � ∈ KKd(A ⊗ B,C) = Kd(A ⊗ B) in the K-homology of A ⊗ B and a class
�∨ ∈ KK−d(C,A⊗B) = K−d(A⊗B) in the K-theory of A⊗B with the properties

(

�∨ ⊗B�
)⊗A x = x ∀ x ∈ KK0(C,A) (2.45)

and
(

�∨ ⊗A�
)⊗B y = (−1)d y ∀ y ∈ KK0(C,B). (2.46)

A separable C∗-algebra A is said to be a weak Poincaré duality algebra (weak PD
algebra for short) if (A,Ao) is a weak PD pair.

Example 2.14. Let � be a torsion-free, discrete group having the Dirac-dual Dirac prop-
erty such that B� is a smooth oriented manifold. Then (C0(T ∗B�), C∗r (�, σ )) is a weak
PD pair for every multiplier σ on � with trivial Dixmier-Douady invariant. If moreover
B� is spinc, then C0(T ∗B�) is a weak PD algebra and so C∗r (�, σ ) is a weak PD alge-
bra for every multiplier σ on � with trivial Dixmier-Douady invariant. In particular, this
holds whenever � is:
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• A torsion-free, word hyperbolic group;
• A torsion-free, cocompact lattice in a product of a finite number of groups among Lie

or p-adic groups of rank one, or in SL3(F) with F a local field, H or E6(−26); or
• A torsion-free lattice in a reductive Lie group or in reductive groups over non-archi-

medean local fields.

The duality of Definition 2.13 can also be weakened to hold only modulo torsion
elements of the K0-groups of the algebras involved.

Definition 2.15 (Rational Poincaré Duality). A pair of separable C∗-algebras (A,B)
is said to be a rational Poincaré duality pair (Q–PD pair for short) if there exists a
class � ∈ KKd(A ⊗ B,C) = Kd(A ⊗ B) in the K-homology of A ⊗ B and a class
�∨ ∈ KK−d(C,A⊗B) = K−d(A⊗B) in the K-theory of A⊗B with the properties

(

�∨ ⊗B�
)⊗A x = x ∀ x ∈ KK0(C,A)⊗Q (2.47)

and
(

�∨ ⊗A�
)⊗B y = (−1)d y ∀ y ∈ KK0(C,B)⊗Q. (2.48)

A separable C∗-algebra A is said to be a rational Poincaré duality algebra (Q–PD
algebra for short) if (A,Ao) is a Q–PD pair.

Example 2.16. Let X be an oriented rational homology manifold, such as the quotient of
a manifold by an orientation-preserving action of a finite group. Then C0(X) is a Q–PD
algebra.

Example 2.17. Let � be a discrete group with the Dirac-dual Dirac property and with a
torsion-free subgroup �0 of finite index such that B�0 is a smooth oriented manifold.
Then (C0(T ∗B�), C∗r (�, σ )) is a Q–PD pair for every multiplier σ on �. (Note that
the Dixmier-Douady invariant in this case is always torsion.) If moreover B�0 is spinc,
then C0(T ∗B�) is a Q–PD algebra and hence C∗r (�, σ ) is a Q–PD algebra for every
multiplier σ on �. In particular, this holds whenever � is:

• A word hyperbolic group; or
• A cocompact lattice in a product of a finite number of groups among Lie or p-adic

groups of rank one, or in SL3(F) with F a local field, H or E6(−26).

Finally, we can take the fundamental property (2.26) itself as the weakest form of the
duality.

Definition 2.18 (Poincaré Duality). A pair of separable C∗-algebras (A,B) is said to
be a Poincaré duality pair (PD pair for short) if there exist isomorphisms

Ki (A) ∼= Ki+d(B) and Ki (B) ∼= Ki−d(A). (2.49)

A separable C∗-algebra A is said to be a Poincaré duality algebra (PD algebra for
short) if (A,Ao) is a PD pair.

Remark 2.19. For any C∗-algebra A, the K-theory groups of A and Ao are isomorphic.
This follows easily from the fact that if p is a projection in A and po is the corre-
sponding element of Ao, then po is also a projection. Similarly for a unitary u ∈ A, the
corresponding element uo of Ao is also unitary.
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In fact, there is a more general statement, which we will need later. The additive cat-
egory KK with separable C∗-algebras as objects and with KK•(A,B) as the morphisms
from A to B may be viewed as a certain completion of the stable homotopy category of
separable C∗-algebras [5, §22]. As such, it has an involution o induced by the involution
f �→ f o sending f : A → B to the ∗-homomorphism f o : Ao → Bo which sends
ao to ( f (a))o. The above isomorphism from K•(A) to K•(Ao) is simply this involution
KK•(C,A) ∼= KK•(Co = C,Ao).

3. KK-Equivalence

In this section we introduce the notion of KK-equivalence and describe its intimate con-
nection to Poincaré duality and Morita equivalence for C∗-algebras. As in the previous
section, we will describe various criteria for the equivalence and describe several nat-
ural inequivalent versions of it, giving illustrative commutative and noncommutative
examples.

3.1. Strong KK-equivalence. Our first notion of equivalence in KK-theory is a general-
ization of the standard definition that was essentially already described in Sect. 2.2.

Definition 3.1 (Strong KK-Equivalence). A pair of separable C∗-algebras (A,B) are
said to be strongly KK-equivalent if there are elements

α ∈ KKn(A,B) and β ∈ KK−n(B,A) (3.1)

such that

α ⊗B β = 1A ∈ KK0(A,A) and β ⊗A α = 1B ∈ KK0(B,B). (3.2)

The significance of this definition stems from the following results.

Lemma 3.2. Suppose that the pair of separable C∗-algebras (A,B) are strongly KK-
equivalent. Then the maps

α⊗B : Ki (B) −→ Ki+n(A), β⊗A : Ki (A) −→ Ki−n(B), (3.3)

⊗Bα : Ki (B) −→ Ki+n(A), ⊗Aβ : Ki (A) −→ Ki−n(B) (3.4)

are all isomorphisms.

Proof. By the associativity property of the Kasparov product, the maps in (3.3) satisfy

β ⊗A (α ⊗B x) = (β ⊗A α)⊗B x

= 1B⊗B x

= x ∀ x ∈ Ki (B),

α ⊗B (β ⊗A y) = (α ⊗B β)⊗A y

= 1A⊗A y

= y ∀ y ∈ Ki (A), (3.5)
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and are therefore all isomorphisms. Again by the associativity property of the Kasparov
product, the maps in (3.4) satisfy

(z ⊗B α)⊗A β = z ⊗B (α ⊗A β)

= z ⊗B 1B

= z ∀ z ∈ Ki (B),

(w ⊗A β)⊗B α = w ⊗A (β ⊗B α)

= w ⊗A 1A

= w ∀w ∈ Ki (A), (3.6)

and thus are also isomorphisms. ��
Remark 3.3. As in (2.27), one can generalize the isomorphisms of Lemma 3.2 above to
arbitrary coefficients. For any pair of separable C∗-algebras (C,D), the maps

α⊗B : KKi (C⊗B,D) −→ KKi+n(C⊗A,D),

β⊗A : KKi (C⊗A,D) −→ KKi−n(C⊗B,D),

⊗Bα : KKi (C,B⊗D) −→ KKi+n(C,A⊗D),

⊗Aβ : KKi (C,A⊗D) −→ KKi−n(C,B⊗D) (3.7)

are all isomorphisms.

Lemma 3.4. Suppose that the pair of separable C∗-algebras (A,B) are strongly KK-
equivalent. Then A is a PD algebra (resp., strong PD algebra, weak PD algebra) if and
only if B is a PD algebra (resp., strong PD algebra, weak PD algebra).

Proof. If A is a PD algebra, then there are isomorphisms Ki (A) ∼= Ki+d(A). Combining
this with the isomorphisms given in Lemma 3.2, we deduce that there are isomorphisms
Ki (B) ∼= Ki+d(B), showing that B is also a PD algebra. The argument is symmetric,
proving the result. ��

We will now investigate some circumstances under which KK-equivalence holds.
Let A be a C∗-algebra, and let H be a Hilbert A-module. Recall from Sect. 2.2 that the
norm closure of the linear span of the set

{〈ζ | ζ ′ 〉 | ζ, ζ ′ ∈ H
}

is the algebra K(H) of
compact operators on H. The module H is said to be full if K(H) is equal to A.

Definition 3.5 (Strong Morita equivalence). Two C∗-algebras A and B are said to be
strongly Morita equivalent if there is a full Hilbert A-module H such that K(H) ∼= B.

Upon identifying B with K(H), we define a Hilbert (A,B)-bimodule H∨ as follows.
As sets (or real vector spaces), one has H∨ = H. Let ζ �→ ζ∨ denote the identity map
on H → H∨. Since λ ζ∨ = ( λ ζ )∨ for λ ∈ C and ζ ∈ H, it follows that the identity
map is conjugate linear. For ζ1, ζ2 ∈ H∨, a ∈ A and b ∈ B we set

a ζ∨1 = (ζ1 a∗)∨, ζ∨1 b = (b∗ ζ1 )∨, and 〈ζ∨1 , ζ∨2 〉 = ζ1 〈ζ2 ,−〉. (3.8)

ThenH∨ is a HilbertB-module which is full by definition. Moreover, the map ζ∨1 〈ζ∨2 ,−〉�→ 〈ζ1 , ζ2 〉 identifies K(H∨ ) with A. From the point of view of the present paper, the
importance of this notion stems from the fact that Morita equivalent algebras encode
the same physics. The following well-known lemma relates strong Morita equivalence
to strong KK-equivalence.
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Lemma 3.6. Let A and B be separable C∗-algebras. If A is strongly Morita equivalent
to B, then A is strongly KK-equivalent to B.

Proof. Let H be a full Hilbert A-module implementing the Morita equivalence between
A and B. Define elementsβ ∈ KK0(B,A) by the equivalence class of (H, i, 0), where i :
B→ K(H) is the identity, and α ∈ KK0(A,B) by the equivalence class of (H∨, i∨, 0)
in the notation above. Then the map ζ1 ⊗ ζ∨2 �→ ζ1 〈ζ2 ,−〉 identifies the B-bimodule
H⊗AH∨ with B, and hence β⊗Aα = 1B. Similarly, the map ζ∨1 ⊗ζ2 �→ ζ∨1 〈ζ∨2 ,−〉
identifies the A-bimodule H∨ ⊗B H with A. Therefore α ⊗B β = 1A, proving that
(A,B) is a strongly KK-equivalent pair. ��

There are many examples of strongly KK-equivalent algebras that are not strongly
Morita equivalent. For example, by [80] any two type I separable C∗-algebras with
the same K0 and K1 groups are automatically strongly KK-equivalent. Another famous
example concerns the two-dimensional noncommutative tori T2

θ . We recall [68,77] that
T2
θ is Morita equivalent to T2

θ ′ if and only if θ and θ ′ belong to the same GL2(Z) orbit.
On the other hand, the algebras T2

θ and C(T2) are strongly KK-equivalent for all θ [68].
The following lemma from [52] gives us more examples of strongly KK-equivalent

algebras.

Lemma 3.7. The Thom isomorphism for an oriented real vector bundle E → X gives a
natural strong KK-equivalence between the algebra C0(E) of continuous functions on E
vanishing at infinity and the algebra C0(X,Cliff(E)) of continuous sections, vanishing
at infinity, of the Clifford algebra bundle Cliff(E) of E.

Remark 3.8. If E → X is a spinc vector bundle then δX (Cliff(E)) = 0, and the C∗-alge-
bras C0(Cliff(E)) and C0(X) are strongly Morita equivalent. In this case the space of
sections C0(X,Cliff(E)) can be replaced by C0(X) in Lemma 3.7.

3.2. Other notions of KK-equivalence. We now introduce variants of the concept of
strong KK-equivalence.

Definition 3.9 (Weak KK-Equivalence). A pair of separable C∗-algebras (A,B) are
said to be weakly KK-equivalent if there are elements

α ∈ KKn(A,B) and β ∈ KK−n(B,A) (3.9)

such that

(α ⊗B β)⊗A y = y ∀ y ∈ Ki (A), z ⊗B (α ⊗A β) = z ∀ z ∈ Ki (B) (3.10)

and

(β ⊗A α)⊗B x = x ∀ x ∈ Ki (B), w ⊗A (β ⊗B α) = w ∀w ∈ Ki (A).(3.11)

Definition 3.10 (Rational KK-Equivalence). A pair of separable C∗-algebras (A,B)
are said to be rationally KK-equivalent if there are elements

α ∈ KKn(A,B) and β ∈ KK−n(B,A) (3.12)
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such that

(α ⊗B β)⊗A y = y ∀ y ∈ Ki (A)⊗Q, z ⊗B (α ⊗A β) = z ∀ z ∈ Ki (B)⊗Q

(3.13)

and

(β ⊗A α)⊗B x = x ∀ x ∈ Ki (B)⊗Q, w ⊗A (β ⊗B α) = w ∀w ∈ Ki (A)⊗Q.

(3.14)

Definition 3.11 (K-Equivalence). A pair of separable C∗-algebras (A,B) are said to
be K-equivalent if there are isomorphisms

Ki (A) ∼= Ki−n(B) and Ki (A) ∼= Ki−n(B). (3.15)

With a proof along the lines of Lemma 3.4, one can prove the following.

Lemma 3.12. Suppose that the pair of separable C∗-algebras (A,B) are weakly KK-
equivalent (resp., rationally KK-equivalent, K-equivalent). Then A is a weak PD algebra
(resp., Q–PD algebra, PD algebra) if and only if B is a weak PD algebra (resp., Q–PD
algebra, PD algebra).

In the remainder of this section we will give some classes of examples illustrating the
various notions of KK-equivalence introduced above.

3.3. Universal coefficient theorem. To understand the relation between weak and strong
KK-equivalence, we appeal to the universal coefficient theorem of Rosenberg and Scho-
chet [80]. It holds precisely for the class N of C∗-algebras which are KK-equivalent
to commutative C∗-algebras. For every pair of C∗-algebras (A,B) with A ∈ N and B
separable, there is a split short exact sequence of abelian groups given by

0 → ExtZ (K•+1(A),K•(B)) → KK• (A,B) → HomZ (K•(A),K•(B)) → 0.

(3.16)

Since there are many examples of C∗-algebras which are not in N [83], the notion of
K-equivalence may strictly contain that of strong KK-equivalence. More precisely, sup-
pose that A is not in N. If A satisfies the universal coefficient theorem for one-variable
K-homology but not for KK-theory, then A is K-equivalent to a commutative C∗-algebra
but not strongly KK-equivalent to such an algebra. (We do not know if such algebras
exist, but this is a possibility.)

Remark 3.13. From Remark 2.19 and the universal coefficient theorem (3.16) it follows
that if A lies in the category N of C∗-algebras discussed above, then A and Ao are
strongly KK-equivalent. (It is easy to construct examples, however, where they are not
Morita equivalent.) We are not sure if A and Ao are always strongly KK-equivalent,
without any hypotheses on A.
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3.4. Deformations. Let A and B be C∗-algebras. A deformation of A into B is a con-
tinuous field of C∗-algebras over a half-open interval [0, ε), locally trivial over the open
interval (0, ε), whose fibre over 0 is A and whose fibres over � ∈ (0, ε) are all isomorphic
to B. A deformation gives rise to an extension of C∗-algebras

0 −→ C0 ((0, ε), B) −→ C −→ A −→ 0. (3.17)

Connes and Higson observed that any deformation from A into B defines a morphism
K•(A) → K•(B), which is simply the connecting homomorphism ∂ in the six-term
exact K-theory sequence associated to (3.17). Moreover, when A is nuclear, the extension
(3.17) has a completely positive cross-section and thus defines an element in KK0(A,B)
which induces the map on K-theory groups.

3.5. Homotopy equivalence. Let A and B be C∗-algebras. Two algebra homomorphisms
φ0, φ1 : A → B are homotopic if there is a path γt , t ∈ [0, 1] of homomorphisms
γt : A → B such that t �→ γt (a) is a norm continuous path in B for every a ∈ A and
such that γ0 = φ0, γ1 = φ1. The algebras A and B are said to be homotopy equivalent if
there exist morphisms φ : A→ B and η : B→ A whose compositions η ◦ φ and φ ◦ η
are homotopic to the identity maps on A and B, respectively. The algebra A is called
contractible if it is homotopy equivalent to the zero algebra.

Lemma 3.14. If A and B are homotopy equivalent C∗-algebras, then the pair (A,B)
are strongly KK-equivalent.

Proof. Suppose that φ : A → B and η : B → A are ∗-homomorphisms which are
homotopy inverses to one another. Then they define classes KK(φ) ∈ KK0(A,B) and
KK(η) ∈ KK0(B,A) whose Kasparov products are simply KK(η ◦ φ) ∈ KK0(A,A)
and KK(φ ◦η) ∈ KK0(B,B). Since η ◦φ is homotopic to idA, one has KK(η ◦φ) = 1A
by homotopy invariance of KK-theory, and similarly KK(φ ◦ η) = 1B. ��

4. Cyclic Theory

As was crucial in the definition of D-brane charge given in Sect. 1.1, the topological
K-theory of a spacetime X is connected to its cohomology through the rational iso-
morphism provided by the Chern character ch : K•(X) ⊗ Q → H•(X,Q). While this
works well in the case of flat D-branes, in the more general settings described before we
need a more general cohomological framework in which to express the D-brane charge,
particularly when the branes are described by a noncommutative algebra A. The appro-
priate receptacle for the Chern character in analytic K-theory is a suitable version of the
cyclic cohomology of the given algebra A. In this section we will present an overview
of the general aspects of cyclic homology and cohomology. As we will see later on, this
general formulation provides a nice intrinsic definition of the D-brane charge even in the
flat commutative case, which moreover has a suitable extension to the noncommutative
situations.

4.1. Formal properties of cyclic homology theories. Cyclic cohomology of a complex
algebra, from its introduction by Connes, was developed in parallel with K-theory as a
noncommutative analogue of the de Rham cohomology of a differentiable manifold. One
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of the main features of that theory, which made it a very useful tool to aid in computations
of K-theory, is the existence of the Chern character from K-theory of the algebra to the
cyclic cohomology of the algebra. Compared to K-theory, cyclic type homology theories
exhibit a major weakness: they are all defined using a suitably chosen deformation of the
tensor algebra. In the case of a topological algebra A, there are many ways to topologize
the tensor algebra T A: this makes cyclic type homology theories very sensitive to the
choice of topology.

In this section we introduce the properties that we shall require of the cohomology
theory to make it suitable for our purposes. We shall then briefly outline the main points
in the construction of cyclic type homology theories that will satisfy those properties.

Let A and B be topological algebras, whose topology will be specified shortly. We
shall denote by HLi (A,B), i = 0, 1, a bivariant cyclic theory associated with A and B
that has the following formal properties:

(1) HLi (A,B) is covariant in the second variable and contravariant in the first variable;
(2) For any three algebras A, B and C there is a natural composition product

⊗B : HLi (A,B)× HL j (B,C)→ HLi+ j (A,C) ;
(3) The functor HLi (−,−) is split exact and satisfies excision in each variable;
(4) HLi (−,−) is homotopy invariant;
(5) For any algebras A1, A2, B1, and B2, there is an exterior product

HLi (A1,B1)× HL j (A2,B2)→ HLi+ j (A1 ⊗A2,B1 ⊗B2)

compatible with the composition product; and
(6) When A and B are C∗-algebras, there is a natural transformation of functors, the

Chern character,

ch : KKi (A,B)→ HLi (A,B)

which is compatible with the product on KK and the composition product on HL.

Often we suppress the subscript i when i = 0. Axiom (2) ensures that HL•(A,A) is a
Z2-graded ring. There are now many definitions of bivariant cyclic theories of this kind,
each suited to a specific category of algebras. (See [73] for a survey of these theories, as
well as the relationships among them.) With every choice of a class of algebras we need to
specify the notions of homotopy and stability which are suitable for the given category.
In many cases, for example when A and B are multiplicatively convex (m-convex)
algebras, KK in property (6) needs to be replaced by a different form of bivariant
K-theory, for example, Cuntz’s kk [26], which is defined on a class of m-convex algebras.
Cuntz’s kk is much easier to define than KK, but it is harder to compute, and at present,
the precise relation between kk and KK is unclear. This is why we are led to consider
Puschnigg’s local bivariant cyclic cohomology, developed primarily in [73], which we
shall denote HLi (−,−).1 This theory, which can be defined on a class of C∗-algebras
which is suitable for our purposes, is closest to Kasparov’s KK-theory.

Furthermore we need to point out that the correct notion of tensor product in property
(5) depends on the theory. When working with nuclear C∗-algebras, the usual C∗-tensor
product is appropriate, but when working with Fréchet algebras, one might need the pro-
jective tensor product. When we do not assume that A and B are topological algebras,

1 Puschnigg calls it HCloc or HEloc, but as this is a bit cumbersome, we have chosen to simplify the
notation.
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then the natural cyclic type homology theory to consider is the bivariant periodic cyclic
homology HPi (A,B) of Cuntz and Quillen [30]. This theory is closest to the cyclic
homology and cohomology defined by Connes. We have that HPi (A,C) is the same
as the periodic cyclic cohomology of A, HPi (A), while HPi (C,A) coincides with the
periodic cyclic homology, HPi (A).

When the algebra A is equipped with a topology, Meyer’s work indicates [62] that in
the construction of a reasonable cyclic type theory one should consider bounded rather
than continuous maps. More precisely, this means the following. As is well known, a
map of topological vector spaces f : E → F is bounded if and only if it sends bounded
sets in E to bounded sets in F . If E and F are locally convex, then a reasonable defi-
nition of a bounded set states that a subset of E is bounded if and only if it is absorbed
by every open neighbourhood of zero. Since the choice of open neighbourhoods in this
definition is dictated by topology, the class of bounded sets in E is fixed by the choice of
topology. The class of bounded sets in a topological space is called a bornology B; the
bornology associated with the topology of a space is called the von Neumann bornology.
A space equipped with a chosen family of bounded sets is called a bornological space.
A bornology on a vector space E is a class B of subsets of E , which have the properties
that {e} ∈ B for all e ∈ E ; if S ∈ B and T ⊂ S, then T ∈ B (a subset of a bounded set
is bounded); if S, T ∈ B, then S ∪ T ∈ B (the union of two bounded sets is bounded);
c · S ∈ B if S ∈ B and c ∈ C (a scalar multiple of a bounded set is bounded); and if
S, T ∈ B then S + T ∈ B (vector addition in E is a bounded map). A vector space
equipped with a bornology is called a bornological vector space. A map f : E → F of
bornological spaces is called bounded if and only if it sends elements of the bornology
in E (i.e., the ‘bounded’ sets in E) to elements of the bornology in F .

In the study of bornological spaces it became clear that it is useful to consider the
choice of bornology to be independent from the choice of topology. This observation
lies at the basis of Meyer’s construction of his analytic cyclic homology HAi (−,−),
which is a bivariant functor defined on a class of bornological algebras. A bornological
vector space A is a bornological algebra if and only if it is equipped with a multiplication
m : A × A → A which is bounded in the bornological sense. Meyer’s analytic theory
is very flexible and can be used in a variety of contexts. For example, it contains the
Cuntz-Quillen bivariant cyclic theory HPi (A,B) of [30]. Moreover, it can be defined
for Fréchet algebras and, in particular, for Banach algebras. Meyer showed in his thesis
that for a suitable choice of bornology on a locally convex algebra A his analytic cyclic
cohomology HAi (A,C) = HAi (A) is isomorphic to Connes’ entire cyclic cohomology
HEi (A) [62, Thm. 3.47]. A very important example of an entire cyclic cohomology class
is given by the JLO cocycle, which provides the character of a θ -summable Fredholm
module [47].

4.2. Local cyclic theory. We shall now outline, in broad terms, the construction and
main properties of Puschnigg’s local cyclic theory. For any algebra A, unital or not, the
(non-unital) tensor algebra T A of A is defined by

T A = A⊕ (A⊗A)⊕ (A⊗A⊗A)⊕ . . . .
In applications, A will be assumed to be complete with respect to some additional struc-
ture. For example, A may be a Fréchet or Banach algebra, or in the bornological case,
A will be assumed to be a complete bornological algebra [62, 2.2]. In each case the
definition of T A will require a choice of a completed tensor product which is relevant
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to the given situation. For example, for Banach algebras a reasonable choice is the com-
pleted projective tensor product ⊗̂π while for bornological algebras we need to take the
completed bornological tensor product [62, 2.2.3]. The tensor algebra is closely related
to the algebra of noncommutative differential forms 	A, which is defined (as a vector
space) by

	nA = A⊗n+1 ⊕A⊗n, n > 0.

We put 	0A = A.2 One defines a differential d on 	A of degree +1, which for n ≥ 1
is given by the two-by-two matrix

d =
(

0 0
1 0

)

,

while in degree zero we put d = (0, 1) : A → A⊗2 ⊕ A. One can then show that, for
n > 0,	nA ∼= Span{ã0 da1 . . . dan}, where ã0 is an element of the unitization Ã of A,
and ai ∈ A. The multiplication on 	A is uniquely determined by the requirements that
d be a derivation (satisfying the Leibnitz rule) and that

(da1 . . . dan) · (dan+1 . . . dan+m) = da1 . . . dan+m,

(ã0 da1 . . . dan) · (dan+1 . . . dan+m) = ã0 da1 . . . dan+m .

A key point in the construction of any cyclic type homology theory is the choice of
a suitable completion (depending on whether A is considered to be a topological or a
bornological algebra) of 	A. To retain the important universal property of the tensor
algebra, this completion is also usefully described as a deformation of the tensor algebra
denoted X (T A). This is a Z2 graded complex defined very simply as follows:

	1(T A)/[	1(T A),	1(T A)] b−→ 	0(T A),

where [	1(T A),	1(T A)], the commutator space of 	1(T A), is spanned by the set of
all commutators [ω, η]withω, η ∈ 	1(T A). The map b is given byω0 dω1 �→ [ω0, ω1]
for any two ω0, ω1 ∈ T A. There is a differential going the other way, which is the com-
position of the differential d : T A → 	1(T A) with the quotient map 	1(T A) →
	1(T A)/[	1(T A),	1(T A)].

Let A and B be two complete bornological algebras and let X (T A)c be the Puschnigg
completion of the X (T A) (see [72, §5], [28, §23]). There is a Z2-graded complex of
bounded maps HomC(X (T A)c, X (T B)c). We define the bivariant local cyclic homol-
ogy by

HLi (A,B) = Hi (HomC(X (T A)c, X (T B)c)),

where i = 0, 1 [28]. This homology theory coincides with other theories discussed there
under suitable conditions. For example, when B is a Fréchet algebra whose bornology
is specified by the family of pre-compact sets (or is nuclear) then HA•(B) = HL•(B)
and there is a natural map HA•(A,B)→ HL•(A,B).

We recall the notion of a smooth subalgebra of a complete bornological algebra.

2 Caution: In [73], Puschnigg forgets to mention this, i.e., to mention that the definition of	nA is different
when n = 0.
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Definition 4.1. [28, 23.3]. Let A be a complete bornological algebra with bornology
B(A), which is a dense subalgebra of a Banach algebra B with closed unit ball U. Then
A is a smooth subalgebra of B if and only if for every element S ∈ B(A) such that
S ⊂ r U, for some r < 1, the set S∞ =⋃

n Sn is an element of B(A).

Smooth subalgebras of Banach algebras are closed under the holomorphic functional
calculus. The following result will be important to us.

Theorem 4.2. [28, 23.4]. Let B be a Banach algebra with the metric approximation
property. Let A be a smooth subalgebra of B. Then A and B are HL-equivalent, that is
the inclusion map A→ B induces an invertible element of HL0(A,B).

Note by [17] that all nuclear C∗-algebras have the metric approximation property. Some,
but not all, non-nuclear C∗-algebras have it as well.

Example 4.3. Let X be a compact manifold. Then the Fréchet algebra C∞(X) is a smooth
subalgebra of the algebra C(X) of continuous functions on X . Furthermore, the inclu-
sion C∞(X) ↪→ C(X) is an invertible element in HL(C∞(X),C(X)) by Theorem 4.2
above. In particular, both the local homology and cohomology of these two algebras
are isomorphic. Puschnigg also proves that HL•(C∞(X)) ∼= HP•(C∞(X)), and so, in
this case, Puschnigg’s local cyclic theory coincides with the standard periodic cyclic
homology. The following fundamental result of Connes makes it possible to establish
contact between Puschnigg’s local cyclic theory of C(X) and the de Rham cohomology
of X .

Theorem 4.4. For X a compact manifold, the periodic cyclic homology HP•(C∞(X))
is canonically isomorphic to the periodic de Rham cohomology:

HP0
(

C∞(X)
) ∼= Heven

dR (X) and HP1
(

C∞(X)
) ∼= Hodd

dR (X) . (4.1)

It is in the sense of this theorem that we may regard cyclic homology as a generalization
of de Rham cohomology to other (possibly noncommutative) settings.

The local cyclic theory HL admits a Chern character with the required properties.

Theorem 4.5. [28, 23.5]. Let A and B be separable C∗-algebras. Then there exists a
natural bivariant Chern character

ch : KK•(A,B)→ HL•(A,B)
which has the following properties:

(1) ch is multiplicative, i.e., if α ∈ KKi (A,B) and β ∈ KK j (B,C) then

ch(α ⊗B β) = ch(α)⊗B ch(β); (4.2)

(2) ch is compatible with the exterior product; and
(3) ch(KK(φ)) = HL(φ) for any algebra homomorphism φ : A→ B.

The last property implies that the Chern character sends invertible elements of KK-the-
ory to invertible elements of bivariant local cyclic cohomology.

Moreover, if A and B are in the class N of C∗-algebras for which the Universal
Coefficient Theorem holds in KK-theory, then

HL•(A,B) ∼= HomC(K•(A)⊗Z C,K•(B)⊗Z C).

If K•(A) is finitely generated, this is also equal to KK•(A,B)⊗Z C.
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5. Duality in Bivariant Cyclic Cohomology

In this section we shall formulate and analyse Poincaré duality in the context of bivari-
ant cyclic cohomology of generic noncommutative algebras. Our analysis of Poincaré
duality in KK-theory from Sect. 2 and of KK-equivalence in Sect. 3 indicates that it is
possible to define analogous notions in any bivariant theory that has the same formal
properties as KK-theory. An important example of such a situation is provided by the
bivariant local cyclic theory as introduced in Sect. 4.2, where we have the additional tool
of the bivariant Chern character from KK. Rather than repeating all the details, we shall
simply state the main points. Duality in cyclic homology and periodic cyclic homology
has also been considered by Gorokhovsky [38, §5.2].

5.1. Poincaré duality. We will now develop the periodic cyclic theory analogues of the
versions of Poincaré duality introduced in Sect. 2. Because we want to link everything
with KK and not with kk or its variants, we will work throughout with HL and not with
HP, even though the latter is probably more familiar to most readers.

Definition 5.1. Two complete bornological algebras A,B are a strong cyclic Poincaré
dual pair (strong C-PD pair for short) if there exists a class � ∈ HLd(A ⊗ B,C) =
HLd(A⊗B) in the local cyclic cohomology of A⊗B and a class�∨ ∈ HLd(C,A⊗B) =
HLd(A⊗B) in the local cyclic homology of A⊗B with the properties

�∨ ⊗B� = 1A ∈ HL0(A,A) and �∨ ⊗A� = (−1)d 1B ∈ HL0(B,B).

The class � is called a fundamental cyclic cohomology class for the pair (A,B) and
�∨ is called its inverse. A complete bornological algebra A is a strong cyclic Poincaré
duality algebra ( strong C-PD algebra for short) if (A,Ao) is a strong C-PD pair.

As in the case of KK-theory, these hypotheses establish an isomorphism between the
periodic cyclic homology and cohomology of the algebras A and B as

HL•(A) ∼= HL•+d(B) and HL•(B) ∼= HL•+d(A). (5.1)

One also has the isomorphisms

HL•+d(A⊗B) ∼= HL•(A,A) ∼= HL•(B,B) ∼= HL•+d(A⊗B). (5.2)

The moduli space of fundamental cyclic cohomology classes for the pair (A,B) is
the cyclic duality group HL0(A,A)

−1 of invertible elements of the ring HL0(A,A) ∼=
HL0(B,B). Similarly to Sect. 2.7, one has the alternative notions of weak C-PD pairs
and of cyclic Poincaré duality.

Example 5.2. Let A = C∞(X) be the algebra of smooth functions on a compact oriented
manifold X of dimension d. Then the image of the class [ϕX ] of the cyclic d-cocycle

ϕX ( f 0, f 1, . . . , f d) = 1

d!
∫

X

f 0 d f 1 ∧ · · · ∧ d f d (5.3)

for f i ∈ A, under the homomorphism m∗ : HP•(A) ∼= HL•(C(X)) → HL•(C(X) ⊗
C(X)) induced by the product map (2.5), is the fundamental class � ∈ HLd(C(X) ⊗
C(X)) of X in cyclic cohomology. Thus in this case � corresponds to the orientation
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cycle [X ] and our notion of Poincaré duality agrees with the classical one. More gen-
erally, if X is non-orientable, i.e., w1(X) �= 0, we choose the local coefficient system
CX → X associated to w1(X) whose fibres are each (non-canonically) isomorphic to
Z. Then (C(X), C(X,CX ⊗ C)) is a strong C-PD pair.

Thanks to the existence of a universal, multiplicative Chern character which maps
the bivariant KK-theory to bivariant local cyclic cohomology, we can show that Def-
initions 2.20 and 5.1 are compatible. Let (A,B) be a strong PD pair of algebras in
KK-theory with fundamental class � ∈ Kd(A ⊗ B) and inverse �∨ ∈ K−d(A ⊗ B).
Then there is a commutative diagram

K•(A)

ch
��

�⊗A �� K•+d(B)

ch
��

HL•(A) ch(�)⊗A

�� HL•+d(B).

(5.4)

Since the Chern character is a unital homomorphism the cocycle ch(�) is an invertible
class in HLd(A⊗B)with inverse ch(�∨) ∈ HLd(A⊗B), and so it establishes Poincaré
duality in local cyclic cohomology, i.e., Poincaré duality in KK-theory implies Poincaré
duality in cyclic theory. However, the converse is not true, since the cyclic theories con-
structed in Sect. 4 give vector spaces over C and are thus insensitive to torsion. A simple
example is provided by any compact oriented manifold X for which W3(X) �= 0. Then
the algebra A = C(X) is a strong C-PD algebra but not a PD algebra. In the cases where
the Chern characters chA and chB are both isomorphisms after tensoring the K-groups
with C, Poincaré duality in cyclic theory implies rational Poincaré duality in K-theory.

The commutative diagram (5.4) allows us to transport the structure of Poincaré dual-
ity in KK-theory to local cyclic cohomology. In particular, all examples that we presented
in Sect. 2 in the context of KK-theory also apply to local cyclic cohomology. Note, how-
ever, that if a strong PD pair of algebras (A,B) are equipped with their own fundamental
cyclic cohomology class � ∈ HLd(A⊗ B), then generically ch(�) �= �. We will see
an example of this in Sect. 5.3 below. In fact, this will be the crux of our construction of
D-brane charge cycles in Sect. 8. The choice ch(�) = � has certain special properties
which will be discussed in Sect. 7.1.

5.2. HL-Equivalence. Exactly as we did above, it is possible to define the analogous
notion of KK-equivalence from Sect. 3 in the bivariant local cyclic cohomology. We
now briefly discuss how this works.

Definition 5.3. Two complete bornological algebras A and B are said to be strongly
HL-equivalent if there are elements

ξ ∈ HLn(A,B) and η ∈ HLn(B,A) (5.5)

such that

ξ ⊗B η = 1A ∈ HL0(A,A) and η ⊗A ξ = 1B ∈ HL0(B,B). (5.6)
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As in the case of KK-theory, these hypotheses induce isomorphisms between the local
cyclic homology and cohomology groups of the algebras A and B as

HL•(A) ∼= HL•+n(B) and HL•(A) ∼= HL•+n(B). (5.7)

One similarly has the notions of weak equivalence and of HL-equivalence. The Chern
character again allows us to transport results of Sect. 3 to cyclic theory. If (A,B) is a
pair of strongly KK-equivalent algebras, with the equivalence implemented by classes
α ∈ KKn(A,B) and β ∈ KK−n(B,A), then there are commutative diagrams

K•(B)

ch
��

α⊗B �� K•+n(A)
β⊗A

��

ch
��

HL•(B)
ch(α)⊗B �� HL•+n(A)
ch(β)⊗A

��

(5.8)

and

K•(B)

ch
��

⊗Bα �� K•+n(A)⊗Aβ
��

ch
��

HL•(B)
⊗Bch(α) �� HL•+n(A).⊗Ach(β)

��

(5.9)

Thus KK-equivalence implies HL-equivalence, but not conversely.

Remark 5.4. In the various versions of cyclic theory, one needs different notions of Mo-
rita equivalence. For example, one has an isomorphism HP•(A) ∼= HP•(Â⊗L1) in
periodic cyclic homology, where L1 is the algebra of trace-class operators on a separa-
ble Hilbert space. Fortunately, since HL is well behaved for C∗-algebras, which are our
main examples of interest, we will usually not have to worry about this point.

5.3. Spectral triples. Let us model a D-brane by an even spectral triple (A,H, D) as
prescribed in Sect. 2.5. Assume that the resolvent of the operator D is of order p, i.e.,
its eigenvalues µk decay as k−1/p. This is the situation, for example, for the case when
D is the canonical Dirac operator over a finite-dimensional spinc manifold. We further
make the following regularity assumption on the spectral triple. Let us assume that both
A and [D,A] are contained in

⋂

k>0 Dom(δk), where δ = ad(|D|). Let � ⊂ C denote
the set of all singularities of the spectral zeta-functions ζP (z) = Tr H(P |D|−z), where
z ∈ C and P is an element of the algebra generated by δk(A) and δk([D,A]). The set
� is called the dimension spectrum of the spectral triple (A,H, D). We will assume
that (A,H, D) has discrete and simple dimension spectrum �, i.e., that ζP , ∀P can be
extended as a meromorphic function to C \ � with simple poles in �. Such a spectral
triple is said to be regular.

Under these circumstances, the residue formula
∫

− P = Resz=0

(

Tr H

(

P |D|−2z
))

(5.10)
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defines a trace on the algebra generated by A, [D,A] and |D|z , z ∈ C. Using it we may
define the Connes-Moscovici cocycle ϕCM = (ϕCM

2n )n≥0 in the (b,B) bi-complex of the
algebra A [25]. For this, we denote by a[k] the kth iterated commutator of a ∈ A with
the operator D2,

a[k] := [

D2,
[

D2, · · · [D2

︸ ︷︷ ︸

k times

, a
] ] · · · ]. (5.11)

For n = 0 and a0 ∈ A we set

ϕCM
0 (a0) = Tr H

(

γ a0 ker(D)
)

+ Resz=0

(

1
z Tr H

(

γ a0 |D|−2z
))

, (5.12)

where ker(D) is the orthogonal projection onto the kernel of the operator D on H. For
n > 0 and ai ∈ A, we define

ϕCM
2n (a0, a1, . . . , a2n) (5.13)

=
∑

�k

(−1)|�k|
(

|�k| + n − 1
)

!

2 �k!
2n
∏

j=1
(k1 + · · · + k j + j)

∫

− γ a0

(

2n
∏

j=1
[D, a j ][k j ]

)

|D|−2|�k|−2n,

where the sum runs through all multi-indices �k = (k1, . . . , k2n)with |�k| := k1 + · · ·+k2n

and �k! := k1! · · · k2n !. It can be shown that this formula has only a finite number of non-
zero terms. The class ch(D) = [ϕCM

2n ] ∈ HE0(A) is called the (even) cyclic cohomology
Chern character and it may be regarded as a map

ch : K0(A) −→ HE0(A). (5.14)

It is instructive again to look at the case where X is a compact, smooth spin manifold of
even dimension d. For the spectral triple we then take A = C∞(X), H± = L2(X,S±X ),
and D = D/ : C∞(X,S+

X )→ C∞(X,S−X ), the usual (untwisted) Dirac operator. Then
the dimension spectrum� consists of relative integers< d, and is simple. (Multiplicities
would arise in the case that the spacetime X is a singular orbifold, for example.) We can
thereby apply the Connes-Moscovici cocycle construction to this situation. One finds
that the contributions to (5.14) vanish unless �k = �0, and hence its components are given
explicitly by [70]

ϕCM
2n ( f 0, f 1, . . . , f 2n) = 1

(2n)!
∫

X

f 0 d f 1 ∧ · · · ∧ d f 2n ∧ ̂A(X) (5.15)

with f i ∈ C∞(X). In this case, the entire cyclic cohomology HE•(A) is naturally iso-
morphic to the local cyclic cohomology HL•(A) and to the periodic cyclic cohomology
HP•(A) [72]; the resulting entire cocycle is cohomologous to an explicit periodic cyclic
cocycle given in terms of the spectral triple.

This result implies an important characterization that will be crucial to the construc-
tion of brane charges as cyclic classes.
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Theorem 5.5. Let X be a compact, smooth spin manifold of even dimension. Then the
cyclic cohomology Chern character of the spectral triple (C∞(X), L2(X,SX ), D/ ) coin-
cides with the Atiyah-Hirzebruch class of X in even de Rham homology,

ch(D/ ) = Pd−1
X

(

̂A(X)
)

. (5.16)

Remark 5.6. In some cases the p-summability requirements are not met, most notably
when the spectral triple is infinite-dimensional. In such instances we can still compute
the cyclic cohomology Chern character if the spectral triple (A,H, D) is θ -summable,
i.e., [D, a] is bounded for all a ∈ A, and the eigenvalues µk of the resolvent of D grow
no faster than log(k). This implies that the corresponding heat kernel is trace-class,
Tr H( e−t D2

) < ∞ ∀t > 0. Within this framework, we can then represent the Chern
character of the even spectral triple (A,H, D) in the entire cyclic cohomology of A by
using the JLO cocycle ϕJLO = (ϕJLO

2n )n≥0 [47]. With a0, a1 . . . , a2n ∈ A, it is defined
by the formula

ϕJLO
2n (a0, a1 . . . , a2n)

=
∫

�2n

dt0 dt1 · · · dt2n Tr H

(

γ a0 e−t0 D2

(

2n
∏

j=1
[D, a j ] e−t j D2

))

, (5.17)

where �n = {(t0, t1, . . . , tn) | ti ≥ 0,
∑

i ti = 1} denotes the standard n-simplex in
R

n+1. This entire cyclic cocycle is cohomologous to the Chern character. Once again,
consider the example of the canonical triple (C∞(X), L2(X,SX ), D/ ) over a spin man-
ifold X , and replace D/ everywhere in the formula (5.17) by s D/ with s > 0. By using
asymptotic symbol calculus, one can then show [24,74] that the character (5.17) retracts
as s → 0 to the Connes-Moscovici cocycle (5.15).

6. T-Duality

In this section we will show that there is a strong link between KK-equivalence for
crossed product algebras and T-duality in string theory. This will lead to a putative axi-
omatic characterization of T-duality for C∗-algebras. We also describe an analogous
characterization in local cyclic cohomology.

6.1. Duality for crossed products. We begin with some general results regarding KK-
equivalence and Poincaré duality for crossed product algebras, and then use them to give
some more examples of PD algebras. Let G be a locally compact, connected Lie group.
Recall [18] that G is said to satisfy the Haagerup property if it has a metrically proper
isometric action on some Hilbert space. Examples are SO(n, 1), SU (n, 1) and locally
compact, connected, amenable Lie groups. An amenable Lie group is one that has an
invariant mean, examples of which include abelian Lie groups, nilpotent Lie groups and
solvable Lie groups.

Let K be a maximal compact subgroup of G. Let V denote the cotangent space to
the symmetric space G/K at the point (K ). Let Cliff(V ) be the Clifford algebra of V
with respect to some positive definite inner product on V . We start by recalling a the-
orem of Higson-Kasparov [40] and Tu [85], generalizing a theorem of Kasparov [52,
§6 Theorem 2].
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Theorem 6.1. Let A be a G-C∗-algebra, where G is a locally compact, connected Lie
group satisfying the Haagerup property. Then in the notation above, the pair of crossed
product C∗-algebras (A � G, (A ⊗ Cliff(V )) � K ) are strongly KK-equivalent. If in
addition the coadjoint action of K on V is spin then the pair (A�G, (A�K )⊗C0(R

d))

are strongly KK-equivalent, where d = dim(G/K ).

A special case of Theorem 6.1, which was proved earlier by Fack and Skandalis [34]
generalising an argument of Connes [19], is as follows.

Corollary 6.2. Let A be a G-C∗-algebra, where G is a simply connected, locally com-
pact, solvable Lie group of dimension k. Then the pair of C∗-algebras (A ⊗ C0(R

k),

A � G) are strongly KK-equivalent.

As an immediate consequence of Theorem 6.1 and Lemma 3.4 we obtain the follow-
ing.

Corollary 6.3. Let A be a G-C∗-algebra, where G is a locally compact, connected Lie
group satisfying the Haagerup property. Then in the notation of Theorem 6.1, (A ⊗
Cliff(V ))� K is a (strong, weak) PD algebra if and only if A�G is a (strong, weak) PD
algebra. If in addition the coadjoint action of K on V is spin, then A � K is a (strong,
weak) PD algebra if and only if A � G is a (strong, weak) PD algebra.

In addition, an immediate consequence of Corollary 6.2 and Lemma 3.4 is as follows.

Corollary 6.4. Let A be a G-C∗-algebra, where G is a simply connected, locally com-
pact, solvable Lie group. Then A is a (strong, weak) PD algebra if and only if A � G is
a (strong, weak) PD algebra.

Example 6.5. Let � be a torsion-free, discrete subgroup of a connected semisimple Lie
group G with finite center. Let P be a minimal parabolic subgroup of G and K a maxi-
mal compact subgroup of G. Then G/P is the Furstenberg boundary (at infinity) of the
symmetric space G/K . By Green’s theorem, C(G/P)�� is strongly Morita equivalent
to C0(�\G) � P . By Lemmas 3.4 and 3.6 it follows that C(G/P) � � is a strong PD
algebra if and only if C0(�\G) � P is a strong PD algebra. By Corollary 6.3 above,
C0(�\G)� P is a strong PD algebra if and only if C0(�\G)� K is a strong PD algebra,
i.e., if and only if �\G/K is a spinc manifold. We conclude that C(G/P) � � is a
strong PD algebra if and only if �\G/K is a spinc manifold. In particular, C(S1)� �g
is a strong PD algebra whenever �g is the fundamental group of a compact, oriented
Riemann surface of genus g ≥ 1. There is a deep variant of this example, analysed in
detail by Emerson [32], dealing with the crossed product C∗-algebra C(∂�) � � for a
hyperbolic group � with Gromov boundary ∂�.

Another important property of such crossed products is Takai duality. If G is a locally
compact, abelian group we denote by G̃ its Pontrjagin dual, i.e., the set of characters of

G, which is also a locally compact, abelian group. Pontrjagin duality ˜̃G ∼= G follows
by Fourier transformation. For example, R̃

n = R
n , T̃

n = Z
n , and Z̃

n = T
n . If A is a

G-C∗-algebra, then the crossed product A � G carries a G̃-action.

Theorem 6.6 (Takai Duality). Let A be a G-C∗-algebra, where G is a locally compact,
abelian Lie group. Then there is an isomorphism of C∗-algebras

(A � G)� G̃ ∼= A⊗K
(

L2(G)
)

. (6.1)
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In other words, the algebras A and (A � G) � G̃ are strongly Morita equivalent. If
we interpret the crossed product A � G as the noncommutative analogue of an abelian
orbifold spacetime X/G, then Takai duality asserts that “orbifolding twice” gives back
a spacetime which is physically equivalent to the original spacetime X . The essential
physical phenomenon is that the states which were projected out by G are restored by G̃.

6.2. T-duality and KK-equivalence. We next explain how KK-equivalence of crossed
products is related to T-duality. Throughout X will be assumed to be a locally compact,
finite-dimensional, homotopically finite space. Consider first the simplest case of flat D-
branes in Type II superstring theory on a spacetime X = M ×T

n which is compactified
on an n-torus T

n = Vn/!n , where!n is a lattice of maximal rank in an n-dimensional,
real vector space Vn . As shown in [45], T-duality in this instance is explained by using
the correspondence

M × T
n ×̂T

n

p

���������������������

p̂

��������������������

M × T
n M ×̂T

n

(6.2)

where ̂T
n = (Vn)

∨/(!n)
∨ denotes the dual torus, with (!n)

∨ the dual lattice in the
dual vector space (Vn)

∨. This gives rise to an isomorphism of K-theory groups

T! : K• (M × T
n)

≈−−−−→ K•+n
(

M ×̂T
n
)

(6.3)

given by

T!(−) = p̂ !
(

p!(−) ⊗ P
)

, (6.4)

where P is the Poincaré line bundle over the torus T
n ×̂T

n pulled back to M ×T
n ×̂T

n

via the projection map pr1 : M × T
n ×̂T

n → T
n ×̂T

n . Thus T-duality can be viewed
in this case as a smooth analog of the Fourier-Mukai transform. If G is the metric of the
torus T

n inherited from the non-degenerate bilinear form of the lattice!n , then the dual
torus ̂Tn has metric G−1 inherited from the dual lattice (!n)

∨.
As argued by [63], detailed in [37,44,64,66,86], and discussed in Sect. 1, RR-fields

are classified by K1-groups and RR-charges by K0-groups of the spacetime X in Type IIB
string theory, whereas RR-fields are classified by K0-groups and RR-charges by K1-
groups in Type IIA string theory. Thus if spacetime X = M × T

n is compactified on a
torus of rank n, then the isomorphism (6.3) is consistent with the fact that T-duality is
an equivalence between the Type IIA and Type IIB string theories if n is odd, while if
n is even it is a self-duality for both string theories. Given this compelling fact, we will
take this isomorphism to mean the equivalence itself here (although in string theory the
duality is much more complicated and involves many more ingredients).

As was observed in [59], all of this can be reformulated in terms of the C∗-algebra
C0(M × T

n). The locally compact, abelian vector Lie group Vn ∼= R
n acts on T

n =
Vn/!n via left translations, and consider the crossed product algebra C0(M×T

n)�Vn
with Vn acting trivially on M . By Rieffel’s imprimitivity theorem [76], there is a strong
Morita equivalence

C0(M × T
n)� Vn ∼ C0(M)�!n, (6.5)
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where the discrete group !n acts trivially on C0(M). One therefore has

C0(M × T
n)� Vn ∼ C0(M)⊗ C∗(!n). (6.6)

By Fourier transformation the group C∗-algebra of !n can be identified as C∗(!n) ∼=
C(̂Tn), and as a consequence there is a strong Morita equivalence

C0
(

M × T
n)

� Vn ∼ C0 (M)⊗ C
(

̂T
n) ∼= C0

(

M ×̂T
n) . (6.7)

By Lemma 3.6 and Corollary 6.2, the pair of C∗-algebras (C0(M × T
n), C0(M ×

T
n)� Vn ∼ C0(M ×̂T

n)) are strongly KK-equivalent (with a degree shift of n mod 2).
Thus by Lemma 3.2 there are isomorphisms

T! : K•
(

C0(M × T
n)
) ≈−→ K•+n

(

C0(M ×̂T
n)
)

,

T ! : K•
(

C0(M × T
n)
) ≈−→ K•+n (

C0(M ×̂T
n)
)

. (6.8)

The upshot of this analysis is that the Fourier-Mukai transform, or equivalently T-duality
for flat D-branes in Type II string theory, on a spacetime X that is compactified on a torus
T

n , can be interpreted as taking a crossed product with the natural action of Vn ∼= R
n

on the C∗-algebra C0(X).
This point of view was generalized in a series of papers [9–12,59,60] to twisted

D-branes in Type II superstring theory in a B-field (X, H) and for a spacetime X which
is a possibly non-trivial principal torus bundle π : X → M of rank n. As described
in Sect. 1.4, in this case the type I, separable C∗-algebra in question is the algebra
C0(X,EH ) of continuous sections vanishing at infinity of a locally trivial C∗-algebra
bundle EH → X with fibre K(H) and Dixmier-Douady invariant δX (EH ) = H ∈
Br∞(X) ∼= H3(X,Z). This is a stable, continuous trace algebra with spectrum X . It is
a fundamental theorem of Dixmier and Douady [31] that H is trivial in cohomology
if and only if C0(X,EH ) is strongly Morita equivalent to C0(X) (in fact C0(X,E0) ∼=
C0(X,K(H))), consistent with the above discussion. If in addition X is a Calabi-Yau
threefold, then T-duality in these instances coincides with mirror symmetry.

As above, the abelian Lie group Vn acts on X via left translations of the fibres T
n .

In [60] the following fundamental technical theorem was proven.

Theorem 6.7. In the notation above, the natural Vn-action on X lifts to a Vn-action on
the total space EH , and hence to a Vn-action on C0(X,EH ), if and only if the restriction
of H to the fibres of X is trivial in cohomology.

This is a non-trivial obstruction if and only if the fibres of X are of rank n ≥ 3. The
T-dual is then defined as the crossed product algebra C0(X,EH )� Vn . This algebra is a
continuous trace algebra if and only if π∗(H) = 0 in H1(M,H2(Tn,Z)). In the general
case, the crossed product C0(X,EH ) � Vn is not of type I but is rather a continuous
field of (stabilized) rank n noncommutative tori fibred over M . The fibre over the point
m ∈ M is isomorphic to Tn

f (m) ⊗ K(H), where π∗(H) = [ f ] is the Mackey obstruc-

tion class with f : M → H2(!n,U (1)) ∼= (R/Z)k, k = (n
2

)

a continuous map. This
obstruction is due to the presence of discrete torsion in the fibres of the string back-
ground, represented by multipliers f (m) on the discrete group !n , which is essentially
due to the presence of non-trivial global B-fields along the fibres of X .

Corollary 6.8. In the notation of Theorem 6.7, suppose that the restriction of H to the
fibres of X is trivial in cohomology. Then the T-dual C0(X,EH ) � Vn is a strong PD
algebra if and only if X is a spinc manifold.
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Proof. By a theorem of Parker [67], the continuous trace algebra C0(X,EH ) is a strong
PD algebra if and only if X is a spinc manifold. The result now follows from Theorem 6.7
and Corollary 6.4. ��

The Takai duality theorem in these examples implies that (C0(X,EH )� Vn)� Vn is
strongly Morita equivalent to C0(X,EH ), i.e., T-duality applied twice returns the original
string theory. We can now combine all of these observations to formulate a generically
noncommutative version of T-duality for C∗-algebras in very general settings.

Definition 6.9 (K-Theoretic T-Duality). Let T be a suitable category of separable C∗-
algebras, possibly equipped with some extra structure (such as the R

n-action above).
Elements of T are called T-dualizable algebras, with the following properties:

(1) There is a covariant functor T:T → T which sends an algebra A to an algebra
T(A) called its T-dual;

(2) There is a functorial map A �→ γA ∈ KKn(A, T(A)) such that γA is a KK-equiv-
alence; and

(3) The pair (A, T(T(A))) are Morita equivalent, and the Kasparov product γA⊗T(A)
γT(A) is the KK-equivalence associated to this Morita equivalence.

6.3. T-duality and HL-equivalence. As we have mentioned, the isomorphisms (6.8)
are only part of the story behind T-duality, as they only dictate how topological charges
behave under the duality. In particular, the isomorphism T! on K-theory bijectively relates
the RR-fields in T-dual spacetimes, while the bijection T ! relates the RR-charges them-
selves. As explained in Sects. 1.1 and 1.2 in the case of flat D-branes, the RR-fields are
represented by closed differential forms on the spacetime X while the branes themselves
are associated to non-trivial (worldvolume) cycles of X . It is therefore natural to attempt
to realize our characterization of T-duality above in the language of cyclic theory, in
order to provide the bijections between the analogues of these (and other) geometric
structures.

We begin with the following observation.

Theorem 6.10. Let A be separable C∗-algebra, and suppose that A admits an action
by a locally compact, real, abelian vector Lie group Vn of dimension n. Then there is a
commutative diagram

K•(A)

ch
��

T∗ �� K•+n(A � Vn)

ch
��

HL•(A) T∗
�� HL•+n(A � Vn)

(6.9)

whose horizontal arrows are isomorphisms.

Proof. The isomorphism K•(A) ∼= K•+n(A � R
n) in the top row is the Connes-Thom

isomorphism [19] (cf. Corollary 6.2 above), while the isomorphism in the bottom row
comes from transporting this isomorphism to local cyclic homology, as in [82]. (See also
the review of [82] in MathSciNet, MR2117221 (2005j:46041), for more of an explana-
tion.) ��
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The isomorphism in the bottom row of (6.9) is the local cyclic homology version of
T-duality. Theorem 6.10 shows that the T-duality isomorphisms in K-theory descend
to isomorphisms of cyclic cohomology, giving the mappings at the level of RR-field
representatives in HL•(A). This motivates the local cyclic cohomology version of the
axioms spelled out in Definition 6.9.

Definition 6.11 (Cohomological T-Duality). Let A be a complete bornological alge-
bra. A cyclic T-dual of A is a complete bornological algebra THL(A) which satisfies the
following three axioms:

(1) The map A �→ THL(A) is a covariant functor on an appropriate category of alge-
bras;

(2) The pair (A, THL(A)) are HL-equivalent; and
(3) The pair (A, THL(THL(A))) are topologically Morita equivalent.

As in Definition 6.9, there should be an explicit functorial HL-equivalence in (2) com-
patible with the Morita equivalence in (3).

From these definitions it follows that K-theoretic T-duality for a separable C∗-algebra
A implies cohomological T-duality for the same algebra, but the converse need not
necessarily be true (because of torsion in K-theory, for example).

Remark 6.12. There are competing points of view concerning T-duality in the nonclassi-
cal case, that is, in the case when the T-dual of a spacetime X , which is a principal torus
bundle with nontrivial H -flux, is not another principal torus bundle. Unlike the approach
discussed in this section, where the T-dual is a globally defined but possibly noncom-
mutative algebra, the T-dual in the competing points of view is not globally defined. For
example, in [46], Hitchin’s generalized complex geometry is used to construct a T-dual
which is a purely local object, that does not patch together to give a global object, and
is referred to as a T-fold. See also [81] for a related point of view.

7. Todd Classes and Gysin Maps

In this section we apply the concept of Poincaré duality in KK-theory and bivariant cyclic
cohomology to define the notion of a Todd class for a very general class of C∗-alge-
bras. As follows from the discussion of Sect. 1.1, this will be one of the main building
blocks of our definitions of generalized D-brane charges. Another crucial ingredient
in these definitions is the application of Poincaré duality to the construction of Gysin
maps (or “wrong way” maps) in KK-theory and in cyclic theory, which also came up
in our discussion of T-duality above. These general constructions combine together to
yield a generalization of the Grothendieck-Riemann-Roch theorem for an appropriate
class of C∗-algebras, which in turn yields another perspective on the concept of a T-dual
C∗-algebra that was introduced in the previous section.

7.1. The Todd class. Our general definition of Todd classes is motivated by Theorem 5.5
and Proposition 2.8. We begin with the following observation.

Lemma 7.1. Let A,B1,B2 be separable C∗-algebras such that (A,B1) and (A,B2)

are both strong PD pairs. Then the pair of algebras (B1,B2) are strongly KK-equivalent.



688 J. Brodzki, V. Mathai, J. Rosenberg, R. J. Szabo

Proof. Let �1 ∈ Kd(A ⊗ B1) and �2 ∈ Kd(A ⊗ B2) be the respective fundamental
classes. Then with a proof along the lines of Proposition 2.8, one shows that the clas-
ses α := �∨1 ⊗A �2 ∈ KK0(B1,B2) and β := (−1)d �∨2 ⊗A �1 ∈ KK0(B2,B1)

implement the required equivalence. ��
Let D denote the class of all separable C∗-algebras A for which there exists another

separable C∗-algebra B such that (A,B) is a strong PD pair. For any such A, we fix a
representative of the KK-equivalence class of B and denote it by Ã. In general there is
no canonical choice for Ã. If A is a strong PD algebra, the canonical choice Ã := Ao

will always be made.

Definition 7.2. Let A ∈ D, let� ∈ Kd(A⊗ Ã) be a fundamental K-homology class for
the pair (A, Ã) and let � ∈ HLd(A ⊗ Ã) be a fundamental cyclic cohomology class.
Then the Todd class of A is defined to be the class

Todd (A) = Todd�,�
(

A, Ã
)

:= �∨ ⊗Ã ch (�) (7.1)

in the ring HL0(A,A).

Recall that the map�∨⊗Ã(−) implements an isomorphism HLd(A⊗Ã) ∼= HL0(A,A).
The element (7.1) is invertible with inverse given by

Todd (A)−1 = (−1)d ch
(

�∨
)⊗Ã�. (7.2)

Remark 7.3. Observe that the Todd class of an algebra A ∈ D is trivial, i.e., Todd(A) =
1A in HL0(A,A), if and only if ch(�) = � in HLd(A⊗ Ã).

The Todd class depends on a number of choices, but this dependence can be described
by “covariant” actions on the classes.

Theorem 7.4. In the notation above, the Todd class of an algebra A ∈ D has the fol-
lowing properties:

(1) Suppose � and � are fundamental classes for the strong PD pair (A, Ã), with
inverse fundamental classes�∨ and�∨. If there are KK-equivalences α ∈ KK0(A,
A1) and β ∈ KK0(Ã, Ã1), then (A1, Ã1) is a strong PD pair, with fundamental
classes

�1 = (α−1 × β−1)⊗A⊗Ã�, �1 = (ch(α)−1 × ch(β)−1)⊗A⊗Ã�

(where × denotes the exterior product) and inverse fundamental classes

�∨1 = �∨ ⊗A⊗Ã (α × β), �∨1 = �∨ ⊗A⊗Ã (ch(α)× ch(β)).

Furthermore,

Todd�1,�1(A1, Ã1) = ch(α)−1 ⊗A Todd�,�(A, Ã)⊗A ch(α). (7.3)

(2) If (�, �HL) is an element of the duality group KK0(A,A)
−1 × HL0(A,A)

−1, then

Todd�⊗A�, �HL⊗A�

(

A, Ã
)

= ch (�)⊗A Todd�,�
(

A, Ã
)

⊗A �
−1
HL. (7.4)
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Proof. The fact that (A1, Ã1) is a strong PD pair with fundamental classes �1 and �1
is routine and quite similar to the calculation in Proposition 2.7. We proceed to compute
the Todd class. In terms of the diagram calculus of Appendix B, the picture is:

A1 A1

��
��

��
��

ch(�1)��
C

�∨1

����������

���
��

��
��

�◦ ◦ C

Ã1
1 �� Ã1

��������

��

A
ch(α) �� A1 A1

ch(α−1)�� A

		
		

		
		

ch(�) ��= C
�∨

		











�
��

��
��

�◦ ◦ C

Ã
ch(β) �� Ã1

1 �� Ã1
ch(β)−1

��
Ã

��������

��

(7.5)
This yields formula (7.3) via associativity in the formulation of Appendix B.

The proof of (2) is done with a very similar diagram. ��
Corollary 7.5. Suppose A is a C∗-algebra that is strongly KK-equivalent to C(X),
where X is an even-dimensional compact spinc manifold. Let Todd(X) be the usual Todd
class of X, but viewed as a bivariant cyclic homology class as above. Ifα ∈ KK(A,C(X))
and β ∈ KK(C(X),A) are explicit KK-equivalences inverse to one another, then

Todd(A) = ch(α)⊗C(X) Todd(X)⊗C(X) ch(β). (7.6)

Proof. Immediate from Theorem 7.4, since D/ X×X is a KK fundamental class for C(X)
and the usual homology fundamental class provides another fundamental class in cyclic
homology. ��
Remark 7.6. There is a more subtle real version of Kasparov’s KK-theory defined for
complex C∗-algebras with involution [39, Definition 9.18]. For any separable C∗-al-
gebra A, the algebra A ⊗ Ao may be equipped with a canonical involution τ defined
by

τ(a ⊗ bo) = b∗ ⊗ (a∗)o (7.7)

for all a, b ∈ A. The corresponding real K-homology groups are denoted KR•(A⊗Ao).
There is a forgetful map

f : KR•(A⊗Ao) −→ K•(A⊗Ao) (7.8)

from the real to the complex K-homology of the algebra A ⊗ Ao. Suppose that A is a
strong PD algebra which admits a fundamental KR-homology class�R ∈ KRd(A⊗Ao).
Let � ∈ HLd(A⊗Ao) be a fundamental cyclic cohomology class for A. The image of
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�R under the homomorphism (7.8) is a fundamental K-homology class for A and the
corresponding Todd class (7.1) in HL0(A,A) is called the Atiyah-Hirzebruch class of
A, denoted

̂A (A) := �∨ ⊗Ao ch (f(�R)) . (7.9)

It satisfies the same basic properties as the Todd class above, and may be related to (7.1)
for any other fundamental K-homology class� by using the action of the duality group
KK0(A,A)

−1 in (7.4).

7.2. Gysin homomorphisms. Let f : A→ B be a morphism of separable C∗-algebras.
It induces morphisms in K-theory,

f∗ : K•(A) −→ K•(B), (7.10)

and morphisms in K-homology,

f ∗ : K•(B) −→ K•(A). (7.11)

We will now describe how to construct Gysin maps (or “wrong way” maps) on these
groups. If both A and B are PD algebras, then they are easily constructed as analogues
of the classical “Umkehrhomomorphismus”. In this case, there are isomorphisms

PdA : K•(A)
≈−→ K•−dA (Ao) and PdB : K•(B)

≈−→ K•−dB (Bo). (7.12)

We can then define the Gysin map in K-theory,

f! : K•(B) −→ K•+d(A), (7.13)

(where d = dA− dB) as the composition

f! : K•(B)
PdB−−→ K•−dB (Bo)

( f o)∗−−−→ K•−dB (Ao)
Pd−1

A−−−→ K•+d(A). (7.14)

Under the same hypotheses, we can similarly define the Gysin map in K-homology,

f ! : K•(A) −→ K•+d(B), (7.15)

as the composition

f ! : K•(A)
Pd−1

A−−−→ K•+dA (A
o)

f o∗−→ K•+dA (B
o)

PdB−−→ K•+d(B). (7.16)

However, this relies on the fact that A and B are PD algebras, which is in general too
stringent a requirement. We will therefore proceed to some more general constructions.
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A

∆B
C

∆∨
A ◦ C

A
o fo

B
o

◦

B

Fig. 7.2. Diagram representing the construction of f !. The “free ends” are on the top line and concatenation
is done on the bottom line.

7.3. Strongly K-oriented maps. We will consider a subcategory C of the category of
separable C∗-algebras and morphisms of C∗-algebras, consisting of strongly K-oriented
morphisms. C comes equipped with a contravariant functor ! : C→ KK, sending

C " (A f−→ B) −→ f ! ∈ KKd(B,A)

and having the following properties:

(1) For any C∗-algebra A, the identity morphism idA : A→ A is strongly K-oriented
with (idA)! = 1A, and the 0-morphism 0A : A → 0 is strongly K-oriented with
(0A)! = 0 ∈ KK(0,A);

(2) If (A
f−→ B) ∈ C, then (Ao f o

−→ Bo) ∈ C and moreover ( f !)o = ( f o)!;
(3) If A and B are strong PD algebras, then any morphism (A

f−→ B) ∈ C, and f ! is
determined as follows:

f ! = (−1)dA�∨A⊗Ao [ f o] ⊗Bo �B,

where for the rest of the paper, [ f ] = KK( f ) denotes the class in KK(A,B) of the

morphism (A
f−→ B) and [ f o] is defined similarly.

As Kasparov products like this are rather hard to visualize when written this way,
it is useful to use the diagram calculus developed in Appendix B. In these terms,
f ! is represented by the picture depicted by Fig. 7.2.

Actually, it is not immediately obvious that property (3) above is compatible with the
required functoriality. However, consistency of the definition follows from the following:

Lemma 7.7 (Functoriality of the Gysin map). If A, B and C are strong PD algebras,
and if f : A→ B, g : B→ C are morphisms of C∗-algebras, then

(

(−1)dA�∨A⊗Ao [ f o] ⊗Bo �B

)

⊗B

(

(−1)dB�∨B⊗Bo [go] ⊗Co �C

)

=
(

(−1)dA�∨A⊗Ao [(g ◦ f )o] ⊗Co �C

)

.

Proof. Note that, by associativity of the Kasparov product,

(

�∨A⊗Ao [ f o] ⊗Bo �B
)⊗B

(

�∨B⊗Bo [go] ⊗Co �C
)

= �∨A⊗Ao
([ f o] ⊗Bo �B⊗B�

∨
B⊗Bo [go])⊗Co �C.
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But

[ f o] ⊗Bo �B⊗B�
∨
B⊗Bo [go] = [ f o] ⊗Bo (�B⊗B�

∨
B)⊗Bo [go]

= [ f o] ⊗Bo (−1)dB 1Bo ⊗Bo [go]
= (−1)dB [ f o] ⊗Bo [go] = (−1)dB [(g ◦ f )o],

and the result follows. ��
We now exhibit more examples of elements in this category C. In the following

example, the C∗-algebras are not strong PD algebras, but yet we can get an element
in this category C. Suppose that we are given oriented manifolds X and Y , and classes
HX ∈ H3(X,Z) and HY ∈ H3(Y,Z). A smooth map f : X → Y defines a morphism
f ∗ : C0(Y,EHY ) −→ C0(X,EHX ) if f ∗HY = HX . Since X and Y are oriented, then
by Example 2.5, the pair (C0(X),C0(X,Cliff(T X))) is a strong PD pair, that is, there
is a fundamental class �X ∈ KK(C0(X)⊗ C0(X,Cliff(T X),C). Since EHX ⊗ Eo

HX
is

stably isomorphic to the trivial bundle X ×K, it follows that C0(X)⊗C0(X,Cliff(T X)
is stably isomorphic to C0(X,EHX )⊗ C0(X,Eo

HX
⊗ Cliff(T X). Therefore

KK(C0(X)⊗ C0(X,Cliff(T X),C) ∼= KK(C0(X,EHX )⊗ C0(X,E
o
HX
⊗ Cliff(T X),C),

giving rise to a fundamental class in KK(C0(X,EHX )⊗C0(X,Eo
HX
⊗Cliff(T X),C), and

showing that (C0(X,EHX ),C0(X,Eo
HX
⊗Cliff(T X))) is a strong PD pair. The analogous

statement is true for Y . Finally, if f ∗W3(Y ) = W3(X), where W3(X) ∈ H3(X,Z) is
the third integral Stiefel-Whitney class of X , then we get the commutative diagram,

K•(C0(Y,Eo
HY
⊗ Cliff(T Y )))

PdY

��

f ∗ �� K•(C0(X,Eo
HX
⊗ Cliff(T X)))

PdX

��
K•(C0(Y,EHY )) f ∗

�� K•(C0(X,EHX )),

(7.17)

where the vertical arrows are isomorphisms. Then

( f ∗)! ∈ KK(C0(X,EHX ),C0(Y,EHY ))

is defined as the Kasparov product (−1)dim Y�∨Y ⊗ [ f ∗] ⊗�X .
This is a special case of the more general situation given as follows. Let (Ai ,Bi ), i =

1, 2 be strong PD pairs with fundamental classes �i , i = 1, 2 respectively, and let
f : A1 → A2 be a morphism. Then f ! ∈ KK(B2,B1) is defined using the diagram
calculus in Appendix B as (−1)d1�∨1 ⊗A1 [ f ] ⊗A2 �2.

There are also many interesting examples of strongly K-oriented maps between non-
commutative foliation C∗-algebras constructed in [42].

7.4. Weakly K-oriented maps. We will consider a subcategory Cw of the category of
separable C∗-algebras and morphisms of C∗-algebras, consisting of “weakly K-ori-
ented morphisms”. Cw comes equipped with a contravariant functor ! : Cw → Ab (Ab
denotes the category of Z2-graded abelian groups) sending

Cw " (A
f−→ B) −→ f! ∈ HomZ(K•(B),K•+d(A))

and having the following properties:
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(1) For any C∗-algebra A, the identity morphism idA : A→ A is weakly K-oriented;

(2) If (A
f−→ B) ∈ Cw, then (Ao f o

−→ Bo) ∈ Cw and moreover ( f!)o = ( f o)!;
(3) If A and B are weak PD algebras, then any morphism (A

f−→ B) ∈ Cw, and f! is
determined as follows:

f! = Pd−1
A ◦ ( f o)∗ ◦ PdB,

where ( f o)∗ denotes the morphism in HomZ(K•(Ao),K•(Bo)).

This definition generalizes the one in the previous subsection in the following sense:

Proposition 7.8. C can be taken to be a subcategory of Cw. In other words, if f : A→ B
is a morphism in C, then f! = ( f !)∗ : K•(B) → K•+d(A) satisfies the above require-
ments.

Proof. Functoriality is obvious since we are merely composing the functor from C to
KK with the functor from KK to Ab that sends A �→ K•(A), KK(A,B) " x �→ x∗ ∈
HomZ(K•(A),K•(B)).

We need to check property (3). In other words, suppose A and B are strong PD alge-
bras and f ! ∈ KKd(B,A) is defined to be (−1)dA�∨A⊗Ao [ f o] ⊗Bo �B. We want to

show that the induced map on K• is Pd−1
A ◦ ( f o)∗ ◦PdB. However, this is obvious, since

the Kasparov product with �B ∈ KKdB (B ⊗ Bo,C) is PdB : K•(B) → K•−dB (Bo)

and the Kasparov product with (−1)dA�∨A ∈ KKdA (C,A ⊗ Ao) is Pd−1
A : K•(A)→

K•+dA (A
o). ��

Remark 7.9. The Gysin maps in K-homology f ! ∈ HomZ(K•(A),K•+d(B)) can also
be defined with completely analogous properties. There are also the obvious HL-theory
analogues, used in the next subsection.

7.5. Grothendieck-Riemann-Roch formulas: the Strong case. The Grothendieck-Rie-
mann-Roch formula compares the two bivariant cyclic classes ch( f !) and f HL!.
Theorem 7.10. Suppose A and B are strong PD algebras with given HL fundamental
classes. Then one has the Grothendieck-Riemann-Roch formula,

ch( f !) = (−1)dB Todd(B)⊗B f HL! ⊗A Todd(A)−1. (7.18)

Proof. We will write out the right-hand side of (7.18) and simplify. In the notation of
Definition 7.2, the Todd class of B is the class

Todd (B) = �∨B⊗B̃ ch (�B) ∈ HL0(B,B), (7.19)

and the inverse of the Todd class of A is the class

Todd (A)−1 = (−1)dA ch
(

�∨A
)⊗Ã�A ∈ HL0(A,A). (7.20)

Since A and B are strong PD algebras, then f HL! is determined as follows:

f HL! = (−1)dA �∨A⊗Ã [( f HL)o] ⊗B̃�B,
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where [ f HL] = HL( f ) denotes the class in HL(A,B) of the morphism (A
f−→ B) and

[( f HL)o] is defined similarly.
Therefore the right-hand side of (7.18) is equal to

(−1)dB
(

�∨B⊗B̃ ch (�B)
)⊗B

(

�∨A⊗Ã [( f HL)o] ⊗B̃�B

)

⊗A
(

ch
(

�∨A
)⊗Ã�A

)

,

which by the associativity of the intersection product, or equivalently by the diagram
calculus of Appendix B (there it is worked out for KK, but it works the same way for
HL), is equal to

(−1)dB
(

�∨A⊗A
(

ch
(

�∨A
)⊗Ã�A

))⊗Ã [( f HL)o]⊗B̃

((

�∨B⊗B̃ ch (�B)
)⊗B�B

)

.

On the other hand,

f ! = (−1)dA �∨A⊗Ã [ f o] ⊗B̃�B.

Therefore the left-hand side of (7.18) is equal to

(−1)dA ch(�∨A)⊗Ã ch[ f o] ⊗B̃ ch(�B).

By the functorial properties of the bivariant Chern character, one has

ch[ f o] = [( f HL)o]. (7.21)

In order to prove the theorem, it therefore suffices to prove that

(

�∨B⊗B̃ ch (�B)
)⊗B�B = (−1)dB ch(�B), (7.22)

and

�∨A⊗A
(

ch
(

�∨A
)⊗Ã�A

) = (−1)dA ch(�∨A). (7.23)

But both of these equalities also follow easily from the diagram calculus:

(�∨B⊗B̃ ch (�B))⊗B�B = (�∨B⊗B�B)⊗B̃ ch (�B)

= (−1)dB 1B̃⊗B̃ ch (�B)

= (−1)dB ch (�B)

(7.24)

and

�∨A⊗A
(

ch
(

�∨A
)⊗Ã�A

) = ch
(

�∨A
)⊗Ã

(

�∨A⊗A�A
)

= ch
(

�∨A
)⊗Ã (−1)dA 1Ã

= (−1)dA ch
(

�∨A
)

.

(7.25)

��
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7.6. Grothendieck-Riemann-Roch formulas: the Weak case. For (A
f−→ B), weakly

K-oriented, the Grothendieck-Riemann-Roch formula repairs the noncommutativity of
the diagram,

K•(B)

ch
��

f! �� K•+d(A)

ch
��

HL•(B)
f HL!

�� HL•+d(A).

(7.26)

The following can be proved in an analogous way to the strong case of the Grothendieck-
Riemann-Roch formula, Theorem 7.10, so we will omit the proof.

Theorem 7.11. If f : A → B is a morphism in Cw, and ξ ∈ K•(B), then one has the
Grothendieck-Riemann-Roch formula,

ch( f!ξ)⊗A Todd(A) = (−1)dB f HL
! (ch(ξ)⊗B Todd(B)) . (7.27)

Remark 7.12. Let A be a unital PD algebra having an even degree fundamental class in
K-theory. Then there is a canonical morphism, λ : C → A, given by C " z �→ z ·1 ∈ A,
where 1 denotes the unit in A. Observe that λ is always weakly K-oriented, since C is a
PD algebra, and the Gysin map λ! : K0(A)→ Z is the analog of the topological index
morphism (for compact manifolds). Theorem 7.11 above applied to this situation says
that,

λ!(ξ) = λHL
! (ch(ξ)⊗A Todd(A)) ,

where λHL
! : HL0(A) → C is the associated Gysin morphism in cyclic theory. In the

case where A = C(X), X a compact spinc manifold, this is just the usual Atiyah-Singer
index theorem. Indeed, λ!(ξ) = index PdX (ξ) = index(D/ ξ ), while the other side of the

index formula is λHL
! (ch(ξ)⊗A Todd(A)) = (Todd(X) ∪ ch(ξ)) [X ]. Note in particu-

lar that when ξ is the canonical rank one free module over A, then we obtain a numerical
invariant which we call the Todd genus of A, a characteristic number of the algebra.

8. Noncommutative D-Brane Charges

In this final section we will come to the main motivation for the present work, the “D-
brane charge formula” for very general noncommutative spacetimes. The crux of the
definition of D-brane charge in Sect. 1 relied upon the introduction of natural pairings
in K-theory and singular cohomology, which in turn arose as a consequence of Poincaré
duality. We are now ready to describe the analogs of the natural pairings in appropriate
noncommutative cases. The key point is that the multiplication map m : A ⊗ A → A
is an algebra homomorphism only in the commutative case and one needs to replace its
role with some new construct. This is where the formalism of KK-theory plays a crucial
role. Mathematically, the problem is concerned with taking the square root of the Todd
class of a noncommutative spacetime, under mild hypotheses. This then enables one to
“correct” the Chern character so that the index pairing in K-theory and the given pairing
in HL-theory agree.
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8.1. Poincaré pairings. In the notation of Sect. 7.1, let A ∈ D and α ∈ Ki (A),
β ∈ K−d−i (Ã). Then there is a pairing

(α, β) �−→ 〈α, β〉 = (α × β)⊗A⊗Ã� ∈ KK0(C,C) = Z. (8.1)

In the case where A = Ã = C(X) is the algebra of continuous functions on a spinc

manifold and the fundamental class � comes from the Dirac operator, this is the same
as the pairing (1.1) introduced earlier, and is the K-theory analogue of the cup-product
pairing (1.5). Indeed, in this case,

〈α, β〉 = PdX (α)⊗C(X) β = D/ α ⊗C(X) β = index(D/ α⊗β).

If A and Ã have finitely generated K-theory and satisfy the Universal Coefficient
Theorem (UCT), then the pairing (8.1) is nondegenerate modulo torsion.

In the case of a strong PD algebra, since we have Ã = Ao, whose K-theory is canon-
ically isomorphic to that of A itself (by Remark 2.19), the pairing (8.1) can be viewed
as a pairing of K•(A) with itself. Then we are led to consider the following additional
condition.

Definition 8.1. A fundamental class� of a strong PD algebra A is said to be symmetric
if σ(�)o = � ∈ Kd(A⊗Ao), where

σ : A⊗Ao −→ Ao ⊗A (8.2)

is the involution x ⊗ yo �→ yo⊗ x and σ also denotes the induced map on K-homology.
In terms of the diagram calculus of Appendix B, � being symmetric implies that

A
x �� A

��
��

��
��

� ��

A
y �� A

��
��

��
��

��◦ C = ◦ C

Ao
yo

�� Ao

��������

��

Ao xo
�� Ao

��������

� ��

for all x and y.

Symmetry is a natural condition to consider, since the intersection pairing on an
even-dimensional manifold is symmetric.

Proposition 8.2. For any strong Poincaré duality algebra A there exists a bilinear pair-
ing on K-theory:

〈−,−〉 : Ki (A)× Kd−i (A) −→ Z

defined by

〈α, β〉 = (α × βo)⊗A⊗Ao � ∈ KK0(C,C) = Z. (8.3)

Moreover, if the fundamental class � is symmetric, then the bilinear pairing (8.3) on
K-theory is symmetric. If A satisfies the UCT in K-theory and has finitely generated
K-theory, then the pairing (8.3) is nondegenerate modulo torsion.
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Proof. Immediate from the remarks above. ��
If A is a strong C-PD algebra, then the local cyclic homology and cohomology of A

are isomorphic. This is equivalent to saying that the canonical pairing

(−,−) : HLi (A)⊗C HLd−i (A) −→ C (8.4)

on cyclic homology, given by

(x, y) = (x × yo)⊗A⊗Ao � (8.5)

for x ∈ HLi (A) and y ∈ HLd−i (A), is non-degenerate, since the pairing between
HL•(A) and HL•(A) is always non-degenerate for any algebra, at least if the universal
coefficient theorem holds. In the commutative case, this pairing coincides with the inter-
section form (1.5).

If A is a strong PD algebra, then one can also define a bilinear form on cyclic homol-
ogy determined by the class ch(�) as

(−,−)h : HLi (A)⊗C HLd−i (A) −→ C (8.6)

by setting

(x, y)h = (x × yo)⊗A⊗Ao ch(�) (8.7)

for x ∈ HLi (A) and y ∈ HLd−i (A).
A fundamental class in HL-theory is said to be symmetric if σ(�)o = � ∈ HLd(A⊗

Ao), where σ is the involution defined earlier in (8.2) and σ also denotes the induced
map on HL-theory.

8.2. D-Brane charge formula for noncommutative spacetimes. If A is a strong PD alge-
bra, then we have defined in the previous subsection two pairings, one given by the
formula (8.7), and the other by the formula (8.5). These two pairings will a priori be
different. Comparing them is the crux of our definition of D-brane charge. Let us begin
with the following observation.

Proposition 8.3. If A is a strong PD algebra, then the Chern character ch : K•(A)→
HL•(A) is an isometry with respect to the inner products given in Eqs. (8.3) and (8.7),

〈p, q〉 = (ch(p), ch(q))h . (8.8)

Proof. Using multiplicativity of the Chern character, one has

(ch(p), ch(q))h = ch
(

(p × qo)⊗A⊗Ao �
)

. (8.9)

Now use the fact that ch is a unital homomorphism (this is essentially the index theo-
rem, i.e., the statement that the index pairing (8.3) coincides with the canonical pairing
between the corresponding Chern characters in local cyclic homology). ��
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From this proposition it follows that the bilinear form (8.7) is the analogue of the twisted
inner product defined in (1.11). Finding the appropriate modified Chern character which
maps (8.5) onto (8.7) will thereby yield the formula for D-brane charge that we are
looking for.

The technical problem that we are faced with is to take the square root of the Todd class
Todd(A) in HL(A,A). To do this, we will assume that the Universal Coefficient Theo-
rem holds for the noncommutative spacetime A. Then HL(A,A) = End(HL•(A)). In
addition, we will assume that dimC HL•(A) is finite, say equal to n. Then since Todd(A)
is in GL(HL•(A)) ∼= GLn(C) and every matrix in GLn(C) has a square root (use the
Jordan canonical form to prove this!), we can take a square root,

√
Todd(A). Using the

UCT,
√

Todd(A) can again be considered as an element in HL(A,A). The square root
is not unique, but we fix a choice. In some cases, the Todd class may be self-adjoint and
positive with respect to a suitable inner product on HL•(A), which might help to pin
down a more canonical choice. In any event, we have the following theorem.

Theorem 8.4 (Isometric pairing formula). Suppose that the noncommutative space-
time A satisfies the UCT for local cyclic homology, and that HL•(A) is a finite dimen-
sional vector space. If A has symmetric (even-dimensional) fundamental classes both
in K-theory and in cyclic theory, then the modified Chern character

ch⊗A

√

Todd(A) : K•(A)→ HL•(A) (8.10)

is an isometry with respect to the inner products (8.1) and (8.5),

〈p, q〉 =
(

ch(p)⊗A

√

Todd(A), ch(q)⊗A

√

Todd(A)
)

. (8.11)

Proof. To prove the theorem, we use Proposition 8.3 and observe that it’s enough to
show that the right-hand sides of Eqs. (8.11) and (8.9) agree. For this we use the dia-
gram calculus of Appendix B,

A
Todd �� A














� ��

A

√
Todd�� A

√
Todd�� A














��◦ C = ◦ C

Ao

�������

��

Ao
1Ao �� Ao

�������

� ��

A

√
Todd�� A

1A �� A














��

A

√
Todd�� A














��= ◦ C = ◦ C

Ao
√

Todd
o

�� Ao

�������

� ��

Ao
√

Todd
o

�� Ao

�������

� ��

.
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Note that the symmetry of � is used here in a crucial way. This computation shows that

(ch(p)⊗A

√
Todd(A), ch(p)⊗A

√
Todd(A))

= (ch(p)⊗ ch(q))⊗A⊗Ao (Todd(A)⊗A�).

Since, by definition, Todd(A) = �∨ ⊗Ao ch(�), a similar computation shows that
Todd(A)⊗A� = (�∨ ⊗A�)⊗Ao ch(�) = ch(�) and so

(ch(p)⊗A

√
Todd(A), ch(p)⊗A

√
Todd(A)) = (ch(p)⊗ ch(q))⊗A⊗Ao ch(�)

= ch((p ⊗ q)⊗A⊗Ao �)

= ch((p, q)).

Finally, the Chern character Z = KK(C,C)→ HL(C,C) = C is injective, which gives
the desired result. ��
Corollary 8.5 (D-brane charge formula for noncommutative spacetimes). Suppose
that the noncommutative spacetime A satisfies the hypotheses of Theorem 8.4 above.
Then there is a noncommutative analogue of the well-known formula (1.1) in [63] for the
charge associated to a D-brane B in a noncommutative spacetime A with given weakly
K-oriented morphism f : A→ B and Chan-Paton bundle ξ ∈ K•(B),

Qξ = ch( f!(ξ))⊗A

√

Todd(A). (8.12)

This is still not quite the most general situation. Corollary 8.5 deals with charges
coming from a (weakly) K-oriented morphism f : A → B, when a Chan-Paton bun-
dle, i.e., a K-theory class, is given on B. This is the obvious translation of the situation
coming from a flat D-brane in the commutative case, but one can imagine more general
noncommutative D-branes, where the algebra B is missing, i.e., one simply has a Fred-
holm module for A representing a class in K•(A). (In Corollary 8.5, the associated class
in K•(A) is PdA( f!(ξ)) = f ∗(PdB(ξ)).) The final version of the charge formula is the
following:

Proposition 8.6 (D-brane charge formula, dual version). Suppose that the noncom-
mutative spacetime A satisfies the hypotheses of Theorem 8.4 above. Then there is
a noncommutative analogue of formula (1.30) of Proposition 1.8 above for the dual
charge associated to a D-brane in the noncommutative spacetime A represented by a
class µ ∈ K•(A):

Qµ =
√

Todd(A)
−1 ⊗A ch(µ). (8.13)

This formula satisfies the isometry rule:

�∨ ⊗A⊗Ao
(

Qµ ×Qo
ν

) = �∨ ⊗A⊗Ao (µ× νo). (8.14)

Proof. We need to check (8.14). By multiplicativity of the Chern character, the right-
hand side is equal to ch(�∨)⊗A⊗Ao (ch(µ)× ch(ν)o). The left-hand side is

�∨ ⊗A⊗Ao
(

Qµ ×Qo
ν

)

= �∨ ⊗A⊗Ao

(
√

Todd(A)
−1 ×

√

Todd(A)o
−1)⊗A⊗Ao

(

ch(µ)× ch(ν)o
)

= (by symmetry of �∨ as in the proof of Theorem 8.4)

�∨ ⊗A⊗Ao

(

Todd(A)−1 × 1Ao

)

⊗A⊗Ao
(

ch(µ)× ch(ν)o
)

.
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But ch(�∨) = �∨ ⊗A Todd(A)−1, since (by the diagram calculus)

�∨⊗A Todd(A)−1=�∨⊗A
(

ch(�∨)⊗Ao �
)=ch(�∨)⊗Ao

(

�∨ ⊗A�
)=ch(�∨).

��
Remark 8.7. Although our noncommutative formulas for D-brane charges have been
derived under the assumption that A is a strong PD algebra, they hold more generally
for any algebra A belonging to the class D introduced in Sect. 7.1. This allows us to write
down charge formulas in a variety of very general situations. For instance, one can in this
way obtain a bilinear pairing on twisted K-theory, K•(X, H)× K•(X,−H)→ Z, and
hence an isometric pairing between twisted K-theory and twisted cohomology, recover-
ing the charge formula (1.13) of [8] for twisted D-branes.

Appendix A. The Kasparov Product

In this appendix, we will summarize the main properties of the intersection product. If
A is a separable algebra then the exterior (or cup) product exists and defines a bilinear
pairing, [53, Thm 2.11]:

KKi (A,B1)⊗B1 KK j (B1,B2)→ KKi+ j (A,B2). (A.1)

In [53, Def. 2.12], Kasparov also defines the intersection product (which he calls the
cap-cup product)

KKi (A1,B1 ⊗D)⊗D KK j (D⊗A2,B2)→ KKi+ j (A1 ⊗A2,B1 ⊗B2)

by the formula

x1 ⊗D x2 = (x1 ⊗ 1A2)⊗B1⊗D⊗A2 (x2 ⊗ 1B1).

The exterior (or cup) product is obtained when D = C. This exterior product has the
following properties [53, Thm. 2.14].

Theorem A.1. Let A1 and A2 be separable algebras. Then the intersection (cup-cap)
product exists and is:

(1) bilinear;
(2) contravariant in A1 and A2;
(3) covariant in B1 and B2;
(4) functorial in D: for any morphism f : D1 → C one has

f (x1)⊗D2 x2 = x1 ⊗D1 f (x2) ;
(5) associative: for any x1 ∈ KKi (A1,B1 ⊗D1), x2 ∈ KK j (D1 ⊗A2,B2 ⊗D2) and

x3 ∈ KKk(D2 ⊗ A3,B3), where A1, A2, A3 and D1 are assumed separable, the
following formula holds:

(x1 ⊗D1 x2)⊗D2 x3 = x1 ⊗D1 (x2 ⊗D2 x3);
(6) For any x1 ∈ KKi (A1,B1 ⊗ D1 ⊗ D), x2 ∈ KK j (D ⊗ D2 ⊗ A2,B2), where

A1,A2,D2 are separable and D1 is σ -unital, the following formula holds:

x1 ⊗D x2 = (x1 ⊗ 1D2)⊗D1⊗D⊗D2 (1D1 ⊗ x2);
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B C

◦ ◦

A D

Fig. B.1. Diagram representing an element of KK(B⊗A,C⊗D)

(7) For x1 ∈ KKi (A1,B1⊗D), x2 ∈ KK j (D⊗A2,B2), for separable algebras A1,A2
and D, the following formula holds:

(x1 ⊗D x2)⊗C 1D1 = (x1 ⊗ 1D1)⊗D⊗D1 (x2 ⊗ 1D1);
(8) the cup product is commutative (over C):

x1 ⊗C x2 = x2 ⊗C x1;
and

(9) the element 1C ∈ KK0(C,C) is a unit for this product:

1C ⊗C x = x ⊗C 1C = x

for all x ∈ KKi (A,B), where A is assumed to be separable.

Appendix B. A Diagram Calculus for the Kasparov Product

Keeping track of Kasparov products and the associativity formulae in the general case
described above in Appendix A can be quite complicated. In this appendix we describe
a pictorial calculus for keeping track of these things, which one of us (J.R.) has often
found useful as a guide to calculations. In this appendix we will not write degree labels
explicitly on KK-groups for the sake of notational convenience — in the most important
case, all elements lie in KK0 anyway.

The idea is to represent an element of a KK group by a diagram (which we read from
left to right), with one “input” for each tensor factor in the first argument of KK, and
one “output” for each tensor factor in the second argument of KK. For convenience, we
can also add arrowheads pointing toward the outputs. Thus, for example, an element of
KK(B⊗A,C⊗D)would be represented by a diagram like the one in Fig. B.1. Note that
an element of KK(A⊗B,C⊗D)would be represented by an almost identical diagram,
having the two input terminals switched. The basic rule is that permutation of the input
or output terminals may involve at most the switch of a sign.

The Kasparov product corresponds to concatenation of diagrams, except that one is
only allowed to attach an input to a matching output. For example, in Fig. B.1, there
are input terminals corresponding to both B and A, so one can take the product over a
Kasparov class having a B or A as an output terminal. For example, a class in KK(E,A)
would be represented by a diagram like Fig. B.2, and we can concatenate the diagrams
as shown in Fig. B.3 to obtain the product (over A) in KK(B ⊗ E,C ⊗ D) shown in
Fig. B.4.
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E A

Fig. B.2. Diagram representing an element of KK(E,A)

B C

◦ ◦

E A D

Fig. B.3. Diagram representing the intersection product,⊗A : KK(E,A)⊗KK(B⊗A,C⊗D)→ KK(B⊗
E,C⊗D)

B C

◦ ◦

E D

Fig. B.4. Diagram representing an element of KK(B⊗E,C⊗D)

E
z

B

x◦ C

D
y

A

Fig. B.5. Diagram showing that z ⊗B (y ⊗A x) = ±y ⊗A (z ⊗B x)

The associativity of the Kasparov product corresponds to the principle that if one
has multiple concatenations to do, the concatenations can be done in any order, except
perhaps for keeping track of signs. For example, if

x ∈ KK(B⊗A,C), y ∈ KK(D,A), and z ∈ KK(E,B),

then the associativity of the product gives

z ⊗B (y ⊗A x) = ±y ⊗A (z ⊗B x),

even though when written this way, it seems to be somewhat counter-intuitive. But one
can “prove” this graphically with the picture in Fig. B.5.

Of course, a picture by itself is not a rigorous proof, but it can be made into one as
follows. Here× is used to denote the “exterior” Kasparov product, and for simplicity we
assume that all elements lie in KK0, so that we don’t have to worry about sign changes
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(which all have to do with conventions about orientation of the Bott element). On the
one hand, we have

z ⊗B (y ⊗A x) := (z × 1D)⊗B⊗D (y ⊗A x)

= (z × 1D)⊗B⊗D
(

(1B× y)⊗B⊗A x
)

= [

(z × 1D)⊗B⊗D (1B× y)
]⊗B⊗A x .

(B.1)

But on the other hand we have

y ⊗A (z ⊗B x) := (1E× y)⊗E⊗A (z ⊗B x)

= (1E× y)⊗E⊗A
(

(z × 1A)⊗B⊗A x
)

= [

(1E× y)⊗E⊗A (z × 1A)
]⊗B⊗A x .

(B.2)

So to prove the associativity formula, it suffices to observe that

(z × 1D)⊗B⊗D (1B× y) = z × y = (1E× y)⊗E⊗A (z × 1A). (B.3)

We should mention incidentally that essentially everything we said about the Kaspa-
rov product applies equally well to products in bivariant cyclic homology, whose formal
properties are exactly the same.
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47. Jaffe, A., Leśniewski, A., Osterwalder, K.: Quantum K-Theory: The Chern Character. Commun. Math.
Phys. 118, 1–14 (1988)

48. Jakob, M.: A Bordism-Type Description of Homology. Manuscripta Math. 96, 67–80 (1998)
49. Jolissaint, P.: Rapidly decreasing functions in reduced C∗-algebras of groups. Trans. Amer. Math.

Soc. 317(1), 167–196 (1990)
50. Kaminker, J., Putnam, I.: K-theoretic duality for shifts of finite type. Commun. Math. Phys. 187,

509–522 (1997)
51. Kasparov, G.G.: The Operator K-Functor and Extensions of C∗-Algebras. Izv. Akad. Nauk SSSR Ser.

Mat. 44(3), 571–636, 719, (1980); Math. USSR Izv. 16, 513–572 (1981)
52. Kasparov, G.G.: K -theory, group C∗-algebras and higher signatures. Conspectus (1980). In: Ferry, S.,

Ranicki, A., Rosenberg, J. (eds.) Novikov conjectures, index theorems and rigidity, Vol. 1, Lond. Math.
Soc. Lecture Note Series 226. Cambridge: Cambridge University Press, 1995, pp. 101–146

53. Kasparov, G.G.: Equivariant K K -theory and the Novikov conjecture. Invent. Math. 91, 147–201 (1988)
54. Lance, E.C.: Hilbert C∗-modules, A toolkit for operator algebraists. Cambridge: Cambridge University

Press, 1995
55. Lawson, H.B., Jr., Michelsohn, M.-L.: Spin Geometry. Princeton: Princeton University Press, 1989
56. Li, H.: Flabby Strict Deformation Quantizations and K-Groups. K-Theory 32, 323–329 (2004)
57. Maldacena, J.M., Moore, G.W., Seiberg, N.: D-Brane Instantons and K-Theory Charges.

JHEP 11, 062 (2001)
58. Mathai, V.: Heat Kernels and the Range of the Trace on Completions of Twisted Group Algebras.

Contemp. Math. 398, 321–346 (2006)
59. Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology.

Commun. Math. Phys. 253, 705–721 (2005)
60. Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology, II: the

high-dimensional case and the T-duality group. Adv. Theor. Math. Phys. 10(1), 123–158 (2006)
61. Mathai, V., Melrose, R.B., Singer, I.M.: The Index of Projective Families of Elliptic Operators. Geom.

Topol. 9, 341–373 (2005)
62. Meyer, R.: Analytic cohomology. Ph.D. Thesis, Univ. of Münster, 1999, available at http://arxiv.org/abs/

math/9906205
63. Minasian, R., Moore, G.W.: K-theory and Ramond-Ramond charge. JHEP 11, 002 (1997)
64. Moore, G.W., Witten, E.: Self-Duality, Ramond-Ramond Fields, and K-Theory. JHEP 05, 032 (2000)
65. Moscovici, H.: Eigenvalue inequalities and Poincaré duality in noncommutative geometry. Commun.

Math. Phys. 184(3), 619–628 (1997)
66. Olsen, K., Szabo, R.J.: Constructing D-Branes from K -Theory. Adv. Theor. Math. Phys. 3,

889–1025 (1999)
67. Parker, E.M.: Graded continuous trace C∗-algebras and duality. In: Operator Algebras and Topology

(Craiova, 1989), Pitman Res. Notes Math. Ser., Vol. 270, Harlow, UK: Longman Sci. Tech., 1992,
pp. 130–145

68. Pimsner, M., Voiculescu, D.: Exact sequences for K -groups and Ext-groups of certain cross-product
C∗-algebras. J. Operator Theory 4(1), 93–118 (1980)

69. Plymen, R.J.: Strong Morita Equivalence, Spinors and Symplectic Spinors. J. Operator Theory 16,
305–324 (1986)

70. Ponge, R.: A New Short Proof of the Local Index Formula and Some of its Applications. Commun. Math.
Phys. 241, 215–234 (2003)

71. Puschnigg, M.: Explicit product structures in cyclic homology theories. K -Theory 15(4), 323–345 (1998)
72. Puschnigg, M.: Excision in cyclic homology theories. Invent. Math. 143(2), 249–323 (2001)
73. Puschnigg, M.: Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. Math. 8,

143–245 (2003)
74. Quillen, D.G.: Algebra Cochains and Cyclic Cohomology. Publ. Math. IHES 68, 139–174 (1989)
75. Reis, R.M.G., Szabo, R.J.: Geometric K-Homology of Flat D-Branes. Commun. Math. Phys. 266,

71–122 (2006)
76. Rieffel, M.: Induced representations of C∗-algebras. Adv. Math. 13, 176–257 (1974)
77. Rieffel, M.: C∗-algebras associated with irrational rotations. Pacific J. Math. 93(2), 415–429 (1981)
78. Rosenberg, J.: Continuous Trace Algebras from the Bundle Theoretic Point of View. J. Austral. Math.

Soc. Ser. A 47, 368–381 (1989)
79. Rosenberg, J.: Behavior of K -theory under quantization. In: Operator algebras and quantum field theory

(Rome, 1996), Cambridge, MA: Internat. Press, 1997, pp. 404–415
80. Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov’s

generalized K -functor. Duke Math. J. 55(2), 431–474 (1987)
81. Shelton, J., Taylor, W., Wecht, B.: Nongeometric Flux Compactifications. JHEP 10, 085 (2005)

http://arxiv.org/abs/hep-th/0604178
http://arxiv.org/abs/hep-th/0604178
http://arxiv.org/abs/math/9906205
http://arxiv.org/abs/math/9906205


706 J. Brodzki, V. Mathai, J. Rosenberg, R. J. Szabo

82. Shirbisheh, V.: K -theory tools for local and asymptotic cyclic cohomology. Proc. Amer. Math.
Soc. 133(4), 1185–1195 (2005)

83. Skandalis, G.: Une notion de nucléarité en K -théorie (d’après J. Cuntz). K -Theory 1(6), 549–573 (1988)
84. Szabo, R.J.: D-Branes, Tachyons and K-Homology. Mod. Phys. Lett. A17, 2297–2315 (2002)
85. Tu, J-L.: The Baum-Connes conjecture for groupoids. In: C∗-algebras (Münster, 1999). Berlin: Springer-

Verlag, 2000, pp. 227–242
86. Witten, E.: Overview of K -theory applied to strings. Int. J. Mod. Phys. A16, 693–706 (2001); ——,

D-branes and K -theory. JHEP 12, 019 (1998)

Communicated by A. Connes


	Introduction
	D-Branes and Ramond-Ramond Charges
	Flat D-branes
	Ramond-Ramond fields
	Noncommutative D-branes
	Twisted D-branes

	Poincaré Duality 
	Exterior products in K-theory
	KK-theory
	Strong Poincaré duality
	Duality groups
	Spectral triples
	Twisted group algebra completions of surface groups
	Other notions of Poincaré duality

	KK-Equivalence
	Strong KK-equivalence
	Other notions of KK-equivalence
	Universal coefficient theorem
	Deformations
	Homotopy equivalence

	Cyclic Theory
	Formal properties of cyclic homology theories
	Local cyclic theory

	Duality in Bivariant Cyclic Cohomology
	Poincaré duality
	HL-Equivalence
	Spectral triples

	T-Duality
	Duality for crossed products
	T-duality and `39`42`"613A``45`47`"603AKK-equivalence
	T-duality and HL-equivalence

	Todd Classes and Gysin Maps
	The Todd class
	Gysin homomorphisms
	Strongly K-oriented maps
	Weakly K-oriented maps
	Grothendieck-Riemann-Roch formulas: the Strong case
	Grothendieck-Riemann-Roch formulas: the Weak case

	Noncommutative D-Brane Charges
	Poincaré pairings
	D-Brane charge formula for noncommutative spacetimes

	Appendix A. The Kasparov Product
	Appendix B. A Diagram Calculus for the Kasparov Product
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


