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Optimal Design of Experiments for MNAR data 

by Adetola Adedamola Adediran 

The presence of missing data leads to biases in data analyses. To overcome these biases, 
it is crucial to understand the type of missing data that is present in the data. Amongst 
the three types of missing data (known as missing data mechanisms) that will be for-
mally introduced in this thesis, the Missing Not At Random (MNAR) mechanism is 
the most complex. MNAR poses the most diffculties as it is an untestable assumption 
based on the current incomplete data. A recovery of some of the missing data is re-
quired to test its presence. In this research, we developed two statistical tests for testing 
the presence of MNAR in datasets and provide the theoretical framework of the tests. 
In the frst test, the recovery design consists of a random sampling of the responses 
whose covariates lie within a particular region while the second test is based on an 
assignment of probabilities. We introduced techniques from Design of Experiments to 
improve the properties of these tests. The developed tests are compared with a random 
follow-up of missing responses, which will act as our benchmark design throughout. 
We formulate an easy and simple conjecture that uses the empirical density of the co-
variates to obtain the recovery region. Through simulations, the performance of the 
tests is evaluated. 

Keywords: Missing data; Missing not at random; Selection model; Recovery region; 
Conjecture. 
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Chapter 1 

Introduction 

The importance of data for decision-making in today’s world cannot be overempha-
sized. The majority of scientifc and industrial processes involve data collection, anal-
yses and interpretation of the collected data (Carpenter and Kenward, 2012). Data can 
occur in various forms, such as the overall population of a country, the number of il-
legal immigrants in a country, the maternal mortality rate in a community in a given 
year, the number of live births nationwide, the recovery rate of patients from a disease, 
and the effectiveness of a vaccine, among other illustrations. Data collection is essen-
tial in decision-making as conclusions can only be drawn from available data. Data can 
be collected or gathered from two sources: a primary source and a secondary source. 
The primary source of data involves the researcher or interviewer collecting data from 
the source i.e. originally getting the required data from respondents (Ajayi, 2017). Sec-
ondary data involves collecting previously gathered data (Ajayi, 2017). In the process 
of collecting the required data, there are chances that some of the required information 
would not be available or missing. This is known as missing data. 

Missing data are defned as unavailable information that is required and useful for 
analysis if they were to be available (Little and Rubin, 2019). Missing data poses a prob-
lem in many research areas that involve data collection, either from primary source or 
secondary sources. It is often unlikely not to have missing data when dealing with data 
collection and its presence can introduce bias in the inferences drawn (Carpenter and 
Kenward, 2007). Missing data is referred to as non-response in surveys, missing or loss 
of results in experiments and attrition in longitudinal studies (Little and Rubin, 2002). 
Missing data occurs in surveys as non-response when respondents refuse to provide 
the information required by the interviewer or researcher, or when the respondent can-
not be reached to get the required information (Cobben, 2009). Some of this information 
could be: investment, income, participants in a programme not revealing their age or 
pregnant women refusing to attend antenatal on some days among others. In surveys, 
there are two types of non-response: unit non-response and item non-response. Unit 
non-response occurs when the required information about a respondent is unavailable 
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(impossible to contact the respondent or the respondent refuses to provide all required 
information) while item non-response occurs when a respondent provides some, but 
not all, of the required information (Yan and Curtin, 2010). Asking questions about 
a sensitive attribute can lead to non-response or false responses. As an example, if 
asked the question “Are you a cultist?”, many individuals would not provide a truth-
ful answer due to many reasons such as fear of being exposed to the law or fear of 
stigmatization. This situation would most likely lead to the presence of evasive an-
swers. When some responses are missing, this automatically reduces the sample size 
and hence, the accuracy of estimates is reduced. Warner (1965) developed the ran-
domized response model used in estimating the proportion of people that belong to 
a sensitive attribute. Non-response in surveys has gained recognition and a lot of re-
searchers have further expanded the work of Warner by reducing the non-response 
errors in surveys, see (Greenberg et al., 1969; Kim and Warde, 2004; Mangat, 1994; Ade-
bola and Adepetun, 2011; Adebola et al., 2017; Adediran et al., 2020; Ewemooje et al., 
2018) amongst others. 

Aside from surveys, other processes that involve the use of data can also experience 
missing data. In agriculture, an experimenter could lose data on some units if they for-
get to record the results. Dropouts in clinical trials are also examples of how missing 
data can be present (Little and Rubin, 2019). Incorrect analysis of missing data can lead 
to bias and a loss in effciency. It is not always possible to have all the required infor-
mation and therefore analysing missing data correctly is important. Since the 1950s, a 
lot of useful statistical literature on missing data has been in existence because of its ef-
fect on analysis and inference (Carpenter and Kenward, 2012). Little and Rubin (2002) 
discussed diverse methods for handling missing data problems. The type of missing 
data problem present would inform which of the methods is appropriate to be used. To 
correctly analyse and make correct inferences in the presence of missing data, a classif-
cation of these problems known as Missing Data Mechanisms (MDMs) was introduced 
by Rubin (1976). The choice of method to analyse a particular missing data problem 
depends heavily on the type of missing mechanism present, hence, the importance of 
the classifcation (Little and Rubin, 2002). These mechanisms are Missing Completely 
at Random (MCAR), Missing at Random (MAR) and Missing Not at Random (MNAR) 
and will be discussed in detail in Section 2.1. 

MCAR is the simplest among these mechanisms and can be easily analysed using stan-
dard statistical methods. In most cases, the mechanism is frequently assumed to be 
MAR; this assumption is frequently made out of necessity for simpler analysis rather 
than with a clear conviction that it is true. When the original incomplete sample is 
MNAR, the analysis results in biases in the study and is an untestable assumption (Lit-
tle and Rubin, 2002). The complication of MNAR is that (without strong assumptions) 
it is an untestable assumption based on the original incomplete dataset. This is because 
the probability of missingness depends on the missing observations. Many researchers 
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have been able to work on MCAR and MAR, since these two MDMs are easier to detect 
and analyse. The complexity of MNAR and the need to develop more comprehensive 
approaches to address the problems it poses motivated this research. If some of the 
missing values can be recovered, then the presence of MNAR can be tested. Recovery 
could be in the form of a follow-up through surveys or telephone calls to patients to get 
the missing information. The majority of methods for handling missing data deal with 
this problem post hoc; this is usually due to their inability to be implemented or lack of 
planning. It is a recommended practice to account for missing values before data col-
lection, according to a well-conducted scientifc study and common sense in general, 
this allows the study design to be effectively planned appropriately. (Imhof et al., 2002; 
Lee et al., 2018a,b, 2019) are some of the studies that developed theories to construct 
optimal study designs that take into consideration the possibility of non-response and 
the possible benefts. 

In this research, we investigate how the recovery of missing observations can facilitate 
tests for MNAR. Avoiding unverifable assumptions and planning a follow-up sam-
ple to recover some of the missing values is the most effective way to learn about the 
existence of MNAR. Follow-up sampling, also known as double sampling in survey 
sampling (Elliott et al., 2000; Guan et al., 2018; Miao et al., 2021; Alho, 1990; Drew and 
Fuller, 1980; Qin and Follmann, 2014) or repeated attempt design in design of exper-
iments (Jackson et al., 2010; Aronow et al., 2015; Daniels et al., 2015; Coppock et al., 
2017), has been identifed as a useful method to address missing data problems. In this 
work, we develop a framework that involves constructing follow-up sample designs 
to optimise the ability of a statistical test to detect the presence or absence of MNAR. 
The follow-up sample is designed such that it signifcantly improves the power of the 
test and will be compared to a random recovery of missing values which will often 
form our benchmark design. Additionally, we explore the effciency and robustness of 
the designs through simulation studies. Finally, we formulate a conjecture design that 
is less computationally expensive, easier to understand and robust to fnding effcient 
designs. 

1.1 Aim and objectives 

This research is aimed at developing an effcient framework that detects MNAR data. 

The objectives of this research are to: 

i develop a statistical test for MNAR with well understood theoretical properties; 

ii incorporate Design of Experiments (DOE) techniques to improve the test’s proper-
ties; 
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iii assess the performance of the optimised designs; and 

iv assess the robustness of the designs. 

1.2 Report Structure 

The structure of this report is as follows. In Chapter 2, we present a literature review 
on missing data, missing data mechanisms, existing ways of handling missing data 
problems, follow-up sampling, experimental design and optimal designs. In Chapter 
3, we provide a simulation study on some existing ways of handling the problem of 
missing data and highlight that determining the correct mechanism is crucial for cor-
rect inference, thus highlighting the importance of a test. In Chapter 4, we provide our 
novel research on dealing with MNAR, describing the tests for the presence of MAR 
vs MNAR and discuss a Type I error problem encountered when using an existing test 
present in the literature. In Chapter 5, we develop a consistent test for MNAR and de-
velop an algorithm for improving its properties. Here, we also assess the robustness of 
this algorithm. In Chapter 6, we propose a new testing and design framework based on 
subsampling probabilities and assess the robustness of the designs. In Chapter 7, we 
consider higher-dimensional problems using conjectures formulated in Chapter 6. In 
Chapter 8, we demonstrate how incorporating a test for MNAR can improve a particu-
lar estimation problem, thus further motivating our research. In Chapter 9, we provide 
a summary of our fndings and future research. The main theoretical advancements in 
the area of MNAR are shown in Chapters 5 and 6. 



5 

Chapter 2 

Literature Review 

One of the biggest challenges in data mining and data analysis projects is dealing with 
the presence of missing data (Silva and Zárate, 2014). This chapter can be divided 
into two parts. Part one provides a literature review of the feld of missing data and 
the most popular approaches to tackle missing data issues; an area of research that 
has gained signifcant attention since the 1950s (Carpenter and Kenward, 2012; Little 
and Rubin, 2019; Alho, 1990; Rubin, 1976). Part two provides a literature review of 
experimental design. The two areas of research are inherently connected as will become 
clear throughout the chapter. 

This chapter acknowledges and provides an investigation on some research connected 
to missing data and the optimal design of experiments. 

2.1 Missing Data Mechanisms 

Rubin (1976) categorised missing data into three mechanisms, which are based on the 
relationship between the missing and observed values. Understanding the concept of 
missing data mechanisms helps to identify the right analysis to be used (Fielding et al., 
2009). Using the notation and defnition in Little and Rubin (2019), let X = (xij) be 
an n × p matrix with no observation missing, such that the ith row xi = (xi1, . . . , xip), 
where xij represents the value of Xj for unit i. Let M = (mij) represent the missing 
indicator matrix such that xij may be observed or missing and denote the rows of M by 
mi = (mi1, . . . , mip). The missingness pattern is defned as: 

mij = 

⎧⎨⎩1 if xij is missing 

0 if xij is not missing (observed). 

For simplicity, the rows (xi, mi) are assumed to be independently and identically dis-
tributed over i. How the conditional distribution of M given X, f (M|X, θ), where θ is 
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the unknown parameter of this distribution, can be expressed determines the classif-
cation of the MDMs. In classifying the MDMs in the following subsections, let Xmiss be 
the missing elements of X and Xobs be the observed elements of X. 

2.1.1 Missing Completely at Random (MCAR) 

In the mechanism MCAR, the probability of a missing value is unrelated to the ob-
served and unobserved data (Carpenter and Kenward, 2012). Under such a mecha-
nism, the missing cases are a random subset of the full data set, i.e. there is no difference 
in the distribution of the complete cases and the missing cases in MCAR (Bhaskaran 
and Smeeth, 2014). A lost questionnaire in a survey and a damaged experimental unit 
in a feld among others are examples of MCAR cases. According to (Little and Rubin, 
2002), the mathematical representation of MCAR is: 

f (M|X, θ) = f (M|θ) for all X, θ. 

Determining the validity of the MCAR assumption can be obtained by comparing the 
distribution of the complete cases and missing cases on the observed values (Little and 
Schenker, 1995). A single test statistic for testing MCAR was developed by Little (1988). 
This method is widely acceptable in testing the presence of MCAR missingness. Little 
(1988) stated that when data is multivariate normal and the asymptotic null distribu-
tion is provided, the small-sample null distribution can be calculated. For bivariate 
data, the test simplifes to a conventional t-test (Little, 1988). The MCAR mechanism 
has the effect of allowing the missing mechanism to be disregarded and making the 
assumption that conclusions might be drawn without increasing the likelihood of com-
plicating the missing data (Heitjan and Basu, 1996). 

2.1.2 Missing at Random (MAR) 

For the mechanism MAR, the probability of missingness is dependent on the observed 
values. This mechanism, like MCAR, assumes that missingness can be ignored (Rubin, 
1973). Suppose in the random selection of a population where all elements have an 
equal chance of being selected in the sample, a survey on drug addiction is taken. If the 
gender is fully observed and the males are less likely to give the required information 
on drug addiction, then the missingness is MAR because the missingness depends on 
their gender and not on the severity of the addiction. This can be written mathemati-
cally as: 

f (M|X, θ) = f (M|Xobs, θ) for all Xmiss, θ. 
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MAR has been studied widely and several standard methods have been proposed to 
tackle this problem. Kenward and Molenberghs (1998) explained the frequentist ap-
proach to drawing conclusions based on likelihood under MAR, highlighting the ele-
ments of inference that necessitate taking the MDM into account. Lu (2004) extensively 
explained MAR using two defnitions stating that ”MAR is necessary and suffcient for 
Likelihood Ignorability (LIG)”. 

2.1.3 Missing not at Random (MNAR) 

Under an MNAR mechanism, missingness is dependent on the missing values Xmiss 

of X. Suppose in the survey of drug addiction, missingness occurs in those that are 
severely addicted, then we have missing not at random. This can be written mathe-
matically as: 

f (M|X, θ) = f (M|Xmiss, Xobs, θ) for all Xmiss, θ. 

This mechanism is non-ignorable and must be correctly diagnosed before analysis. 
Analysing MNAR data is more complicated than other MDMs, as some important in-
formation is lost (unobserved) and as a result, some additional assumptions need to be 
tested before analysis. Hence, the MAR assumption is a common starting point for the 
analysis of clinical trials (Carpenter and Kenward, 2007). Without following up with 
the non-responders, it is impossible to determine the true mechanism for MNAR cases 
(Little and Rubin, 2002). Due to the untestable and restrictive assumptions of handling 
MNAR data, sensitivity analysis is often necessary (Briggs et al., 2003). 

McPherson et al. (2015) compared three missing data strategies (MAR model, MNAR 
model and Wu–Carroll MNAR) in a clinical trial. It was concluded that an examination 
to see the connection of assumptions with the models and sensitivity analyses needs 
to be done in clinical trial research. In an attempt to reduce the bias of a regression 
analysis when data is MNAR, Tchetgen Tchetgen and Wirth (2017) proposed a simple 
CCA (see Section 2.2) with modifcation to the regression model of interest by includ-
ing the instrumental variable design to account for selection bias meticulously. The 
approach was developed for the identity, log and logit link functions. Leurent et al. 
(2018) provided a tutorial for sensitivity analysis for MNAR using the pattern mixture 
framework with multiple imputation. A distinctive selection model-based method for 
analysing incomplete binary multilevel data with MNAR assumption was introduced 
by Hammon (2020). The proposed method performed better than existing methods 
specifcally in terms of coverage and bias of the estimates of the parameters of interest. 
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2.2 Techniques For Handling Missing Data 

The purpose of this subsection is to provide a favour of the existing techniques in the 
literature to handle missing data when performing inference. We will not discuss each 
technique in great detail, but provide a high-level overview with suitable references. 

Over the years, a lot of methods have been developed for handling missingness. Some 
of these are: 

• Complete Case Analysis (CCA): this is also known as listwise deletion. In CCA, 
the missing cases are not taken into consideration and only the complete observed 
cases are analysed. This method leaves out the missing cases by analysing all the 
cases without missing values. Due to the simplicity of this method, it can be 
applied with standard statistical methods without any adjustments, which is an 
advantage (Little and Rubin, 2002). When this method is used, it is expected that 
the result should be similar to that of the complete data set i.e. it assumes that the 
complete cases represent a random subsample of the full data set (Hedges and 
Cooper, 2009). CCA performs satisfactorily for MCAR, however, for MAR and 
MNAR missingness, it may lead to bias because the observed cases are not rep-
resentative of the full dataset (Hedges and Cooper, 2009). Its major disadvantage 
is bias and loss of precision as some of the data which are valid are discarded 
(Kang, 2013). 

• Available case analysis: also known as pairwise deletion reduces the number of 
deleted cases by using all the available cases rather than discarding all cases with 
missing values, which makes it a better option than CCA (Baraldi and Enders, 
2010). This method’s limitation is that distinct sample subsets are obtained for 
various variables in the dataset, and it can only function satisfactorily for MCAR 
while bias may result when data are MAR and MNAR (Hedges and Cooper, 
2009). 

. 

2.2.1 Single Imputation Methods 

Single imputation methods involve the replacement of a missing value with an im-
puted value and analysing the data set as a complete data set. Rather than ignoring the 
missing values like CCA and available case analysis do, a replacement is done by im-
putation in single imputation methods. There are different types of single imputation 
methods, some of which are discussed as follows. 
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• The Unconditional Mean Imputation (UMI): this is the simplest imputation 
method. The means of the observed values are used in replacing the missing 
values (Little and Rubin, 2019). For example, if there are 300 observed values 
and 50 missing values, the mean of the 300 observed values is used to replace 
the 50 missing values. The mean of the variables are preserved in this method, 
however, the data set has less variability (Briggs et al., 2003). This method of im-
putation generally results in biased regression coeffcients and invalid inferences 
(Enders, 2022). This also occurs in MCAR, which is the simplest missing mecha-
nism because it imputes the same value for all missing values at the centre of the 
distribution (Enders, 2022). 

• Conditional Mean Imputation (CMI): this imputation method is an improvement 
on the unconditional mean imputation. This method is conditional as it replaces 
the missing values with the conditional means given observed values (Briggs 
et al., 2003). A regression analysis is ftted based on the complete cases, and the 
missing values are replaced by the predictions from the regression (Enders, 2022). 
This method is better than CCA, available case analysis and unconditional mean 
because variation has been introduced in the distribution. The disadvantage of 
this method is that it increases the correlation between variables (Enders, 2022). 

• Hot deck imputation: this is a single imputation method that handles missing-
ness by replacing each missing value with a value from observed cases that are 
related to the missing value (Andridge and Little, 2010). A replacement of the 
missing values is done with “one or more variables for a non-respondent (called 
the recipient) with observed values from a respondent (the donor) that is simi-
lar to the non-respondent with respect to characteristics observed by both cases” 
(Andridge and Little, 2010), i.e the missing case would be replaced with the value 
of an observed case that falls in the same class with the missing case (Kalton and 
Kish, 1981). The restriction of the donors to fully complete variables results in the 
preservation of multivariate relationships (Marker et al., 2002). 

• Substitution: this is another method of handling missing data problems com-
monly used in survey sampling. Suppose in a survey, some of the sampled unit 
provides the required information (respondents) while some do not give the re-
quired information (non-respondents). This method replaces a non-respondent 
with a unit or variable that was not initially sampled (Little and Rubin, 2019). 

• Posterior Predictive Distribution Draw (PPDD): was developed as an improve-
ment over the existing single imputation methods. It uses the Bayesian frame-
work to draw from the posterior predictive distribution of the variable (Gelman 
et al., 2004). This is currently the best-performing single imputation method. 
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2.2.2 Principled Missing Data Methods 

The principled missing data methods are methods of analysing missing data that use 
the information available from the observed data with statistical assumptions to assess 
the MDM and estimate the parameters of interest, rather than directly replacing the 
missing values (Dong and Peng, 2013). These methods when correctly applied, aid in 
recovering the underlying inferential model and the validity of a study is maximized 
(Lang and Little, 2018). Examples of principled missing data methods are Multiple 
Imputation and Maximum Likelihood. 

2.2.2.1 Multiple Imputation 

Multiple imputation addresses the overconfdence associated with single imputation 
by incorporating a degree of uncertainty into the imputed data set (Sterne et al., 2009). 
The Bayesian framework serves as motivation for multiple imputation and the gen-
eral approach for this type of imputation is ”to impute using the posterior predictive 
distribution of the missing data given the observed data and some estimate of the pa-
rameters” (Jamshidian and Mata, 2007). This method was proposed by Rubin (1978) 
and clarifcation was provided by Rubin (2004). This method replaces each missing 
value with a vector of length M ≥ 2. The M vectors create M completed data sets 
from the vectors of imputations such that the frst vector component replaces the miss-
ing value to obtain the frst complete data set, the second data set is obtained when 
the second vector of imputation replaces the missing values until M complete data 
sets are obtained (Little and Rubin, 2019). Each imputed data set is analysed as com-
plete data using statistical methods, and the resulting M complete data analyses can be 
combined to obtain an inference that refects sampling variability because of the miss-
ing values (Little and Rubin, 2019). According to Little and Rubin (2019), generate M 
imputed datasets and analyse using standard statistical methods that are available to 
use in the absence of missingness. Let θ̂ m be the parameter of estimation for the mth 
complete data set and Wm represents the sample variance estimate associated to θ̂ m for 
m = 1, 2, 3, ..., M for each of the M imputations i.e. the variance that would be present 
in the sample when there are no missing data. The combined estimate using Rubin’s 
combining rule is: 

M1¯ ˆθM = ∑ θm.
M m=1 
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¯The variance of θM can be decomposed into two components: average within-
imputation variation (WM) and between-imputation variation (B̄ M), 

M1
WM = ∑ Wm,

M m=1 

M1 
(θ̂ m − θ̄ M)2∑BM = .

M − 1 m=1 

¯The total variation associated with θM is calculated as: 

M + 1
TM = WM + BM.

M 

2.2.2.2 Maximum-Likelihood (ML) 

Using all of the available data points, the variance-covariance matrix for each variable 
in the model can be obtained using the ML approach (Soley-Bori, 2013). The model’s 
regression parameters can then be estimated using the acquired variance-covariance 
matrix (Soley-Bori, 2013). The ML method is simple because it only requires the model 
specifcation, unlike the MI approach, which requires some decisions to be made be-
forehand such as the number of iterations to be utilised, the choice of prior distribution, 
among others. (Soley-Bori, 2013). 

Full Information Maximum-Likelihood (FIML) 

The FIML is also called the direct Maximum Likelihood. This method suggests that, 
under the assumed linear model, the multivariate normal likelihood function is directly 
maximised (Soley-Bori, 2013). Imputation does not occur in FIML unlike MI. It uses the 
maximization of the likelihood function of the observed values to obtain the parameter 
estimates (Dong and Peng, 2013). When the missing mechanism is MAR and the joint 
distribution of all the variables are multivariate normal, the FIML method estimates 
are unbiased (Dong and Peng, 2013). An advantage of this method is that it is more 
effcient than the existing methods of analysing missing data (Soley-Bori, 2013). The 
disadvantage is its computational complexity as it is not easy to compute (Brown, 1981). 

Expectation Maximization (EM) 

The EM is an ML method introduced by Dempster et al. (1977). This is an iterative 
method for obtaining MLE when data are missing (Little and Rubin, 2019). Every it-
eration in this method contains an expectation step and a maximization step, repeat-
edly until the maximum likelihood estimates are obtained (Dempster et al., 1977). The 
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expectation step obtains ”the conditional expectation of the missing data given the ob-
served data and current estimated parameters, and then substitutes these expectations 
for the missing data” (Little and Rubin, 2019) while the maximization step involves 
performing ML estimation of the parameter of interest like when there is no missing 
data present (Dempster et al., 1977). This method can be used when the sample size is 
large and MAR is assumed (Soley-Bori, 2013). EM is less demanding computationally 
than the FIML, however, a disadvantage of this method is that it cannot be used for 
other models except linear and log-linear models (Soley-Bori, 2013). 

2.3 Follow-up Sampling 

The MNAR missing mechanism requires a recovery of some missing values to be able 
to test its presence (Little and Rubin, 2019). Follow-up sampling has been used in var-
ious felds to address the problem of missing data. In order to obtain the required 
information and increase response rate, follow-up has been extensively used in survey 
sampling and observational studies (Miao et al., 2021). 

In survey sampling, Elliott et al. (2000) studied the effect of subsampling callbacks on 
survey effciency. In this research, recovery was done by randomly sampling from 
the callback units initially sampled, this is because a lot of cost is associated with the 
callbacks needed for a small recovery proportion. Hence, subsampling the callbacks 
shows that there is a reduction in interview costs and an increase in the effciency of 
collected data. For nonignorable nonresponse with callbacks, Guan et al. (2018) pro-
posed a semiparametric maximum likelihood estimator. The proposed method was 
applied to survey data with missing responses and results show that the estimator is 
more effcient than existing methods. Alho (1990) used the logistic regression model to 
reduce the nonresponse bias in sample surveys with an assumption that there is at least 
one callback. This paper provided inspiration for some of the results of Chapter 6. 

For randomised experiments, a combined method that utilises double-sampling and 
worst-case bounds to address missing data problems was proposed by Aronow et al. 
(2015). This method makes use of little assumptions (allowing the presence of missing 
responses in the recovery sample) by relaxing the double-sampling assumption that 
all nonrespondents followed up would be recovered. Their method reveals that there 
is a signifcant reduction in uncertainty in controlled randomised experiments when 
double-sampling is used. An et al. (2009) worked on the need for double-sampling in 
survival studies and its application to the President’s Emergency Plans for AIDS Relief 
(PEPFAR). They considered four methods in this study: one without double-sampling 
and three with double-sampling. The methods with double-sampling yielded higher 
estimates than the method without double-sampling. The research shows the impor-
tance of double-sampling for accurate data collection when data is missing. Daniels 
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et al. (2015) proposed the Repeated Attempt Pattern Mixture Model (RAM-PMM). This 
method uses the pattern mixture for modelling in repeated attempt designs. In com-
parison to previously existing models used for modelling repeated attempt data, this 
method provides fexibility and transparency in identifying parameters and performs 
better. 

Carpenter and Kenward (2012) formulated two tests for MNAR vs MAR, but no further 
information on their respective properties were given. To the best of our knowledge, 
these are the only tests for MNAR vs MAR based on follow-up sampling in the litera-
ture. These tests will be formally introduced in Chapter 4. 

2.4 Experimental Design 

Atkinson et al. (2007) defned ”a well-designed experiment as an effcient method of 
learning about the world”. According to (Oehlert, 2010), the treatments, experimen-
tal units, assignment of treatments to the units, and observed responses are the ele-
ments that defne an experiment. Experimentation is an indispensable part of scientifc 
method. A set of guidelines that shows how experimental units are distributed among 
the treatments is known as experimental design (Dean and Voss, 1999) i.e. a rule that 
determines the allocation of treatments to units. Many industrial and medical pro-
cesses involve experimentation. The basic designs of experiments are completely ran-
domized design (CRD), randomized complete block design (RCBD) and Latin square 
design (LSD). Several researchers have developed other designs like the Incomplete 
Block Design (IBD), Factorial Design, and Balanced Incomplete Block Design (BIBD) 
among others. There are three basic principles of experimentation. A detailed explana-
tion was provided by Montgomery (2017): 

i Randomization: treatments should be applied to experimental units randomly such 
that each treatment has an equal chance of being allocated to any of the experimen-
tal units. It helps in providing a basis for inference and statistical testing among 
treatments. The absence of randomization in a process or an experiment may lead 
to the presence of systematic bias (Dean and Voss, 1999), hence, randomization 
helps in bias reduction. 

ii Replication: this involves independently allocating treatments to different exper-
imental units. To precisely measure the accompanying variability and the effects 
of interest in an experiment by repeating the experimental settings or condition is 
known as replication (Dean and Voss, 1999). 

iii Blocking: this is also known as grouping or stratifcation. When the experimental 
units are heterogeneous in nature, blocking helps in grouping the population into 
smaller groups as homogeneous as possible. These smaller groups are called blocks 
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and the experimental units in each group are similar (Dean and Voss, 1999). Block-
ing reduces variability and increases precision. 

2.4.1 Optimal Design 

Rady et al. (2009) defned optimal designs as ”experimental designs that are generated 
based on a particular optimality criterion and are generally optimal only for a specifc 
statistical model”. In statistical analysis, parameter estimation with minimal variance 
and lack of bias is possible with optimal designs (Fasoranbaku and Daramola, 2018). 
The fundamental principle underlying the theory of experimental design is that careful 
choice of the control variables can strengthen the statistical inference of the quantities 
of interest (Chaloner and Verdinelli, 1995). For example, a control variable in a chemical 
experiment could be the temperature at which the reaction of interest is run. A design 
would then be the set of temperatures for the different runs of the reaction. The infor-
mation matrix can be used to assess the accuracy of an experimental design (Oladugba 
and Madukaife, 2009). It is assumed that the reader has some knowledge of Experi-
mental design to prevent the replication of material. For an excellent introduction to 
the design of experiments, see Montgomery (2017) and Dean and Voss (1999). 

2.4.1.1 Optimality Criteria 

Oladugba and Madukaife (2009) defned optimality criterion as ”a single-valued mea-
sure that determines how good a design is, and it is maximized or minimized by an 
optimal design”. Optimality criteria can be defned as criteria that tell us about the 
quality of a design (Rady et al., 2009). There are several types of optimality criteria and 
the choice of optimality criterion depends on the purpose of the experiment, for exam-
ple, precise estimation or prediction, or achieving high power of a test. Let ξ∗ denote 
an optimal design with respect to the optimality criterion under consideration. 

Consider the regression model: Y = Xβ + ϵ, Y is a vector of observed responses, X 
is the design matrix, β is the vector of unknown parameters and ϵ is the vector of 
random errors. The Fisher information can be calculated by specifying the likelihood 
function based on the distribution of the errors ϵ. Next, construct the likelihood func-
tion L(β; Y) according to the specifed distribution, then, the log-likelihood function 
log L(β; Y) is derived. Calculate the frst and second derivatives of the log-likelihood[( )2

]
∂ log L(θ;Y)with. Lastly, the Fisher information can be computed using I(θ) = E ∂θ or [ ]

∂2 log L(θ;Y)I(θ) = −E 
∂θ2 . Note that the theory outlined below also holds for non-linear 

and generalised linear models. 

Let χ be the design region, and {x1, x2, . . . , xm} be the support points of the design. Lee 
et al. (2018a) defned a continuous design ξ as a set of weights w1, w2, . . . , wm assigned 
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to these support points, where wi ≥ 0 for all i, and the weights sum to 1. Mathemati-
cally defned as: 

{ }
ξ = 

x1 . . . xm (2.1) 
w1 . . . wm 

subject to the conditions: 

m 

∑ wi = 1 and wi ≥ 0 for all i. 
i=1 

The design points x1, . . . , xm belong to the design space χ, and the weights wi represent 
the proportion of total observations allocated to each design point. 

Let Σ represent the class of all continuous designs, which consists of all possible choices 
of ξ that satisfy the design constraints and F = F(ξ) be the Fisher information matrix 
of the regression model defned above. Let λ1, ..., λp be the eigenvalues of F(ξ). 

Rady et al. (2009) gave a detailed explanation on the various types of optimality criteria. 
Some of the discussed criteria are: 

i A optimality: uses the Fisher’s information matrix, the average variance of the pa-
rameter estimate is minimized by this optimality (Atkinson et al., 2007). This opti-
mality can be defned as: 

min trace(F)−1. 
ξ∈Σ 

The effciency of the design ξ is: 

tr[F−1(ξ∗A)] A(ξ) = . 
tr[F−1(ξ)] 

In terms of eigenvalues, (Atkinson et al., 2007) defned A optimality as: 

p 1
min ∑ . 
ξ∈Σ i=1 λi 

ii C Optimality: minimizes the variance of the linear combination of the model pa-
rameters CTθ, where C is a vector of known constants (Atkinson et al., 2007), i.e. 

min var(CT θ̂). 
ξ∈Σ 



16 Chapter 2. Literature Review 

The C-effciency is given as: 

CT F−1(ξ∗)CcC(ξ) = .
CT F−1(ξ)C 

iii D Optimality: This is the most widely and commonly studied design criterion. In 
this design, the determinant of the information matrix is maximized. 

max |F| = min |(F)−1|. 
ξ∈Σ ξ 

Maximising the determinant of the information matrix is equivalent to minimising 
the volume of the confdence ellipsoid for the parameter vector θ, thus ensuring 
that the estimates of the model parameters are as precise as possible. Atkinson 
et al. (2007) defned D optimality in terms of eigenvalues as: 

p 1
min ∏ . 
ξ∈Σ i=1 λi 

iv E Optimality: this optimality criterion is concerned with maximizing the minimum 
eigenvalue of the information matrix (Rady et al., 2009): 

max λmin(F)−1 = min λmax(F)−1. 
ξ∈Σ 

Atkinson et al. (2007) defned E optimality in terms of eigenvalues as: 

1
min max . 
ξ∈Σ i λi 

v G Optimality: this criterion is also known as a prediction criterion and it involves 
the minimization of the maximum variance of a predicted response value, ŷ , overx 

the experimental space (Rady et al., 2009). This is defned as: 

min max var(ŷ ). 
ξ∈Σ x∈χ x 

vi I Optimality: this is also known as the integrated variance, it minimizes the inte-
grated prediction variance (Rady et al., 2009). Goos et al. (2016) defned this opti-
mality criterion as a design that ”minimizes the average prediction variance over 
the experimental region χ” and mathematically defned it as: 

Average variance = ∫
χ 

1 
dx 

· tr[F−1B], 
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where ∫
B = t(x)t ′(x)dx 

χ 

is called the moments matrix, with x representing the mixture of proportions and 
t(x) is the vector of model terms. Here, dx denotes an infnitesimal volume element 
in the domain χ over which integration is performed. 

vii T Optimality: is an optimality criterion that is used in discriminating between two 
or more models where one of the models is true (Rady et al., 2009). When discrimi-
nating between two models, T optimality is defned as: ∫

max ∆2(ξ) = [ηt(x) − η2(x, θ̂2(ξ))]
2ξ(dx),

ξ∈Σ 

with ηt(x) as the true model and θ̂2 is the second model’s parameter estimates. ∆(ξ) 
represents the non-centrality parameter and x is a set of independent variables. In 
Chapter 6, we show how TE-optimality is used in our algorithm for design con-
structions that maximize the power of our test for MNAR. Waterhouse et al. (2008) 
formulated TE-optimality, which is similar to T-optimality but has more appealing 
statistical properties, such as an asymptotic chi-square distribution under the null 
hypothesis. TE-optimality selects a continuous design that maximizes the expected 
reduction in deviance. TE optimality has specifcally been constructed for compar-
ing two generalised linear models, which makes it so useful for our work in Chapter 
6. According to Waterhouse et al. (2008), a design ξT 

∗
E 

is said to be TE-optimal if: 

E{R(ξ∗ , X)} = max E{R(ξ, X)},TE ξ∈Ξ 

where the reduction deviance R is defned as: 

R(ξ, x) = D1(ξ, x) − D2(ξ, x) = 2{l(ξ, π̂ 2, x) − l(ξ, π̂ 1, x)}, 

with D1 and D2 as the deviance and π̂ 1 and π̂ 2 represent the maximum likelihood 
estimates of π1 and π2 from the unknown parameters of the compared models M1 

and M2 respectively. 

In a correspondence research between D and DL optimal designs to see if a design that 
is D optimal is also DL optimal, Oladugba and Madukaife (2009) introduced DL opti-
mal design where the determinant of the loss of information matrix is maximized. A 
numerical consideration was carried out in the regular geometric experimental region 
and irregular geometric experimental region. The result showed that for a bivariate 
linear response function, there is a correspondence between D and DL optimality in 
a regular experimental region with or without blocking. In an irregular experimental 
region, correspondence doesn’t always exist between D and DL optimality. 
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While there is an extensive body of literature on optimal design, there are only very few 
papers that take missing data into account at the design stage. Baek et al. (2006) pro-
posed the Bayesian optimal designs for a quantal dose-response study with potentially 
missing observations. Ghosh (1979) worked on the robustness of designs against in-
complete data, Lee et al. (2018a) proposed an optimal design for experiments with pos-
sibly incomplete observations. Imhof et al. (2002) developed a framework applicable to 
linear and non-linear models to obtain optimal designs in the presence of missing ob-
servations using the expectation of the information matrix. Lee et al. (2018b) extended 
the work of Imhof et al. (2002) by considering missing not at random data. 

2.4.2 Defnitions 

In this section, we introduce some statistics that will be used in Chapter 3 to examine 
the performance of some selected missing data analysis methods on the three missing 
data mechanisms. For a general estimator θ̂ of θ, let θ̂ r be the estimated value of θ (θ̂) 
for the rth replicate. Let θ̄ be the arithmetic mean of all θ̂ r. We then defne the following: 

• Bias: denoted as B can be defned as the difference between the expected value of 
the parameter and the true value of the parameter (Walther and Moore, 2005). 

Bias(θ̄) = θ̄ − θ. 

• Coverage: denoted as C Walther and Moore (2005) defned this as the propor-
tion of times that the true parameter is contained in the 95% confdence interval. 
Casella and Berger (2024) defned coverage as: 

Coverage Probability = P(L(X) ≤ θ ≤ U(X)), 

where θ is the true value of the parameter of interest, (L(X) and U(X)) represent 
the lower and upper bounds of a confdence interval for θ based on a random 
sample Y respectively. 

• Percentage Bias: denoted as PB measures how the bias of an estimator compares 
to the true parameter in percentage. 

Bias
PB = 100 × .

θ 

• Estimated Variance: denoted as EV 

1000 
EV = 

1 × ∑ (s.e.(θ̂ r))2,
R r=1 
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√
s.e is the standard error defned as Var(θ̂  r). 

• True Variance denoted as TV 

1000 
TV = 

1 × ∑ (θ̂ r − θ̄)2,
R − 1 r=1 

• Variance Ratio: denoted as VR is the ratio of the Estimated Variance to the True 
Variance. 

Estimated Variance 
VR = .

True Variance 

We considered VR to know how accurate our estimation is. The farther the VR 
value from 1, the less accurate our estimation. 

• Mean Squared Error: denoted as MSE 

MSE(θ) = (Bias)2 + EV. 



Chapter 3 

Review of Some Existing Methods 
of Handling Missing Data 
Mechanisms 

In this chapter, some existing methods of handling missing data mechanisms high-
lighted in Section 2.2 are studied. We review the performance of each method on the 
different types of missing mechanisms. We will demonstrate that while some methods 
can handle MCAR and MAR missingness, none of these methods are able to adequately 
deal with MNAR missing mechanism. 

3.1 Simulation study 

The following scenario is used to illustrate the current methods of handling missing 
data mechanisms. With 1000 replicates, 1000 observations from a normal distribution 
were simulated in the following way: 

Xij ∼ N(µX, σX), (3.1) 

Yij|(Xij = x) ∼ N(β0 + β1x, σY). (3.2) 

For each of the three Missing Data Mechanisms, we will introduce circa 30% miss-
ingness in the response variable y (the exact mechanism used will be discussed later). 
We will be interested in estimating the following four parameters: mean of X (µX), 
mean of Y (µY) and the regression coeffcients β0 and β1 using the samples Xij where 
i = 1, . . . , R and j = 1, . . . , N generated randomly for this study, the correspond-
ing response variable Yij, and the known missingness indicators mij. This estimation 
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will be done using the Complete Case Analysis (CCA), Unconditional Mean Imputa-
tion (UMI), Conditional Mean Imputation (CMI) and Posterior Predictive Distribution 
Draw (PPDD) methods discussed in Section 2.2. Let N = 1000, R = 1000, µX = 5, 
σX = 1, β0 = 1, β1 = 2 and σY = 4. These values are chosen arbitrarily to examine the 
performance of the existing methods of handling missing data problems on the three 
missing mechanisms. The performance of each imputation method on the summary 
statistics was studied and compared with the full data summary statistics. 

3.2 Full data analysis 

The summary statistics for the full data were obtained and compared to the summary 
statistics obtained using different missing data techniques on each of the three Missing 
Data Mechanisms that will be discussed shortly. In Table 3.1, the coverages for the 
means and regression parameters are all close to 0.95 and the estimated variances are 
close to the true variances. The variance ratios are approximately 1. The biases are low 
leading to low Percentage bias, and the MSE for the four parameters are low resulting 
from the small biases and variances. 

TABLE 3.1: Summary Statistics for Full Data Analysis. 

θ µX µY β0 β1 
Coverage 0.943 0.950 0.958 0.959 
Bias -0.001 -0.001 0.008 -0.042 
PB -0.012 -0.012 0.849 -0.087 
EV 0.001 0.008 0.112 0.004 
TV 0.001 0.008 0.106 0.004 
VR 0.959 0.995 1.056 1.035 
MSE 0.001 0.008 0.106 0.004 

3.3 Missing Completely at Random 

The summary statistics for different methods of analysis when data is Missing Com-
pletely at Random (MCAR) is shown in Table 3.2. 

• Coverage: For µX, all methods perform similarly with coverage close to 0.95. 
For µY, full data, Complete Case Analysis (CCA), and Posterior Predictive Dis-
tribution Draw (PPDD) maintain coverage around 0.95, but Unconditional Mean 
Imputation (UMI) shows a signifcant reduction to 0.836, while Conditional Mean 
Imputation (CMI) shows moderate improvement at 0.903. For β0 and β1, the full 
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data and CCA methods show high coverage (close to 0.95), while UMI performs 
poorly with coverage of 0.000 for both. CMI and PPDD slightly recover coverage, 
but still fall short compared to full data and CCA. 

• Bias: Bias for µX and µY is very low across all methods. For β0, UMI introduces 
a large positive bias of 2.986, while full data and CMI show much smaller biases. 
PPDD introduces a negative bias of -0.209. Similarly, for β1, UMI has a substantial 
negative bias of -0.597, whereas the other methods show minimal bias, with full 
data and CCA having the smallest values. 

• Percentage Bias (PB): For µX and µY, percentage bias remains small across meth-
ods, except for PPDD, which introduces a higher PB for µY (0.209). UMI displays 
a very large percentage bias for β0 (298.637%) and a signifcant negative percent-
age bias for β1 (-29.857%). Other methods have much smaller percentage biases. 

• Estimated Variance (EV): EV for µX and µY is consistent across methods, except 
for slight variations in CCA and UMI for µY. For β0, full data has the largest EV, 
followed by CCA and PPDD. UMI shows lower EV, while CMI has the smallest 
EV. Similarly, for β1, the estimated variances are generally low, with CMI showing 
the smallest value. 

• True Variance (TV): TV values for µX are stable across methods, while for µY, 
UMI has a slightly larger TV compared to the others. For β0, UMI again shows 
higher TV, while CMI presents the highest true variance. Other methods remain 
comparable to full data. TV for β1 follows a similar pattern to EV. 

• Variance Ratio (VR): The variance ratio for µX is near 1 for all methods, with UMI 
and PPDD having slightly higher values. For µY, UMI displays a notably low VR 
(0.511), while CMI also shows a reduced ratio compared to the other methods. For 
the regression parameters β0 and β1, UMI and CMI result in lower VRs than other 
methods, indicating discrepancies between the estimated and true variances. Full 
data, CCA, and PPDD maintain VR values closer to 1. 

• Mean Squared Error (MSE): The MSE for µX is stable and low across all methods. 
For µY, UMI and CCA show slightly higher MSE values compared to full data. 
UMI dramatically increases the MSE for β0 (9.036) and β1 (0.361) due to large 
biases. The other methods maintain much lower MSE values, with CMI showing 
the smallest errors for β0 and β1 among the imputation methods. 

Full Data performs best across all statistics, as expected. CCA maintains solid per-
formance with minimal bias, variance ratios close to 1, and stable MSE values. It is 
effective when data is MCAR, especially given that the 300 missing values have little 
impact on the results. UMI introduces signifcant bias and increases MSE, especially 
for the regression parameters β0 and β1, making it ineffcient for restoring summary 



23 3.3. Missing Completely at Random 

statistics. CMI improves upon UMI with reduced bias and variance but still falls short 
of achieving optimal results, especially in variance ratio and MSE. PPDD slightly im-
proves coverage and variance estimates for some parameters but still introduces bias, 
especially for µY and β0. CCA is the best approach when dealing with MCAR data 
in this analysis, outperforming imputation methods like UMI, CMI, and PPDD, which 
struggle to fully restore the summary statistics. 
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TABLE 3.2: MCAR Summary Statistics. 

Statistic θ Full Data CCA UMI CMI PPDD 

Coverage µX 

µY 

β0 

β1 

0.943 
0.950 
0.958 
0.959 

0.947 
0.956 
0.946 
0.949 

0.952 
0.836 
0.000 
0.000 

0.950 
0.903 
0.839 
0.834 

0.944 
0.950 
0.899 
0.878 

Bias µX 

µY 

β0 

β1 

-0.001 
-0.001 
0.008 
-0.042 

0.000 
0.000 
-0.008 
0.001 

-0.000 
0.000 
2.986 
-0.597 

-0.001 
-0.001 
0.004 
-0.001 

0.001 
0.023 
-0.209 
0.046 

PB µX 

µY 

β0 

β1 

-0.012 
-0.012 
0.849 
-0.087 

0.008 
0.002 
-0.796 
0.073 

-0.006 
0.002 

298.637 
-29.857 

-0.014 
-0.012 
0.351 
-0.034 

0.028 
0.209 

-20.857 
-2.287 

EV µX 

µY 

β0 

β1 

0.001 
0.008 
0.112 
0.004 

0.001 
0.011 
0.149 
0.006 

0.001 
0.008 
0.095 
0.004 

0.001 
0.007 
0.073 
0.002 

0.001 
0.008 
0.102 
0.004 

TV µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.001 
0.011 
0.148 
0.006 

0.001 
0.011 
0.117 
0.004 

0.001 
0.010 
0.139 
0.005 

0.001 
0.008 
0.105 
0.004 

VR µX 

µY 

β0 

β1 

0.959 
0.995 
1.056 
1.035 

0.959 
1.043 
1.004 
1.025 

1.039 
0.511 
0.807 
0.843 

1.039 
0.714 
0.523 
0.510 

1.060 
1.023 
0.968 
0.959 

MSE µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.001 
0.011 
0.148 
0.006 

0.001 
0.011 
9.036 
0.361 

0.001 
0.010 
0.139 
0.005 

0.001 
0.008 
0.149 
0.006 
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3.4 Missing at Random 

We introduce 30% missingness using the following expit function. We consider a Miss-
ing at Random (MAR) missing data mechanism of the form: 

exp(α0 + α1x)
g(x) = , (3.3)

1 + exp(α0 + α1x) 

with α0 = −3 and α1 = 0.42 resulting in approximately 300 missing values of y. This is 
a MAR mechanism because the missingness depends only on x. Figure 3.1 shows the 
scatterplot for x and y when data is missing at random. In this fgure, the red points 
correspond to the missing values and the blue points represent the observed values. 
This fgure shows that the missing values are widely spread and not concentrated at 
a point. About 46% of highest 100 x values have missing y and 18% of lowest 100 x 
values have missing y. 

FIGURE 3.1: Scatterplot of y against x for Missing at Random. 

Table 3.3 shows the summary statistics for MAR using some existing methods of han-
dling missing data problems. 

• Coverage: The Full Data, UMI, CMI, and PPDD methods exhibit high coverage 
values for µX around 0.94 − 0.96. However, CCA’s coverage for µX is signifcantly 
low at 0.110. For µY, Full Data and PPDD maintain high coverage around 0.95, 
while CCA’s coverage is moderate at 0.390, and UMI has the lowest at 0.195. In 
the case of β0, Full Data and CCA show high coverage values of 0.958 and 0.965, 
respectively, whereas UMI reports zero coverage, with CMI and PPDD showing 
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slightly lower values at 0.860 and 0.850. For β1, similar trends are observed, with 
Full Data and CCA reporting high coverage (0.959 and 0.966), while UMI again 
reports zero coverage, and CMI and PPDD have moderately lower values. 

• Bias: The Full Data and UMI methods show nearly no bias for µX with values 
between −0.001 and 0.000, while CCA has a considerable negative bias of −0.120. 
For µY, UMI has a high negative bias of −0.238, whereas the other methods show 
minimal bias. For β0, UMI displays a signifcant positive bias of 2.953, while other 
methods show small biases ranging from −0.008 to 0.008. For β1, UMI shows a 
notable negative bias of −0.638, with the other methods exhibiting small biases 
ranging from −0.042 to 0.046. 

• Percentage Bias (PB): In this category, CCA and UMI have large negative percent-
age bias values for µX, reported as −2.406 and −0.001, respectively, while other 
methods show small percentage biases. For µY, UMI and CCA exhibit signifcant 
negative percentage biases of −2.164, while other methods have smaller values. 
For β0, UMI shows a substantial positive percentage bias of 295.281, while other 
methods range from −0.713 to 0.849. Lastly, for β1, UMI has a signifcant nega-
tive percentage bias of −31.905, with the other methods displaying much smaller 
values, from −0.087 to 0.100. 

• Estimated Variance (EV): In terms of estimated variance, all methods have sim-
ilar small EV values for µX around 0.001. For µY, EV ranges between 0.006 and 
0.011 across all methods, with slight variability. For β0, the highest EV is in Full 
Data at 0.112, while CMI has the lowest at 0.073, with other methods falling be-
tween 0.095 and 0.146. The values for β1 across all methods remain small, ranging 
from 0.002 to 0.006. 

• True Variance (TV): All methods show small true variance values for µX around 
0.001. The values for µY range from 0.008 to 0.011, with CMI and PPDD showing 
slightly larger values. For β0, UMI exhibits the highest true variance at 0.132, 
while other methods vary from 0.105to 0.139. For β1, true variance values are low 
across all methods, ranging from 0.004 to 0.008. 

• Variance Ratio (VR): In terms of variance ratios, UMI and PPDD exhibit slightly 
infated ratios at 1.039 and 1.060, while the other methods remain close to 1.0 for 
µX. For µY, Full Data shows a high variance ratio at 0.995, whereas UMI is low 
at 0.491, with other methods ranging from 0.715 to 1.043. For β0, CMI and PPDD 
demonstrate reduced variance ratios at approximately 0.537 − 0.551, while Full 
Data displays higher values at 1.056. Lastly, for β1, UMI has a low variance ratio 
of 0.685, while Full Data and CCA exhibit values closer to 1.0. 

• Mean Squared Error (MSE): All methods report a small mean squared error for 
µX, around 0.001. The MSE for µY is highest in UMI at 0.068, while other methods 
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range between 0.008 and 0.011. For β0, UMI reports a signifcantly high MSE 
of 8.851, whereas other methods show MSE values ranging from 0.106 to 0.195. 
Finally, for β1, UMI also displays the highest MSE at 0.413, while other methods 
have low MSE values between 0.004 and 0.008. 

Overall, the Full Data method consistently performs the best, with low bias, high cov-
erage, and low mean squared error across all statistics. The CCA method displays very 
low coverage for µX and µY while maintaining good performance on β0 and β1. The 
UMI method reports signifcant biases and mean squared errors, particularly for β0 

and β1, suggesting poor performance. Finally, the CMI and PPDD methods demon-
strate moderate performance, balancing coverage and mean squared error, with some 
variability across the metrics, although they exhibit lower variance ratios. 
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TABLE 3.3: MAR Summary Statistics. 

Statistic θ Full Data CCA UMI CMI PPDD 

Coverage µX 

µY 

β0 

β1 

0.943 
0.950 
0.958 
0.959 

0.110 
0.390 
0.965 
0.966 

0.945 
0.195 
0.000 
0.000 

0.956 
0.903 
0.860 
0.853 

0.955 
0.920 
0.850 
0.826 

Bias µX 

µY 

β0 

β1 

-0.001 
-0.001 
0.008 
-0.042 

-0.120 
-0.238 
-0.007 
0.002 

0.000 
-0.238 
2.953 
-0.638 

0.001 
0.001 
0.002 
-0.001 

-0.001 
0.001 
0.005 
-0.000 

PB µX 

µY 

β0 

β1 

-0.012 
-0.012 
0.849 
-0.087 

-2.406 
-2.164 
-0.713 
0.100 

-0.001 
-2.164 

295.281 
-31.905 

0.020 
0.010 
0.221 
-0.031 

-0.027 
0.012 
0.517 
-0.009 

EV µX 

µY 

β0 

β1 

0.001 
0.008 
0.112 
0.004 

0.001 
0.011 
0.146 
0.006 

0.001 
0.006 
0.096 
0.004 

0.001 
0.007 
0.074 
0.003 

0.001 
0.008 
0.105 
0.004 

TV µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.001 
0.011 
0.134 
0.005 

0.001 
0.011 
0.132 
0.005 

0.001 
0.010 
0.134 
0.005 

0.001 
0.011 
0.195 
0.008 

VR µX 

µY 

β0 

β1 

0.959 
0.995 
1.056 
1.035 

0.995 
0.994 
1.092 
1.097 

0.991 
0.491 
0.729 
0.685 

1.044 
0.715 
0.551 
0.524 

1.086 
0.740 
0.537 
0.495 

MSE µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.016 
0.068 
0.134 
0.005 

0.001 
0.068 
8.851 
0.413 

0.001 
0.010 
0.133 
0.005 

0.001 
0.011 
0.195 
0.008 
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3.5 Missing Not at Random 

We introduce 30% missingness using the following expit function. This is an example 
of a Missing Not at Random (MNAR) missing mechanism because the missing values 
depend on Y. This is sometimes called a self-censoring MNAR mechanism. 

exp(α0 + α1y)
g(x, y) = . (3.4)

1 + exp(α0 + α1y) 

The use of α0 = −5 and α1 = 0.358 results in approximately 300 missing values of 
Y. Figure 3.2 shows the scatterplot for x and y for MNAR, 51% of highest 100 x values 
have missing y and 19% of lowest 100 x values have missing y implying that the missing 
values are more at the upper end than the lower end. 

FIGURE 3.2: Scatterplot of y against x for Missing Not at Random. 

Table 3.4 shows the comparison of the full data analysis and some methods of analysing 
missing data. 

• Coverage: The Full Data method exhibits consistently high coverage across all 
parameters, with values ranging from 0.943 to 0.959. UMI also performs well for 
µX (0.950) but shows zero coverage for µY, β0, and β1. CMI and PPDD demon-
strate moderately high coverage for µX (0.961 and 0.950, respectively) and fair 
coverage for β0 (0.616 and 0.711, respectively). However, both have low coverage 
for µY and β1. CCA performs poorly in terms of coverage, particularly with µX 

and µY (0.001 and 0.000, respectively), although it has somewhat better coverage 
for β0 (0.819) and β1 (0.462). 
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Mechanisms 

• Bias: Full Data shows negligible bias for all statistics, with values close to 0. UMI 
has minimal bias for µX (−0.002) but large biases for µY (−0.709), β0 (3.226), and 
β1 (−0.786), indicating poor performance. CCA demonstrates signifcant nega-
tive bias for µX (−0.180) and µY (−0.709), and smaller but still notable biases for 
β0 and β1. CMI and PPDD have smaller biases across the parameters but show 
some issues with µY and β0. 

• Percentage Bias (PB): Full Data and PPDD exhibit the smallest percentage bias 
across all statistics. UMI, on the other hand, demonstrates substantial percentage 
bias, particularly for β0 (322.579%) and β1 (−39.323%). CCA shows large per-
centage biases for µX (−3.592%) and µY (−6.448%), as well as smaller percentage 
biases for the other parameters. CMI shows moderately high percentage bias for 
µY and β0. 

• Estimated Variance (EV): All methods show similar small estimated variances for 
µX, µY, and β1, with values near 0.001. Full Data and PPDD exhibit the highest EV 
for β0 (0.112 and 0.096, respectively), while CMI and PPDD have slightly lower 
EV values across the parameters. 

• True Variance (TV): True variance values remain consistently small for µX (0.001) 
across all methods. For µY, true variance values range from 0.008 to 0.010, with 
CMI and PPDD showing slightly larger values. True variance for β0 is highest in 
CMI and PPDD (0.141 and 0.156, respectively), while Full Data has a lower value 
(0.106). True variance for β1 is small across all methods. 

• Variance Ratio (VR): UMI shows a slightly infated variance ratio for µX (1.004), 
while other methods hover around 1.0. For µY, Full Data and CCA exhibit higher 
variance ratios close to 1.0, while UMI shows a much lower ratio (0.490). Variance 
ratios for β0 are highest in Full Data and CCA (1.056 and 1.074, respectively), and 
lowest in UMI (0.783). Variance ratios for β1 are similar across the methods. 

• Mean Squared Error (MSE): Full Data and PPDD demonstrate the lowest MSE 
values across all statistics. UMI, however, reports notably high MSE values, par-
ticularly for β0 (10.518) and β1 (0.623). CCA has a high MSE for µY (0.513) but 
remains competitive with lower MSE values for other statistics. CMI and PPDD 
exhibit moderate MSE values, particularly for µY and β0. 

As we have seen in this chapter, the existing methods of handling missing data prob-
lems do not perform satisfactorily for the MNAR missing mechanism. To correctly test 
for the presence of MNAR and analyse MNAR data, there is a need to recover some 
or all of the missing observations. Therefore, in the next chapter, we will look at the 
recovery approach to test the presence of MNAR vs MAR. 
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TABLE 3.4: MNAR Summary Statistics. 

Statistic θ Full Data CCA UMI CMI PPDD 

Coverage µX 

µY 

β0 

β1 

0.943 
0.950 
0.958 
0.959 

0.001 
0.000 
0.819 
0.462 

0.950 
0.000 
0.000 
0.000 

0.961 
0.006 
0.616 
0.240 

0.950 
0.010 
0.711 
0.357 

Bias µX 

µY 

β0 

β1 

-0.001 
-0.001 
0.008 
-0.042 

-0.180 
-0.709 
0.390 
-0.154 

-0.002 
-0.709 
3.226 
-0.786 

0.000 
-0.379 
0.386 
-0.153 

-0.002 
0.382 
0.372 
-0.150 

PB µX 

µY 

β0 

β1 

-0.012 
-0.012 
0.849 
-0.087 

-3.592 
-6.448 
39.026 
-7.678 

-0.043 
-6.448 

322.579 
-39.323 

0.006 
-3.446 
38.631 
-7.659 

0.034 
-3.470 
37.182 
-7.504 

EV µX 

µY 

β0 

β1 

0.001 
0.008 
0.112 
0.004 

0.001 
0.010 
0.136 
0.006 

0.001 
0.005 
0.088 
0.003 

0.001 
0.006 
0.068 
0.003 

0.001 
0.007 
0.096 
0.004 

TV µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.001 
0.010 
0.127 
0.005 

0.001 
0.010 
0.132 
0.005 

0.001 
0.009 
0.141 
0.006 

0.001 
0.010 
0.156 
0.007 

VR µX 

µY 

β0 

β1 

0.959 
0.950 
1.056 
1.035 

0.936 
0.995 
1.074 
1.098 

1.004 
0.490 
0.783 
0.752 

1.076 
0.682 
0.503 
0.464 

0.994 
0.742 
0.617 
0.563 

MSE µX 

µY 

β0 

β1 

0.001 
0.008 
0.106 
0.004 

0.034 
0.513 
0.279 
0.029 

0.001 
0.513 

10.518 
0.623 

0.001 
0.153 
0.284 
0.029 

0.001 
0.155 
0.294 
0.029 



Chapter 4 

Testing for MNAR using a recovery 
sample 

This chapter focuses on how a recovery of missing responses can be used to test the 
presence of MNAR. There are two tests for MAR vs MNAR in the literature and these 
tests can produce erroneous type 1 error rates. We will attempt to explain why in this 
chapter. We will also explore the use of different recovery designs and recovering dif-
ferent proportions of the missing responses. For simplicity, we will consider scenarios 
with one covariate in this chapter. Generalisations to an arbitrary number of covariates 
will be presented in Chapters 5 and 6. 

4.1 Hypothesis Testing 

Consider a scenario with a univariate response, Y and one covariate X, where 

Y|(X = x) ∼ N(β0 + β1x, σ2) . (4.1)y 

For now, we will assume β0, β1 and σy 
2 are known. It is assumed that the independent 

variable X is fully observed. In contrast, the response variable Y may contain missing 
values with M being the missing indicator such that it is 1 when Y is missing and 0 if 
observed. Let y1, . . . , yn, x1, . . . , xn and m1, . . . , mn denote samples of size n from the 
model in (4.1). Let nobs be the number of observed cases, nmiss represents the number of 
missing observations such that nobs + nmiss = n. Without loss of generality, we assume 
the frst nobs of y1, . . . , yn are observed, meaning ynobs+1, . . . , yn are all initially miss-
ing. Let M := {nobs+1, nobs+2 . . . , n} be the set of indices whose y values are missing. 
Assume resources permit follow up of a number of experimental units with missing 
responses to obtain (recover) their responses, e.g. through home visits to patients in 
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a clinical trial or follow-up telephone calls in a survey. We denote the number of re-
covered responses by n ∗, where n ∗ ≤ nmiss. We assume the choice of which responses 
to recover is in the practitioner’s control, and thus this gives rise to the concept of a 
recovery design. 

Defnition 4.1. A recovery design D = D(n ∗) is a subset of size n ∗ from M := 

{nobs+1, nobs+2 . . . , n}. 

The recovery design will instruct the experimenter what missing values to recover as 
follows. For notation, relabel the observations such that the recovery design becomes 
D = {k1, k2, . . . , kn ∗}. The recovered responses from the initial missing responses be-
come the elements of the vector YR := (Yk1 , . . . , Ykn ∗ ) and YO := )(Y1, Y2, . . . , Ynobs 

represent the observed responses. The augmented data is a combination of the ob-
served cases and the recovered cases YA := (YO, YR)T . In the same vein, the covari-
ates and the missing indicator are: XA := (XO, XR)T with XR := (Xk1 , . . . , Xkn ∗ ) and 

); MA := (MO, MR)T with MO = (0, . . . , 0) and MR = (1, . . . , 1).XO := (X1, . . . , Xnobs 

In the popular book by Carpenter and Kenward (2012), two tests for MNAR vs MAR 
were formulated for testing if the missing data mechanism is MAR vs MNAR. These 
tests could also be used in making inferences on the model parameters. The two tests 
are: 

1. Selection Model framework (SMF): Fit a logistic regression of the missing indica-
tor on the independent and response variables: 

logitPr(MA = 1) = α0 + α1YA + α2XA + α3XAYA. (4.2) 

Under the null hypothesis of MAR, we have α1 = α3 = 0, MAR is present if the 
hypothesis is true else otherwise. 

2. Pattern mixture framework (PMF): This model fts a linear regression of the form: 

E(YA) = β0 + β1XA + β2 MA + β3XA MA. (4.3) 

Under the null hypothesis of MAR, we have β2 = β3 = 0, MAR is present if the 
hypothesis is true else otherwise. 

In addition to these hypotheses tests, we propose two tests based on just one parameter 
(excluding the interaction term), respectively. 

For SMF, the model is: 

logitPr(MA = 1) = α0 + α1YA + α2XA, (4.4) 
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with α1 = 0 if MAR is true, otherwise MNAR. For PMF: 

E(YA) = β0 + β1XA + β2 MA, (4.5) 

with β2 = 0 if MAR is true, otherwise MNAR. 

4.2 Recovery Designs 

In this section, we will consider four recovery designs. These designs serve as a prelim-
inary study to assess the effect of different designs on the Type I error rate and power 
of the tests above. More principled ways of selecting recovery designs optimally will 
be discussed in detail in Chapters 5 and 6. 

1. Random Sample Design: In this recovery design, a random sample of n ∗ is se-
lected from the missing cases and added to the complete cases. 

2. Highest Values Design: This design selects n ∗ highest values based on x as the 
sample. 

3. Smallest Values Design: This design selects n ∗ smallest values based on x as the 
sample. 

4. Half Highest/Half Smallest Values Design: This design selects the n ∗ sample such 
that n 

2 
∗

is the highest values based on x and the other n 
2 
∗

is the smallest values 
based on x. 

Suppose we have 1000 observations of Y and X and Y contains approximately 300 miss-
ing values. Suppose further we can recover some responses from the approximately 300 
missing values and YA is the augmented data comprising of the complete cases and the 
recovered cases. The recovered samples will be selected using the different designs 
above. 

4.3 Simulation Studies 

4.3.1 One-Parameter Model 

We simulated the data with equations (3.1) and (3.2) with the missing mechanisms sim-
ulated according to equation (3.3) with α0 = −3 and α1 = 0.42 for MAR and equation 
(3.4) with α0 = −3 and α1 = 0.19 for MNAR. These α values are chosen such that there 
are approximately 300 missing values in the response variable Y. The Type I error and 
power analysis were computed for MAR and MNAR respectively using the models in 
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equations (4.4) and (4.5) under the different recovery designs and different recovered 
sample sizes. The purpose was to study how different recovery designs impact type 1 
error and power. 

The hypothesis for SMF is: 

H0 : α1 = 0 

H1 : α1 ̸= 0. 

The hypothesis for PMF is as follows: 

H0 : β2 = 0 

H1 : β2 ̸= 0. 

Figures 4.1 − 4.4 and Table A.1 shows the Type I error for MAR and power for MNAR 
using different recovery designs and frameworks. Using the Selection Model Frame-
work for MAR, recovering the highest values of x is the worst design because it has 
Type I error values above 0.05 when less than 50% of the missing values are recovered. 
The smallest values design also gives Type I error values slightly above 0.05 when 10% 
of the missing values are recovered and approximately 0.05 at other sample sizes. The 
Random design and the half highest/half smallest designs are the best designs as all 
Type I error values are approximately 0.05 at all sample sizes. As the recovered sam-
ple size increases, the Type I error for the highest values design reduces. In Pattern 
Mixture Framework for MAR, the random design and the half highest/half smallest 
designs perform similarly as in SMF and all designs have Type I error values of 0.05 
at all recovery sample sizes. Figure 4.1 shows the plot of the Type I error against the 
recovered sample sizes using SMF and Figure 4.2 for PMF, an increase in sample size 
from 30 to 50 leads to a reduction in the Type I error for all designs. For MNAR, under 
both frameworks, the random design has the highest power while the highest design 
has the least power among all the designs. The power increases and approaches 1 as n ∗

increases. This is shown graphically in Figures 4.3 and 4.4. These plots show that both 
SMF and PMF perform similarly for all the designs. 
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FIGURE 4.1: MAR Type I error plot using SMF for different recovery scenarios. 

FIGURE 4.2: MAR Type I error plot using PMF for different recovery scenarios. 
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FIGURE 4.3: MNAR power plot using SMF for different recovery scenarios. 

FIGURE 4.4: MNAR power plot using PMF for different recovery scenarios. 

The power analysis for three different MNAR cases (which are detailed in Table 4.1) 
and different designs for varying sample sizes is shown in Table 4.1. The values of 
α0 and α1 in the three cases are chosen to preserve the same amount of missing data 
(approximately 30%) in the data. The values are varied so there would be different 
degrees of association to the variable y with equal amount of missing cases. The third 
case is the least associated and the frst case is the most associated. 
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The frst case has its lowest power under the highest design, the smallest design has 
the highest power and the power is 1 at n ∗ = 100 and above for all designs for both 
SMF and PMF. In the second case, the highest value design has the least power for 
both frameworks, both frameworks have power above 0.99 for all designs at n ∗ = 100 
and above. For the third case, the random design has the highest power followed by 
the half highest/half smallest design using both frameworks. The power is less than 
0.50 when n ∗ is 30 for the smallest value design. The half highest/half smallest design 
at n ∗ = 30 has approximately 0.5 power value, approximately 0.7 when n ∗ = 50 and 
tends towards 1 as the sample sizes increase. For all designs, the power increases as we 
recover more missing values. 

The SMF and PMF perform similarly for the random design at all recovered sample 
sizes for the three cases of MNAR except for n ∗ = 30 for the frst case where SMF 
performed slightly better than PMF. For the highest values design and half highest/s-
mallest values design, the PMF performs better than the SMF for all the cases studied. 
For the smallest values design, the SMF performs better than the PMF. 
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TABLE 4.1: Power analysis for different MNAR cases and different recovery designs 
in 10000 replicates. 

Design n ∗ α0 = −5, α1 = 0.358 α0 = −4, α1 = 0.270 α0 = −3, α1 = 0.190 
SMF PMF SMF PMF SMF PMF 

Random 30 0.954 0.951 0.798 0.798 0.512 0.512 
50 0.996 0.996 0.945 0.945 0.709 0.712 
100 1.00 1.00 0.997 0.997 0.934 0.934 
150 1.00 1.00 1.00 1.00 0.983 0.938 
200 1.00 1.00 1.00 1.00 0.996 0.996 
250 1.00 1.00 1.00 1.00 0.996 0.996 
300 1.00 1.00 1.00 1.00 1.00 1.00 

Highest 30 0.690 0.876 0.560 0.691 0.364 0.442 
50 0.913 0.972 0.798 0.872 0.557 0.626 
100 0.998 0.999 0.982 0.990 0.848 0.874 
150 1.00 1.00 0.999 0.999 0.958 0.960 
200 1.00 1.00 1.00 1.00 0.990 0.991 
250 1.00 1.00 1.00 1.00 0.998 0.998 
300 1.00 1.00 1.00 1.00 1.00 1.00 

Smallest 30 0.956 0.953 0.786 0.782 0.493 0.490 
50 0.997 0.997 0.944 0.941 0.705 0.692 
100 1.00 1.00 0.999 0.999 0.926 0.923 
150 1.00 1.00 1.00 1.00 0.985 0.984 
200 1.00 1.00 1.00 1.00 0.996 0.996 
250 1.00 1.00 1.00 1.00 0.999 0.999 
300 1.00 1.00 1.00 1.00 1.00 1.00 

Half highest/half smallest 30 0.938 0.941 0.778 0.786 0.498 0.504 
50 0.995 0.995 0.938 0.941 0.706 0.711 
100 1.00 1.00 0.998 0.998 0.931 0.932 
150 1.00 1.00 0.999 0.999 0.984 0.985 
200 1.00 1.00 1.00 1.00 0.996 0.996 
250 1.00 1.00 1.00 1.00 0.999 0.999 
300 1.00 1.00 1.00 1.00 1.00 1.00 

4.3.2 Two-Parameter Model 

Here, we used the two-parameter model for both SMF and PMF to test the type of 
missingness present using the same data generated in Subsection 4.3.1. 

The hypothesis for SMF is given as: 

H0 : α1 = α3 = 0 

H1 : at least one αi ̸= 0. 
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The hypothesis for PMF is as follows: 

H0 : β2 = β3 = 0 

H1 : at least one βi ̸= 0. 

The MAR Type I error and MNAR power analysis for pattern mixture two-parameter 
model are shown in Figures 4.5 and 4.6 respectively below and in Table A.2 in the 
appendix. For MAR, irrespective of the recovery design used, the Type I error is the 
same when all the missing values are recovered. All designs have Type I error values 
of approximately 0.05 at all values of n ∗. For MNAR, the highest design has the least 
power followed by the half highest/half smallest design. The smallest design has the 
highest power while the random design has better power than the random design and 
the half highest/half smallest design. 

FIGURE 4.5: MAR Type I error plot using PMF for different recovery scenarios. 
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FIGURE 4.6: MNAR Power plot using PMF for different recovery scenarios. 

In Table 4.2, the pattern mixture framework for the two-parameter model was used 
for three different MNAR cases which are detailed in the table. The frst case has all 
powers greater than 0.9 for the random design and smallest design. At n ∗ = 30, the 
highest value and half highest/half smallest design give power values 0.797 and 0.892 
respectively. For the second case of MNAR, the random design has approximately 
0.7 power value at n ∗ = 30, the highest value design, smallest value design and half 
highest/half smallest design have values lesser than 0.7 when n ∗ = 30. At n ∗ = 150 
and above, the power is approximately 1. For the third case, the random design has 
the highest power at n ∗ = 30 followed by the half highest/half smallest design. The 
highest design has the least power at all recovered sample sizes except at n ∗ = 300 
which is the same as other designs. The power increases as n ∗ increases for all designs. 
Conclusively, the random design has the largest power while the highest design has 
the least power. 



42 Chapter 4. Testing for MNAR using a recovery sample 

TABLE 4.2: Power analysis for a two-parameter model for different MNAR cases and 
different recovery designs in 10000 replicates. 

Design n ∗ Pattern Mixture 
α0 = −5, α1 = 0.358 α0 = −4, α1 = 0.270 α0 = −3, α1 = 0.190 

Random 30 0.904 0.701 0.414 
50 0.989 0.893 0.609 

100 1.00 0.994 0.881 
150 1.00 0.999 0.965 
200 1.00 1.00 0.989 
250 1.00 1.00 0.990 
300 1.00 1.00 1.00 

Highest 30 0.797 0.585 0.351 
50 0.947 0.798 0.515 

100 0.999 0.974 0.798 
150 1.00 0.998 0.925 
200 1.00 1.00 0.978 
250 1.00 1.00 0.995 
300 1.00 1.00 1.00 

Smallest 30 0.914 0.690 0.392 
50 0.990 0.893 0.591 

100 1.00 0.996 0.869 
150 1.00 1.00 0.965 
200 1.00 1.00 0.989 
250 1.00 1.00 0.997 
300 1.00 1.00 1.00 

Half highest/half smallest 30 0.892 0.688 0.400 
50 0.988 0.887 0.608 

100 0.999 0.993 0.882 
150 1.00 0.999 0.965 
200 1.00 1.00 0.989 
250 1.00 1.00 0.996 
300 1.00 1.00 1.00 

Comparing the PMF one-parameter model for MNAR in Table 4.1 and the PMF two-
parameter model in Table 4.2, the one-parameter model produced better powers than 
the two-parameter model for all the designs at all recovered sample sizes. 

In Table 4.3 below, the two-parameter model under SMF is used. The result shows Type 
I error values above 0.05 for all designs except the random design. Some investigation 
on the two-parameter model for SMF is provided in the next section. 
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TABLE 4.3: MAR Type I error for two-parameter using the SMF in 10000 replicates. 

Design n ∗ Type I error 

Random 30 0.054 
50 0.057 

100 0.054 
150 0.053 
200 0.055 
250 0.054 
300 0.047 

Highest 30 0.528 
50 0.778 

100 0.979 
150 0.995 
200 0.991 
250 0.845 
300 0.047 

Smallest 30 0.899 
50 0.984 

100 0.999 
150 0.999 
200 0.994 
250 0.787 
300 0.047 

Half highest/half Smallest 30 1.00 
50 1.00 

100 0.999 
150 0.981 
200 0.724 
250 0.209 
300 0.047 

4.4 Problem with the Type I error 

The two parameters model for the selection model framework does not work as the 
presence of the interaction term seems to affect the Type I error rate. As shown in Table 
4.3, the random sample design has values close to 0.05. The highest values design gives 
values ranging from 0.528 to 0.845, the values increase as n ∗ increases to 150 and then 
decrease from 150. The smallest values design and half highest/smallest values design 
also have values above the expected Type I error. Since the one-parameter model works 
well under the SMF, the addition of the interaction term seems to affect the model 
performance in the two-parameter case. 
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This problem exists because we ft the wrong model on the augmented data. Taking the 
half highest/smallest recovery design as a case study, there are about 700 zeros out of 
the 1000 observations scattered across the space, corresponding to the observed data. 
A selection of ones is obtained with some at the lower end of the space and some at the 
higher end. The ftted model tries to ascertain whether there is a relationship between 
the probability of being a one and the x variable. The half highest/smallest design 
shows that there seem to be two groups of ones, the frst group with higher values of x 
and the other group with smaller values of x. 

We tried to ft a functional relationship between the two variables (the binary variable 
MA and x) with a choice of a polynomial function and a linear function to see what 
happens. 

There is a connection between the interaction of x with y obtained from: 

y = β0 + β1x + e, (4.6) 

where we can obtain xy as: 

xy = β0x + β1x2 + ex. (4.7) 

The inclusion of the interaction between x and y implicitly includes a squared term of 
x, which may contribute to explaining why we have problematic Type I error rate when 
the interaction term is included. Moreover, from equation (4.7), the error term ex makes 
the variance depend on x. Multiplying the error term e by x results in heteroscedasticity 
making the variance depend on x. This violates the homoscedasticity assumption in 
regression model. This variance dependency can result in erroneous standard error 
estimates, which could result in erroneously rejecting the null hypothesis when it is 
true. The exclusion of the interaction term avoids the problem of heteroscedasticity 
resulting in a better Type I error. 

The result for comparing the models below is shown in Figure 4.7. 

Full Model is logit Pr(Mi = 1) = α0 + α1Xi + α2Xi 
2, (4.8) 

Reduced Model is logit Pr(Mi = 1) = α0 + α1Xi. (4.9) 

The Type I errors obtained for all the recovery designs are all greater than 0.05. The ran-
dom sample gave the smallest Type I errors compared to other designs, followed by the 
smallest values design. The Type I error decreases as the recovered sample increases. 
While the true model is the one in equation (4.9) the test far too often rejects this model 
in favour of the (incorrect) quadratic model for the reasons outlined in equation (4.7). 
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FIGURE 4.7: MAR Type I error plot using SMF for different recovery scenarios. 

Figure 4.8 shows the result for comparing the models below. 

Full Model is logit Pr(Mi = 1) = α0 + α1X1i + α2X3 (4.10)1i, 

Reduced Model is logit Pr(Mi = 1) = α0 + α1X1i. (4.11) 

We considered a cubic model to see if there would be a good Type I error rate compared 
to the quadratic model. Just as the quadratic of x, the cubic of x performed similarly. 
The Type I errors are all above 0.05 and the random sample designs and the smallest 
values design gave values smaller than the highest values and half highest/smallest 
designs. There is a decrease in the Type I error as the recovered sample size increases. 
For all the designs, recovering all the missing values gives the same Type I error of 
0.066. 
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FIGURE 4.8: MAR Type I error plot using SMF for different recovery scenarios. 

The above simulations show that the types of recovery designs discussed do not per-
form better than the random design, hence, a need to develop a better recovery ap-
proach that would produce better power with correct Type I error. Two such ap-
proaches will be developed in Chapters 5 and 6, respectively. 
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Chapter 5 

Selection Model Framework 

In this chapter, we formulate a consistent test for MAR vs MNAR using the recovery 
designs discussed in the previous chapter. We explore ideas from the design of experi-
ments to obtain an optimal design within a region that increases the power of the test. 
We will focus solely on the SMF test because of its natural relationship with the MDM. 

5.1 A consistent test for MAR vs MNAR 

We consider the use of a design region, where the missing values in this region would 
be augmented with the observed values in this region. The theoretical framework for 
this test and simulation study will be discussed in this section. 

Here, we consider a scenario similar to Chapter 4 with a univariate response, Y, and a 
p-dimensional covariate vector X = (X1, . . . , Xp)T, where 

Y|(X = x) ∼ N(β0 + βTx, σy 
2) , (5.1) 

with x = (x1, . . . , xp)T , β0 ∈ R and β = (β1 . . . , βp)T ∈ Rp. Let X be a random 
vector with any arbitrary joint density function f (x). For the construction of the design 
region RA, we assume that β, β0 and σ2 are all known. This assumption may be seeny 

as a restrictive assumption, however, it follows the principle of locally optimal designs 
(Chernoff, 1953). 

It is assumed that the realizations of X are always fully observed and only the response 
variable Y contains missing responses/values. Let M indicate the missing data predic-
tor that equals one if Y is missing and zero if observed. The missing data mechanism 
according to Rubin (1976) is determined by the conditional distribution of M, Pr(M = 

1|X = x, Y = y). Under MAR, we have Pr(M = 1|X = x, Y = y) = Pr(M = 1|X = x) ; 
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which implies that, given the covariates, M does not depend on Y. Under MNAR, this 
property does not hold as M conditionally depends on X and Y. 

Let’s assume the missing mechanism has the form 

g(Pr(M = 1|X = x, Y = y)) = wTλ + zTψ , (5.2) 

where g is any arbitrary link function for a generalized linear model (GLM) with a bi-
nary response, w is a q-dimensional vector whose components could depend on func-
tions of x but not y, and z is an s-dimensional vector whose components additionally 
depend on functions of y, for example an interaction xiy, and (or) a function of just y. 
Without loss of generality, we assume the frst component of w equals one; this corre-
sponds to assuming an intercept term is present in the missing mechanism. Here λ and 
ψ are the unknown vectors of coeffcients. 

Examples of g include the logit, probit, and complementary log-log link functions. Tak-
ing the inverse of the link function results in an equivalent form of (5.2) that models the 
conditional distribution directly. 

Pr(M = 1|X = x, Y = y) = g−1(wTλ + zTψ) . (5.3) 

exp(t)For the logit link function, the inverse is given by expit = . The inverse of the 1+exp(t) 
probit link function is Φ(t), where Φ(t) is the standard normal distribution function. 
The inverse of the complementary log-log model is expressed as 1 − exp(− exp(t)). 

To determine the presence of MNAR thus involves determining the value of ψ, the 
missing mechanism is MAR when ψ = 0. However, based on the original sample 
(incomplete dataset), this parameter is inestimable as Y contains missing values. 

In order to address this, the use of a two-stage experiment for the data collection would 
be deployed. The frst stage consists of a sample size n of the response variable, covari-
ates and corresponding missing indicator. Here, we shall recall the notation of Section 
4.1. y1, . . . , yn, x1, . . . , xn and m1, . . . , mn are samples of size n from the model in (5.1). 
The total number of observed cases and missing cases in the dataset are denoted as nobs 

and nmiss respectively. This implies that nmiss + nobs = n. Without loss of generality, 
suppose the dataset is sorted such that the frst nobs of y1, . . . , ynobs are observed and 
ynobs+1, . . . , yn are missing. Let DO } = {0, 0, . . . , 0} be the indica-= {Di1 , Di2 , . . . , Dinobs 

tor for the observed cases and M := {m1, m2, . . . , mnmiss } indicate the set of indices m 
whose Ym are missing at the frst stage. 

Using the notations in Section 4.1, the number of recovered responses is a proportion 
of the missing observations, n ∗ can be expressed as n ∗ = ⌈c1 · nmiss⌉ with 0 < c1 ≤ 1. 
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The choice of which responses to be recovered depends on the experimenter, resulting 
in the concept of a recovery design. 

Assuming a recovery design takes a random sample within a specifed p-dimensional 
region of the covariate space (more detail will be given in section 5.1.2), the key devel-
opments in this section are as follows. Firstly, for a missing mechanism of the form in 
(5.3) with logit link, we show that the entire sample of augmented data (i.e. observed 
plus recovered) restricted to this space maintains the expit functional form, but with a 
modifed value of λ. Secondly, for any other link function, with the same recovery de-
sign, we determine a randomly sampled pre-specifed proportion of the observed data 
restricted to this space must be taken in order to preserve the mechanism’s functional 
form. From these, we can establish the necessary properties of the statistical test, such 
as the Type I error rate, enabling it to be used with confdence. Furthermore, the in-
herent beneft of using a logit link (in the absence of evidence to support an alternative 
link) is evident. The logit link permits all augmented data within the design region 
to be used for inference while other link functions may require subsampling of the ob-
served record pool to ensure an appropriate statistical test. Deriving the relevant theory 
leads us to the third key development, which provides a framework for optimizing the 
power of the test by considering power as a function of the recovery design. 

5.1.1 A test for MNAR with logistic regression 

From the notation in Section 4.1, recall that YA := (YO, YR)T , XA := (XO, XR)T and 
MA := (MO, MR)T . For Y∗ ∈ YA, let XA 

∗
,i be the corresponding ith row in the matrix i 

XA and let M∗ ∈ MA be the corresponding indicator value. The superscript ∗ denotesi 

the augmented data. Let wi and zi be the values of w and z at observation i of the 
augmented data. A test for MNAR using the SMF fts the model below: 

T TPr(Mi 
∗ = 1|XA 

∗
,i = x, Yi 

∗ = y) = g−1(wi λA + zi ψA) . (5.4) 

The parameters λA and ψA are unknown regression coeffcients based on the aug-
mented data. The relation to the parameters λA and ψA must be determined to perform 
inference or estimate on the original parameters λ and ψ. In Section 5.1.2, it is shown 
that if the augmented data is fashioned in a particular way, for the logit link function, 
we obtain the relation ψA = ψ and λA = λ + (constant, 0, . . . , 0)T ∈ Rq; recall that 
without loss of generality it is assumed that the frst element of wi is equal to one and 
corresponds to the intercept term in the GLM. To determine the presence of MNAR or 
not involves testing the hypothesis ψA = 0. For any other link function, it is ensured 
that λ and ψ are maintained at the loss of some information. 

To perform this test, we use the likelihood ratio test. The log-likelihood ratio test statis-
tic for testing a general hypothesis ψ = ψ0 is given by 2[l(ψ̂, λ̂ A) − l(ψ0, λ̂0)], where l 
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denotes the log-likelihood function based on a sample of size nA (the number of ob-
servations in the augmented data) and (ψ̂, λ̂ A) and λ̂ 0 denotes the maximum likeli-
hood estimators under the alternative and null models, respectively. Under the null 
hypothesis, the distribution of the likelihood ratio statistic is approximated by a central 
chi-square distribution with s degrees of freedom, i.e. the classical statistical approxi-
mation. 

5.1.2 A mixture distribution for the augmented data 

There is a possibility that the distribution of the observed cases and missing cases 
would be different, hence, the augmented data is a mixture of distributions. These mix-
ture distributions comprise a weighted combination of the distribution of the observed 
data and the distribution of the missing data. Carefully constructing the marginal dis-
tributions provides an expression for the missing data mechanism in the augmented 
data. Let RA ⊆ Rp be a p-dimensional region constructed by the cartesian product of 
intervals in R of positive length. It is possible to have RA = ∏j

p 
=1[pj, qj] with pj < qj 

and pj, qj ∈ R; RA becomes a p-dimensional hypercuboid if pj and qj are fnite. How-
ever, we could also permit more general sets such as e.g. RA = ∏j

p 
=1[pj, qj] ∪ [rj, sj] 

with rj < sj and rj, sj ∈ R. The region RA will be used to instruct the recovery de-
sign D. In particular, we will only recover n ∗ missing responses Ynobs+1, . . . , Yn whose 
corresponding p-dimensional covariate vectors Xnobs+1, . . . , Xn lie within RA. For the 
random vector X = (X1, . . . , Xp) ∈ Rp introduced in Section 5.1, the intersection of 
events is defned as: 

MO := {M = 0} ∩ {X ∈ RA}

MR := {M = 1} ∩ {X ∈ RA} , 

Here, M is the missing indicator that takes value 1 when Y is missing and 0 if observed. 

It is assumed that RA can be chosen such that Pr(MO) > 0 and the region RA could 
also be chosen such that: 

Pr(MR) = c1 · Pr(M = 1). (5.5) 

The above helps to have suffcient missing cases and observed cases within the region 
where the augmented cases fall and also makes sure that the recovered sample is a 
fxed proportion c1 of the missing cases but if the recovery design involves a random 
sampling without replacement, RA is chosen such that: 

Pr(MR) ≥ c1 · Pr(M = 1). (5.6) 
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If RA = Rp is set such that Pr(MR) = Pr(M = 1), then D would be a random sample 
of size n ∗ from all the missing responses. This design is a random recovery design and 
will serve as a benchmark design. 

From the observed data whose covariates lie within RA, we introduce the capability 
of bringing a random sample of a particular proportion into the augmented data. As 
a result, let 0 < c2 ≤ 1 be the proportion of observed data whose covariates lie within 
RA that are used within the augmented data. If c2 = 1, then all of the observed obser-
vations that lie in RA will be used. If c2 = 0.6, then 60% of observed data lying within 
RA is included in the augmented data, provided they are sampled randomly from all 
the observed covariates that are contained in RA. If c2 is chosen carefully, the original 
missing mechanism can be maintained in the augmented data for any GLM link func-
tion. With this framework, we derive the following: 

Defnition 5.1. Let MA be the missing indicator variable in the augmented data that 
takes values 0 when Y is observed and 1 when Y is missing. MA satisfes: ⎧

Pr(M = 1)⎪1 with probability 
c1 ·⎨ c1 · Pr(M = 1) + c2 · Pr(MO)MA = (5.7) 

c2 · Pr(MO)⎪0 with probability .⎩ c1 · Pr(M = 1) + c2 · Pr(MO) 

Proof of 5.1 

If (5.5) holds and c2 = 1, MA = M|{MO ∪MR}. 

Pr(MA = 1) = Pr(M = 1|{MO ∪MR}) 
Pr({M = 1} ∩ {MO ∪MR}) = 

Pr({MO ∪MR}) 
Pr({M = 1} ∩ {MO ∪MR}) = 

Pr({M = 1} ∩ {MO ∪MR}) + Pr({M = 0} ∩ {MO ∪MR})) 
Pr({M = 1} ∩MR) = 

Pr({M = 1} ∩MR) + Pr({M = 0} ∩MO)) 

c1 · Pr(M = 1) 
= . 

c1 · Pr(M = 1) + Pr(MO) 

If condition (5.6) holds rather than condition (5.5) and c2 is not necessarily equal to one, 
then we need to modify the claim MA = M|{MO ∪MR} to account for the random 
subsample in the observed and recovered data. Let U be a uniform random variable 
on [0, 1] and defne the event B = {U ≤ c1 · Pr(M = 1)/Pr(MR)}. Then MA = 
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M|{{MO ∩ {U ≤ c2}} ∪ {MR ∩ B}}. 

Pr(MA = 1) = Pr(M = 1|{{MO ∩ {U ≤ c2}} ∪ {MR ∩ B}}) 
Pr({M = 1} ∩ ({MO ∩ {U ≤ c2}} ∪ {MR ∩ B}})) 

= 
Pr(MO ∩ {U ≤ c2} ∪ {MR ∩ B}) 

Pr({M = 1} ∩ {MR ∩ B}) 
= 

Pr(MO ∩ {U ≤ c2}+ Pr{MR ∩ B}) 
Pr(B)Pr({M = 1} ∩MR}) = 

c2 · Pr(MO) + c1 · Pr(M = 1) 
c1 · Pr(M = 1)

since Pr(B) = and Pr({M = 1} ∩MR}) = Pr(MR)Pr(MR) 

c1 · Pr(M = 1)
Pr(B)Pr({M = 1} ∩MR}) = · Pr(MR)Pr(MR) 

= c1 · Pr(M = 1) 
c1 · Pr(M = 1)

Pr(MA = 1) = . 
c1 · Pr(M = 1) + c2 · Pr(MO) 

Accordingly, defne the random variables and random vectors 

YO := Y |MO; YR := Y |MR; XO := X |MO; XR := X |MR . 

Defnition 5.2. The augmented response denoted as YA and augmented covariate XA 

are realizations from random variable/vector: 

YA := (1 − MA)YO + MAYR (5.8) 

XA := (1 − MA)XO + MAXR . (5.9) 

These expressions are constructed according to how the augmented data are con-
structed, being a combination of observed responses and recovered responses. 

Using the above defnitions, we state the key theorem, followed by two corollaries, 
below. 

Theorem 5.3. For 0 < c1 ≤ 1 and 0 < c2 ≤ 1, provided RA satisfes (5.5) or (5.6), then for 
x := (x1, . . . , xp) the missing data mechanism in the augmented data has the following form. 
For x ∈ RA and any link function g: 

c ∗Pr(M = 1|X = x, Y = y)
Pr(MA = 1 | XA = x, YA = y) = , 

c ∗Pr(M = 1|X = x, Y = y) + Pr(M = 0|X = x, Y = y) 

c1·Pr(M=1)where c ∗ = . Otherwise, the probability is zero. c2·Pr(M=1,X∈RA) 
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Proof of Theorem 

For x ∈ RA: 

We start by considering the probability of observing XR and YR in a small region dx 
and dy respectively, restricted to the region RA: 

Pr(X ∈ dx, Y ∈ dy, MR)Pr(XR ∈ dx, YR ∈ dy) = 
Pr(MR) 

Pr(X ∈ dx, Y ∈ dy, M = 1) 
= .

Pr(MR) 

Mathematically, Pr(XR ∈ dx) = f (x)dx, where f (x) represents the probability density 
function of XR, dx and dy are infnitesimally small intervals around the variables X and 
Y, respectively. 

Similarly, the probability for the observed cases is: 

Pr(X ∈ dx, Y ∈ dy, M = 0)
Pr(XO ∈ dx, YO ∈ dy) = .

Pr(MO) 

The conditional probability Pr(MA = 1 | YA = y, XA = x) using Bayes’ theorem is 
given by: 

Pr(MA = 1, XA ∈ dx, YA ∈ dy)
Pr(MA = 1 | YA = y, XA = x) = 

Pr(XA ∈ dx, YA ∈ dy) 
Pr(MA = 1)Pr(XR ∈ dx, YR ∈ dy) 

= 
Pr(XA ∈ dx, YA ∈ dy) 

Pr(XR ∈ dx, YR ∈ dy) 
= Pr(MA = 1) × .

Pr(XA ∈ dx, YA ∈ dy) 

Defne: 

Pr(MA = 1)Pr(M = 1 | X = x, Y = y)Pr(Y ∈ dy | X = x)Pr(X ∈ dx)
A = 

Pr(MR) 

Pr(MA = 0)Pr(M = 0 | X = x, Y = y)Pr(Y ∈ dy | X = x)Pr(X ∈ dx)
B = .

Pr(MO) 

Thus: 

Pr(MA=1)Pr(M=1|X=x,Y=y)Pr(X∈dx,Y∈dy) 
Pr(MR)Pr(MA = 1 | YA = y, XA) = 
A + B 

Multiply all through by Pr(MR) to get: 

Pr(MA = 1)Pr(M = 1|X = x, Y = y)Pr(X ∈ dx, Y ∈ dy)
Pr(MA = 1|YA = y, XA) = 

C + D 
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where, 

C = Pr(MA = 1)Pr(M = 1|X = x, Y = y)Pr(X ∈ dx, Y ∈ dy) 
Pr(MR)D = Pr(MA = 0)Pr(M = 0|X = x, Y = y)Pr(X ∈ dx, Y ∈ dy) .
Pr(MO) 

Divide all through by Pr(X ∈ dx, Y ∈ dy) and Pr(MA = 1), 

Therefore we have: 

Pr(M = 1|X ∈ dx, Y = y)Pr(M = 0, X ∈ RA) 
Pr(MA=0)Pr(M = 1|X = x, Y = y)Pr(MO) + · Pr(MR) · Pr(M = 0|X = x, Y = y)Pr(MA=1) 

which simplifes to: 

Pr(M=1|X=x,Y=y)·Pr(MO) (5.10)Pr(MA=0)Pr(M=1|X=x,Y=y)·Pr(MO)+ ·Pr(MR)·Pr(M=0|X=x,Y=y)Pr(MA=1) 

From Defnition 5.1, the following relation can be obtained: 

c2 · Pr(MO) 

Pr(MA = 0) c1 · Pr(M = 1) + c2 · Pr(MO) = 
Pr(MA = 1) c1 · Pr(M = 1) 

c1 · Pr(M = 1) + c2 · Pr(MO) 

Pr(MA = 0) c2 · Pr(MO) = .
Pr(MA = 1) c1 · Pr(M = 1) 

Substitute this in 5.10 to obtain: 

Pr(M = 1|X = x, Y = y)Pr(MO) ,·Pr(MO)Pr(M = 1|X = x, Y = y)Pr(MO) + c2 · Pr(MR) · Pr(M = 0|X = x, Y = y)c1·Pr(M=1) 

Divide through by Pr(MO) to obtain: 

Pr(M = 1|X = x, Y = y) 
,

c2·Pr(MR)Pr(M = 1|X = x, Y = y) + · Pr(M = 0|X = x, Y = y)c1·Pr(M=1) 

·Pr(M=1)Multiply through by c1 ,c2·Pr(MR) 

c ∗Pr(M = 1|X = x, Y = y)
Pr(MA = 1|XA = x, YA = y) = 

c ∗Pr(M = 1|X = x, Y = y) + Pr(M = 0|X = x, Y = y) 

where, 
c1 · Pr(M = 1)∗c = . (5.11)

c2 · Pr(MR) 
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Which concludes the proof of Theorem 5.3. 

An important corollary of this theorem is: 

Corollary 5.4. Under the conditions of Theorem (5.3), provided 

c1 · Pr(M = 1)
c2 = ,

Pr(M = 1, X ∈ RA) 

then for x ∈ RA, we have Pr(MA = 1 | XA = x, YA = y) = Pr(M = 1 | X = x, Y = y), 
otherwise zero. 

Given a recovery proportion c1, Corollary 5.4 provides the value of c2, the proportion 
of observed data lying in RA to randomly sample when constructing the augmented 
data, in order to maintain the original missing mechanism. If c2 does not satisfy the 
requirements of Corollary 5.4, then c ∗ ̸= 1 in Theorem 5.3 and there is no cancella-
tion. Consequently, the true missing mechanism in the augmented data will not be of 
any well-known GLM form and therefore obtaining estimates for the parameters and 
testing the presence of MNAR becomes more complicated. One could build a custom 
link function from Theorem 5.3, however easy implementation and the loss of opti-
mized procedures that are present in statistical software packages for well-known link 
functions will likely make analysis cumbersome. An exception to this is the logit link 
function which maintains the same form regardless of the choice of c2. This is a conse-
quence of the following corollary. 

Corollary 5.5. If the original missing data mechanism utilizes the logit link function: 

exp(wTλ + zTψ)
Pr(M = 1 |Y = y, X = x) = ,

1 + exp(wTλ + zTψ) 

then for all x ∈ RA and any c2, the missing mechanism in the augmented data has the form 

exp(wTλA + zTψ)
Pr(MA =1 |YA =y, XA = x) = ,

1 + exp(wTλA + zTψ) 

with λA = λ + (log(c ∗), 0, . . . , 0)T ∈ Rq. 

While Corollary 5.5 assumes an MNAR mechanism, it also holds under MAR as ψ 

can equal 0. The interpretation of Corollary 5.5 is as follows. If the recovery design 
is a random sample of the missing responses Ynobs+1, . . . , Yn whose covariate vectors 
Xnobs+1, . . . , Xn lie within RA, and we augment our recovered data with the observed 
data whose p-dimensional covariate vectors also lie within RA, then only the intercept 
in the missing mechanism’s linear predictor changes regardless of whether the mech-
anism is MAR or MNAR. In particular, the coeffcients in front of terms involving y in 
the augmented data are the same as its counterpart based on the full sample, permit-
ting MNAR’s presence to be reliably inferred using the augmented sample. 
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Since in Corollary 5.5, c2 can take any value in the interval (0, 1], when considering 
the logit link function we will set c2 = 1. This results in more observations in the 
augmented data and the variance of estimators is reduced. For any other link function, 
we will assume c2 is obtained from Corollary 5.4. 

5.1.3 A special case of Corollary 5.5 

In this section, we consider a simple example of Corollary 5.5 to help illustrate the re-
sult. We will set c2 = 1 with p = 1 covariate and recover the missing values that fall 
within an interval; the recovery region RA becomes [a, b]. This section is also used 
to highlight the potential for increasing the power of the test for MNAR. If changing 
the interval impacts the power of the test (hopefully improving), then we can explore 
methods for selecting the interval, rather than just arbitrarily. In this section, we rede-
fne the designs as follows: 

1. Highest Design: select c1 highest x values and augment with the observed cases 
that fall in the recovery interval. 

2. Smallest Design: select c1 smallest x values and augment with the observed cases 
that fall in the recovery interval. 

3. Half Highest/Half Smallest Design: select c1 highest x values and c1 smallest x2 2 

values. The c1 recovered cases and the observed cases that fall in the recovery 
interval form the augmented data. 

When considering the highest, smallest and half highest/half smallest designs, by con-
struction we have Pr(MR) = c1 · Pr(M = 1). Using (5.11), this results in c ∗ = 1 and 
log(c ∗) = 0, therefore, no change or shift is seen in the intercept. This will be demon-
strated in the example below. 

Generate n observations from a normal distribution in the following way: 

X ∼ N(5, 1), 

Y|X ∼ N(1 + 2x, 4). 

Approximately 30% missing values were introduced using equation (3.3) with α0 = −3 
and α1 = 0.42 for MAR and equation (3.4) with α0 = −5 and α1 = 0.358 for MNAR. The 
interval a < X < b was used to recover some missing values in the data. a and b are 
real values, in this case, the quantiles of the missing values were used. The augmented 
data consists of the missing values and observed values that fall within this interval. 
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Tables 5.1 and 5.2 show the model coeffcients for MNAR and MAR respectively. A 
sample size of 1000000 was used with approximately 30% missing values, the recov-
ered samples were selected from the missing data X′s that falls within a < X < b, 
the observed values based on x that falls within this range were augmented with the 
recovered samples. A logistic regression model was ftted on the augmented data and 
the effect on power and Type I error was studied. 

In Table 5.1, the model coeffcients for MNAR (−5 + 0.358y) and the expected value of 
intercept + log(c ∗) are shown. For random sample design, log(c ∗) changes for differ-
ent recovered proportions. The intercepts approximate the expected value and showed 
that a shift of log(c ∗) was seen. The coeffcient of x is approximately 0 for all the pro-
portions and the coeffcient of y reduces and tends to the true value of 0.358 as the 
recovered proportion increases. The highest design shows that there is no shift in the 
intercept, and the coeffcients approximate the true values. The smallest design and 
half highest/smallest design also show the same result as the highest design. The coef-
fcients of x are approximately 0 and the coeffcients of y approximate 0.358. 
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TABLE 5.1: MNAR Model Coeffcients 

Design Recovered Proportion α0 + α1x + α2y -5 + log(c∗) 

Random 0.1 -7.357-0.0028x+0.364y -7.303 
0.2 -6.621-0.0081x+0.362y -6.609 
0.3 -6.205-0.0084x+0.362y -6.204 
0.4 -5.909-0.0062x+0.360y -5.916 
0.5 -5.682-0.0067x+0.360y -5.693 
0.6 -5.500-0.0074x+0.360y -5.511 
0.7 -5.348-0.0046x+0.359y -5.357 
0.8 -5.212-0.0041x+0.359y -5.223 
0.9 -5.094-0.0039x+0.359y -5.105 
1.0 -4.994-0.0023x+0.359y -5.00 

Highest 0.1 -4.987-0.0012x+0.358y -4.999 
0.2 -5.030-0.0002x+0.360y -4.999 
0.3 -4.992-0.0033x+0.359y -4.999 
0.4 -5.008-0.0021x+0.358y -4.999 
0.5 -4.973-0.0073x+0.359y -4.999 
0.6 -4.969-0.0056x+0.358y -4.999 
0.7 -4.980-0.0043x+0.359y -5.00 
0.8 -4.986-0.0030x+0.358y -4.999 
0.9 -5.006-0.0005x+0.359y -4.999 
1.0 -4.994-0.0023x+0.359y -5.00 

Smallest 0.1 -4.972-0.0043x+0.358y -4.999 
0.2 -4.921-0.0225x+0.359y -4.999 
0.3 -4.957-0.0119x+0.359y -4.999 
0.4 -4.974-0.0077x+0.359y -4.999 
0.5 -4.987-0.0025x+0.358y -4.999 
0.6 -5.002-0.0015x+0.359y -4.999 
0.7 -4.995-0.0017x+0.359y -4.999 
0.8 -4.997-0.0011x+0.358y -4.999 
0.9 -4.993-0.0025x+0.359y -4.999 
1.0 -4.994-0.0023x+0.359y -5.00 

Half Highest/Smallest 0.1 -4.977+0.0007x+0.357y -5.00 
0.2 -4.982-0.0016x+0.358y -5.00 
0.3 -4.983-0.0056x+0.359y -5.00 
0.4 -4.994-0.0044x+0.359y -5.00 
0.5 -4.994-0.0031x+0.359y -5.00 
0.6 -4.994-0.0029x+0.359y -5.00 
0.7 -4.991-0.0005x+0.358y -5.00 
0.8 -4.992-0.0022x+0.358y -5.00 
0.9 -4.995-0.0032x+0.359y -5.00 
1.0 -4.994-0.0023x+0.359y -5.00 

The model coeffcients for MAR (−3 + 0.42x) are shown in Table 5.2. For the random 
design, the coeffcients are close to the true and expected values, the intercepts are close 
to the expected value of intercept + log(c ∗). The coeffcient of y is approximately 0 and 
the coeffcient of x is very close to 0.42, as the sample size increases, the coeffcients of x 
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get closer to the true value. The highest design, smallest design and half highest/small-
est design all performed similarly with no change in the intercept and the coeffcients 
of x and y approximate their true values. 

TABLE 5.2: MAR Model Coeffcients 

Design Recovered Proportion α0 + α1x + α2y -3 + log(c∗) 

Random 0.1 -5.252+0.402x+0.0039y -5.303 
0.2 -4.586+0.414x+0.0008y -4.609 
0.3 -4.178+0.411x+0.0018y -4.204 
0.4 -3.885+0.412x+0.0010y -3.916 
0.5 -3.671+0.413x+0.0011y -3.693 
0.6 -3.496+0.416x+0.0005y -3.511 
0.7 -3.341+0.416x+0.0002y -3.357 
0.8 -3.210+0.415x+0.0011y -3.223 
0.9 -3.088+0.414x+0.0010y -3.105 
1.0 -2.984+0.415x+0.0009y -3.00 

Highest 0.1 -2.901+0.400x+0.0023y -2.999 
0.2 -2.888+0.406x-0.0016y -2.999 
0.3 -2.901+0.409x-0.0021y -2.999 
0.4 -2.991+0.419x-0.0007y -2.999 
0.5 -2.964+0.415x-0.0005y -3.00 
0.6 -2.974+0.416x-0.0004y -2.999 
0.7 -2.966+0.413x+0.0004y -2.999 
0.8 -2.981+0.416x+0.0003y -2.999 
0.9 -2.984+0.417x+0.0001y -2.999 
1.0 -2.984+0.415x+0.0009y -3.00 

Smallest 0.1 -3.060+0.424x+0.0064y -2.999 
0.2 -3.007+0.417x+0.0028y -2.999 
0.3 -2.985+0.413x+0.0018y -2.999 
0.4 -2.999+0.415x+0.0024y -2.999 
0.5 -2.992+0.414x+0.0020y -3.00 
0.6 -2.999+0.417x+0.0017y -2.999 
0.7 -2.981+0.412x+0.0019y -2.999 
0.8 -2.987+0.415x+0.0014y -2.999 
0.9 -2.990+0.416x+0.0008y -2.999 
1.0 -2.984+0.415x+0.0009y -3.00 

Half Highest/Smallest 0.1 -2.989+0.401x+0.0072y -2.999 
0.2 -2.983+0.406x+0.0048y -3.00 
0.3 -2.983+0.410x+0.0031y -3.00 
0.4 -2.984+0.415x+0.0010y -3.00 
0.5 -2.987+0.416x+0.0006y -3.00 
0.6 -2.987+0.417x+0.0002y -2.999 
0.7 -2.985+0.415x+0.0092y -2.999 
0.8 -2.984+0.415x+0.0011y -2.999 
0.9 -2.984+0.415x+0.0007y -2.999 
1.0 -2.984+0.415x+0.0009y -3.00 

The MAR Type I error for four different designs is shown in Figure 5.1, the random 
design has a Type I error of less than or approximately 0.05 for all the recovered pro-
portions. All other designs have approximately 0.05 Type I error values. Figure 5.3 
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shows the power for the different designs. The random and smallest designs give the 
highest power values while the highest design has the least power. 

FIGURE 5.1: MAR Type I error plot using SMF for different recovery scenarios. 

FIGURE 5.2: MNAR power plot using SMF for different recovery scenarios. 

Figure 5.3 shows the power analysis for MNAR of type −3 + 0.19y, the random design 
gives the best power values at all recovered proportions. The smallest design performs 
better than the highest and the half highest/smallest designs. The highest design per-
forms least of all the designs. 
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FIGURE 5.3: MNAR power plot using SMF for different recovery scenarios. 

Results from simulations above showed that sampling within a restricted region cor-
rects the Type I error problem seen in Chapter 4. In the following Sections, we fnd an 
optimal design that leads to better power than the random design. 

5.2 Optimal design 

In this section, we explore ideas from optimal experimental design to increase the 
power of the test. The main idea is to choose the region RA that minimises the (asymp-
totic) variance of the maximum likelihood estimator for the parameter of interest. 

5.2.1 Designing region RA 

5.2.1.1 Approximating the deviance by a non-central χ2 distribution 

Using the conditions of Theorem 5.3, Corollary 5.4 and Corollary 5.5. Assuming the 
logit link function, then c2 = 1 and have λA = λ + (log(c ∗), 0, . . . , 0)T and ψA = ψ. 
For any other link function, c2 is determined from Corollary 5.4 and have λA = λ and 
ψA = ψ. To maximize the power of the likelihood ratio test for ψ = 0 as described in 
Section 5.1.1, is equivalent to testing between MAR (Null) and MNAR (Alternative), 
we thereby integrate the results of Self et al. (1992). The main focus of this section is 
to approximate the power of the likelihood ratio test by approximating the distribu-
tion of the log-likelihood ratio statistic with a non-central chi-square distribution with 
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s degrees of freedom. The non-centrality parameter used in the approximation is com-
puted by equating the expected value of a non-central chi-square random variable to 
an approximation of the expected value of the likelihood ratio statistic, which involves 
taking the expected value of lead terms in an asymptotic expansion of the likelihood 
ratio statistic. The technique of Self et al. (1992) is adopted to decompose the likelihood 
ratio statistic into the following three components: 

2[l(ψ̂, λ̂ A) − l(ψ0, λ̂0)] = 2[l(ψ̂, λ̂ A) − l(ψ, λA)] − 2[l(ψ0, λ̂0) − l(ψ0, λ0 
∗)] 

+ 2[l(ψ, λA) − l(ψ0, λ0 
∗)] , (5.12) 

where λ0 
∗ is the limiting value of λ̂ 0 and is given in Defnition 5.6 below. The asymptotic 

expansion of the frst component in (5.12) was considered in Cordeiro (1983). Taking 
only the lead term in this expansion results in an approximate expected value for the 
frst component in (5.12) of q + s. The expected value of the lead term in this expansion 
of the second component in (5.12) is equal to the trace of the matrix U given by 

⎡ ⎤{ [ ]}−1 ( )( )T 
∂2l(ψ, λA) ⃓⃓ ∂l(ψ, λA) ⃓⃓ ∂l(ψ, λA) ⃓⃓⃓ ⎣ ⃓ ⃓ ⎦U = E − E .⃓ ⃓ ⃓∂λ2 ∂λA ∂λAA (ψ0,λ0 

∗) (ψ0,λ∗
0 ) (ψ0,λ0 

∗) 

In Self et al. (1992), formulae for computing U are provided for generalized linear mod-
els. Here, we will derive the results for the specifc case of a logit model, but other link 
functions can easily be considered. We obtain from Self et al. (1992, p. 33): [ ⃓ ]

nA∂2l(ψ, λA) ⃓ exp(θ∗⃓ i ) TE −
(1 + exp(θ∗∑ 

i ))
2 wiwi= 

∂λ2 
A 

⃓
(ψ0,λ0 

∗) i=1 

and ⎡ ⎤( ⃓ )( ⃓ )T nA∂l(ψ, λA) ⃓ ∂l(ψ, λA) ⃓⃓ ⃓ exp(θi) 

(1 + exp(θi))2 wiwi⎣ ⎦ T∑E ⃓ ⃓ = ,
∂λA ∂λA(ψ0,λ0 

∗) (ψ0,λ0 
∗) i=1 

T T Twhere θ∗ = wi λ0 
∗ and θi = wi λA + zi ψ.i 

The expected value of the third component in (5.12), denoted by ∆, can be calculated 
exactly. For the logit link function, it is given by { ( )}nA exp(θi) 1 + exp(θi)(θi − θi 

∗) − log∑∆ = 2 .
1 + exp(θi 

∗)1 + exp(θi)i=1 

Since the expected value of a non-central chi-square random variable with s degrees 
of freedom and non-centrality parameter γ is s + γ, using the recommendation of 
Self et al. (1992), we approximate the distribution of the likelihood ratio statistic by a 
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non-central chi-square distribution with non-centrality parameter q + ∆ − tr(U). 

To compute U and ∆, one has to know the limiting value of λ̂ 0. For an arbitrary link 
function g, we can appeal to the following defnition. 

Defnition 5.6. The limiting value of λ̂ 0, that is λ0 
∗, minimizes the Kullback-Leibler 

divergence between the alternative and null models assuming the alternative model is 
true. Consequently, it satisfes: [ ( )

g−1(WTλA + ZTψ)
arg min E1 g−1(WTλA + ZTψ) log

λ∗ g−1(WTλ∗
0 0)( ) ]

1 − g−1(WTλA + ZTψ)
+ (1 − g−1(WTλA + ZTψ)) log ,

1 − g−1(WTλ∗
0) 

where the capitalization W and Z emphasizes that the elements of w and z are now 
functions of the random variables defned in Defnition 5.2, E1 denotes expectation 
under the alternative model and is taken with respect to XA and YA. 

To compute the expectation with respect to XA and YA, one can exploit the forms of 
(5.8) and (5.9). After conditioning on MA = 1 and MA = 0, one needs to know the joint 
distributions of (XR, YR) and (XO, YO) respectively to compute the required expecta-
tion. 

Lemma 5.7. For x ∈ RA: 

Pr(M = 1 | X = x, Y = y)Pr(Y ∈ dy | X = x)Pr(X ∈ dx)
Pr(XR ∈ dx, YR ∈ dy) = 

Pr(MR) 

Pr(M = 0 | X = x, Y = y)Pr(Y ∈ dy | X = x)Pr(X ∈ dx)
Pr(XO ∈ dx, YO ∈ dy) = ,

Pr(MO) 

otherwise zero. Here, dx = (dx1, . . . , dxp) is a vector of infnitesimals and the relation 
Pr(Y ∈ dy | X = x) can be obtained from (5.1). 

The matrix A and scalar ∆ are random quantities since they depend on wi. However, 
by the law of large numbers, for the logit model as nA → ∞ : [ ]nA1 exp(θi 

∗) exp(θ∗)
∑ T → E WWT 

nA (1 + exp(θi 
∗))2 wiwi (1 + exp(θ∗))2 

i=1 [ ]nA1 exp(θi) exp(θ)
∑ T → E WWT , 

nA (1 + exp(θi))2 wiwi (1 + exp(θ))2 
i=1 

where θ∗ = WTλ0 
∗ and θ = WTλA + ZTψ. 

Therefore, for nA suitably large, we propose replacing each term in A with their lim-
iting forms. We also suggest replacing ∆ with E∆ (although this expectation will be 
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dropped from notation). The expectations can be computed by averaging over XA us-
ing Lemma 5.7. 

We now propose two similar algorithms for choosing our recovery design. The frst 
algorithm will be aimed at GLMs with an arbitrary link function whereas the second 
will focus only on the case of the logit link, which has the appealing property alluded to 
in Corollary 5.5. For simplicity, we only consider RA taking the form of a p-dimensional 
cuboid. 

Algorithm 1 Algorithm 1a (General Link Function) 

1: Input: 0 < c1 ≤ 1 and Corollary 5.4. 
2: Output: Recovery design D. 
3: Initialization: 
4: Determine c2 from Corollary 5.4. 
5: Steps: 
6: Select the p-dimensional cuboid RA such that the noncentrality parameter q + ∆ −

tr(U) is maximized, subject to the constraints: 

• Pr(MR) ≥ c1 · Pr(M = 1) 

• Pr(MO) > 0 

7: Construct the recovery design D consisting of: 

• A random sample of n ∗ points within RA. 

• A random sample containing c2 × 100% of the observed data within RA. 

8: Return: Recovery design D. 

Algorithm 2 Algorithm 1b (Logit Link Function) 

1: Input: Value 0 < c1 ≤ 1. 
2: Output: Recovery design D. 
3: Initialization: 
4: Set c2 = 1. 
5: Steps: 
6: Select the p-dimensional cuboid RA such that the noncentrality parameter q + ∆ −

tr(U) is maximized, subject to the constraints: 

• Pr(MR) ≥ c1 · Pr(M = 1) 

• Pr(MO) > 0 

7: Construct the recovery design D consisting of: 

• A random sample of n ∗ points within RA. 

• All of the observed data within RA. 

8: Return: Recovery design D. 

In practice, implementing Algorithm 1a and 1b (in both cases) will likely lead to locally 
optimal solutions. Furthermore, in a fnite regime, there will likely be scenarios where 
RA includes slightly fewer points than n ∗. In this case, we recommend uniform en-
largement until n ∗ points lie within RA. 
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5.2.2 Minimizing asymptotic variance 

An alternative approach to design the region RA is explored here and optimizes the 
power of the SMF test (5.4). This method is more in line with classical design theory, 
in particular D1-optimality. The derivations here only permit scalar ψ. Accordingly, 
we only consider w and z of the form w = (1, x1, . . . , xp)T and z = (y). Note, under 
regularity conditions, the MLE of α := (λA, ψ)T satisfes 

d
(α̂ − α) → N(0, I−1(α)) as nA → ∞ , (5.13) 

where nA is the number of observations in the augmented data and I(α) is the ob-
served Fisher Information matrix of α. A design that provides the most precise infor-
mation about αp+1, the coeffcient of y, leads to higher power (asymptotically) for the 
SMF test in (5.4) among MLEs, is one that minimizes the (asymptotic) variance of α̂ p+1 

or, equivalently, I−1(α)[p + 1, p + 1], the (p + 1)th diagonal element of I−1(α). Atkin-
son and Fedorov (1975) showed that, for completely observed data, this approach and 
maximizing the asymptotic power of the test that the coeffcient of interest is zero are 
equivalent. 

Inverting I(α) can be computationally expensive and unnecessary since only the last 
diagonal element is of interest. 

by appealing to Cramer’s rule to obtain 

I−1(α)[p + 1, p + 1] = det(Ip(α))/det(I(α)) , (5.14) 

where Ip(α) is the p × p submatrix of I(α) comprising its frst p rows and columns. 

I(α) satisfes I(α) = −E[H(l(α))] where H is the Hessian and l is the log-likelihood 
function of the augmented data. By considering missing mechanisms of the form (5.5), 
its properties (continuity, differentiability, and being bounded on (0, 1)) mean we can 
take the expectation within the Hessian. Exploiting independent and identically dis-
tributed observations, we obtain: [ ]( (

I(α) = −H E[nA]·E MA log g−1(WTλA + ZTψA) [ ] ))
+(1 − MA) log 1 − g−1(WTλA + ZTψA) . (5.15) 

One can also show that E[nA] = n · (c1Pr(M = 1) + c2Pr(MO)). 

For the logit link function, we have λA = λ + (log(c ∗), 0, . . . , 0)T and ψA = ψ. Oth-
erwise, provided we operate under the conditions of Corollary 5.4 and choose c2 ac-
cordingly, we have for any other link function, λA = λ and ψA = ψ. To compute 
expectations in (5.15), we appeal to Lemma 5.7. 
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We now propose an alternative algorithm to Algorithm 1a and 1b. Again, for simplicity, 
we only consider RA taking the form of a p-dimensional cuboid and divide the new 
Algorithm into two parts depending on what link function is used. The simulation 
study in this research is focused on the logit link function. 

Algorithm 3 Algorithm 2a (Arbitrary Link Function) 

1: Input: 0 < c1 ≤ 1 and Corollary 5.4. 
2: Output: Recovery design D. 
3: Initialization: 
4: Determine c2 from Corollary 5.4. 
5: Steps: 
6: Select the p-dimensional cuboid RA such that the right-hand side of (5.14) is mini-

mized, subject to the constraints: 

• Pr(MR) ≥ c1 · Pr(M = 1) 

• Pr(MO) > 0 

7: Construct the recovery design D consisting of: 

• A random sample of n ∗ points within RA. 

• A random sample containing c2 × 100% of the observed data within RA. 

8: Return: Recovery design D. 

Algorithm 4 Algorithm 2b (Logit Link Function) 

1: Input: Value 0 < c1 ≤ 1. 
2: Output: Recovery design D. 
3: Initialization: 
4: Set c2 = 1. 
5: Steps: 
6: Select the p-dimensional cuboid RA such that the right-hand side of (5.14) is mini-

mized, subject to: 

• Pr(MR) ≥ c1 · Pr(M = 1) 

• Pr(MO) > 0 

7: Construct the design D consisting of: 

• A random sample of n ∗ points within RA. 

• All the observed data within RA. 

8: Return: Recovery design D. 

5.2.2.1 Single Covariate 

For a single covariate (p = 1), consider the following different MNAR cases. For each 
example, all values are chosen to introduce circa 30% missingness in Y. 

Case 1. Generate 1000 points following a simple linear regression model in 10000 repli-
cates: 

Y|(X = x) ∼ N(2 − 2x, 4) , 
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with X ∼ N(0, 16). Introduce MNAR missingness into y using: 

exp(−2 + 0.4x − 0.13y)
P(M = 1|Y = y, X = x) = . 

(1 + exp(−2 + 0.4x − 0.13y)) 

We apply test (5.4) and test the hypothesis H0 : ψ = 0 to obtain the MSE and power 
for the random design and optimal design. Figure 5.4 shows the mean squared error 
(MSE) of the MLE, ψ̂ , and the power of test (5.4) is shown in Figure 5.5, for different 
recovery proportions, c1 (called c in what follows for simplicity), under designs 
constructed from Algorithm 2b (red dashed line). We use Algorithm 2b because the 
link function is logistic. Algorithm 2 is slightly cheaper and simpler to execute than 
Algorithm 1 for this example. We also present equivalent results from randomly 
recovered observations, i.e. RA = R (solid black). As c increases, the MSE reduces as 
shown in Figure 5.4. The optimal design has a smaller MSE than the random design. 
In Figure 5.5, the power values are shown. The power increases as c increases and the 
optimal design has powers slightly above the random design. 

FIGURE 5.4: MSE comparison between random design and optimal design for p = 1 
case 1. 
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FIGURE 5.5: Power comparison between random design and optimal design for p = 1 
case 1. 

Case 2. In the example below, the variance of the covariate X is reduced from 16 to 1, 
and the mean of the response variable Y|X changes from 2 − 2x to 1 + 2x, in order to 
examine whether there will be a difference in the results when comparing the MSE and 
power of the two designs. These values are used to ensure that there are approximately 
30% missing values in Y. 

n = 1000 points were generated as follows: 

Y|(X = x) ∼ N(1 + 2x, 4) , 

with X ∼ N(5, 1). Introduce MNAR missingness into the model using: 

exp(0.89 − 0.15y)
P(M = 1|Y = y, X = x) = .

1 + exp(0.89 − 0.15y) 

The SMF test was applied and the hypothesis H0 : ψ = 0 was tested to obtain the MSE 
and power for the random design and optimal design. 

For this case, the MSE and Power for random design and optimal design for different 
values of c are shown in Figures 5.6 and 5.7 respectively. As c increases, the MSE re-
duces as shown in Figure 5.6. The random design has a higher MSE than the optimal 
design. In Figure 5.7, the optimal design has higher power than the random design. 
The power increases as c increases. 

https://exp(0.89
https://exp(0.89
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FIGURE 5.6: MSE comparison between random design and optimal design for p = 1 
case 2. 

FIGURE 5.7: Power comparison between random design and optimal design for p = 1 
case 2. 

5.2.2.2 Multiple Covariates 

For p = 2, generate 1000 points following a simple linear regression model in 10000 
replicates: 

Y|(X1 = x1, X2 = x2) ∼ N(2 − 2x1 + 2x2, 4) , 
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with X1 ∼ N(0, 16) and X2 ∼ N(2, 4). Introduce MNAR missingness into the model 
using: 

exp(−2 + 0.4x1 + 0.2x2 − 0.15y)
P(M = 1|Y = y, X = x) = .

1 + exp(−2 + 0.4x1 + 0.2x2 − 0.15y) 

For this case, Using these parameters above introduce about 30% missing values in 
Y. The optimal design performs better than the random design. In Figure 5.8, as c 
increases, the MSE reduces for both designs with the optimal design having the smaller 
MSE at all values of c. As shown in Figure 5.9, the power increases as c increases, the 
random design has smaller power than the optimal design. An upward trend can be 
seen for the power for both designs and a downward trend for the MSE. 

FIGURE 5.8: MSE comparison between random design and optimal design when p = 
2. 
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FIGURE 5.9: Power comparison between random design and optimal design when 
p = 2. 

Figures 5.10 and 5.11 show the missing, observed and recovered data for p = 2 when 
c = 0.2 and 0.9 respectively. The green rectangles in the fgures represent the regions 
RA, the red and blue points represent (x1, x2) that are observed and missing respec-
tively. From both fgures below, increasing c from 0.2 to 0.9 extends the recovery region 
to the right but not the left. This leads to an increase in the dimension on the X1 axis 
while the dimension does not change on the X2 axis. It leaves out the extremes of the 
distributions. 

FIGURE 5.10: Region RA for c = 0.2. 
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FIGURE 5.11: Region RA for c = 0.9. 

5.3 Assessing the robustness 

This Section examines the robustness of the proposed design methodology. In the de-
rived methodology, we assume that the potential MNAR mechanism, the regression 
model and its parameters are known. We investigate the design’s robustness from var-
ious misspecifcations, such as: 

• Getting the MNAR mechanism wrong. This could be having an incorrect value 
for the intercept or the wrong coeffcient on either x or y. In particular, we will 
investigate the effect of a change in sign on the coeffcient of x and y. Will there 
be a signifcant change when the sign changes? 

• Misspecifying the regression relation. What happens when the regression relation 
is wrong? Does a change in the regression coeffcients or a change in sign affect 
the power of the test? 

In order to assess the robustness of the proposed methodology, we misspecify one pa-
rameter and fnd the optimal recovery regions. For each parameter, we consider sce-
narios where we respectively, add and subtract 10% of its true value, to see how the 
performance of the design is affected if the misspecifcation occurs in a neighbourhood 
of the true values. To assess more severe misspecifcations, we also consider scenarios 
where the parameters change signs and, for the coeffcient of y in the linear predictor of 
the missing mechanism and the coeffcient of x in the linear regression model, we also 
assess the effect of doubling or multiplying the value of the coeffcients. 
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Generate 1000 points following a simple linear regression model in 100000 replicates: 

Y|(X = x) ∼ N(2 − 2x, 4) , 

with X ∼ N(0, 16). Introduce MNAR missingness into the model using: 

exp(−2 + 0.4x − 0.15y)
P(M = 1|Y = y, X = x) = . 

(1 + exp(−2 + 0.4x − 0.15y)) 

These values are chosen such that approximately 30% missing cases are introduced in 
Y. Applying the SMF test and testing the hypothesis to obtain the MSE and power for 
the random design, optimal design and different misspecifcations in the mechanism 
and regression model gives the following result presented in tables below. 

Tables 5.3 and 5.4 show the power and MSE for the different designs considered 
in 100000 replicates respectively. The optimal design has the highest power among 
all other designs at all values of recovery proportion. For the missing mechanism; 
at 10% increase and decrease in the intercept, the designs (−2.2, 0.4, −0.15) and 
(−1.8, 0.4, −0.15) performed better than the random design. For a 10% increase and de-
crease on the coeffcient of x, the designs (−2, 0.44, −0.15) and (−2, 0.36, −0.15) have 
better power at all values than the random design. A 10% increase and decrease on 
the coeffcient of y also result in better power than the random design at all values of 
recovery proportion. A change in sign on the missing mechanism does not negatively 
affect the power of the test as it results in better power than the random design, how-
ever, the sign change on the coeffcient on x and y gives the least power among all other 
misspecifed designs. For the regression relation 2 − 2x, an increase or decrease in the 
coeffcient does not affect the power of the test. The power obtained for all misspecif-
cations outperformed that of the random design at all recovery proportions. A change 
in the sign on the coeffcient also performs well irrespective of the coeffcient with the 
sign change. A change in sign on the coeffcient of x gives the least power among the 
misspecifed values for the regression relation. For the MSE, the random design has the 
largest MSE values among all other designs. 

In Tables A.3 and A.4 in the Appendix, different recovery proportions were considered 
for different misspecifed designs in 10000 replicates for power and MSE respectively. 
As the sample size increases, the power increases. At all recovery proportions and 
sample sizes, the random selection performed worse than the true optimal design and 
misspecifed designs while the misspecifed designs performed less than the optimal 
design. Among all the misspecifed designs, the one with the change in sign on the 
coeffcient of y performs worse but better than the random design. The MSE decreases 
as the sample size and recovery proportion increases, the random design has the largest 
MSE values amongst all other designs. 
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TABLE 5.3: Power for different designs in 100000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

true optimal 0.287 0.463 0.595 0.672 0.724 0.758 0.767 0.796 0.809 0.830 
random 0.243 0.385 0.493 0.576 0.642 0.693 0.740 0.774 0.803 0.830 
Missing mechanism 
(-2,0.4,-0.30) 0.287 0.461 0.592 0.672 0.702 0.711 0.756 0.777 0.804 0.830 
(-2.2,0.4,-0.15) 0.280 0.459 0.584 0.668 0.721 0.757 0.765 0.791 0.809 0.830 
(-1.8,0.4,-0.15) 0.287 0.464 0.568 0.654 0.680 0.711 0.744 0.781 0.803 0.830 
(2,0.4,-0.15) 0.283 0.393 0.578 0.589 0.694 0.750 0.759 0.790 0.804 0.830 
(-2,0.44,-0.15) 0.286 0.461 0.574 0.671 0.722 0.738 0.757 0.772 0.804 0.830 
(-2,0.36,-0.15) 0.286 0.462 0.594 0.672 0.723 0.757 0.762 0.789 0.806 0.830 
(-2,-0.4,-0.15) 0.252 0.390 0.495 0.591 0.670 0.720 0.757 0.777 0.804 0.830 
(-2,0.4,-0.165) 0.287 0.460 0.584 0.671 0.726 0.737 0.764 0.786 0.805 0.830 
(-2,0.4,-0.135) 0.285 0.459 0.586 0.672 0.723 0.738 0.766 0.781 0.803 0.830 
(-2,0.4,0.15) 0.252 0.391 0.501 0.597 0.665 0.719 0.755 0.781 0.807 0.830 
Regression Coeffcients 
(2.2-2x) 0.284 0.462 0.589 0.671 0.722 0.738 0.765 0.778 0.804 0.830 
(1.8-2x) 0.285 0.463 0.594 0.648 0.703 0.730 0.755 0.783 0.805 0.830 
(-2-2x) 0.285 0.462 0.581 0.671 0.712 0.747 0.764 0.785 0.807 0.830 
(2-2.2x) 0.287 0.463 0.575 0.629 0.703 0.709 0.745 0.776 0.802 0.830 
(2-1.8x) 0.285 0.461 0.594 0.650 0.700 0.730 0.755 0.780 0.803 0.830 
(2+2x) 0.252 0.398 0.507 0.594 0.660 0.714 0.755 0.775 0.803 0.830 

TABLE 5.4: MSE for different designs in 100000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

true optimal 0.0118 0.0066 0.0048 0.0040 0.0036 0.0033 0.0032 0.0030 0.0029 0.0027 
random 0.0148 0.0084 0.0062 0.0050 0.0043 0.0038 0.0034 0.0032 0.0029 0.0027 
Missing mechanism 
(-2,-0.4,-0.30) 0.0118 0.0066 0.0048 0.0040 0.0037 0.0036 0.0033 0.0031 0.0029 0.0227 
(-2.2,0.4,-0.15) 0.0144 0.0075 0.0056 0.0044 0.0039 0.0035 0.0033 0.0031 0.0030 0.0027 
(-1.8,0.4,-0.15) 0.0119 0.0066 0.0051 0.0042 0.0039 0.0037 0.0034 0.0031 0.0029 0.0027 
(2,0.4,-0.15) 0.0120 0.0084 0.0050 0.0049 0.0038 0.0033 0.0032 0.0030 0.0029 0.0027 
(-2,0.44,-0.15) 0.0119 0.0066 0.0051 0.0040 0.0038 0.0037 0.0033 0.0031 0.0029 0.0027 
(-2,0.36,-0.15) 0.0119 0.0066 0.0048 0.0040 0.0036 0.0033 0.0031 0.0030 0.0029 0.0027 
(-2,-0.4,-0.15) 0.0141 0.0084 0.0061 0.0048 0.0041 0.0036 0.0033 0.0031 0.0029 0.0227 
(-2,0.4,-0.165) 0.0118 0.0065 0.0049 0.0040 0.0036 0.0034 0.0032 0.0031 0.0029 0.0027 
(-2,0.4,-0.135) 0.0119 0.0066 0.0049 0.0040 0.0036 0.0034 0.0032 0.0031 0.0029 0.0027 
(-2,0.4,0.15) 0.0141 0.0083 0.0061 0.0048 0.0041 0.0036 0.0033 0.0031 0.0029 0.0027 
Regression Coeffcients 
(2.2-2x) 0.0119 0.0066 0.0049 0.0040 0.0036 0.0034 0.0032 0.0031 0.0029 0.0029 
(1.8-2x) 0.0118 0.0066 0.0048 0.0042 0.0038 0.0035 0.0033 0.0031 0.0029 0.0027 
(-2-2x) 0.0118 0.0067 0.0050 0.0040 0.0037 0.0034 0.0032 0.0031 0.0029 0.0027 
(2-2.2x) 0.0118 0.0066 0.0051 0.0045 0.0038 0.0037 0.0034 0.0031 0.0029 0.0027 
(2-1.8x) 0.0118 0.0066 0.0048 0.0042 0.0038 0.0035 0.0033 0.0031 0.0029 0.0027 
(2+2x) 0.0142 0.0081 0.0059 0.0048 0.0041 0.0036 0.0033 0.0031 0.0029 0.0027 

Tables A.5 and A.6 in the appendix show the Power and MSE for extreme cases of mis-
specifcation respectively. The extreme cases considered here involve a change in sign 
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and at least 100% increase in the coeffcients of x and y. For the missing mechanisms: 
for (−2, 0.4, 0.15), at all recovered proportions, the power exceeds that of random and 
we get smaller MSE compared to random. Implying that, even when the sign changes, 
the design performs better than the random design. (−2, 0.4, 0.30) performs better than 
the random design both for power and MSE. For (−2, 0.4, 0.60) and (−2, 0.4, 0.30), a 
400% and 600% increase on the coeffcient of y respectively, the designs performed 
slightly below the random design at the recovery proportions 0.1 and 0.2, and better 
than random design as proportion increases. For the regression coeffcients, a change 
in sign and increment in the coeffcient of x were considered. At all values of recovery 
proportion, the misspecifed designs outperformed the random design both in power 
and MSE. 

Extreme cases of at least 100% increase in the coeffcients of x and y without change 
in the sign were considered and the power and MSE results are shown in Tables 5.5 
and 5.6 respectively. For the missing mechanisms: for (−2, 0.4, −0.3), at all recovered 
proportions, the power exceeds that of random and smaller MSE compared to random. 
For (−2, 0.4, 0.6) and (−2, 0.4, 0.3), a 400% and 600% increase on the coeffcient of y 
respectively, the designs also performed better than the random design at all recovery 
proportions. For the regression coeffcients, an increment in the coeffcient of x was con-
sidered. At all values of recovery proportion, the misspecifed designs outperformed 
the random design both in power and MSE. 

TABLE 5.5: Power for extreme designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Missing Mechanism true optimal 
random 

0.296 
0.243 

0.469 
0.395 

0.597 
0.487 

0.677 
0.574 

0.729 
0.636 

0.766 
0.690 

0.788 
0.741 

0.797 
0.777 

0.818 
0.802 

0.828 
0.828 

(-2,0.4,-0.3) 
(-2,0.4,-0.6) 
(-2,0.4,-0.9) 

0.289 
0.249 
0.245 

0.468 
0.399 
0.396 

0.586 
0.496 
0.494 

0.670 
0.665 
0.590 

0.729 
0.710 
0.728 

0.739 
0.727 
0.761 

0.769 
0.764 
0.772 

0.795 
0.794 
0.792 

0.810 
0.809 
0.810 

0.828 
0.828 
0.828 

Regression Coeffcient (2-4x) 
(2-6x) 
(2-8x) 

0.285 
0.282 
0.253 

0.462 
0.478 
0.476 

0.597 
0.594 
0.593 

0.682 
0.657 
0.646 

0.723 
0.716 
0.709 

0.750 
0.744 
0.744 

0.781 
0.774 
0.773 

0.787 
0.786 
0.782 

0.811 
0.810 
0.807 

0.828 
0.828 
0.828 

TABLE 5.6: MSE for extreme designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Missing Mechanism true optimal 
random 

0.0118 
0.0149 

0.0066 
0.0085 

0.0048 
0.0063 

0.0040 
0.0051 

0.0036 
0.0044 

0.0033 
0.0039 

0.0031 
0.0035 

0.0029 
0.0032 

0.0028 
0.0030 

0.0027 
0.0027 

(-2,0.4,-0.3) 
(-2,0.4,-0.6) 
(-2,0.4,-0.9) 

0.0118 
0.0145 
0.0118 

0.0066 
0.0082 
0.0084 

0.0049 
0.0061 
0.0063 

0.0040 
0.0040 
0.0049 

0.0036 
0.0037 
0.0035 

0.0034 
0.0035 
0.0033 

0.0032 
0.0032 
0.0031 

0.0030 
0.0030 
0.0030 

0.0029 
0.0029 
0.0029 

0.0027 
0.0027 
0.0027 

Regression Coeffcient (2-4x) 
(2-6x) 
(2-8x) 

0.0119 
0.0118 
0.0156 

0.0066 
0.0066 
0.0066 

0.0048 
0.0048 
0.0048 

0.0040 
0.0042 
0.0043 

0.0036 
0.0037 
0.0037 

0.0033 
0.0034 
0.0034 

0.0031 
0.0031 
0.0031 

0.0030 
0.0030 
0.0030 

0.0029 
0.0029 
0.0029 

0.0027 
0.0027 
0.0027 

Table A.7 in the Appendix shows the power and MSE for optimal design, random de-
sign and highest values design. The highest values here imply that the recovered values 
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are the highest of all the missing values for different recovery proportions. At 0.1, the 
10% highest values from the missing values would recovered. The highest design is 
the worst design here as it has the least power and highest MSE at all values recovery 
proportion. 

All in all, as the sample size increases, the power increases and the MSE decreases. The 
performance of the misspecifed design in terms of power and MSE is in the direction of 
the sign. A change in sign affects the power more than an increment in the coeffcient. 
From the results above, the design is robust to misspecifcations because at all points of 
increment and change in sign, all the misspecifed designs outperformed the random 
design. 

TABLE 5.7: Power and MSE for different designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Power true optimal 
random 

0.296 
0.243 

0.469 
0.395 

0.597 
0.487 

0.677 
0.574 

0.729 
0.636 

0.766 
0.690 

0.788 
0.741 

0.797 
0.777 

0.818 
0.802 

0.828 
0.828 

Highest values 0.088 0.114 0.120 0.165 0.244 0.333 0.463 0.594 0.725 0.826 

MSE true optimal 
random 

0.0118 
0.0149 

0.0066 
0.0085 

0.0048 
0.0063 

0.0040 
0.0051 

0.0036 
0.0044 

0.0033 
0.0039 

0.0031 
0.0035 

0.0029 
0.0032 

0.0028 
0.0030 

0.0027 
0.0027 

Highest values 0.1021 0.0414 0.0243 0.0160 0.0114 0.0084 0.0063 0.0048 0.0037 0.0028 
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Chapter 6 

Subsampling based on probabilities 

In Chapter 5, the recovery design consisted of a random recovery of responses whose 
covariates lie within a particular region. The recovered responses are combined with 
the observed variables restricted to this region to get the augmented data. In this chap-
ter, we defne the recovery design as an assignment of probabilities leading to a likeli-
hood ratio test for testing MAR vs MNAR. This recovery design makes use of all the 
observed cases as opposed to the recovery design in Chapter 5 where only the observed 
cases that fall within the design region can be used. 

Note that in this chapter, we have changed the missing mechanism indicator to M = 1 
when Y is observed and 0 if missing. This is to make sure there is an alignment with the 
notation present in the literature. In Chapter 5, c1 represents the recovery proportion 
and c2 represents the proportion of observed data that lies in the recovery region which 
is added to the recovered units to get the augmented data. However, in this chapter, we 
represent the recovery proportion as c because there is no restriction on the recovery 
region and all the observed cases are used to augment the recovered cases. This chapter 
provides a generalization that can be used to obtain the results of Chapter 5. 

In Section 6.1, we develop the testing framework for MNAR. Section 6.2 investigates 
optimal design using inspiration from TE-optimality. In Section 6.3, we provide the 
results from a simulation study, which also investigates the robustness of our designs. 
Section 6.4 delves more deeply into the area of robustness, developing non-parametric 
alternatives to design construction. 
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6.1 Testing for MNAR 

6.1.1 Problem formulation 

To motivate our methodology, consider a setting involving a univariate response, Y, 
and a p-dimensional covariate vector X = (X1, . . . , Xp)T . We assume we can express 
the conditional distribution, p(Y|X = x, θ) in closed form, where θ corresponds to the 
parameters characterising the distribution. We will initially assume p(Y|X = x, θ) is 
known before exploring robust approaches that will not require this knowledge. We 
also assume that the covariates X are fully observed so that only the response Y has 
missing values. This assumption is very common in the feld, see (Kim and Yu, 2011). 
Let M be an indicator random variable that takes values 0 and 1. When Y is observed, 
M equals one and zero otherwise. 

Under MAR, we have 

Pr(M|X = x, Y = y) = Pr(M|X = x) (6.1) 

i.e. M ⊥ Y|X, the absence of this conditional independence implies the presence of 
MNAR. This makes the inability to detect this relationship based on the original (in-
complete) sample to be clearly evident. Y is only observed when M = 1 (by defnition) 
and for the case M = 0, there are no Y values. This shows the need for a follow-up 
sample to recover a proportion of the missing Y values is necessary to be able to con-
struct a statistical test to detect this property. 

Let y1, . . . , yn and x1, . . . , xn be realisations of size n from the continuous random vec-
tor/variables (X, Y) with some distribution function partly characterised by p(Y|X = 

x, θ). Let I = {1, . . . , n} be the set of indices for n individuals. We assume that we have 
the capacity to make one more additional attempt to recover the response variable of 
a unit if it is missing at the frst attempt. Let I1 ⊂ I be the set of individuals whose 
responses are captured at the frst attempt, I2 ⊂ I\I1 be the set of individuals whose 
responses are captured at the second attempt and let I3 be the individuals not captured 
at all. Accordingly, we let ni = |Ii|, for i = 1, 2, 3, denote the cardinality of each set. 

We further assume the missing mechanism has the form (5.2). 

Typical choices of g include the logit, probit, and complementary log-log link functions. 
By taking the inverse of the link function, an equivalent form of (5.2) that models the 
conditional distribution directly is (5.3). 

In order to determine the type of missing mechanism present, the value of ψ needs to 
be determined, with MAR present when ψ = 0 and MNAR if otherwise. 
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Let pi,1 be the probability that unit i is captured at the frst attempt; that is 

pi,1 := Pr(Mi = 1|Xi = xi, Yi = yi) . (6.2) 

Typical forms for pi,1 are constructed around the logit link function (Alho, 1990; Kim 
and Yu, 2011). Consequently, we will typically assume pi,1 have the form: 

T Tpi,1 = p1(λ, ψ; wi, zi) = expit(wi λ + zi ψ) . (6.3) 

where wi and zi denote the values of w and z at observation i. 

After observing missing responses in the model, assume resources permit the follow-
up of a number of experimental units with missing responses to obtain (recover) their 
responses. Since the covariates are assumed to be fully observed always, we then de-
sign the follow-up sample around the covariates with the missing responses. Defne 
pi,2 to be the probability that the response of unit i is captured at the second attempt 
given it was not captured at the frst attempt. In this Chapter, there is a change in the 
concept of recovery design that was frst introduced in Chapter 4. We then defne the 
design as below. 

Defnition 6.1. A recovery design D is an assignment of the probabilities pi,2. 

Defnition 6.1 can be linked to traditional Design of Experiments. In a continuous de-
sign, as defned in equation (2.1), we have a number of support points with correspond-
ing weights, which refect the proportion of observations to be made in each support 
point. When we need a design that can be run in practice, we usually round the weights 
such that the products of each weight with the sample size are integers that sum to the 
sample size. These will be the number of observations to be taken in each support 
point. For our scenario of a recovery design, we can view the covariate values of units 
with missing responses as ‘potential’ support points, and the allocation of probabilities 
pi,2 to these potential support points then forms the design. This is somewhat similar 
in nature to a continuous design. However, when we need to run a recovery design in 
practice, we draw randomly (with probabilities pi,2) from the set of potential support 
points. Both types of design, traditional and recovery, can be embedded in an Optimal 
Design of Experiments framework. In the traditional case, usually both support points 
and weights are optimised with respect to some criterion, whereas for the recovery de-
sign only the probabilities need to be optimised. 

From hypothesis testing considerations, D should be designed in a way that maximises 
the power of a test for MNAR. This is of course subject to the constraint that we are 
unlikely to have the resources or capability to recover all of the missing information; 
that is, we are unlikely to have pi,2 = 1 for all i. To compare the effect of different 
designs and different tests for MNAR, we will consider the power as a function of the 
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proportion of recovered responses. That is, we will consider the power of the tests as a 
function of c with n2 = ⌈c · (n − n1)⌉ and 0 < c ≤ 1. How to select the probabilities pi,2 

under this constraint is one of the main considerations of this Chapter. 

We will assume pi,2 = p2(xi) where p2 : Rp → [0, 1] is a continuous function. A 
convenient form for p2 that we will typically take is 

p2(x) = p2(x; γ0, γ) := expit(γ0 + γTx) , (6.4) 

γ0 and γ = (γ1, . . . , γp)T are the parameters to be optimised. This model for pi,2 pro-
vides adequate fexibility when trying to locate benefcial regions to recover missing 
responses although in theory any legitimate form for p2 could be used. To ensure that, 
on average, we recover the correct proportion of missing responses given a specifed 
value of c, we require for a given γ, the intercept γ0 in (6.4) to be the solution of the 
equation ∫

p2(x; γ0, γ)Pr(X ∈ dx|M = 0) = c . (6.5) 

Henceforth, we shall assume γ0 satisfes this condition. The problem of designing an 
‘optimal’ follow-up design (given this expit form of p2) is transformed to fnding the 
‘optimal’ value of γ. 

6.1.2 Constructing the likelihood function 

In this section, we construct the likelihood function for our data which is crucial for 
formulating a likelihood ratio test for MAR vs MNAR. The likelihood function can be 
obtained from the arguments of Alho (1990). 

Defne the unconditional probabilities 

µi,1 := pi,1, µi,2 := pi,2(1 − pi,1), µi,3 := 1 − µi,1 − µi,2 , (6.6) 

and let Ui := (Ui,1, Ui,2, Ui,3)
T , where Ui,1 = 1 if the response for unit i is captured at 

the frst attempt, Ui,2 = 1 if the response for unit i is captured at the second attempt 
and Ui,3 = 1 if the response for unit i is not captured at all. Note the random variable 
Ui,1 has the same distribution as M. We assume 

Ui ∼ Multinomial(1, µi,1, µi,2, µi,3) . (6.7) 

Let Ri = 1 − Ui,3 where Ri = 1 if the response for unit i is captured, otherwise zero. 
Construct the vectors 

U = (U1, . . . , Un)
T , R = (R1, . . . , Rn)

T , (6.8) 
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and defne the probabilities 

µi,1 µi,2vi,1 = v1(λ, ψ; wi, zi) = , vi,2 = v2(λ, ψ; wi, zi) = 1 − vi,1 = . 
µi,1 + µi,2 µi,1 + µi,2 

(6.9) 
Then the conditional likelihood of U given R is (up to a constant) given by 

Ui,1 Ui,2 
i,1 v∏L(U|R) = v ,i,2 

Ri=1 

and consequently, the log-likelihood is given by 

2 
ℓ(λ, ψ) ∑∑ Ui,j log(vi,j)= 

Ri=1 j=1 

∑ Ui,1 log(vi,1) + (1 − Ui,1) log(1 − vi,1) . (6.10)= 
i∈I1∪I2 

Here we have used the fact that if an observation is observed then Ui,2 = 1 − Ui,1. 
For pi,2 = p2(x; γ0, γ) with p2(x; γ0, γ) given in (6.4), we obtain 

pi,1vi,1 = v1(λ, ψ; wi, zi, γ) = 
pi,1 + pi,2(1 − pi,1) 

T Tg−1(wi λ + zi ψ) = , 
g−1(wi

Tλ + zi
Tψ) + p2(xi; γ0, γ) · (1 − g−1(wi

Tλ + zi
Tψ)) 

where we have introduced γ into the notation to highlight the dependence on the re-
covery design. 

6.1.3 A mixture distribution for the augmented data 

The observed data combined with the recovered data, that is all observations i ∈ I1 ∪ I2, 
will be referred to as the augmented data. The augmented data, being a combination 
of observed and recovered data, has a natural mixture distribution which we will for-
mulate in the following lemma. 

Defnition 6.2. The indicator variable MA follows a Bernoulli distribution, denoted 
MA ∼ Ber(p), where the probability parameter p is given by: 

Pr(M = 1)
p = . 

c · Pr(M = 0) + Pr(M = 1) 

Therefore, MA is defned by: ⎧
c · Pr(M = 0)⎪0 with probability⎨ c · Pr(M = 0) + Pr(M = 1)

MA := . (6.11)
Pr(M = 1)⎪⎩1 with probability 

c · Pr(M = 0) + Pr(M = 1) 
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Then the augmented response/covariates are realisations from random variable/vec-
tor: 

YA := MAYO + (1 − MA)YR (6.12) 

XA := MAXO + (1 − MA)XR , (6.13) 

where YO := Y | M = 1 ; XO := X | M = 1, and XR and YR have distribution functions 

Pr(XR ∈ dx) = Pr(X ∈ dx|M = 0, Ui,2 = 1) = p2(x)Pr(X ∈ dx|M = 0)/c ,∫
Pr(YR ∈ dy) = Pr(Y ∈ dy|M = 0, Ui,2 = 1) = Pr(Y ∈ dy|X = x, M = 0)Pr(XR ∈ dx) . 

The probabilities v1(λ, ψ; w, z, γ) and v2(λ, ψ; w, z, γ) correspond to the missing data 
mechanism in the augmented data. More precisely, they satisfy 

v1(λ, ψ; w, z, γ) = Pr(MA = 1 | XA = x, YA = y), 

v2(λ, ψ; wi, zi, γ) = Pr(MA = 0 | XA = x, YA = y) . 

6.1.4 SMF tests for MNAR 

6.1.4.1 The likelihood ratio test 

The ability to construct the log-likelihood in (6.10) means the likelihood ratio test can 
provide a test for MAR vs MNAR. The likelihood ratio test statistic for testing a general 
hypothesis ψ = ψ0 is given by 2[ℓ(λ̂, ψ̂ ) − ℓ(λ̂ 0, ψ0)], where (λ̂, ψ̂ ) and λ̂ 0 denotes the 
maximum likelihood estimators under the alternative and null models, respectively. 
The quantity 2[ℓ(λ̂, ψ̂ ) − ℓ(λ̂ 0, ψ0)], often referred to as the reduction in deviance, is 
given by 

2 [ℓ(λ̂, ψ̂ ) − ℓ(λ̂ 0, ψ0)] ( ) ( )
v1(λ̂, ψ̂; wi, zi) 1 − v1(λ̂, ψ̂; wi, zi) = ∑ Ui,1 log + (1 − Ui,1) log . 

i∈I1∪I2 
v1(λ̂ 0, ψ0; wi, zi) 1 − v1(λ̂ 0, ψ0; wi, zi) 

When testing for MAR vs MNAR, we set ψ0 = 0. For large n1 + n2, under the null hy-
pothesis the statistic 2[ℓ(λ̂, ψ̂ ) − ℓ(λ̂ 0, ψ0)] will be approximately chi-square distributed 
with s degrees of freedom, i.e. a classical statistical approximation. Unfortunately, the 
maximum likelihood estimators λ̂, ψ̂ and λ̂ 0 cannot be explicitly written and must be 
found numerically. 
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6.1.4.2 A benchmark recovery design 

A random recovery of a proportion of the missing responses is perhaps the simplest 
and most intuitive initial design; this corresponds to selecting pi,2 = p2(xi; γ0, γ) = c 
for all i and therefore γ = 0. We shall denote this design by DB as it will form the 
benchmark design for numerical comparisons in later sections. For this choice of p2 

and for any link function g, we have 

g−1(wTλ + zTψ)
v1(λ, ψ; w, z, γ) = , (6.14)

g−1(wTλ + zTψ) + c · (1 − g−1(wTλ + zTψ)) 

which, for the logit model, simplifes to 

exp(wTλ + zTψ)
v1(λ, ψ; w, z, γ) = = expit(wTλA + zTψ) , (6.15)

c + exp(wTλ + zTψ) 

where λA := λ − (log(c), 0, . . . , 0)T ∈ Rq. Recall, λ and ψ are the unknown vectors of 
coeffcients. w is a q-dimensional vector whose components could depend on functions 
of x but not y, and z is an s-dimensional vector whose components additionally depend 
on functions of y, for example an interaction xiy, and (or) a function of just y. c is the 
recovery proportion and γ is the parameter to be optimised. 

In this scenario, vi,1 corresponds to the link function of a logit model and therefore 
(6.10) will correspond to a likelihood function of a logistic regression model with a 
shifted intercept. This is equivalent to saying for the augmented data 

Pr(MA =1 |YA = y, XA = x) = expit(wTλA + zTψ) . 

This is a particularly appealing property since one can take advantage of existing glm 
software. For example, in R we can directly use the function glm with a logit link 
function and can avoid having to manually fnd all maximum likelihood estimators. 
Importantly, the coeffcient ψ remains unchanged and the estimators will be consistent 
with this approach. 

6.1.4.3 A random recovery within a region 

Here, we will prove that the results of Chapter 5 can be obtained from the results of 
this Chapter. If instead of selecting pi,2 = c for all i, one could set pi,2 = constant for 
particular i and zero for the remaining i. For example, let RA ⊆ Rp be a p-dimensional 
region chosen large enough so that 

Pr(M = 0, X ∈ RA) ≥ c · Pr(M = 0) . (6.16) 
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Then for ⎧⎨⎩c · Pr(M = 0)/Pr(M = 0, X ∈ RA) if xi ∈ RA pi,2 = (6.17) 
0 otherwise, 

the log-likelihood in (6.10) becomes: 

ℓ(λ, ψ) = ∑ Ui,1 log(vi,1) + (1 − Ui,1) log(1 − vi,1) , (6.18) 
i∈I1∪I2 
i:xi∈RA 

where vi,1 has the same form as (6.14), but with c replaced with c ∗ = c · Pr(M = 

0)/Pr(M = 0, X ∈ RA). 

A careful choice of RA can improve the power of the LRT over DB. This has been 
shown in Chapter 5. 

6.1.4.4 Tests for MAR vs MNAR 

We will now explicitly formulate two tests for MAR vs MNAR that come under the 
umbrella of the likelihood ratio test mentioned at the beginning of this section. The 
frst test will cover more general choices of pi,2 and does not require any restrictions on 
the augmented data. The main drawback is pre-existing software packages cannot be 
used and estimators have to be manually found. 

The second test focuses on the logit model with pi,2 chosen according to (6.17) which, as 
shown, has the advantage that a logistic regression model can be ftted directly to the 
augmented data and correct inferences about ψ can be made. It does, however, require 
restricting the augmented data to lie within RA which could result in a loss of power 
by ignoring some observations. 

Test T1. For 0 < c ≤ 1 and a given γ, select pi,2 according to (6.4) where γ0 is the solution 
of (6.5). Perform the likelihood ratio test for the hypothesis ψ = 0 using the likelihood function 
(6.10). 

Test T2. For 0 < c ≤ 1, provided pi,1 have the form of (6.3), RA satisfes (6.16) and pi,2 are 
selected according to (6.17), perform the likelihood ratio test for the hypothesis ψ = 0 using 
the likelihood function (6.18). This is equivalent to ftting a logistic regression model to the 
augmented data within RA with linear predictor wTλA + zTψ and testing whether ψ = 0. 
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6.2 Designing the recovery 

6.2.1 T-optimality criteria 

In experimental design, T-optimality (and some of its analogues) is a criterion used 
for discriminating between competing forms of a model (Atkinson and Fedorov, 1975; 
de Leon and Atkinson, 1992; Waterhouse et al., 2008; Tommasi and López-Fidalgo, 
2010). The construction of designs for model discrimination experiments for linear 
or nonlinear models was frst studied in Atkinson and Fedorov (1975) where the idea 
of T-optimality was frst formulated. For linear or non-linear models, the main idea 
behind T-optimality is to select a design that maximises the non-centrality parameter 
in the F−test. For discrimination designs for glm’s, de Leon and Atkinson (1992) for-
mulated the T-optimality criterion in terms of the deviance. In Waterhouse et al. (2008), 
a criterion similar to the T-optimality was formulated as TE-optimality. This criterion, 
which has more appealing statistical properties like an asymptotic chi-square distribu-
tion under the null hypothesis, selects a continuous design that maximises the expected 
reduction in deviance. 

There are two main issues that prevent any direct application of previous results in 
the design literature on T-optimality. The frst and obvious issue is the presence of 
missing observations. The second is that the covariates are not selected in advance; in-
stead, we are only given covariates after the outcome from an experiment with missing 
data. Nevertheless, we can obtain insight for formulating the optimality criterion for 
the problem considered. 

Using inspiration from TE-optimality, we will look to maximise the expected reduction 
in deviance by tuning γ, where the expectation is taken with respect to XA and YA 

under the alternative hypothesis of MNAR. Taking expectation of the likelihood ratio 
statistic given in Section 6.1.4.1 provides: 

E{2 [ℓ(λ̂, ψ̂ ) − ℓ(λ̂ 0, 0)]} = 2E(n1 + n2)[ ( ) ( )]
v1(λ̂, ψ̂; WA, ZA, γ) 1 − v1(λ̂, ψ̂; WA, ZA, γ)× E MA log + (1 − MA) log , 
v1(λ̂ 0, 0; WA, ZA, γ) 1 − v1(λ̂ 0, 0; WA, ZA, γ) 

The capitalisation WA and ZA and the subscript A emphasises that the elements of w 
and z are now functions of the random variables XA and YA. Since E(n1 + n2) remains 
constant for each design, one could select γ on the basis of the following criterion: 

T(n, γ∗) = [ ( ) ( )]
v1(λ̂, ψ̂; WA, ZA, γ) 1 − v1(λ̂, ψ̂; WA, ZA, γ)

max E MA log + (1 − MA) log
γ v1(λ̂ 0, 0; WA, ZA, γ) 1 − v1(λ̂ 0, 0; WA, ZA, γ) 

(6.19) 
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However, computing this expectation theoretically using Lemma 6.2 or even estimating 
via Monte Carlo methods is impractical. For large values of n1 + n2, it will be more 
convenient to consider an asymptotic form of (6.19). By doing so, we will make the 
assumption we know the missing data mechanism including the values of λ and ψ. 
Therefore any claimed optimality will only be classed as local. We select γ according 
to: 

T(γ∗) := lim T(n, γ∗) = 
n→∞[ ( ) ( )]

v1(λ, ψ; WA, ZA, γ) 1 − v1(λ, ψ; WA, ZA, γ)
max min E MA log + (1 − MA) log

γ λ0 v1(λ0, 0; WA, ZA, γ) 1 − v1(λ0, 0; WA, ZA, γ) 

To compute the expectation in T(γ∗), one can exploit the forms of (6.12) and (6.13) in 
Lemma 6.2. After conditioning on MA = 1 and MA = 0, one needs to know the joint 
distributions of (XR, YR) and (XO, YO) respectively to compute the required expecta-
tion. 

Lemma 6.3. For dx = (dx1, . . . , dxp) a vector of infnitesimals we have 

Pr(XR ∈ dx, YR ∈ dy) = Pr(Y ∈ dy | X = x, M = 0)Pr(XR ∈ dx) 

Pr(XO ∈ dx, YO ∈ dy) = Pr(Y ∈ dy | X = x, M = 1)Pr(XO ∈ dx) . 

One could then use Lemma 6.2 to compute the distribution of XR and XO assuming 
one knows the distribution of X, p(Y|X = x, θ) and the missing data mechanism. We 
will show in Section 6.4 that some of these fairly strong assumptions can be avoided. In 
practice, whilst one could evaluate the expectation theoretically, we would recommend 
using Monte Carlo methods for simplicity. Using the fact 

Pr(MA = 1|XA = x, YA = y) = v1(λ, ψ; w, z, γ) , 

we can equivalently express our criterion as [ ( )
v1(λ, ψ; WA, ZA, γ)

T(γ∗) = max min E v1(λ, ψ; WA, ZA, γ) log
γ λ0 v1(λ0, 0; WA, ZA, γ)( ) ]

1 − v1(λ, ψ; WA, ZA, γ)
+ (1 − v1(λ, ψ; WA, ZA, γ)) log ,

1 − v1(λ0, 0; WA, ZA, γ) 

which is related to the expected Kullback-Leibler divergence. Criteria similar to this 
have been studied in Tommasi and López-Fidalgo (2010). The main algorithm for de-
termining the recovery design in test T1 is as follows. 

If we are using test T2, instead of optimising with respect to γ, we seek to optimise over 
the choice of the region RA. We will only consider scenarios where RA is in the form 
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Algorithm 5 Algorithm 1 for T1 

1: Input: Value 0 < c ≤ 1, function T(γ∗). 
2: Output: Value of γ. 
3: Steps: 
4: Approximate T(γ∗) using the provided function T(γ∗). 
5: Choose γ based on the approximation of T(γ∗). 
6: Return: γ. 

of a hypercuboid as mentioned in Section 6.1.4.4. An equivalent criterion is 

C (R∗
A) := [ ( ) ( )]

v1(λ, ψ; WA, ZA, γ) 1 − v1(λ, ψ; WA, ZA, γ)
max min E MA log + (1 − MA) log . 
RA λ0 v1(λ0, 0; WA, ZA, γ) 1 − v1(λ0, 0; WA, ZA, γ) 

With this criterion, we formulate the algorithm for determining the recovery design 
when using test T2: 

Algorithm 6 Algorithm 1 for T2 

1: Input: Value 0 < c ≤ 1, function C(R∗
A). 

2: Output: Recovery region RA. 
3: Steps: 
4: Choose RA according to C(R∗

A). 
5: Return: RA. 

6.3 Simulation studies 

In this section, we perform a simulation study assessing the benefts of Algorithm 1 for 
tests T1 and T2. We will consider two cases: p = 1 and p = 2. For p = 1, we gener-
ate n points as follows from Y|(X = x) ∼ N(β0 + β1x, σ2) with X ∼ N(µx, σ2) andy x 

MNAR missingness is introduced into y values using Pr(M = 1|Y = y, X = x) = 

expit(α0 + α1x + α2y). The parameters are chosen such that approximately 30% of 
points are missing their y value. We will repeat this process 10, 000 times and in each 
replication apply the tests, with H0 : ψ = 0, to the generated sample. 

(a) n = 400, (β0, β1) = (1, 0.7), σ2 = 1, (µx, σ2) = (2, 16), (α0, α1, α2) = (−0.2, 0.8, 0.6).y x 

(b) n = 1000, (β0, β1) = (2, −2), σ2 = 4, (µx, σ2) = (0, 16), (α0, α1, α2) = (2, 0.4, −0.15).y x 

In the examples above, we increased the sample size from 400 in example (a) to 1000 in 
example (b). The value of β0 increases from 1 to 2, and β1 decreases from 0.7 to −2. The 
variance of Y, σy 

2, increases from 1 to 4. The mean of x decreases from 2 to 0, while the 
variance remains constant. We increased the value of α0 from −0.2 to 2, and reduced 
α1 and α2 from 0.8 to 0.4, and from 0.6 to −0.15, respectively. Despite the changes in 
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parameter values, there is no change in the results: Algorithm 1 for T1 has the largest 
power, followed by Algorithm 1 for T2, with the random design having the least power. 

In Figures 6.1 and 6.2, as a function of the recovery proportion c, we depict the power 
of three tests for detecting the MNAR scenarios described in (a) and (b) respectively. 
The dashed red line represents the power of test T1 using Algorithm 1 for T1 to design 
the recovery design. With a dotted blue line, we plot the power of the test T2 using 
the recovery design constructed from Algorithm 1 for T2. With a solid black line, we 
plot the power of the test T1 or T2 using a random recovery; the test T1 with γ = 0 and 
the test T2 with RA = Rd are equivalent and both situations correspond to a random 
recovery. From this fgure, we see considerable gains over random sampling for both 
tests. The test T1 utilising Algorithm 1 has more power than test T2 with Algorithm 1 
for the scenarios considered here. This is due to the fact that when using test T2, we 
have to restrict the augmented data to lie within RA. This loss of observations is the 
cause of a slight loss in power. The two designs perform better than the random design. 

FIGURE 6.1: Power for different recovery proportions for example (a): Red. 



89 6.3. Simulation studies 

FIGURE 6.2: Power for different recovery proportions for example (b): Red. 

In the following examples, we will take p = 2 and generate n points as follows from 
Y|(X = x) ∼ N(β0 + β1x1 + β2x2, σ2) with X1 ∼ N(µ1,x, σ2 ) and X2 ∼ N(µ2,x, σ2 ).y 1,x 2,x 

MNAR missingness is introduced into y values using 

Pr(M = 1|Y = y, X = x) = expit(α0 + α1x1 + α2x2 + α3y) . 

We consider the following scenarios. 

(c) n = 1000, (β0, β1, β2) = (2, −2, 2), σ2 = 4, (µ1,x, µ2,x, σ1,
2 

x, σ2,
2 

x) = (2, 2, 16, 16),y 

(α0, α1, α2, α3) = (−2.7, 0.4, 0.2, −0.15). 
(d) n = 400, (β0, β1, β2) = (0, 2, −2), σ2 = 1, (µ1,x, µ2,x, σ1,

2 
x, σ2,

2 
x) = (−2, 0, 4, 16),y 

(α0, α1, α2, α3) = (2.9, −0.4, 0.4, 0.5). 

In the examples above, we varied some of the parameters to observe if there would be 
any changes in the performance of the designs. In example (d), the sample size was 
reduced from 1000 to 400. The value of β0 was reduced to 0, β1 was increased to 2, 
and β2 was decreased to −2. The variance of Y was reduced from 4 in example (c) to 1 
in example (d). The mean and variance of X1 were reduced to −2 and 4, respectively. 
The mean of X2 was reduced to 0, while its variance remained the same as in example 
(c). Additionally, α0 increased from −2.7 to 2.9, α1 changed from 0.4 to −0.4, and α2 

increased from −0.15 to 0.5. 

Despite these changes in parameter values, the performance of the designs remained 
unaffected across the examples. In both examples, the random design performed 
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worse than Algorithm 1 for T1. 

Figure 6.3 and Figure 6.5 show the power for T1 with Algorithm 1 against the random 
design for (c) and (d) respectively. Figure 6.4 and Figure 6.6 show the optimal values 
of γ = (γ1, γ2) as a function of c obtained from using this algorithm for (c) and (d) 
respectively. The dot-dashed orange line shows the value of γ1 whereas the dashed 
green line shows the value of γ2. The beneft of both algorithms over the random 
recovery becomes even more evident under the scenarios considered here, especially 
for smaller values of c where the power of the optimised tests is signifcantly higher. 

FIGURE 6.3: Power for different recovery proportions for example (c). 

FIGURE 6.4: Optimal values of γ for different recovery proportions with example (c). 
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FIGURE 6.5: Power for different recovery proportions for example (d). 

FIGURE 6.6: Optimal values of γ for different recovery proportions with example (d). 

For an example with interaction between the covariates and the response variable, take 
p = 1 and include an interaction term into the missing data mechanism. 
Generate n = 1000 points as follows: 

Y|(X = x) ∼ N(2 − 0.5x, 4) , 

with X ∼ N(1, 4). We study the performance of the algorithm 1 for T1 and random 
design for two MNAR mechanisms: 
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(e) P(M = 1|Y = y, X1 = x1) =expit(1 + 0.5x1 + 0.05y + 0.05x1y) 
(f) P(M = 1|Y = y, X1 = x1) =expit(1.8 − 0.5x1 + 0.05y − 0.04x1y) . 

In the examples above, using the same sample size and dataset, we introduced miss-
ingness in Y using the expit function with different parameters when the interaction 
term was included. In comparison to example (e), example (f) has a larger α0, the same 
α2, and smaller α1 and α3. 

As shown in Figure 6.7, we see for Example (e) that the optimised recovery design 
produces signifcant benefts over the pure random recovery. This is not the case for 
Example (f) in Figure 6.8, where for this MNAR mechanism the optimised recovery ap-
pears to produce identical results, in terms of power, to pure random recovery. This is 
important, as it highlights an instance where the optimal recovery design is not quali-
tatively better than random recovery, but nevertheless we see that the optimal design 
does not perform any worse than random recovery. 

FIGURE 6.7: Power for different recovery proportions and designs with Example (e). 
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FIGURE 6.8: Power for different recovery proportions and designs with Example (f). 

6.3.1 Assessing the robustness 

In this section, we assess the robustness of Algorithm 1 for test T1 as the robustness of 
Algorithm 1 for test T2 has been discussed in Chapter 5. For a univariate and multi-
variate cases, we misspecify some of the parameters to examine the power of the test. 

For p = 1, generate n points from Y|(X = x) ∼ N(β0 + β1x, σ2) with X ∼ N(µx, σ2).y x 

Introduce MNAR missingness into y values using Pr(M = 1|Y = y, X = x) = 

expit(α0 + α1x + α2y). This selection introduces approximately 30% of points miss-
ing their y value. We will repeat this process 10, 000 times and in each replication, test 
the hypothesis H0 : ψ = 0, to the generated sample. 

(a) n = 400, (β0, β1) = (1, 0.7), σ2 = 1, (µx, σ2) = (2, 16), (α0, α1, α2) = (−0.2, 0.8, 0.6).y x 

Table 6.1 shows the power of algorithm 1 for test T1 (True optimal), random design 
and some misspecifed designs. At all values of recovery proportion c, the test T1 per-
forms better than the other designs. All other misspecifed designs outperformed the 
random design at all values of c except at (−0.2, −0.8, 0.6) where there is a change in 
sign for the coeffcient of x in the missing mechanism model. This leads us to vary the 
values of the α1 and α2 from the true value to different values to see how this affects the 
power of the test. Tables 6.2 and 6.3 show the γ1 values and the corresponding power 
for different values of α1 and α2. The designs with misspecifed α2 performs better 
than the random design while the designs with (−0.2, −0.8, 0.6), (−0.2, −0.7, 0.6) and 
(−0.2, −0.6, 0.6) performed slightly worse than the random design. This worse perfor-
mance than the random occurs when α1, the coeffcient of x, whose true value is +0.8 is 
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severely misspecifed. This worse in performance occurs when the misspecifed α1 lies 
between −0.5 and −0.4. Neglecting the error in the regression model and substituting 
the regression relation for y into the missing mechanism will lead to a sign change in 
the coeffcient of x when the misspecifed α1 is −0.42. This may in turn cause a sign 
change of the optimal γ1, and a design with the incorrect sign for γ1 is likely to per-
form worse than the random design (which corresponds to γ1 = 0). This shows that a 
severe misspecifcation on the coeffcient of x is more likely to affect the test than that 
of y. Therefore, a change in the sign of α1 affects the power of the test. 

TABLE 6.1: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.484 0.700 0.800 0.837 0.850 0.858 0.860 0.862 0.863 
Random 0.304 0.443 0.546 0.643 0.700 0.753 0.799 0.817 0.840 
Missing mechanism 
(0.2,0.8,0.6) 0.478 0.681 0.797 0.834 0.845 0.855 0.857 0.860 0.862 
(-0.2,-0.8,0.6) 0.280 0.373 0.419 0.444 0.448 0.538 0.595 0.685 0.773 
(-0.2,0.8,-0.6) 0.426 0.628 0.727 0.783 0.828 0.842 0.851 0.857 0.858 
(-0.4,0.8,0.6) 0.477 0.690 0.797 0.834 0.845 0.856 0.858 0.860 0.862 
(-0.2,0.6,0.6) 0.485 0.684 0.778 0.818 0.838 0.849 0.854 0.858 0.859 
(-0.2,0.8,0.9) 0.478 0.692 0.794 0.828 0.847 0.853 0.858 0.859 0.862 
(-0.1,0.8,0.6) 0.480 0.689 0.795 0.828 0.847 0.855 0.859 0.860 0.863 
(-0.2,0.4,0.6) 0.474 0.688 0.767 0.818 0.836 0.850 0.854 0.858 0.860 
(-0.2,0.8,0.3) 0.479 0.687 0.800 0.825 0.845 0.857 0.860 0.862 0.863 
Regression Coeffcients 
(1-0.7x) 0.420 0.621 0.729 0.788 0.838 0.850 0.859 0.860 0.861 
(-1+0.7x) 0.480 0.692 0.794 0.828 0.847 0.856 0.858 0.860 0.862 
(1+0.4x) 0.469 0.686 0.797 0.817 0.845 0.857 0.859 0.860 0.863 
(2+0.7x) 0.474 0.689 0.798 0.825 0.848 0.857 0.858 0.860 0.862 
(-1-0.7x) 0.418 0.617 0.730 0.788 0.838 0.844 0.859 0.860 0.862 
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TABLE 6.2: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.8768 0.9934 0.9167 0.9532 0.9544 0.8251 0.9494 0.9605 0.6712 
(-0.2,-0.8,0.6) -0.4122 -0.4599 -0.5279 -0.5279 -0.5778 -0.6478 -0.8864 -0.6943 -0.8055 
(-0.2,-0.7,0.6) -0.3465 -0.3678 -0.3982 -0.4868 -0.4629 -0.4895 -0.6206 -0.6600 -0.5279 
(-0.2,-0.6,0.6) -0.2354 -0.2375 -0.2458 -0.3512 -0.3565 -0.3882 -0.4888 -0.5014 -0.5278 
(-0.2,-0.5,0.6) -0.0954 -0.0243 -0.1003 -0.1819 -0.2361 -0.2361 -0.2185 -0.2589 -0.3981 
(-0.2,-0.4,0.6) 0.0688 0.0657 0.0315 -0.0106 0.0447 0.0698 0.1132 0.0372 0.2522 
(-0.2,-0.3,0.6) 0.2393 0.2367 0.2713 0.2360 0.2146 0.2854 0.3560 0.3694 0.6365 
(-0.2,-0.2,0.6) 0.3222 0.2361 0.3620 0.4347 0.5347 0.4488 0.5197 0.6177 0.8079 
(-0.2,-0.1,0.6) 0.8197 0.5010 0.5279 0.4155 0.4979 0.5056 0.6157 0.6101 0.8125 
(-0.2,0.1,0.6) 0.5279 0.5278 0.8463 0.6872 0.7379 0.8025 0.7794 0.8911 0.7768 
(-0.2,0.2,0.6) 0.7151 0.8450 0.7285 0.7746 0.8340 0.9285 0.8365 0.7773 0.8059 
(-0.2,0.3,0.6) 0.6102 0.8491 0.7570 0.9320 0.9130 0.9301 0.9775 0.8481 0.9128 
(-0.2,0.4,0.6) 0.7583 0.8952 0.9294 0.9791 0.9571 0.9213 0.8597 0.9775 0.8587 
(-0.2,0.5,0.6) 0.6161 0.7420 0.8880 0.9413 0.9508 0.9665 0.9783 0.9066 0.7715 
(-0.2,0.6,0.6) 0.8861 0.8309 0.8871 0.9161 0.9595 0.8994 0.9518 0.8796 0.7608 
(-0.2,0.7,0.6) 0.8088 0.9832 0.9547 0.9894 0.9523 0.9684 0.9123 0.8328 0.7041 
(-0.2,0.8,0.5) 0.7791 0.9445 0.8847 0.9829 0.8814 0.9691 0.9365 0.7645 0.6987 
(-0.2,0.8,0.4) 0.8982 0.9311 0.9183 0.8885 0.9840 0.9675 0.8531 0.7687 0.9588 
(-0.2,0.8,0.3) 0.9168 0.8983 0.9415 0.9147 0.9600 0.9775 0.8968 0.9428 0.7012 
(-0.2,0.8,0.2) 0.8894 0.7739 0.8399 0.7999 0.9320 0.9736 0.9799 0.8971 0.9516 
(-0.2,0.8,0.1) 0.7796 0.8118 0.8193 0.8886 0.9889 0.9736 0.9065 0.8372 0.7266 
(-0.2,0.8,-0.1) 0.8096 0.8572 0.9665 0.9562 0.9511 0.9042 0.8411 0.8359 0.7541 
(-0.2,0.8,-0.2) 0.6927 0.7790 0.9213 0.8573 0.9344 0.8939 0.9275 0.7076 0.9156 
(-0.2,0.8,-0.3) 0.5434 0.6964 0.8192 0.8730 0.7690 0.9532 0.8436 0.7766 0.8820 
(-0.2,0.8,-0.4) 0.6229 0.8194 0.6385 0.6651 0.8986 0.8436 0.7494 0.7310 0.5294 
(-0.2,0.8,-0.5) 0.4416 0.5645 0.5293 0.8921 0.7907 0.8514 0.7495 0.6113 0.5279 
(-0.2,0.8,-0.6) 0.4590 0.5160 0.5167 0.5422 0.7283 0.7005 0.6665 0.8058 0.6033 
Regression Coeffcients 
(1.0657+0.6875x) 0.9338 0.9855 0.9737 0.9832 0.9543 0.9645 0.8676 0.9572 0.6019 
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TABLE 6.3: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.484 0.700 0.800 0.837 0.850 0.858 0.860 0.862 0.863 
Random 0.304 0.443 0.546 0.643 0.700 0.753 0.799 0.817 0.840 
Missing mechanism 
(-0.2,-0.8,0.6) 0.280 0.373 0.419 0.444 0.448 0.538 0.595 0.685 0.773 
(-0.2,-0.7,0.6) 0.291 0.302 0.381 0.432 0.524 0.591 0.637 0.703 0.798 
(-0.2,-0.6,0.6) 0.299 0.349 0.442 0.487 0.559 0.625 0.668 0.727 0.798 
(-0.2,-0.5,0.6) 0.305 0.443 0.513 0.559 0.607 0.671 0.727 0.772 0.810 
(-0.2,-0.4,0.6) 0.331 0.486 0.572 0.635 0.710 0.763 0.803 0.820 0.853 
(-0.2,-0.3,0.6) 0.376 0.549 0.664 0.720 0.760 0.809 0.832 0.846 0.859 
(-0.2,-0.2,0.6) 0.398 0.549 0.690 0.769 0.814 0.825 0.842 0.854 0.859 
(-0.2,-0.1,0.6) 0.450 0.623 0.728 0.766 0.813 0.830 0.848 0.854 0.859 
(-0.2,0.1,0.6) 0.438 0.631 0.775 0.801 0.829 0.845 0.852 0.858 0.859 
(-0.2,0.2,0.6) 0.468 0.688 0.762 0.808 0.831 0.850 0.853 0.858 0.859 
(-0.2,0.3,0.6) 0.451 0.688 0.767 0.818 0.836 0.850 0.854 0.858 0.859 
(-0.2,0.4,0.6) 0.474 0.688 0.767 0.818 0.836 0.850 0.854 0.858 0.860 
(-0.2,0.5,0.6) 0.474 0.694 0.782 0.820 0.838 0.850 0.853 0.858 0.860 
(-0.2,0.6,0.6) 0.485 0.684 0.778 0.818 0.838 0.849 0.854 0.858 0.859 
(-0.2,0.7,0.6) 0.479 0.701 0.784 0.821 0.838 0.851 0.854 0.858 0.859 
(-0.2,0.8,0.5) 0.474 0.693 0.790 0.834 0.848 0.853 0.857 0.858 0.863 
(-0.2,0.8,0.4) 0.480 0.691 0.794 0.823 0.845 0.857 0.858 0.859 0.862 
(-0.2,0.8,0.3) 0.479 0.687 0.800 0.825 0.845 0.857 0.860 0.862 0.863 
(-0.2,0.8,0.2) 0.478 0.664 0.786 0.811 0.851 0.857 0.860 0.862 0.862 
(-0.2,0.8,0.1) 0.476 0.680 0.772 0.816 0.840 0.851 0.854 0.858 0.862 
(-0.2,0.8,-0.1) 0.479 0.688 0.785 0.819 0.838 0.849 0.853 0.858 0.859 
(-0.2,0.8,-0.2) 0.463 0.674 0.780 0.815 0.837 0.848 0.854 0.857 0.860 
(-0.2,0.8,-0.3) 0.440 0.663 0.772 0.816 0.832 0.851 0.853 0.858 0.859 
(-0.2,0.8,-0.4) 0.452 0.682 0.749 0.799 0.836 0.846 0.852 0.857 0.858 
(-0.2,0.8,-0.5) 0.420 0.636 0.728 0.816 0.832 0.847 0.852 0.853 0.858 
(-0.2,0.8,-0.6) 0.426 0.628 0.727 0.783 0.828 0.842 0.851 0.857 0.858 
Regression Coeffcients 
(1.0657+0.6875x) 0.490 0.702 0.785 0.820 0.838 0.850 0.854 0.857 0.858 

In example (b) below, compared to example (a), the sample size was increased from 400 
to 1000. The value of β0 increased from 1 to 2, while β1 decreased from 0.7 to −2. The 
mean of X, µx, was reduced to 0, and the variance, σ2, remained constant. Additionally, x 

α0 increased from −0.2 to 2, α1 decreased from 0.8 to −0.4, and α2 decreased from 0.6 to 
−0.15. Despite these changes in parameters, the designs performed similarly to those 
in example (a). These parameters are chosen such that there are approximately 30% 
missingness in Y. 

(b) n = 1000, (β0, β1) = (2, −2), σ2 = 4, (µx, σ2) = (0, 16), (α0, α1, α2) = (2, 0.4, −0.15).y x 
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The results for this example are shown in the appendix. In Table A.8, the power of 
algorithm 1 for test T1, random design and some misspecifed designs are shown. At 
all values of recovery proportion c, the test T1 performs better than the other designs. 
All other misspecifed designs outperformed the random design at all values of c except 
at (2, −0.4, −0.15) where there is a change in sign for the coeffcient of x in the missing 
mechanism model. Tables A.9 and A.10 show the γ1 values and the resulting power for 
the different designs. All designs performed better than the random design except the 
design where the sign of α1 changes. As in example (a) above, this shows that a change 
in the sign of α1 affects the test. 

In example (c) below, compared to example (b), the sample size remains the same at 
1000. The value of β0 is unchanged at 2, but β1 increases from −2 to 1 in example (c). 
The mean of X, µx, increases from 0 to 2, while the variance of X, σ2, decreases from 16 x 

to 1. Additionally, α0 decreases from 2 in example (b) to −2 in example (c), α1 increases 
from 0.4 to 1.3, and α2 increases from −0.15 to 0.15. The choice of parameters ensures 
there are approximately 30% missing values in Y. Despite these changes in parameters, 
the designs performed similarly in both examples. 

(c) n = 1000, (β0, β1) = (2, 1), σ2 = 4, (µx, σ2) = (2, 1), (α0, α1, α2) = (−2, 1.3, 0.15).y x 

Tables A.11 and A.12 in the appendix show the γ1 values and power of algorithm 1 for 
test T1, random design and some misspecifed designs respectively. The test T1 has the 
best power at all values of c, as the coeffcient of x changes in the missing mechanism, 
the misspecifed designs also outperformed the random design at all values of c except 
when the coeffcient of x falls between −0.15 and −1.3. As explained in example (a) 
above, when the regression relation for y is substituted in the missing mechanism, it 
would lead to a change in sign in the γ1 which in turns perform worse than the random 
design. It could be seen on table A.11 that the sign of γ1 changes from + to − when 
there is a change in sign on γ1 and changes from − to + as soon as the γ1 changes to 
positive in the missing mechanism. This further shows that a change in sign on the 
coeffcient on x affects the performance of the test and it is therefore important to have 
the correct sign. 

For p = 2, generate n points from Y|(X = x) ∼ N(β0 + β1x1 + β2x2, σ2) with X1 ∼y 

N(µ1,x, σ2 ) and X2 ∼ N(µ2,x, σ2 ).1,x 2,x 

Introduce MNAR missingness into y values using Pr(M = 1|Y = y, X = x) = 

expit(α0 + α1x1 + α2x2 + α2y). There are approximately 30% of points missing their 
y value using the parameter values in the example below. We will repeat this process 
10, 000 times and in each replication and test the hypothesis H0 : ψ = 0, to the gener-
ated sample. 

(d) n = 400, (β0, β1, β2) = (0, 2, −2), σy 
2 = 1, (µ1,x, µ2,x, σ2 , σ2,

2 
x) = (−2, 0, 4, 16),1,x 

(α0, α1, α2, α3) = (2.9, −0.4, 0.4, 0.5). 
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Tables 6.5 and 6.6 show the γ1 and γ2 values respectively. The power for the random 
design, optimal design and different misspecifcations in the model are shown in Table 
6.4. Irrespective of the misspecifcation, all designs outperform the random design. The 
random design has the least power among all other designs. The misspecifed design 
(2.9, 0.4, 0.4, 0.5) performs slightly lower than the optimal design but better than the 
random design. The (2.9, −0.4, −0.4, 0.5) and (2.9, 0.4, −0.4, 0.5) designs have power 
values above the optimal design at c < 0.5. Showing that a change in the sign of the 
coeffcients of the covariates does not affect the power of the test. 

TABLE 6.4: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.388 0.641 0.786 0.827 0.877 0.892 0.894 0.905 0.912 
Random 0.304 0.473 0.565 0.664 0.744 0.795 0.855 0.883 0.911 
Missing mechanism 
(2.9,-0.3,0.4,0.5) 0.386 0.627 0.782 0.831 0.871 0.878 0.898 0.901 0.912 
(2.9,-0.2,0.4,0.5) 0.396 0.640 0.760 0.831 0.868 0.885 0.897 0.908 0.913 
(2.9,-0.1,0.4,0.5) 0.370 0.639 0.790 0.831 0.881 0.882 0.899 0.907 0.913 
(2.9,0.1,0.4,0.5) 0.379 0.635 0.750 0.820 0.869 0.884 0.896 0.908 0.912 
(2.9,0.2,0.4,0.5) 0.398 0.634 0.725 0.813 0.875 0.888 0.897 0.906 0.912 
(2.9,0.3,0.4,0.5) 0.394 0.616 0.771 0.840 0.873 0.888 0.895 0.907 0.912 
(2.9,0.4,0.4,0.5) 0.384 0.612 0.785 0.822 0.883 0.884 0.891 0.904 0.911 
(2.9,-0.4,0.3,0.5) 0.404 0.650 0.776 0.842 0.870 0.885 0.898 0.907 0.911 
(2.9,-0.4,0.2,0.5) 0.388 0.639 0.763 0.849 0.871 0.887 0.897 0.901 0.912 
(2.9,-0.4,0.1,0.5) 0.393 0.681 0.773 0.837 0.874 0.893 0.902 0.907 0.914 
(2.9,-0.4,-0.1,0.5) 0.422 0.658 0.777 0.821 0.867 0.884 0.900 0.906 0.912 
(2.9,-0.4,-0.2,0.5) 0.411 0.686 0.785 0.858 0.875 0.885 0.893 0.908 0.912 
(2.9,-0.4,-0.3,0.5) 0.427 0.652 0.790 0.832 0.873 0.891 0.899 0.906 0.911 
(2.9,-0.4,-0.4,0.5) 0.421 0.683 0.789 0.840 0.871 0.885 0.895 0.907 0.911 
(2.9,0.4,-0.4,0.5) 0.430 0.678 0.793 0.858 0.877 0.885 0.894 0.903 0.911 
Regression Coeffcients 
(0.07+1.96x1 − 1.98x2) 0.383 0.649 0.756 0.828 0.870 0.889 0.899 0.908 0.911 
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TABLE 6.5: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.3883 0.7683 1.2086 0.9198 1.2699 1.0780 0.5982 0.6391 2.1061 
(2.9,-0.3,0.4,0.5) 0.3500 0.4309 1.2217 0.7250 0.8125 0.8112 0.9772 0.5906 1.4896 
(2.9,-0.2,0.4,0.5) 0.6500 0.9118 0.5428 0.7512 0.1997 0.9559 1.0476 1.5378 2.1250 
(2.9,-0.1,0.4,0.5) 0.2617 0.4583 1.5745 1.1745 1.4444 1.1061 1.1891 0.9106 1.2619 
(2.9,0.1,0.4,0.5) 0.1330 0.8532 1.6948 2.9932 0.9903 0.9297 0.7618 1.1438 0.7628 
(2.9,0.2,0.4,0.5) 0.8541 1.2904 2.1188 2.5703 2.8186 1.7148 0.9930 0.9051 0.7430 
(2.9,0.3,0.4,0.5) 0.4583 1.3278 0.8004 1.1060 1.7387 1.1036 2.0707 1.2636 0.3439 
(2.9,0.4,0.4,0.5) 0.4277 2.0845 2.7870 1.1419 1.3015 1.1568 1.0850 1.4200 0.4813 
(2.9,-0.4,0.3,0.5) 0.3428 0.3720 0.7825 0.9972 0.8372 0.8839 1.1198 1.7977 1.5968 
(2.9,-0.4,0.2,0.5) 0.3629 0.5750 0.4441 1.2838 0.9261 1.3422 1.5105 0.5219 2.1125 
(2.9,-0.4,0.1,0.5) 0.3896 1.1634 0.7031 1.1334 1.1164 1.3727 2.1243 1.4478 0.6000 
(2.9,-0.4,-0.1,0.5) 0.6822 0.7511 0.7369 0.7090 0.7495 1.2539 1.3563 0.7313 0.5219 
(2.9,-0.4,-0.2,0.5) 0.9144 1.8711 1.2206 1.9333 1.3964 1.3245 0.5750 1.0865 0.8156 
(2.9,-0.4,-0.3,0.5) 1.0836 1.0250 1.7325 1.045 1.5826 1.2401 0.8798 0.9436 0.4531 
(2.9,-0.4,-0.4,0.5) 1.4474 1.1750 1.3378 1.2881 1.3441 2.0750 2.8750 0.8403 1.3500 
(2.9,0.4,-0.4,0.5) 2.1231 2.5130 2.1520 2.5750 2.3159 0.7987 1.1641 0.4282 0.6469 
Regression Coeffcients 
(0.07+1.96x1 − 1.98x2) 0.4500 0.7173 0.5281 0.6935 0.8255 1.1688 1.6344 0.9598 1.3975 

TABLE 6.6: γ2 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal -0.6016 -0.8612 -1.2371 -1.0366 -1.3711 -1.1516 -1.3023 -1.3813 -1.9468 
(2.9,-0.3,0.4,0.5) -0.8000 -0.6900 -1.1742 -1.2001 -0.8500 -0.8452 -1.5016 -1.1250 -1.5330 
(2.9,-0.2,0.4,0.5) -0.6000 -0.8485 -0.9852 -0.9956 -0.9020 -0.8359 -1.2184 -1.6448 -2.5000 
(2.9,-0.1,0.4,0.5) -0.5438 -0.7995 -1.5419 -1.1400 -1.3162 -1.5498 -1.2172 -1.2089 -1.3664 
(2.9,0.1,0.4,0.5) -0.8133 -0.6745 -0.9713 -1.4914 -1.3578 -1.3125 -1.2946 -1.1750 -0.9654 
(2.9,0.2,0.4,0.5) -0.8745 -0.8619 -0.8750 -1.1630 -1.7351 -1.0323 -0.9733 -1.2578 -0.8281 
(2.9,0.3,0.4,0.5) -0.6193 -0.7597 -0.7037 -0.9080 -0.9999 -1.1276 -1.1733 -1.2960 -0.9148 
(2.9,0.4,0.4,0.5) -0.5837 -0.9375 -2.0068 -0.6989 -1.2956 -1.0821 -1.0067 -1.4326 -0.7502 
(2.9,-0.4,0.3,0.5) -1.3181 -1.2973 -1.0026 -1.1661 -0.9547 -1.3278 -1.3448 -2.4844 -1.9325 
(2.9,-0.4,0.2,0.5) -0.9297 -0.8000 -1.1899 -1.3621 -1.3672 -1.6188 -2.0059 -1.0375 -2.8500 
(2.9,-0.4,0.1,0.5) -0.7742 -2.1236 -1.5250 -1.9373 -1.7938 -2.1444 -2.4993 -1.8379 -1.2000 
(2.9,-0.4,-0.1,0.5) -1.6981 -1.4039 -1.4989 -2.0557 -1.3991 -2.3125 -1.6250 -1.1500 -0.8063 
(2.9,-0.4,-0.2,0.5) -1.5932 -2.6094 -2.2251 -2.2993 -2.7080 -2.3991 -1.2000 -1.2418 1.1375 
(2.9,-0.4,-0.3,0.5) -2.9798 -1.3000 -2.6983 -2.3115 -1.9101 -2.0654 -1.4314 -2.3497 -0.9375 
(2.9,-0.4,-0.4,0.5) -2.1181 -1.9001 -2.6006 -3.7214 -2.8103 -4.2000 -6.8000 -1.1749 -1.8000 
(2.9,0.4,-0.4,0.5) -2.1286 -2.5702 -2.5435 -2.7000 -2.7171 -1.8544 -1.1625 -0.6875 
Regression Coeffcients 
(0.07+1.96x1 − 1.98x2) -0.7125 -1.0127 -0.7625 -1.0754 -1.0508 -1.1568 -1.8375 -1.0403 -2.7070 

In section 7.2, we introduce a heuristic method to fnd robust designs. 
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6.4 Non-parametric alternatives 

In the arguments of this section, we adopt the fndings of Kim and Yu (2011) in order 
to increase the robustness of our MNAR test to model misspecifcations. As shown in 
Lemma 6.3, a key component of computing expectations present in the T-optimality 
criteria developed in this work is the knowledge of Pr(Y ∈ dy | X = x, M = 0) 
and Pr(Y ∈ dy | X = x, M = 1). It seems reasonable to suggest the probability 
Pr(Y ∈ dy | X = x, M = 1) can be estimated using the observed data, and it indeed can. 
However, estimating Pr(Y ∈ dy | X = x, M = 0) is not trivial due to the unobserved 
responses. A key result that connects the properties of the observed and unobserved 
responses is provided in the following lemma. 

Lemma 6.4. 

O(x, y)
Pr(Y ∈ dy | X = x, M = 0) = Pr(Y ∈ dy | X = x, M = 1) × ,

E(O(x, Y)|X = x, M = 1) 

where 

Pr(M = 0 | X = x, Y = y)
O(x, y) = .

Pr(M = 1 | X = x, Y = y) 

The quantity O(x, y) is known as the conditional odds of non-response. By specialising 
Lemma 6.4 for the logit model given in (6.3), we obtain 

exp(−ψy)
Pr(Y ∈ dy | X = x, M = 0) = Pr(Y ∈ dy | X = x, M = 1) × . 

E(exp(−ψY)|X = x, M = 1) 

This result states the density of the non-responding responses is an exponential tilting 
of the density for the responding responses (Kim and Yu, 2011). A consistent estimate 
of Pr(Y ∈ dy | X = x, M = 1) can be nonparametrically obtained using kernel density 
estimation. If Pr(M = 1 | X = x, Y = y) is known, then ψ does not require estimation. 
Otherwise, −ψ will have to be estimated using a follow-up of some non-respondents. 

Lemma 6.5. From Kim and Yu (2011), a non-parametric consistent estimator of Pr(Y ∈
dy | X = x, M = 0) is given by m0(x, y; ψ) · dy with 

n MiKh(x, xi)Kh(y, yi) exp(−ψyi)m0(x, y; ψ) = ∑ ,
∑n

j=1 MjKh(x, xj) exp(−ψyj)i=1 

where Kh(u, x) = h−1K{(u − x)/h}, K(·) is a symmetric density function (kernel) on R and 
h = hn is the bandwidth such that hn → 0 and nhn → ∞ as n → ∞. 
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Using Lemma 6.5 and Lemma 6.3, we can estimate the expected value of a function 
g(XA, YA) as follows: 

Eg(XA, YA) = Eg(XO, YO)Pr(MA = 1) + Eg(XR, YR)Pr(MA = 0) 

≃ 1 
∑ g(xi, yi)n1 + c · (n − n1) i∈I1∫1 

+ ∑ g(xi, y)m0(xi, y; ψ)dy , (6.20)
n1 + c · (n − n1) i∈S 

where S is a set obtained from sampling c · (n − n1) elements without replacement 
from I\I1 with each item having probability p2(xi) of being selected. A particularly 
important form of g is [ ( )

v1(λ, ψ; WA, ZA, γ)
g(XA, YA) = v1(λ, ψ; WA, ZA, γ) log 

v1(λ0, 0; WA, ZA, γ)( ) ]
1 − v1(λ, ψ; WA, ZA, γ)

+ (1 − v1(λ, ψ; WA, ZA, γ)) log (6.21)
1 − v1(λ0, 0; WA, ZA, γ) 

since we require estimating the mean of g for the optimal design criteria T(γ∗) . 

We will now formulate the second algorithm for test T1 which can be seen as a relaxed 
form of Algorithm 1 for T1. 

Algorithm 7 Algorithm 2 for T1 

1: Input: Value 0 < c ≤ 1, approximation formula (6.20), and function g given in 
(6.21). 

2: Output: Value of γ. 
3: Steps: 
4: Approximate T(γ∗) using the approximation formula (6.20) with function g from 

(6.21). 
5: Choose γ based on the approximation of T(γ∗). 
6: Return: γ. 

To use Lemma 6.5, we need to specify a kernel and a bandwidth. Whilst this choice is 
fairly arbitrary, we will align with Kim and Yu (2011) and choose the Gaussian kernel 
and set h = σ̂ xn−0.2, where σ̂ x is an estimator for the standard deviation of X. 

In Figures 6.9 and 6.10, as a function of the recovery proportion c, using a dashed blue 
line we plot the power of Algorithm 2 for T1 and compare that to Algorithm 1 for T1 

using the same dashed red line as previous fgures. For scenario (a) where n = 400 
it is easier to distinguish between the two algorithms as is shown in Figure 6.9. If we 
reduced σx from 4 to 2, Algorithm 2 produces designs with similar power to the ideal 
(but more restrictive) Algorithm 1. This is shown in Figure 6.10. 
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FIGURE 6.9: Power for different recovery proportions comparing Algorithm 1 and 
Algorithm 2 for T1 versus a random recovery. 

FIGURE 6.10: Power for different recovery proportions comparing Algorithm 1 and 
Algorithm 2 for T1 versus a random recovery. 
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Chapter 7 

Multivariate Case 

This chapter focuses on how to approach the design problem in a multivariate scenario. 
It is computationally expensive to fnd optimal designs based on regions or probabil-
ities when there are three or more covariates using Algorithm 1 for T1 or Algorithm 1 
for T2. Therefore, in this chapter we explore two different approaches for addressing 
these diffculties. Section 7.1 uses the correlation coeffcient between covariates and 
response variable in designing the optimal region based on the concept of an optimal 
design region developed in Chapter 5. Section 7.2 focuses on a conjecture that uses the 
empirical densities of the covariates to produce a robust and effcient design which is 
based on the framework developed in Chapter 6. The framework in Section 7.2 will 
also allow us to make our MNAR test more robust to model misspecifcations. 

7.1 Using the Correlation Coeffcient 

This section focuses on how to approach the design region in a multivariate scenario 
using the correlation coeffcient between covariates and response variables in designing 
the optimal region for a multivariate scenario. For the multivariate case, if optimisation 
with a large number of covariates becomes too complicated, which combination of co-
variates should be included in computations to obtain the best design region? Can the 
covariate with the highest correlation value with the response variable be used for the 
design region? What happens when the covariates have almost the same correlation 
coeffcients? Results in this chapter show that the higher the correlation with the re-
sponse variable, the higher the power of the optimal design when the covariate is used 
in constructing the design region. 
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7.1.1 Simulation studies 

Firstly, we present an example with 2 covariates where the missing data mechanism is 
MAR. This example compares the MLE for αp+1 and the Type I error of the test using 
random and optimal design with all covariates. All parameters used in this section 
ensures there are approximately 30% missing cases in the response variable Y. 

MAR: Generate 1000 points following a multiple linear regression model in 10000 repli-
cates: 

Y|(X1 = x1, X2 = x2) ∼ N(1 − x1 + 2x2, 25) , 

with X1 ∼ N(3, 36) and X2 ∼ N(1, 16). Introduce MAR missingness into the model 
using: 

exp(−3 + 0.42x1 + 0.25x2)P(M = 1|X = x) = .
1 + exp(−3 + 0.42x1 + 0.25x2) 

Figures 7.1 and 7.2 below show the Type I error values and MSE for both designs re-
spectively. Figure 7.1 shows that both designs have approximately 0.05 Type I error 
values. Figure 7.2 shows that the optimal design has a smaller MSE compared to the 
random design. 

FIGURE 7.1: Type I error comparison between random design and optimal design. 
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FIGURE 7.2: MSE comparison between random design and optimal design. 

In the example below, we fnd out if a design based on only one variable can outper-
form the random design. We considered the random design, optimal design region 
formed using each covariate, both covariates and a linear combination (z) of both 
covariates. 

MNAR 1: Generate 1000 points following a multiple linear regression model in 10000 
replicates: 

Y|(X1 = x1, X2 = x2) ∼ N(2 − 2x1 + 2x2, 4) , 

with X1 ∼ N(0, 16) and X2 ∼ N(2, 4). Introduce MNAR missingness into the model 
using: 

exp(−2 + 0.4x1 + 0.2x2 − 0.15y)
P(M = 1|Y = y, X = x) = .

1 + exp(−2 + 0.4x1 + 0.2x2 − 0.15y) 

In the model above, let z be a linear combination of the covariates such that: z = 0.4x1 + 

0.2x2. The variable z is used to form the design region for the recovery. z is taken from 
the missing mechanism model. Figure 7.3 shows the Power comparison for different 
designs considered. The optimal design using x1 gives the highest power at all values 
of recovery proportion followed by the optimal design when both covariates are used 
in constructing the design region. The optimal design using the linear combination z 
and the optimal design using x2 performs similarly to the random design. The power 
increases as the recovery proportion increases for all the designs. Using X1 gives higher 
power than X2 because the correlation between X1 and Y is greater than that of X2 and 
Y. Cor(X1, Y) = −0.8727201 and Cor(X2, Y) = 0.4362057. 
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FIGURE 7.3: Power comparison for random design, optimal design using all covari-
ates, optimal design using z and optimal design using each covariate for different 

recovery proportions. 

From the above example, the optimal design with one interval (z) did not perform well 
but similarly as the optimal design with x2 (the least correlated variable with y). In 
the following examples, we focus on designing the region using all the covariates, one 
covariate at a time and compare these optimal designs with the random design. 

MNAR 2: Generate 1000 points following a multiple linear regression model in 10000 
replicates: 

Y|(X1 = x1, X2 = x2) ∼ N(2 − 2x1 + 2x2, 4) , 

with X1 ∼ N(0, 4) and X2 ∼ N(2, 4). Introduce MNAR missingness into the model 
using: 

exp(−2.5 + 0.4x1 + 0.4x2 − 0.11y)
P(M = 1|Y = y, X = x) = .

1 + exp(−2.5 + 0.4x1 + 0.4x2 − 0.11y) 

In the above model, X1 and X2 have the same variance, the correlation coeffcient for X1 

and Y is −0.6653363 and that of X2 and Y is 0.6661896. The results for this simulation 
using the random design, optimal design for both covariates, optimal design using X1 

and optimal design using X2 are shown in Figure 7.4 below. With the absolute corre-
lation values being approximately 0.67, the optimal design using X1 and X2 performs 
similarly to the random design. At all values of recovery proportion, the optimal de-
sign using both covariates outperforms the other designs. 
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FIGURE 7.4: MSE comparison between random design and optimal design using co-
variates: Red: random, Black: optimal using both covariates, Blue: optimal using X1, 

Green: optimal using X2. 

There are three covariates in the example below. Here, we focus on designing the re-
gions using each covariate and compare the result of each optimal design with the 
random design. 

MNAR 3: Generate 1000 points following a multivariate linear regression model in 
10000 replicates: 

Y|(Xi = xi) ∼ N(2 − 2x1 + 2x2 − 0.5x3, 4), 

such that i = 1, . . . , 3, with X1 ∼ N(2, 4), X2 ∼ N(1, 9), X3 and ∼ N(4, 1). The model 
below is used to introduce MNAR missingness into y: 

exp(2 + 0.16x1 + 0.6x2 − 1.8x3 − 0.15y)
P(M = 1|Y = y, X = x) = .

1 + exp(2 + 0.16x1 + 0.6x2 − 1.8x3 − 0.15y) 

Figure 7.5 shows the results for different designs. Using X2 gives the highest power 
than other covariates because it has the highest correlation value with Y. Cor(X1, Y) = 

−0.5456, Cor(X2, Y) = 0.8026 and Cor(X3, Y) = −0.0653. Using a covariate with a 
higher correlation coeffcient indicates greater power. Using X3 results in a smaller 
power as that of random design because it has the least correlation coeffcient among 
all the covariates. Building the design around X1 produces designs that are slightly 
better than the random design. 
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FIGURE 7.5: Power comparison for random design and optimal designs each covariate 
for different recovery proportions. 

Conclusively, due to the complexities that can arise in designing the optimal region for 
a multivariate case, using the covariate with the highest correlation with the response 
variable to design the optimal region would result in better power than the random de-
sign. The covariate with the least correlation with the response variable would perform 
similarly to the random design. 

7.2 Conjecture 

In this section, we consider designs that are based on probabilities as in Chapter 6. We 
propose a simple and robust method for fnding effcient designs, including for the 
multivariate case. We will demonstrate how the empirical densities of the covariate(s) 
can be used in obtaining an effcient design. 

7.2.1 A simple and robust method to fnd effcient designs 

In a single covariate or multivariate problem, instead of computationally obtaining the 
values of γ1 for a single covariate problem and γ1, ..., γp in a multivariate scenario 
(where p is the number of covariates), it is possible to obtain the empirical densities of 
the covariates with missing response and observed response. For different examples 
below, we depict three empirical densities of covariate values: covariate values for the 
optimal design computed from Algorithm 1 for T1 (green), the covariate values where 
the response is missing (red) and the covariate values where the response is observed 
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(black). Using the parameters in examples (a) and (d) in Section 6.3.1, the density plots 
for the covariate in example (a) are shown in Figures 7.6 using missing mechanism 
(−0.2, 0.8, 0.6) and 7.7 using missing mechanism (−0.2, 0.8, −0.6). Figures 7.8 and 7.9 
show the density plots for the covariates (x1 and x2) respectively with missing mecha-
nism (2.9, −0.4, 0.4, 0.5). 

FIGURE 7.6: Covariate density plot for (−0.2, 0.8, 0.6). 

FIGURE 7.7: Covariate density plot for (−0.2, 0.8, −0.6). 



110 Chapter 7. Multivariate Case 

FIGURE 7.8: Covariate density plot for (2.9, −0.4, 0.4, 0.5)x1. 

FIGURE 7.9: Covariate density plot for (2.9, −0.4, 0.4, 0.5)x2. 

It could be seen from the fgures above that the peak of the optimal recovery (green) 
occurs roughly where the red and the black densities intersect. This suggests that recov-
ering the responses whose covariate values fall in the intersection of covariate values 
with missing and observed responses would result in a very close optimal design. This 
leads to the formulation of the conjecture below: 
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Conjecture 1. Recovery designs whose empirical densities peak at the intersection of 
the densities formed by the covariate values with missing and observed response, re-
spectively, will be close to optimal. 

Conjecture 1 provides a simple method to fnd effcient designs. The following is the 
algorithm: 

Algorithm 8 Designing Effcient Recovery 

1: Input: Covariate values with missing and observed responses, given value of c. 
2: Output: Optimal γ values. 
3: Steps: 
4: Plot the densities formed by the covariate values with missing response. 
5: Plot the densities formed by the covariate values with observed response. 
6: Through trial and error, determine a value of γ that places the density of the re-

covery design at the intersection of the missing response and observed response 
densities for the given value of c. 

7: Return: γ values. 

This is a very easy method, as it is easy to implement in practice, without performing a 
complicated optimisation procedure. Also, it is not necessary to specify any values for 
the model parameters making the design highly robust to parameter misspecifcations. 
In the examples below, we fnd the power of the optimal design (red dashed line), con-
jectured design (blue dashed line) and random design (black solid line) for MAR and 
MNAR missing mechanisms. β0, β1 and γi used in this section are chosen to introduce 
circa 30% missing data into the response variable. 

Table 7.1 shows the γ1 values for one covariate case used in obtaining the power values 
for the optimal design and conjectured design. The power of the optimal, random and 
conjectured designs are shown in Figure 7.10, the conjectured design is very close to 
the optimal design while the random design performed worse at all values of c. 

(a) n = 400, (β0, β1) = (1, 0.7), σ2 = 1, (µx, σ2) = (2, 16), (α0, α1, α2) = (−0.2, 0.8, 0.6).y x 

TABLE 7.1: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(-0.2,0.8,0.6) 0.698 0.864 0.892 0.893 0.952 0.876 0.798 0.829 0.839 
Conjecture 1.20 1.40 1.56 1.61 1.73 1.77 1.81 1.84 1.89 
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FIGURE 7.10: Power plot using different designs. 

The two covariates case is shown in example (b) below. Tables 7.2 and 7.3 show the γ1 

and γ2 values respectively. Figure 7.11 shows the power plot for the different designs, 
the optimal design has the highest power, followed by the conjectured design which 
is close to the optimal design. The random design has the least power among all the 
designs for all values of c. 

(b) n = 1000, (β0, β1, β2) = (2, −2, 2), σy 
2 = 4, (µ1,x, µ2,x, σ1,

2 
x, σ2,

2 
x) = (2, 2, 16, 16), 

(α0, α1, α2, α3) = (−2.7, 0.4, 0.2, −0.15). 

TABLE 7.2: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(-2.7,0.4,0.2,-0.15) 0.913 0.835 1.246 1.088 1.227 1.088 0.782 0.793 1.100 
Conjecture 1.23 1.35 1.42 1.46 1.50 1.52 1.55 1.57 1.59 

TABLE 7.3: γ2 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(-2.7,0.4,0.2,-0.15) -0.084 -0.130 -0.287 -0.342 -0.489 -0.136 -0.462 -0.477 -0.575 
Conjecture -0.30 -0.21 -0.20 -0.17 -0.16 -0.12 -0.10 -0.09 -0.08 
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FIGURE 7.11: Power plot using different designs. 

In order to have the same number of missing values in a different dataset as in example 
(c) and (d), the sample size increased from 400 in example (a) to 1000. The coeffcient 
β0 increases from 1 to 2, while β1 decreases to −2. In this example, X has a smaller 
variance of 2 and a larger mean of 3. The model for introducing the missing values also 
changes, with α0 changing from positive to negative, α1 from negative to positive, and 
α2 taking a value of 0 for MAR. For the MNAR example in (d), all parameters remain 
the same, except for α2, which takes a value of 0.3. 

The example below shows the Type I error and power for the three different designs 
with a quadratic term in the regression model and the missing mechanism model. The 
inclusion of the quadratic term is to see if this affects the Type I error of the test or not. 
The Type I errors for the three designs are shown in Table 7.4. Table 7.5 shows the γ1 

values for the optimal and conjectured designs. All three designs have Type I error 
values of approximately 0.05 showing that the inclusion of the quadratic term in the 
regression model does not affect the test. 

(c) n = 1000, (β0, β1) = (2, −2), σ2 = 1, (µx, σ2) = (3, 2), (α0, α1, α2) = (2.9, −0.13, 0)y x 

with regression β0 + β1x2 and missing mechanism α0 + α1x2 + α2y. 

TABLE 7.4: Type I error for different designs in 2000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(2.9,-0.13,0) 0.051 0.048 0.054 0.056 0.048 0.050 0.050 0.050 0.050 0.052 
Random 0.055 0.040 0.045 0.045 0.041 0.055 0.053 0.050 0.065 0.054 
Conjecture 0.051 0.051 0.049 0.049 0.052 0.054 0.050 0.052 0.056 0.045 
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TABLE 7.5: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(2.9,-0.13,0) -0.236 -0.469 -0.420 -0.162 -0.215 -0.226 -0.695 -0.072 0.037 
Conjecture -0.10 -0.30 -0.35 -0.38 -0.40 -0.42 -0.45 -0.47 -0.50 

In the example below, we consider the MNAR mechanism and introduce a quadratic 
term in the regression and missing mechanism models. Figure 7.12 shows the power 
of the three designs. The γ1 values are shown in Table 7.6 for optimal and conjectured 
designs. The optimal design has the highest power while the random design has the 
smallest power at values of c. The conjectured design is better than the random design 
and performed slightly worse than the optimal design (lies between the optimal design 
and random design). 

(d) n = 1000, (β0, β1) = (2, −2), σ2 = 1, (µx, σ2) = (3, 2), (α0, α1, α2) = (2.9, −0.13, 0.3)y x 

with regression β0 + β1x2 and missing mechanism α0 + α1x2 + α2y. 

TABLE 7.6: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(2.9,-0.13,0.03) -0.927 -0.972 -0.957 -0.952 -0.937 -0.976 -0.974 -0.895 -0.579 
Conjecture -0.45 -0.42 -0.40 -0.38 -0.36 -0.35 -0.32 -0.13 -0.11 

FIGURE 7.12: Power plot using different designs. 

We consider an example with fve covariates to examine the performance of the con-
jectured design. Figure 7.13 shows the power for both designs and the γ values for the 
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conjectured design are shown in Table 7.7. As seen in Figure 7.13, the random design 
has a smaller power than the conjectured design. 

(e) Generate 1000 points following a multiple linear regression model in 10000 repli-
cates: 

Y|(X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5) ∼ N(2 − x1 + 1.2x2 + x3 − 0.8x4 + 1.5x5, 1) , 

with X1 ∼ N(3, 4),X2 ∼ N(2, 1), X3 ∼ N(1, 4), X4 ∼ N(2, 4) and X5 ∼ N(1, 1). Intro-
duce MNAR missingness into Y using: 

exp(0.58 − 0.25x1 + 0.13x2 + 0.23x3 + 0.1x4 − 0.3x5 + 0.23y)
P(M = 1|Y = y, X = x) = .

1 + exp(0.58 − 0.25x1 + 0.13x2 + 0.23x3 + 0.1x4 − 0.3x5 + 0.23y) 

Using the random and conjectured designs, obtain the power of test. 

TABLE 7.7: γ values 

γi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

γ1 -0.1 -0.18 -0.2 -0.23 -0.26 -0.3 -0.32 -0.35 -0.38 
γ2 0.14 0.22 0.27 0.29 0.32 0.34 0.36 0.39 0.45 
γ3 0.24 0.25 0.28 0.32 0.35 0.37 0.39 0.42 0.46 
γ4 -0.05 -0.1 -0.16 -0.18 -0.2 -0.22 -0.25 -0.27 -0.3 
γ5 0.05 0.06 0.11 0.13 0.23 0.25 0.27 0.29 0.33 

FIGURE 7.13: Power plot using different designs. 

In this very extreme example, we consider the application of the conjecture for a sce-
nario with ten covariates. The use of numerical optimisation when using Algorithm 1 

https://exp(0.58
https://exp(0.58
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for T1 would not be possible for this instance. It is important to have a conjecture which 
can give us designs that are better than random for scenarios for which it would be nu-
merically diffcult to get an optimal design. The γ values for the conjectured design 
are shown in Table 7.8. Figure 7.14 shows that the random design has smaller power 
values compared to the conjectured design. 

(f) Generate 1000 points following a multiple linear regression model in 10000 repli-
cates: 

Y|(X = x) ∼ N(−2.3x1 + 0.78x2 + 0.5x3 − 1.8x4 + 0.65x5 + 0.12x6−

x7 − 0.8x8 + 1.5x9 − 0.8x10, 4) , 

for i = 1, . . . , 10 with X1 ∼ N(3, 4), X2 ∼ N(2, 9), X3 ∼ N(2, 4), X4 ∼ N(2, 4) 
and X5 ∼ N(1, 9), X6 ∼ N(3, 4), X7 ∼ N(2, 4), X8 ∼ N(3, 9), X9 ∼ N(1, 4) and 
X10 ∼ N(2, 1). Introduce MNAR missingness into Y using a logistic regression model 
with linear predictor: 0.8 − 1.55x1 + 0.13x2 + 2.3x3 − 1.1x4 − 0.35x5 + 0.87x6 + 0.48x7 + 

0.23x8 + 0.41x9 + 0.3x10 + 0.25y. 

Using the random and conjectured designs, obtain the power of test. 

TABLE 7.8: γ values 

γi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

γ1 -0.18 -0.25 -0.27 -0.30 -0.33 -0.36 -0.38 -0.40 -0.43 
γ2 0.03 0.05 0.07 0.08 0.10 0.13 0.15 0.18 0.20 
γ3 0.20 0.23 0.26 0.29 0.31 0.33 0.35 0.38 0.40 
γ4 -0.20 -0.22 -0.25 -0.28 -0.30 -0.32 -0.35 -0.38 -0.40 
γ5 -0.02 -0.04 -0.07 -0.09 -1.10 -1.30 -1.70 -1.85 -2.00 
γ6 0.10 0.13 -0.15 0.18 0.20 0.23 0.25 0.28 0.30 
γ7 -0.02 -0.05 -0.07 -0.08 -0.12 -0.15 -0.17 -0.22 -0.27 
γ8 -0.17 -0.20 -0.22 -0.24 -0.27 -0.28 -0.30 -0.32 -0.35 
γ9 0.13 0.15 0.17 0.19 0.20 0.22 0.24 0.25 0.30 
γ10 -0.20 -0.22 -0.23 -0.25 -0.27 -0.30 -0.33 -0.35 -0.38 
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FIGURE 7.14: Power plot using different designs. 

Tables A.13 - A.17 and Figures A.1 - A.3 in the Appendix show result for different cases 
using the optimal design, conjectured design and random design. These results show 
similar trends to those shown in this section. For all the cases, the optimal design out-
performed the other design. The random design performed the least among all designs. 
Overall, these examples show that the conjecture design outperforms the random de-
sign and is often close to the optimal design. 

7.2.2 Saturated Model Fitting 

This subsection shows another use for Conjecture 1 that will not only make the recov-
ery design but also Test T1 more robust to model misspecifcations. With all parametric 
tests, when the model terms are misspecifed, the Type I error rate may be off. For ex-
ample, in a one-covariate model, if we assume a linear relationship with the covariate 
in the linear predictor of the missing mechanism, but in reality it is quadratic, the test 
may not be level α. In a situation where there is very little knowledge of the true rela-
tionship, the conjectured design (which is purely based on the data and thus free from 
any model assumptions) can be used and then Test T1 with a conservatively specifed 
model can be used. For example, if we are not sure if there may be a quadratic term in 
x in the linear predictor, we could add quadratic and perhaps even cubic terms when 
performing the test. As long as this ‘larger’ model approximately contains the ‘true’ 
model there should be no problem with the Type I error, although we may encounter a 
slight reduction in power as a trade-off. These results are shown in the scenarios below. 

Using the parameters and models in scenario 1, the Type I error of the test that tests a 
linear predictor with α0 + α1x2 against α0 + α1x2 + α2y are shown in Tables 7.9 using the 
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conjecture and random designs. This scenario is to show that despite the inclusion of 
quadratic term in the the missing mechanism, the Type I error of the test does not fail. 
For MAR, the Type I error rate for both designs are close to 0.05. For MNAR, Figure 
7.15 shows the power of the test using both designs. The power of the test using the 
random design is smaller than that of the conjectured design. As shown in Figure 7.15, 
the conjecture (blue) has higher power than the random design (black). 

Scenario 1: n = 1000, (β0, β1) = (0.5, −1.2), σ2 = 4, (µx, σ2) = (2, 3), (α0, α1, α2) = y x 

(4, −0.45, −0.18) with regression β0 + β1x2 and missing mechanism α0 + α1x2 + α2y. 

MAR: the Type I error rate of the test that tests a linear predictor with α0 + α1x2 against 
α0 + α1x2 + α2y. 

TABLE 7.9: Type I error for different designs in 2000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Random 0.049 0.051 0.048 0.050 0.052 0.056 0.052 0.056 0.059 0.051 
Conjecture 0.056 0.052 0.050 0.057 0.053 0.058 0.054 0.052 0.053 0.054 

MNAR: power of the test that tests a linear predictor with α0 + α1x2 against α0 + α1x2 + 

α2y. 

FIGURE 7.15: Power plot using different designs. 

Scenario 2: n = 1000, (β0, β1) = (2, −2), σ2 = 1, (µx, σ2) = (3, 2), (α0, α1, α2) = y x 

(2.9, −0.13, 0.3) with regression β0 + β1x2 and missing mechanism α0 + α1x2 + α2y. 

In this scenario, the Type I error and power of the test that tests α0 + α1x + α2x2 + α3x 
against α0 + α1x + α2x2 + α3x3 + α4y are respectively shown in Table 7.10 and Figure 

3 
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7.16 respectively. The Type I error for both the random design and conjectured design 
are all close to 0.05 for all values of c. The conjectured design performs better than the 
random design. To see if there is a drop in the power of the test when the model is over-
ftted, Figure 7.17 shows the power of the test of α0 + α1x2 against α0 + α1x2 + α2y. In 
this case, the conjectured design performs better than the random design. Comparing 
Figures 7.16 and 7.17 shows that there is not much drop in the power obtained from 
optimising the recovery design using the true model or when the model is overftted. 

MAR: the Type I error rate of the test that tests a linear predictor with α0 + α1x + α2x2 + 

α3x3 against α0 + α1x + α2x2 + α3x3 + α4y. 

TABLE 7.10: Type I error for different designs in 2000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Random 0.045 0.045 0.054 0.048 0.049 0.048 0.052 0.049 0.052 0.049 
Conjecture 0.040 0.046 0.043 0.044 0.042 0.040 0.040 0.041 0.035 0.041 

3MNAR: the power of the test that tests a linear predictor with α0 + α1x + α2x2 + α3x 
against α0 + α1x + α2x2 + α3x3 + α4y. 

FIGURE 7.16: Power plot using different designs. 

MNAR: power of the test that tests a linear predictor with α0 + α1x2 against 
α0 + α1x2 + α2y 
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FIGURE 7.17: Power plot using different designs. 

7.3 Application of methods to a real data example 

We apply our methods to a scenario where our observed data values are not simulated 
from a known statistical distribution. In order to do this we use a study derived from 
the 1979 National Longitudinal Survey of Youth, commonly referred to as the NLSY79. 
This longitudinal survey, begun in 1979, interviewed a nationally representative sam-
ple of 12,686 young men and women in the US. From 1986, information on children 
born to women in the survey was also collected. For more information about the sur-
vey see Mitra and Reiter (2011, 2016). We note here that our sole purpose is to establish 
potential gains in detecting the presence of MNAR in this setting where the data gen-
erating mechanism is unknown. We do not seek to infer true causal effects, with the 
standard problem of unmeasured confounders being potentially relevant here. 

Following Mitra and Reiter (2011, 2016) we subset on frst born children only to avoid 
complications with family nesting. The resulting data set comprises 4888 observations. 
For our analysis model we consider a linear regression model of the form, 

yi = β0 + β1xi + ϵi , ϵi ∼ N(0, σ2), 

where yi corresponds to the ith child’s Peabody Maths score (PIATM) administered at 
5 or 6 years of age (taken as a proxy for cognitive development), and xi corresponds 
to (the logarithm of) family income at birth, i = 1, . . . , 4888. Since the developments 
of the paper assume covariates are fully observed, we focus on the subset on the 4888 
observations with observed family income, resulting in 3596 observations. We note 
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alternative analysis models could be chosen but settled on this with evidence in the 
literature suggesting a relationship between these two variables (Cooper and Stewart, 
2021). Of the 3596 observations, PIATM is missing in 1640 cases (a 45.6% missing rate). 
Figure 7.18 plots a scatterplot of the 1956 observed PIATM scores against the log of 
family income. The parameters that determine the distribution of y|x, (β0, β1, σ), are 
unknown to us in this real data setting and estimated from the available data. This 
gives estimates β0 ≈ 69.06, β1 ≈ 3.14 and σ ≈ 13.14. When optimizing our recovery 
designs, we will assume these are the true values. This seems reasonable from fndings 
in Section 6.3.1 which indicate robustness to slight misspecifcation of these parame-
ters. In Figure 7.19, a solid black line depicts the density estimate of log(income). A 
candidate density is the skewed normal distribution with ξ = 11.3, ω = 1.4, α = −3, 
indicated by the dashed blue line overlaid on the density estimate. 

FIGURE 7.18: Peabody score vs log(income) scatterplot. 
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FIGURE 7.19: Density of log(income) and skewed normal approximation. 

7.3.1 Simulation based on the complete case subsample 

In this section, we subset our data on the complete case subsample, which comprise 
1956 units. We re-introduce missing values into the outcome, y, using the following 
mechanism: 

Pr(M = 1|y, x) = exp(α0 + α1x + α2y)/(1 + exp(α0 + α1x + α2y)) . (7.1) 

We specifcally consider two scenarios for the missing data mechanism: 

A) (α0, α1, α2) = (52, −5, 0.016)T , 

B) (α0, α1, α2) = (−50, 5, −0.016)T 

The parameter values αi are chosen to introduce approximately 40% missing data into 
the outcome (similar to the amount present in the original data). As before, we assume 
we are able to recover a proportion of the missing yi values. In scenario A, α0 and α2 

are positive and α1 is negative while in B, α0 and α2 are negative and α1 is positive. 
The absolute values for α1 and α2 are the same in both scenarios except for α0 which 
reduces from 52 in A to 50 in B. 

We apply Algorithm 1 for T1 for optimizing the power of the test described in Sec-
tion 6.2 above. We do this by repeatedly generate new samples from the complete 
cases by resampling rows of the data with replacement. The number of samples is set 
to 1956 to match the number of complete cases. In each scenario, we then introduce 



123 7.3. Application of methods to a real data example 

missing values into the outcome using the mechanisms specifed above. We compare 
the performance of Algorithm 1 for T1 against a random recovery as well as designs 
formed from Conjecture provided in Section 7.2.1. 

Our results are presented in Figures 7.20 and 7.21 below, where we use the scheme of 
dashed red, dot-dashed blue and solid black for Algorithm 1 for T1, Conjecture 1 and 
the random recovery, respectively. We frstly remark that the power for Algorithm 1 
and Conjecture 1 are almost identical, with an ever so slight advantage to Algorithm 1 
for T1 as we would anticipate. We see that in Scenario A as shown in Figure 7.20, there 
is a substantial increase in power with small recovery proportions, for example for a 
recovery proportion c = 0.3 the random recovery has a power of 0.45 approximately, 
compared to a power of 0.6 using the optimal recovery design. The signifcant increase 
in power is more noticeable in Figure 7.21 for Scenario B. For this scenario we can see 
that for c = 0.4 the power using the optimal recovery design is approximately 0.65, and 
to achieve a similar power using the random recovery design, a recovery proportion of 
almost 1 would be required, which may be impractical in many settings. 

FIGURE 7.20: A comparison of power using the optimal recovery design using Algo-
rithm 1 for T1, the recovering design from Conjecture 1 and a random recovery design 

. 
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FIGURE 7.21: A comparison of power using the optimal recovery design using Algo-
rithm 1 for T1, the recovering design from Conjecture 1 and a random recovery design 

. 
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Chapter 8 

Using a test for MAR vs MNAR to 
improve estimation 

In previous chapters, we have discussed how a follow up sample of missing responses 
allows us to perform tests for MAR vs MNAR. We have also demonstrated how assum-
ing an incorrect missing mechanism can lead to considerable bias in estimation prob-
lems. The purpose of this chapter is to demonstrate that utilizing the tests for MAR 
vs MNAR developed in this thesis can help identify the correct MDM, and therefore 
improve the estimation of parameters. 

8.1 Estimating E(Y) 

In this section, we review the non-parametric estimators in Kim and Yu (2011) and de-
velop a new estimator that utilises a test for MAR vs MNAR before estimation. Cheng 
(1994) proposed a non-parametric estimator for estimating functional mean of a re-
sponse variable when the missing mechanism is MAR. In this section, this estimator 
will be called Cheng’s estimator and is formally introduced in Defnition 8.1. Kim and 
Yu (2011) discussed a non-parametric estimator used to estimate the mean of the re-
sponse variable Y in the presence of missing values and compared with Cheng’s esti-
mator. When the missing mechanism is ignorable (i.e. MAR), the Cheng’s estimator 
can be used while the semi-parametric estimator can be used when the missing mech-
anism is non-ignorable (MNAR). 

Using the problem formulation in Subsection 6.1.1 with one covariate, suppose we are 
interested in estimating the mean of Y. Recall Mi is the missing indicator that takes 
value 1 when yi is observed and 0 when yi is missing. 
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Defnition 8.1. Kim and Yu (2011) defned a consistent estimator of Pr(Y ∈ dy | X = 

x, M = 0) under missing at random mechanism, called the Chengs estimator and de-
ˆnoted as θ1 as: 

n1
θ̂1 = ∑ Miyi + (1 − Mi)m̂ (xi) , n i=1 

where m̂ (xi), the consistent estimator of m(xi) = E(yi|xi), is defned as: 

n MiKh(xi, x)yi m̂ (xi) = ∑ . 
∑n 

i=1 MiKh(xi, x)i=1 

Defnition 8.2. For the non-ignorable missing mechanism, a consistent estimator of 
Pr(Y ∈ dy | X = x, M = 0) called the semi-parametric estimator (Kim and Yu, 2011) 

ˆand denoted as θSE is: 

n1
θ̂ = ˆ ) ,∑ Miyi + (1 − Mi)m̂ (xi; ψSE n i=1 

where m̂ (xi; ψ̂ ) is defned as: 

MiKh(x, xi) exp(−ψ̂ yi)yi 
n 

m̂ (x; ψ̂ ) = ∑ ,
∑i

n 
=1 MiKh(x, xi) exp(−ψ̂ yi)i=1 

where Kh(u, x) = h−1K{(u − x)/h}, K(·) is a symmetric density function (kernel) on R 

and h = hn is the bandwidth such that hn → 0 and nhn → ∞ as n → ∞. A consistent 
estimator ψ̂ of ψ can be obtained by solving: 

n 

∑ 
i=1 

(1 − Mi)δi{yi − m(xi; ψ)} = 0. 

δi is an indicator variable that takes value 1 if the missing yi is recovered in the follow-
up sample and 0 if not recovered. 

Defnition 8.3. Under missing at random mechanism, introduce recovery or follow-up 
to Cheng’s estimator in Defnition 8.1 to obtain Cheng with follow-up denoted as θ̂CE, 
a consistent estimator of Pr(Y ∈ dy | X = x, M = 0) is: 

n1
θ̂CE = ∑ Miyi + (1 − Mi)(δiyi) + (1 − Mi)m̂ (xi; 0) , 

n i=1 

where δi is the same as defned in Defnition 8.2 and m̂ (xi) as defned in Defnition 8.1 

ˆ ˆCombined estimator θTE: We introduce a new estimator called θTE. This is a combined 
estimator as it frst tests the presence of MAR vs. MNAR and uses one of the estimators 
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earlier discussed. Let’s consider a scenario with combinations of MAR and MNAR 
ˆ ˆdatasets. If the dataset is MAR, use θCE for estimation and if otherwise, use θSE. The 

algorithm for this estimator is as follows: 

Algorithm 9 Estimation Procedure for θ̂TE 

1: Input: A combination of datasets where each dataset may be MAR (Missing at 
Random) or MNAR (Missing Not at Random). 

2: Output: Statistical properties of the estimator θ̂TE for E(Y). 
3: Initialization: 
4: Recover c of the missing values of y and augment them with the observed cases. 
5: Steps: 
6: Test the hypothesis H0 : ψ = 0. 
7: if MAR is present then 

ˆ8: Use the estimator θCE. 
9: else 

ˆ10: Use the estimator θSE. 
11: end if 
12: Obtain the bias, variance, and MSE of the chosen estimator for E(Y). 
13: Return: The estimate of the bias, variance, and MSE. 

8.2 Simulation studies 

For two regression models and eight different missing data mechanisms, we will com-
pute the bias, variance and MSE for each estimator θ̂1, θ̂SE and θ̂CE. In mechanism 1, 
M1, we will consider a MAR scenario. In all other scenarios, we will consider MNAR. 
These examples are taken from the examples used in Kim and Yu (2011) to cover a large 
variety of different MNAR scenarios. 

(a) Generate 200 observations with 2000 replications and obtain the bias, variance and 
MSE of Y from Xi ∼ N(2, 1) and ei ∼ N(0, 1) for Model A: yi = 1 + 0.7xi + ei and model 

ˆ xn−0.2 (σB: yi = 1 + 0.5(xi − 2.5) + ei with 15% recovery and h = σ ˆ x represents the esti-
mated standard deviation of xi in the sample) using the following missing mechanisms 
in both models: 

exp(α0 + α1xi)M1 = ,
1 + exp(α0 + α1xi) 

where (α0, α1) = (−1.5, 1.0) for both models. 

exp(α0 + α1xi + α2yi)M2 = ,
1 + exp(α0 + α1xi + α2yi) 

where (α0, α1, α2) = (−0.85, 0.3, 0.3) for model A and (α0, α1, α2) = (−1.58, 0.5, 0.7) for 
model B. 

2exp(α0 + α1xi + α2xi + α3yi)M3 = ,
1 + exp(α0 + α1xi + α2x2 

i + α3yi) 

https://�2)=(�1.58
https://�2)=(�0.85
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where (α0, α1, α2, α3) = (−2.0, 0.3, 0.3, 0.3) for model A and (α0, α1, α2, α3) = 

(−2.72, 2.72, −0.68, 0.7) for model B. 

M4 = 0.5 i f yi ≤ p 

= 1 i f yi > p, 

where p = 3.4 for model A and p = 2.5 for model B. In context, the value of the 
response beyond a threshold, p, will always be observed, whereas, the value below p 
will only be observed with probability 0.5. 

2exp(α0 + α1xi + α2yi + α3yi )M5 = ,
1 + exp(α0 + α1xi + α2yi + α3y2 

i ) 

where (α0, α1, α2, α3) = (−0.65, 0.1, 0.1, 0.1) for model A and (α0, α1, α2, α3) = 

(−0.85, 0.1, 0.1, 0.3) for model B. 

M6 = α(α0 + α1xi + α2yi), 

where α(·) is the cdf of the standard normal distribution, (α0, α1, α2) = (−0.64, 0.1, 0.3) 
for model A and (α0, α1, α2) = (−0.53, 0.1, 0.4) for model B. 

M7 = 1 − exp{−exp(α0 + α1xi + α2yi)}, 

where (α0, α1, α2) = (−1.4, 0.3, 0.3) for model A and (α0, α1, α2) = (−1.15, 0.3, 0.3) for 
model B. 

exp(α0 + α1xi + α2yi + α3xiyi)M8 = ,
1 + exp(α0 + α1xi + α2yi + α3xiyi) 

where (α0, α1, α2, α3) = (−1.4, 0.1, 0.1, 0.3) for model A and (α0, α1, α2, α3) = 

(−0.15, 0.1, 0.1, 0.1) for model B. 

ˆTable 8.1 shows the bias, variance and MSE values for the three different estimators. θ1 

has the highest bias and θ̂SE has the highest variance while θ̂CE has the least variance 
among the estimators for both models and missing mechanisms. 

(b) Generate 200 observations with 2000 replications using yi = 1 + 0.7xi + ei such that, 
Xi ∼ N(2, 2) and ei ∼ N(0, 1). Introduce missingness using the model below and 15% 
recovery. 

exp(α0 + α1xi)M1 = ,
1 + exp(α0 + α1xi) 

where (α0, α1) = (−1.5, 1.3). 

https://�2)=(�1.15
https://�2)=(�0.53
https://�2)=(�0.64
https://�3)=(�0.65
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TABLE 8.1: Monte Carlo biases, variances and mean squared errors for different esti-
mators. 

Missing Mechanism Model Estimates θ̂1 θ̂SE θ̂CE 

M1 A Bias 0.0363 -0.0046 0.0274 
Var 0.0120 0.0208 0.0108 

MSE 0.0134 0.0208 0.0115 
B Bias -0.0701 -0.0007 -0.0607 

Var 0.0125 0.0243 0.0118 
MSE 0.0174 0.0243 0.0155 

M2 A Bias 0.1294 0.0020 0.1131 
Var 0.0102 0.0188 0.0098 

MSE 0.0269 0.0188 0.0225 
B Bias 0.2409 -0.0001 0.2049 

Var 0.0107 0.0195 0.0106 
MSE 0.0688 0.0195 0.0525 

M3 A Bias 0.1366 0.0006 0.1307 
Var 0.0112 0.8011 0.0108 

MSE 0.0299 0.8011 0.0279 
B Bias 0.1939 0.0026 0.1682 

Var 0.0116 0.0213 0.0104 
MSE 0.0492 0.0213 0.0388 

M4 A Bias 0.0037 0.0015 0.0006 
Var 0.0114 0.0389 0.0097 

MSE 0.0114 0.0389 0.0097 
B Bias -0.0046 0.0100 -0.0024 

Var 0.0181 0.0410 0.0101 
MSE 0.0181 0.0410 0.0102 

M5 A Bias 0.2077 -0.0013 0.1781 
Var 0.0104 0.0185 0.0102 

MSE 0.0536 0.0185 0.0419 
B Bias 0.2829 0.0019 0.0240 

Var 0.01222 0.0171 0.0113 
MSE 0.0922 0.0171 0.0689 

M6 A Bias -0.3104 0.0007 -0.2586 
Var 0.0149 0.0256 0.0134 

MSE 0.1112 0.0256 0.0802 
B Bias -0.4576 0.0004 -0.3904 

Var 0.0148 0.1304 0.0132 
MSE 0.2242 0.1304 0.1656 

M7 A Bias -0.1617 -0.0024 -0.1407 
Var 0.0124 0.0226 0.0117 

MSE 0.0385 0.0226 0.0315 
B Bias -0.1870 0.0033 -0.1538 

Var 0.0136 0.0253 0.0125 
MSE 0.0486 0.0253 0.0361 

M8 A Bias 0.2369 0.0017 0.2026 
Var 0.0105 0.0188 0.0098 

MSE 0.0667 0.0188 0.0509 
B Bias 0.0896 -0.0038 0.076 

Var 0.0110 0.0207 0.0106 
MSE 0.0190 0.0207 0.0164 
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In Table 8.2, the estimates using the different estimators are shown. The best estimator 
is θ̂CE as it has the least variance and MSE among the estimators. θ̂SE has the least bias 
but the highest variance among the estimators. As the recovery proportion c increases, 

ˆ ˆ ˆthe bias, variance and MSE decrease for θCE and θSE. The estimates of θ1 remain con-
stant at all values of c because it ignores the missing observations. 

(c) Using estimator θ̂TE, generate 500 observations and 10000 replications such that 
each dataset is MAR or MNAR based on different percentages with yi = 1 + 0.7xi + ei, 
Xi ∼ N(2, 1) and ei ∼ N(0, 1) for a combination of MAR and MNAR using the model 
below and recovery proportion 0.15: 

exp(α0 + α1xi + α2yi)πi = .
1 + exp(α0 + α1xi + α2yi) 

where (α0, α1, α2) is (−1.5, 1, 0) for MAR and (−0.85, 0.3, 0.3) for MNAR. 

Tables A.18 and A.19 in the appendix show the estimates obtained for different com-
binations of MAR and MNAR datasets by frst testing the type of missing mechanism 
present and using the corresponding estimator. P denotes the number of times H0 is 
rejected. As c increases, P increases for each combination while other estimates reduce. 
For each value of c, P decreases as the percentage of MNAR in each combination de-
creases. At 100% MNAR, the value of P is the power of the test and at 100% MAR, P 
approximates the Type I error. 

(d) For 1000 datasets, generate 1000 observations each such that the dataset is a combi-
nation of 90% MAR and 10% MNAR. Using θ̂TE, θ̂SE and θ̂CE. Obtain the bias, variance 
and MSE of Y. 

Table A.20 shows the bias, variance and MSE for the 90% MAR and 10% MNAR com-
bination. θ̂SE has the least bias at all values of c. θ̂TE has the least variance leading to 
the least MSE at all values of c, thereby implying that testing improves estimation. At 
higher values of c, all the estimators have similar MSE values. 
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TABLE 8.2: Monte Carlo biases, variances and mean squared errors for different esti-
mators for different recovery proportions. 

c Estimates θ̂1 θ̂SE θ̂CE 

0.1 Bias 0.1563 -0.0047 0.1368 
Var 0.0212 0.0844 0.0206 

MSE 0.0457 0.0844 0.0393 

0.2 Bias 0.1563 -0.0006 0.1254 
Var 0.0212 0.0493 0.0209 

MSE 0.0457 0.0493 0.0366 

0.3 Bias 0.1563 -0.0044 0.1046 
Var 0.0212 0.0291 0.0180 

MSE 0.0457 0.0291 0.0289 

0.4 Bias 0.1563 -0.0012 0.0941 
Var 0.0212 0.0284 0.0185 

MSE 0.0457 0.0284 0.0274 

0.5 Bias 0.1563 -0.0014 0.0771 
Var 0.0212 0.0253 0.0164 

MSE 0.0457 0.0253 0.0224 

0.6 Bias 0.1563 -0.0020 0.0617 
Var 0.0212 0.0205 0.0161 

MSE 0.0457 0.0205 0.0199 

0.7 Bias 0.1563 -0.0001 0.0463 
Var 0.0212 0.0184 0.0157 

MSE 0.0457 0.0184 0.0179 

0.8 Bias 0.1563 -0.0001 0.0315 
Var 0.0212 0.0169 0.0158 

MSE 0.0457 0.0169 0.0168 

0.9 Bias 0.1563 -0.0005 0.0163 
Var 0.0212 0.0144 0.0141 

MSE 0.0457 0.0144 0.0144 

1.0 Bias 0.1563 -2.60e-7 -1.11e-19 
Var 0.0212 0.0152 0.0149 

MSE 0.0457 0.0152 0.0149 

(e) For different sample sizes and 0.15 recovery proportion, generate n observations 
each such that 75% of the dataset is MAR and 25% is MNAR. Using θ̂TE, θ̂SE and θ̂CE. 
Obtain the bias, variance and MSE of Y. 

The result of this analysis is can be found in Table A.21 in the appendix. Figure 8.1 
shows the Root Mean Square Error of the estimators. θ̂TE has the least RMSE among 
all estimators. The RMSE for θ̂CE is less than that of θ̂SE at sample size 2000 and lesser. 
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At n > 2000, θ̂CE has the highest RMSE among all estimators. As the sample size 
increases, the RMSE decreases for all estimators. Unlike the other two estimators that 
estimate E(Y) without knowing the type of mechanism present, θ̂TE frst tests for the 
type of missing mechanism present in the data before using the right estimation for 
each missing mechanism. This results in the least RMSE for θ̂TE, thereby showing that 
testing before estimation improves estimation. 

FIGURE 8.1: Root mean squared error (RMSE) for different estimators and sample 
sizes. 
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Chapter 9 

Conclusion 

9.1 Summary 

This research started with exploring the existing methods of analysing missing data 
mechanisms. Some of the methods were suffcient to improve the inference and sum-
mary statistics for MCAR and MAR mechanisms. The existing methods performed 
poorly under a MNAR mechanism because of its complexity. The MNAR mechanism 
could only be tested with the presence of recovered missing values. In order to im-
prove the inference on MNAR, the distribution of the complete cases and missing cases 
for MNAR were studied and the result showed that the distributional form does not 
change but the location does. This showed that when the model is ft on the observed 
data, the distribution changes, thereby leading to biased and ineffcient estimates. The 
concept of recovery was introduced to MNAR data and studied for the improvement 
of inference. Initially, four different recovery designs were used and the effect of each 
design on power and summary statistics was studied. The PMF and SMF models were 
used on the four recovery scenarios to test for MAR and MNAR. The PMF model per-
forms well for all the designs but the SMF model gives erroneous Type I errors. 

We explored a comprehensive insight into testing for the presence of MNAR utiliz-
ing a recovery sample. Firstly, we conducted a theoretical study of the SMF test (5.4), 
where we established that the augmented data used for determining whether MNAR 
is present represents a sample from various mixture distributions. A careful construc-
tion of the marginal distributions then allowed us to express a formula for the missing 
data mechanism in the augmented data. The mathematical expressions for the miss-
ing data mechanism based on the subsample of observed plus recovered data permit 
principled inferences to be made in this setting. Notably, for the commonly used expit 
model, when the random design is used, we determine that there is a shift in the in-
tercept of the model by log (c ∗) while the other coeffcients in the linear predictor, and 
indeed the form of the model, remain unchanged. For other link functions, to preserve 
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the original mechanism, the model must be ft to the recovered plus only a randomly 
sampled pre-specifed proportion of the observed data. Consequently, the SMF test 
(5.4) with H0 : ψ = 0 based on the augmented data will reliably test for the presence 
of MNAR in the original data, giving analysts confdence in their results. Secondly, 
using experimental design methods to construct the recovery sample allows inferences 
to be optimised. We considered how the power of the SMF test (5.4) can be increased 
through methods from the design of experiments. We propose constructing recovery 
designs that minimize the variance of the MLE (D1-optimality) to increase effciency 
and thereby improve the power of the SMF test (5.4). We also provide the equivalence 
to T-optimality (Atkinson and Fedorov, 1975) based on assigned subsampling prob-
abilities to the covariates and how it considerably outperforms the random recovery 
sampling. The test based on subsampling probabilities uses all the observed cases as 
opposed to the restricted design that uses the observed cases that fall in the recovery re-
gion. This is a generalized design that can be used in obtaining the design in Chapter 5. 
This design leads to a better power than the design in Chapter 5 because it uses all the 
observed cases in addition to the recovered cases rather than restricting the observed 
cases to the cases that fall in the design region. The robustness of this design based on 
different misspecifcations was considered and the optimal design outperformed the 
random design. 

Multivariate cases were considered using the correlation of the covariates with the re-
sponse variable to decide which of the covariates should be used in forming the design 
region. Results show that the covariate with the highest correlation with the response 
variable provides higher power than the other designs considered. We proposed a con-
jecture that forms the recovery design using the empirical densities of the covariates. 
The peak at the intersection of the densities formed by the missing and observed re-
sponses informs the recovery region. All observed cases are also used in this design. 
We compared results from the optimal, conjecture and random designs for more than 
two covariates. The optimal design and the conjecture design are similar in perfor-
mance as they both outperformed the random design. The optimal design is slightly 
better than the conjecture design. However, the conjecture design is simple and can be 
found with a less complicated optimisation procedure. 

This research provides a comprehensive approach to detecting MNAR missingness in 
an incomplete data set in practice, combining a design strategy with a correspond-
ing reliable and well-understood test for MNAR. A well-chosen recovery design can 
achieve higher power to detect MNAR compared with random recovery sampling for 
fxed recovery proportions. Similarly, if the power is fxed in advance, an effcient re-
covery design can result in a smaller proportion of missing responses needing to be 
followed up to achieve this power, thus reducing costs. 

In summary, the novel contributions of this Thesis are: 
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i a novel statistical test for MNAR. While the tests in (4.2) and (4.3) were originally 
proposed in Carpenter and Kenward (2012), to the best of our knowledge there 
has been no attempt in the literature to investigate their properties, or indeed the 
properties of any test for MNAR. Our research is thus the frst comprehensive de-
velopment and investigation of an MNAR test, which can subsequently be used in 
practice; 

ii robust and effcient designs for recovering missing observations. An effcient de-
sign can considerably increase the power of the test compared with random sam-
pling. As the recovery sample will often be small in practice, due to logistics and 
costs, this is a vital contribution to ensure the uptake of our test in practice; 

iii a simple conjecture to fnd effcient designs without specifc modelling assump-
tions, which could be particularly useful in multivariate settings. Where fnding an 
optimal design would computationally be very expensive. Hence this conjecture, 
which makes it easy to fnd effcient designs, may further help to increase the up-
take of our methodology in practice. 

9.2 Future Work 

It is assumed in this research that a follow-up unit would respond. However, in sit-
uations where this assumption is not realistic, a partial recovery during follow-up is 
a potential problem to look into in the future. One way to do this could be to extend 
the framework developed in Chapter 6 from a two-stage design to a three-stage design. 
This involves including a third attempt to obtain a response. 

In the Thesis, we have seen some ways to make the MNAR test more robust to model 
misspecifcations. It would be interesting to investigate this area further. An increase 
in the robustness of the MNAR test to model misspecifcations could be achieved in 
two ways. Firstly, a semiparametric method could be generalized and tailored to ft 
the binary response model for the missing data mechanism. Secondly, a two-stage 
recovery design could be implemented, where the frst stage is concerned purely with 
model exploration and selection. I.e. the augmented sample is utilized at the frst 
stage to decide on the most appropriate parametric models for the data generating and 
missing data mechanisms. Then, in the second stage, use the formulated parametric 
models to optimize the remaining follow-up. This approach could be embedded in 
the repeated callbacks framework of Alho (1990). The approach raises two interesting 
follow-up questions: Firstly, must a uniform random recovery be used in the frst stage 
to ensure consistent parameter estimates from the different models are obtained, or can 
a non-uniform recovery sample, based on an a priori conjecture, be implemented, thus 
leading to a more effcient overall procedure? Secondly, what would be the optimal 
division of follow-up sampling into the frst and second stages? 
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Depending on the application, there may be more than one variable with missing val-
ues, resulting in a multivariate testing problem. There are two ways in which this prob-
lem could be addressed within our framework. Firstly, a multivariate response version 
of the likelihood ratio test could be developed, analogously to Test T1 in Subsection 
6.1.4.4. In this case, the TE-optimality criterion would only need minor adjustment, 
i.e. in the calculation/approximation of the objective function T(γ). The second ap-
proach would use multiple testing (test T1 applied to each incomplete response) with 
Bonferroni correction. While this approach provides a simpler solution to the testing 
problem and would also inform the experimenter in which variable(s) MNAR miss-
ingness occurs, the design problem will become more complicated as there would be 
a need to deal with multi-objective optimization. To address this, a compound crite-
rion (which maximizes a (weighted) average of the individual TE-objective functions) 
or take a Pareto front approach could be considered. Substantial further investigation 
would be needed to fnd out which strategy is most benefcial. 

In this research we focussed on the SMF, and hence provided an optimal design for the 
SMF test only. However, it is possible to obtain an optimal design for the PMF. The two 
tests can then be compared when both are run with their respective optimal designs 
and recommendations as to which of them should be used in which situation could be 
provided. 

Another area of exploration is the use of the conjecture when the covariates are categor-
ical variables. The marginal distributions of the categorical covariates can be used to 
fnd effcient designs rather than the empirical densities used in the continuous covari-
ates. The following idea may be worth trying: when there is one categorical covariate 
in the model. Suppose the categorical covariate takes values: 1, 2, . . . , p. This data 
can be divided into the observed and missing datasets using the response variable. 
The marginal distribution of both the missing dataset and observed dataset can be ob-
tained. The recovery distribution can then be constructed for each case as follows: For 
each category, we could assign a probability as the average of the probabilities for this 
category in the observed and the missing datasets, respectively. This can be expanded 
to more than one categorical covariate. Also, this research can be explored when there 
is a mixture of categorical and continuous covariates in the model. 
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Appendix A 

Additional results 

A.1 Tables relating to Chapter 4 

In this section, the MAR Type I error and MNAR power analysis are shown using the 
different recovery designs. 

TABLE A.1: MAR Type I error and MNAR power analysis with different recovery 
design and sample sizes in 10000 replicates. 

Design n ∗ Selection Model Pattern Mixture 
MAR MNAR MAR MNAR 

Random 30 0.049 0.512 0.050 0.512 
50 0.047 0.709 0.047 0.712 
100 0.052 0.934 0.053 0.934 
150 0.049 0.983 0.049 0.983 
200 0.053 0.996 0.053 0.996 
250 0.050 0.996 0.050 0.996 
300 0.045 1.00 0.046 1.00 

Highest 30 0.062 0.364 0.051 0.442 
50 0.060 0.557 0.048 0.626 
100 0.058 0.848 0.048 0.874 
150 0.055 0.958 0.047 0.960 
200 0.051 0.990 0.048 0.991 
250 0.048 0.998 0.047 0.998 
300 0.045 1.00 0.046 1.00 

Smallest 30 0.058 0.493 0.047 0.490 
50 0.052 0.705 0.045 0.692 

100 0.054 0.926 0.050 0.923 
150 0.052 0.985 0.051 0.984 
200 0.048 0.996 0.048 0.996 
250 0.044 0.999 0.044 0.999 
300 0.045 1.00 0.046 1.00 

Half highest/half smallest 30 
50 

0.047 
0.046 

0.498 
0.706 

0.047 
0.046 

0.504 
0.711 

100 0.045 0.931 0.047 0.932 
150 0.044 0.984 0.046 0.985 
200 0.046 0.996 0.048 0.996 
250 0.046 0.999 0.047 0.999 
300 0.045 1.00 0.046 1.00 
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TABLE A.2: MAR Type I error and MNAR power analysis for pattern mixture two-
parameter model with different recovery design and sample sizes in 10000 replicates. 

Design n ∗ Pattern Mixture 
MAR Type I error MNAR Power 

Random Sample Selection 30 0.052 0.904 
50 0.051 0.989 
100 0.051 1.00 
150 0.052 1.00 
200 0.054 1.00 
250 0.047 1.00 
300 0.049 1.00 

Highest x 30 0.048 0.797 
50 0.048 0.947 
100 0.046 0.999 
150 0.049 1.00 
200 0.047 1.00 
250 0.050 1.00 
300 0.049 1.00 

Smallest x 30 0.047 0.914 
50 0.048 0.990 
100 0.048 1.00 
150 0.051 1.00 
200 0.049 1.00 
250 0.047 1.00 
300 0.049 1.00 

Half Highest and Half smallest x 30 0.052 0.892 
50 0.049 0.988 
100 0.046 0.999 
150 0.048 1.00 
200 0.047 1.00 
250 0.045 1.00 
300 0.049 1.00 

A.2 Tables relating to Chapter 5 

The tables in this section shows the power or (and) MSE for the true optimal design, 
random design and different misspecifed designs as discussed in Chapter 5. 
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TABLE A.3: Power for different designs in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

200 true optimal 
random 

0.115 
0.102 

0.148 
0.126 

0.176 
0.146 

0.192 
0.164 

0.214 
0.190 

0.220 
0.212 

0.229 
0.221 

0.248 
0.230 

0.254 
0.247 

0.266 
0.266 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.110 
0.105 
0.111 
0.103 
0.111 
0.108 
0.105 
0.110 
0.104 

0.106 
0.112 
0.110 
0.103 
0.111 
0.110 

0.140 
0.138 
0.142 
0.145 
0.135 
0.127 
0.145 
0.138 
0.130 

0.137 
0.136 
0.141 
0.144 
0.144 
0.132 

0.167 
0.160 
0.165 
0.160 
0.166 
0.152 
0.168 
0.164 
0.147 

0.163 
0.176 
0.164 
0.171 
0.171 
0.149 

0.186 
0.179 
0.188 
0.188 
0.186 
0.163 
0.188 
0.182 
0.165 

0.190 
0.187 
0.189 
0.180 
0.180 
0.170 

0.206 
0.205 
0.200 
0.207 
0.204 
0.189 
0.211 
0.201 
0.183 

0.201 
0.202 
0.202 
0.212 
0.212 
0.187 

0.214 
0.217 
0.210 
0.213 
0.211 
0.213 
0.212 
0.213 
0.208 

0.219 
0.208 
0.219 
0.218 
0.218 
0.209 

0.229 
0.228 
0.235 
0.223 
0.227 
0.218 
0.225 
0.224 
0.213 

0.230 
0.221 
0.228 
0.229 
0.229 
0.232 

0.232 
0.241 
0.226 
0.241 
0.232 
0.236 
0.238 
0.227 
0.222 

0.231 
0.231 
0.238 
0.234 
0.234 
0.235 

0.253 
0.248 
0.241 
0.249 
0.245 
0.239 
0.251 
0.248 
0.237 

0.249 
0.250 
0.252 
0.248 
0.248 
0.251 

0.266 
0.266 
0.266 
0.266 
0.266 
0.266 
0.266 
0.266 
0.266 

0.266 
0.266 
0.266 
0.266 
0.266 
0.266 

500 true optimal 
random 

0.174 
0.146 

0.269 
0.219 

0.339 
0.286 

0.408 
0.331 

0.429 
0.378 

0.458 
0.417 

0.495 
0.451 

0.506 
0.483 

0.526 
0.505 

0.537 
0.537 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.170 
0.171 
0.165 
0.166 
0.168 
0.153 
0.161 
0.167 
0.148 

0.172 
0.171 
0.170 
0.169 
0.168 
0.156 

0.268 
0.266 
0.260 
0.267 
0.264 
0.215 
0.267 
0.266 
0.234 

0.250 
0.260 
0.266 
0.266 
0.267 
0.225 

0.339 
0.339 
0.338 
0.316 
0.322 
0.275 
0.329 
0.330 
0.279 

0.327 
0.339 
0.338 
0.338 
0.328 
0.283 

0.393 
0.380 
0.407 
0.379 
0.383 
0.342 
0.379 
0.389 
0.337 

0.382 
0.383 
0.391 
0.387 
0.379 
0.347 

0.420 
0.428 
0.445 
0.425 
0.417 
0.381 
0.426 
0.423 
0.386 

0.418 
0.422 
0.429 
0.424 
0.425 
0.380 

0.463 
0.458 
0.458 
0.446 
0.450 
0.414 
0.437 
0.457 
0.421 

0.450 
0.454 
0.462 
0.453 
0.441 
0.424 

0.477 
0.482 
0.479 
0.482 
0.464 
0.454 
0.472 
0.488 
0.455 

0.475 
0.474 
0.493 
0.476 
0.481 
0.468 

0.495 
0.504 
0.495 
0.492 
0.486 
0.482 
0.484 
0.504 
0.486 

0.500 
0.485 
0.504 
0.491 
0.496 
0.505 

0.510 
0.525 
0.510 
0.512 
0.512 
0.517 
0.516 
0.515 
0.510 

0.518 
0.507 
0.509 
0.521 
0.520 
0.524 

0.537 
0.537 
0.537 
0.537 
0.537 
0.537 
0.537 
0.537 
0.537 

0.537 
0.537 
0.537 
0.537 
0.537 
0.537 

1000 true optimal 
random 

0.296 
0.243 

0.469 
0.395 

0.597 
0.487 

0.677 
0.574 

0.729 
0.636 

0.766 
0.690 

0.788 
0.741 

0.797 
0.777 

0.818 
0.802 

0.828 
0.828 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.275 
0.278 
0.290 
0.276 
0.288 
0.241 
0.283 
0.281 
0.246 

0.276 
0.287 
0.291 
0.293 
0.287 
0.253 

0.474 
0.460 
0.379 
0.467 
0.464 
0.376 
0.460 
0.469 
0.395 

0.485 
0.469 
0.469 
0.460 
0.465 
0.392 

0.580 
0.587 
0.592 
0.587 
0.606 
0.488 
0.592 
0.584 
0.499 

0.597 
0.596 
0.580 
0.587 
0.596 
0.501 

0.668 
0.677 
0.653 
0.671 
0.674 
0.574 
0.672 
0.672 
0.595 

0.672 
0.669 
0.587 
0.636 
0.669 
0.593 

0.732 
0.727 
0.717 
0.719 
0.735 
0.646 
0.727 
0.725 
0.659 

0.725 
0.727 
0.708 
0.714 
0.713 
0.656 

0.764 
0.770 
0.751 
0.759 
0.765 
0.697 
0.763 
0.763 
0.725 

0.762 
0.760 
0.741 
0.749 
0.725 
0.706 

0.774 
0.785 
0.774 
0.791 
0.783 
0.731 
0.781 
0.786 
0.758 

0.780 
0.780 
0.778 
0.777 
0.765 
0.758 

0.798 
0.794 
0.789 
0.794 
0.791 
0.774 
0.795 
0.794 
0.782 

0.793 
0.795 
0.786 
0.797 
0.792 
0.781 

0.811 
0.810 
0.806 
0.812 
0.809 
0.800 
0.816 
0.806 
0.802 

0.813 
0.806 
0.810 
0.810 
0.813 
0.814 

0.828 
0.828 
0.828 
0.828 
0.828 
0.828 
0.828 
0.828 
0.828 

0.828 
0.828 
0.828 
0.828 
0.828 
0.828 
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TABLE A.4: MSE for different designs in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

200 true optimal 
random 

0.0643 
0.0837 

0.0356 
0.0457 

0.0267 
0.0329 

0.0221 
0.0265 

0.0202 
0.0226 

0.0186 
0.0198 

0.0171 
0.0179 

0.0160 
0.0163 

0.0146 
0.0151 

0.0142 
0.0142 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.0657 
0.0685 
0.0835 
0.0660 
0.0653 
0.0831 
0.0648 
0.0665 
0.0815 

0.0651 
0.0677 
0.0654 
0.0647 
0.0653 
0.0818 

0.0367 
0.0356 
0.0357 
0.0361 
0.0362 
0.0455 
0.0366 
0.0365 
0.0456 

0.0377 
0.0386 
0.0377 
0.0361 
0.0361 
0.0436 

0.0269 
0.0279 
0.0266 
0.0268 
0.0267 
0.0328 
0.0267 
0.0267 
0.0323 

0.0267 
0.0267 
0.0277 
0.0267 
0.0267 
0.0316 

0.0225 
0.0233 
0.0224 
0.0221 
0.0222 
0.0263 
0.0221 
0.0235 
0.0265 

0.0223 
0.0222 
0.0229 
0.0234 
0.0234 
0.0253 

0.0197 
0.0194 
0.0199 
0.0196 
0.0196 
0.0214 
0.0195 
0.0196 
0.0223 

0.0196 
0.0195 
0.0201 
0.0196 
0.0196 
0.0225 

0.0180 
0.0178 
0.0182 
0.0191 
0.0186 
0.0191 
0.0179 
0.0179 
0.0189 

0.0179 
0.0186 
0.0183 
0.0179 
0.0179 
0.0193 

0.0172 
0.0171 
0.0169 
0.0166 
0.0172 
0.0171 
0.0171 
0.0171 
0.0167 

0.0166 
0.0171 
0.0170 
0.0166 
0.0166 
0.0172 

0.0160 
0.0161 
0.0161 
0.0160 
0.0160 
0.0162 
0.0160 
0.0160 
0.0162 

0.0160 
0.0162 
0.0159 
0.0160 
0.0160 
0.0160 

0.0150 
0.0150 
0.0150 
0.0151 
0.0151 
0.0151 
0.0151 
0.0150 
0.0150 

0.0150 
0.0150 
0.0150 
0.0150 
0.0150 
0.0150 

0.0142 
0.0142 
0.0142 
0.0142 
0.0142 
0.0142 
0.0142 
0.0142 
0.0142 

0.0142 
0.0142 
0.0142 
0.0142 
0.0142 
0.0142 

500 true optimal 
random 

0.0241 
0.0306 

0.0134 
0.0172 

0.0102 
0.0126 

0.0084 
0.0102 

0.0076 
0.0087 

0.0069 
0.0077 

0.0067 
0.0070 

0.0061 
0.0064 

0.0058 
0.0059 

0.0055 
0.0055 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.0248 
0.0246 
0.0243 
0.0242 
0.0241 
0.0293 
0.0241 
0.0245 
0.0297 

0.0242 
0.0243 
0.0242 
0.0243 
0.0245 
0.0300 

0.0134 
0.0134 
0.0136 
0.0135 
0.0134 
0.0192 
0.0134 
0.0134 
0.0158 

0.0134 
0.0134 
0.0135 
0.0134 
0.0134 
0.0166 

0.0102 
0.0099 
0.0100 
0.0108 
0.0104 
0.0125 
0.0102 
0.0102 
0.0124 

0.0102 
0.0100 
0.0101 
0.0102 
0.0102 
0.0124 

0.0082 
0.0085 
0.0082 
0.0086 
0.0086 
0.0098 
0.0086 
0.0086 
0.0099 

0.0086 
0.0087 
0.0084 
0.0086 
0.0086 
0.0097 

0.0074 
0.0075 
0.0073 
0.0076 
0.0076 
0.0086 
0.0076 
0.0076 
0.0083 

0.0076 
0.0077 
0.0074 
0.0076 
0.0076 
0.0084 

0.0067 
0.0069 
0.0068 
0.0069 
0.0070 
0.0077 
0.0072 
0.0070 
0.0075 

0.0070 
0.0070 
0.0068 
0.0069 
0.0070 
0.0074 

0.0065 
0.0064 
0.0064 
0.0065 
0.0067 
0.0069 
0.0067 
0.0065 
0.0068 

0.0064 
0.0067 
0.0064 
0.0065 
0.0065 
0.0067 

0.0061 
0.0061 
0.0062 
0.0063 
0.0063 
0.0064 
0.0062 
0.0062 
0.0063 

0.0061 
0.0065 
0.0061 
0.0062 
0.0061 
0.0063 

0.0058 
0.0059 
0.0059 
0.0059 
0.0059 
0.0059 
0.0059 
0.0058 
0.0059 

0.0059 
0.0062 
0.0058 
0.0059 
0.0059 
0.0059 

0.0055 
0.0055 
0.0055 
0.0055 
0.0055 
0.0055 
0.0055 
0.0055 
0.0055 

0.0055 
0.0055 
0.0055 
0.0055 
0.0055 
0.0055 

1000 true optimal 
random 

0.0118 
0.0149 

0.0066 
0.0085 

0.0048 
0.0063 

0.0040 
0.0051 

0.0036 
0.0044 

0.0033 
0.0039 

0.0031 
0.0035 

0.0029 
0.0032 

0.0028 
0.0030 

0.0027 
0.0027 

Missing mechanism 
(-2.2,0.4,-0.15) 
(-1.8,0.4,-0.15) 

(2,0.4,-0.15) 
(-2,0.44,-0.15) 
(-2,0.36,-0.15) 
(-2,-0.4,-0.15) 
(-2,0.4,-0.165) 
(-2,0.4,-0.135) 
(-2,0.4,0.15) 

Regression Coeffcients 
(2.2-2x) 
(1.8-2x) 
(-2-2x) 
(2-2.2x) 
(2-1.8x) 
(2+2x) 

0.0124 
0.0121 
0.0118 
0.0119 
0.0119 
0.0154 
0.0119 
0.0118 
0.0141 

0.0119 
0.0118 
0.0118 
0.0120 
0.0118 
0.0143 

0.0067 
0.0066 
0.0084 
0.0066 
0.0066 
0.0086 
0.0066 
0.0066 
0.0083 

0.0066 
0.0065 
0.0066 
0.0066 
0.0066 
0.0081 

0.0049 
0.0049 
0.0049 
0.0048 
0.0048 
0.0063 
0.0048 
0.0048 
0.0061 

0.0049 
0.0048 
0.0050 
0.0049 
0.0048 
0.0059 

0.0041 
0.0040 
0.0042 
0.0040 
0.0040 
0.0051 
0.0040 
0.0042 
0.0048 

0.0040 
0.0040 
0.0049 
0.0042 
0.0040 
0.0048 

0.0036 
0.0035 
0.0036 
0.0036 
0.0036 
0.0043 
0.0036 
0.0036 
0.0041 

0.0036 
0.0036 
0.0037 
0.0037 
0.0036 
0.0041 

0.0036 
0.0032 
0.0033 
0.0033 
0.0033 
0.0038 
0.0033 
0.0033 
0.0036 

0.0033 
0.0033 
0.0035 
0.0034 
0.0034 
0.0036 

0.0031 
0.0031 
0.0033 
0.0031 
0.0031 
0.0034 
0.0031 
0.0031 
0.0033 

0.0031 
0.0031 
0.0031 
0.0032 
0.0032 
0.0033 

0.0030 
0.0030 
0.0030 
0.0030 
0.0030 
0.0031 
0.0030 
0.0030 
0.0031 

0.0029 
0.0030 
0.0030 
0.0030 
0.0030 
0.0031 

0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0030 

0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 

0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
0.0027 

0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
0.0027 
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TABLE A.5: Power for extreme designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Missing Mechanism true optimal 
random 

0.296 
0.243 

0.469 
0.395 

0.597 
0.487 

0.677 
0.574 

0.729 
0.636 

0.766 
0.690 

0.788 
0.741 

0.797 
0.777 

0.818 
0.802 

0.828 
0.828 

(-2,0.4,0.15) 
(-2,0.4,0.3) 
(-2,0.4,0.6) 
(-2,0.4,0.9) 

0.246 
0.245 
0.236 
0.239 

0.395 
0.393 
0.383 
0.383 

0.499 
0.506 
0.503 
0.505 

0.595 
0.591 
0.580 
0.589 

0.659 
0.645 
0.638 
0.645 

0.725 
0.694 
0.691 
0.692 

0.758 
0.742 
0.741 
0.721 

0.782 
0.779 
0.778 
0.770 

0.802 
0.802 
0.802 
0.802 

0.828 
0.828 
0.828 
0.828 

Regression Coeffcient (2+2x) 
(2+4x) 
(2+6x) 
(2+8x) 

0.253 
0.260 
0.247 
0.249 

0.392 
0.390 
0.389 
0.389 

0.501 
0.501 
0.500 
0.492 

0.593 
0.594 
0.584 
0.576 

0.656 
0.657 
0.653 
0.639 

0.706 
0.705 
0.696 
0.692 

0.758 
0.757 
0.740 
0.738 

0.781 
0.781 
0.776 
0.772 

0.814 
0.809 
0.806 
0.800 

0.828 
0.828 
0.828 
0.828 

TABLE A.6: MSE for extreme designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Missing Mechanism true optimal 
random 

0.0118 
0.0149 

0.0066 
0.0085 

0.0048 
0.0063 

0.0040 
0.0051 

0.0036 
0.0044 

0.0033 
0.0039 

0.0031 
0.0035 

0.0029 
0.0032 

0.0028 
0.0030 

0.0027 
0.0027 

(-2,0.4,0.15) 
(-2,0.4,0.3) 
(-2,0.4,0.6) 
(-2,0.4,0.9) 

0.0141 
0.0146 
0.0152 
0.0151 

0.0083 
0.0084 
0.0085 
0.0085 

0.0061 
0.0060 
0.0060 
0.0061 

0.0048 
0.0042 
0.0049 
0.0049 

0.0041 
0.0040 
0.0043 
0.0042 

0.0036 
0.0038 
0.0039 
0.0039 

0.0033 
0.0034 
0.0034 
0.0036 

0.0031 
0.0032 
0.0032 
0.0032 

0.0030 
0.0029 
0.0029 
0.0029 

0.0027 
0.0027 
0.0027 
0.0027 

Regression Coeffcient (2+2x) 
(2+4x) 
(2+6x) 
(2+8x) 

0.0143 
0.0141 
0.0144 
0.0147 

0.0081 
0.0083 
0.0082 
0.0081 

0.0059 
0.0061 
0.0061 
0.0062 

0.0048 
0.0048 
0.0050 
0.0050 

0.0041 
0.0042 
0.0043 
0.0043 

0.0036 
0.0037 
0.0036 
0.0038 

0.0033 
0.0034 
0.0034 
0.0035 

0.0031 
0.0031 
0.0031 
0.0032 

0.0029 
0.0029 
0.0029 
0.0029 

0.0027 
0.0027 
0.0027 
0.0027 

TABLE A.7: Power and MSE for different designs for n = 1000 in 10000 replicates 

Sample size Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Power true optimal 
random 

0.296 
0.243 

0.469 
0.395 

0.597 
0.487 

0.677 
0.574 

0.729 
0.636 

0.766 
0.690 

0.788 
0.741 

0.797 
0.777 

0.818 
0.802 

0.828 
0.828 

Highest values 0.088 0.114 0.120 0.165 0.244 0.333 0.463 0.594 0.725 0.826 

MSE true optimal 
random 

0.0118 
0.0149 

0.0066 
0.0085 

0.0048 
0.0063 

0.0040 
0.0051 

0.0036 
0.0044 

0.0033 
0.0039 

0.0031 
0.0035 

0.0029 
0.0032 

0.0028 
0.0030 

0.0027 
0.0027 

Highest values 0.1021 0.0414 0.0243 0.0160 0.0114 0.0084 0.0063 0.0048 0.0037 0.0028 

A.3 Tables relating to Chapter 6 

This sections shows further results on the robustness of Algorithm 1 in comparison to 
the random design and misspecifed designs as discussed in Subsection 6.3.1 
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TABLE A.8: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.369 0.648 0.763 0.814 0.844 0.852 0.857 0.859 0.867 
Random 0.274 0.460 0.565 0.641 0.697 0.751 0.791 0.816 0.838 
Missing mechanism 
(-2,0.4,-0.15) 0.362 0.620 0.755 0.812 0.838 0.840 0.849 0.854 0.858 
(2,-0.4,-0.15) 0.223 0.329 0.463 0.528 0.651 0.653 0.719 0.785 0.801 
(2,0.4,0.15) 0.318 0.537 0.651 0.739 0.767 0.821 0.837 0.844 0.858 
(1,0.4,-0.15) 0.359 0.629 0.746 0.812 0.839 0.850 0.855 0.857 0.861 
(3,0.4,-0.15) 0.354 0.630 0.755 0.801 0.843 0.849 0.854 0.858 0.859 
(2,0.6,-0.15) 0.368 0.620 0.751 0.807 0.837 0.849 0.853 0.860 0.862 
(2,0.2,-0.15) 0.357 0.588 0.729 0.808 0.829 0.847 0.854 0.859 0.863 
(2,0.4,-0.3) 0.362 0.641 0.756 0.809 0.837 0.850 0.854 0.856 0.859 
(2,0.4,-0.45) 0.369 0.647 0.755 0.809 0.839 0.852 0.853 0.854 0.863 
Regression Coeffcients 
(2+2x) 0.305 0.536 0.652 0.750 0.760 0.806 0.827 0.855 0.861 
(-2-2x) 0.349 0.618 0.755 0.812 0.839 0.851 0.852 0.859 0.867 
(4-2x) 0.356 0.618 0.754 0.812 0.836 0.851 0.854 0.858 0.862 
(2-4x) 0.363 0.641 0.755 0.810 0.836 0.851 0.857 0.859 0.866 

TABLE A.9: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.6986 0.7555 0.9725 0.8830 0.9498 0.9380 0.8325 0.8862 0.6052 
(2,0.3,-0.15) 0.5461 0.7824 0.6292 0.7192 0.8431 0.8440 0.9061 0.8461 0.9045 
(2,0.2,-0.15) 0.6624 0.4870 0.5826 0.7951 0.7477 0.7517 0.9167 0.9574 0.7712 
(2,0.1,-0.15) 0.5876 0.5707 0.5596 0.6238 0.7024 0.8087 0.8266 0.9141 0.8503 
(2,-0.1,-0.15) 0.3874 0.2361 0.2057 0.4101 0.3647 0.5485 0.5886 0.5037 0.5223 
(2,-0.2,-0.15) 0.3097 0.1090 0.3190 0.1719 0.3229 0.1663 0.3585 0.5541 0.5261 
(2,-0.3,-0.15) 0.2415 0.0040 0.0034 0.0349 0.0106 -0.0075 0.0309 0.1404 0.2361 
(2,-0.4,-0.15) -0.4787 -0.4249 -0.5279 -0.1021 -0.3001 -0.2096 -0.5542 -0.7082 -0.2814 
(2,0.4,-0.25) 0.8520 0.9190 0.9284 0.9818 0.9424 0.9326 0.9603 0.7872 0.8020 
(2,0.4,-0.35) 0.8623 0.9566 0.9574 0.9650 0.9554 0.9705 0.9113 0.7338 0.7551 
(2,0.4,-0.45) 0.9274 0.9721 0.9431 0.9811 0.9541 0.9762 0.8346 0.7914 0.8037 
(2,0.4,0.15) 0.2672 0.2834 0.2369 0.2361 0.2376 0.3637 0.4325 0.3780 0.7249 
Regression Coeffcients 
(1.777-1.971x) 0.5255 0.5665 0.7467 0.8499 0.7941 0.8584 0.8421 0.9253 0.9671 
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TABLE A.10: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.369 0.648 0.763 0.814 0.844 0.852 0.857 0.859 0.867 
Random 0.274 0.460 0.565 0.641 0.697 0.751 0.791 0.816 0.838 
Missing mechanism 
(2,0.3,-0.15) 0.348 0.614 0.733 0.801 0.830 0.850 0.856 0.860 0.865 
(2,0.2,-0.15) 0.357 0.588 0.729 0.808 0.829 0.847 0.854 0.859 0.863 
(2,0.1,-0.15) 0.351 0.588 0.718 0.793 0.824 0.848 0.853 0.860 0.862 
(2,-0.1,-0.15) 0.331 0.529 0.650 0.763 0.795 0.841 0.849 0.851 0.861 
(2,-0.2,-0.15) 0.334 0.483 0.674 0.710 0.783 0.788 0.841 0.854 0.861 
(2,-0.3,-0.15) 0.317 0.461 0.565 0.656 0.695 0.748 0.790 0.833 0.848 
(2,-0.4,-0.15) 0.223 0.329 0.463 0.528 0.651 0.653 0.719 0.785 0.801 
(2,0.4,-0.25) 0.368 0.639 0.756 0.809 0.837 0.851 0.855 0.857 0.863 
(2,0.4,-0.35) 0.369 0.641 0.754 0.807 0.840 0.849 0.853 0.856 0.860 
(2,0.4,-0.45) 0.369 0.647 0.755 0.809 0.839 0.852 0.853 0.854 0.863 
(2,0.4,0.15) 0.318 0.537 0.651 0.739 0.767 0.821 0.837 0.844 0.858 
Regression Coeffcients 
(1.777-1.971x) 0.345 0.588 0.751 0.813 0.831 0.849 0.854 0.858 0.867 
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TABLE A.11: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.742 0.708 0.751 0.907 0.691 0.919 0.931 0.711 0.702 
(-2,1.1,0.15) 0.745 0.888 0.960 0.962 0.993 0.949 0.956 0.888 0.978 
(-2,0.9,0.15) 0.534 0.481 0.835 0.528 0.794 0.553 0.822 0.931 0.610 
(-2,0.8,0.15) 0.708 0.527 0.708 0.963 0.485 0.895 0.648 0.528 0.959 
(-2,0.7,0.15) 0.528 0.891 0.528 0.783 0.934 0.669 0.708 0.692 0.787 
(-2,0.5,0.15) 0.746 0.707 0.777 0.502 0.704 0.708 0.800 0.639 0.820 
(-2,0.3,0.15) 0.376 0.358 0.751 0.236 0.389 0.236 0.528 0.708 0.387 
(-2,0.1,0.15) 0.528 0.638 0.524 0.874 0.528 0.515 0.485 0.403 0.684 
(-2,-0.1,0.15) -0.528 -0.491 -0.228 0.004 -0.528 -0.658 0.224 -0.480 -0.234 
(-2,-0.3,0.15) -0.158 -0.235 -0.267 -0.323 -0.223 -0.592 -0.555 -0.528 -0.229 
(-2,-0.5,0.15) -0.514 -0.538 -0.528 -0.617 -0.708 -0.528 -0.506 -0.560 -0.485 
(-2,-0.7,0.15) -0.607 -0.692 -0.708 -0.808 -0.962 -0.582 -0.820 -0.820 -0.836 
(-2,-0.8,0.15) -0.597 -0.658 -0.793 -0.669 -0.825 -0.688 -0.817 -0.905 -0.391 
(-2,-0.9,0.15) -0.602 -0.885 -0.582 -0.906 -0.948 -0.820 -0.894 -0.935 -0.848 
(-2,-1.1,0.15) -0.754 -0.466 -0.931 -0.639 -0.639 -0.708 -0.682 -0.889 -0.673 
(-2,-1.3,0.15) -0.885 -0.867 -0.778 -0.708 -0.523 -0.720 -0.226 -0.708 -0.847 
(-2,1.3,-0.15) 0.371 0.942 0.617 0.686 0.584 0.925 0.519 0.775 0.931 
(-2,1.3,0.1) 0.822 0.527 0.393 0.855 0.951 0.669 0.748 0.708 0.955 
(-2,1.3,-0.1) 0.820 0.889 0.708 0.527 0.818 0.647 0.943 0.513 0.708 
(-2,1.3,0.05) 0.846 0.543 0.820 0.979 0.708 0.775 0.906 0.708 0.886 
(-2,1.3,-0.05) 0.498 0.564 0.587 0.531 0.927 0.770 0.973 0.905 0.618 
(2,-1.3,-0.15) -0.666 -0.708 -0.814 -0.889 -0.880 -0.683 -0.885 -0.917 -0.446 
Regression Coeffcients 
(2-x) 0.267 0.525 0.685 0.888 0.656 0.883 0.820 0.699 0.762 
(-2-x) 0.586 0.744 0.866 0.860 0.849 0.528 0.840 0.708 0.808 
(-2+x) 0.820 0.712 0.820 0.704 0.891 0.878 0.820 0.888 0.924 
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TABLE A.12: Power for different designs in 10000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

True optimal 0.358 0.582 0.718 0.818 0.869 0.915 0.930 0.948 0.955 0.963 
Random 0.305 0.501 0.669 0.776 0.832 0.879 0.909 0.926 0.949 0.959 
Missing mechanism 
(-2,1.1,0.15) 0.350 0.571 0.736 0.813 0.876 0.911 0.926 0.942 0.952 0.959 
(-2,0.9,0.15) 0.337 0.568 0.728 0.793 0.869 0.890 0.924 0.941 0.953 0.955 
(-2,0.8,0.15) 0.354 0.566 0.715 0.824 0.856 0.910 0.923 0.939 0.951 0.957 
(-2,0.7,0.15) 0.348 0.590 0.705 0.821 0.870 0.901 0.923 0.945 0.955 0.954 
(-2,0.5,0.15) 0.349 0.581 0.717 0.793 0.870 0.897 0.928 0.942 0.947 0.963 
(-2,0.3,0.15) 0.352 0.554 0.721 0.786 0.860 0.882 0.917 0.939 0.948 0.961 
(-2,0.1,0.15) 0.355 0.579 0.711 0.814 0.865 0.896 0.919 0.940 0.943 0.956 
(-2,-0.1,0.15) 0.306 0.493 0.654 0.763 0.787 0.846 0.915 0.921 0.949 0.955 
(-2,-0.3,0.15) 0.324 0.514 0.652 0.744 0.816 0.847 0.887 0.917 0.945 0.960 
(-2,-0.5,0.15) 0.301 0.495 0.609 0.709 0.777 0.845 0.897 0.922 0.949 0.959 
(-2,-0.7,0.15) 0.296 0.468 0.600 0.702 0.772 0.853 0.876 0.908 0.940 0.956 
(-2,-0.8,0.15) 0.295 0.474 0.601 0.727 0.774 0.836 0.885 0.915 0.949 0.958 
(-2,-0.9,0.15) 0.299 0.452 0.617 0.687 0.764 0.825 0.872 0.915 0.940 0.955 
(-2,-1.1,0.15) 0.288 0.484 0.584 0.717 0.788 0.850 0.889 0.910 0.943 0.962 
(-2,-1.3,0.15) 0.274 0.456 0.605 0.711 0.796 0.848 0.901 0.921 0.936 0.957 
(-2,1.3,-0.15) 0.350 0.575 0.723 0.809 0.871 0.903 0.922 0.941 0.951 0.960 
(-2,1.3,0.1) 0.346 0.568 0.700 0.815 0.864 0.893 0.927 0.939 0.952 0.958 
(-2,1.3,-0.1) 0.359 0.558 0.719 0.797 0.874 0.900 0.926 0.943 0.953 0.956 
(-2,1.3,0.05) 0.354 0.579 0.717 0.822 0.868 0.903 0.932 0.936 0.947 0.962 
(-2,1.3,-0.05) 0.348 0.573 0.711 0.797 0.872 0.901 0.926 0.945 0.951 0.961 
(2,-1.3,-0.15) 0.287 0.465 0.594 0.692 0.777 0.847 0.876 0.911 0.946 0.960 
Regression Coeffcients 
(2-x) 0.339 0.551 0.726 0.821 0.868 0.906 0.928 0.945 0.956 0.962 
(-2-x) 0.351 0.573 0.731 0.807 0.875 0.898 0.927 0.940 0.950 0.962 
(-2+x) 0.358 0.580 0.724 0.807 0.876 0.910 0.921 0.945 0.952 0.960 

A.4 Additional examples for Chapter 7 

In this section, further examples under the conjectured designs are provided. 

In example (a) below, we introduced a quadratic term in the missing mechanism only 
to see if this affects the performance of the test. Tables A.13 and A.14 show the Type 
I error and the corresponding γ1 values respectively. All designs have Type I error 
values that approximate 0.05. 

(a) n = 1000, (β0, β1) = (2, −2), σ2 = 1, (µx, σ2) = (3, 2), (α0, α1, α2) = (2.9, −0.13, 0)y x 

with regression β0 + β1x and missing mechanism α0 + α1x2 + α2y. 
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TABLE A.13: Type I error for different designs in 2000 replicates 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(2.9,-0.13,0) 0.052 0.051 0.050 0.050 0.051 0.053 0.057 0.053 0.052 0.048 
Random 0.055 0.054 0.035 0.043 0.060 0.052 0.048 0.057 0.046 0.048 
Conjecture 0.055 0.052 0.051 0.051 0.048 0.053 0.048 0.052 0.053 0.054 

TABLE A.14: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(2.9,-0.13,0) -0.229 -0.387 -0.185 -0.166 -0.201 -0.216 -0.745 0.046 0.011 
Conjecture -0.500 -0.480 -0.450 -0.420 -0.400 -0.350 -0.320 -0.300 -0.280 

The example below shows the parameters for the MNAR mechanism with a quadratic 
term in the regression model, the power for this example is shown in Table 7.16 with 
the corresponding γ1 values in Table 7.17. Figure 7.14 shows that at a smaller recovery 
proportion c = 0.1, ..., 0.4 the optimal design has signifcant power compared to the 
conjectured design, as c increases, the conjectured design has power values close to the 
optimal design. At all values of c, the optimal and conjectured design outperforms the 
random design. 

(b) n = 1000, (β0, β1) = (2, −2), σ2 = 1, (µx, σ2) = (3, 2), (α0, α1, α2) = (2.9, −0.13, 0.3)y x 

with regression β0 + β1x and missing mechanism α0 + α1x2 + α2y. 

TABLE A.15: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(2.9,-0.13,0.3) -0.955 -0.867 -0.884 -0.773 -0.802 -0.905 -0.715 -0.495 -0.502 
Conjecture -0.180 -0.230 -0.280 -0.300 -0.330 -0.350 -0.370 -0.400 -0.450 
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FIGURE A.1: Power plot using different designs. 

Example (c) considers the power for the three different designs as shown in Table 7.18 
and Figure 7.15. The optimal design outperforms the other designs and the conjectured 
design has better power than the random design. The conjectured design performs al-
most similar to the optimal design at c = 0.7 and above. The optimal design and 
conjectured design γ1 values are shown in Table 7.19. 
(c) n = 1000, (β0, β1) = (0.5, −1.2), σ2 = 2, (µx, σ2) = (2, 3), (α0, α1, α2) = y x 

(4, −0.45, −0.18) with regression β0 + β1x2 and missing mechanism α0 + α1x2 + α2y. 

TABLE A.16: γ1 values 

Design 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(4,-0.45,-0.18) -0.204 -0.796 -0.889 -0.879 -0.949 -0.898 -0.889 -0.910 -0.936 
Conjecture -0.120 -0.180 -0.200 -0.230 -0.250 -0.270 -0.300 -0.330 -0.350 
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FIGURE A.2: Power plot using different designs. 

In the example below with three covariates. The γi values are shown in Table 7.21 for 
the conjectured design. The power for both random and conjectured designs is shown 
in Table 7.20 with graphical representation in Figure 7.16. The conjectured design has 
better power than the random design. For both designs, the power increases as c in-
creases. 

(d) Generate 1000 points following a multiple linear regression model in 10000 repli-
cates: 

Y|(X1 = x1, X2 = x2, X3 = x3) ∼ N(2x1 − 0.8x2 + 2x3, 4) , 

with X1 ∼ N(2, 1),X2 ∼ N(1, 4) and X3 ∼ N(2, 1). Introduce MNAR missingness into 
Y using: 

exp(−2.8 − 0.25x1 + 0.18x2 + 1.4x3 + 0.1y)
P(M = 1|Y = y, X = x) = .

1 + exp(−2.8 − 0.25x1 + 0.18x2 + 1.4x3 + 0.1y) 

Using the random and conjectured designs, obtain the power of test. 

TABLE A.17: γ values 

γi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

γ1 0.05 0.07 0.10 0.15 0.18 0.20 0.23 0.26 0.28 
γ2 0.05 0.12 0.16 0.20 0.23 0.26 0.30 0.33 0.35 
γ3 0.23 0.26 0.30 0.34 0.37 0.39 0.60 0.65 0.78 
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FIGURE A.3: Power plot using different designs. 

A.5 Tables relating to Chapter 8 

This section shows Tables relating to Chapter 8. Tables A.18 and A.19 show the monte 
carlo power, biases, variance and mean squared of using estimator θ̂TE. Table A.20 
shows the monte carlo power, biases, variance and mean squared of using estimators: 
θ̂TE, θ̂CE and θ̂SE. The monte Carlo power, biases, variances, and mean squared errors 
for different sample sizes using estimators: θ̂TE, θ̂CE and θ̂SE are shown in Table A.21. 
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TABLE A.18: Monte Carlo power, biases, variances and mean squared errors for dif-
ferent combinations of MAR and MNAR using θ̂TE. 

c Estimates 100% MNAR 10% MAR/90% MNAR 25% MAR/75% MNAR 50% MAR/50% MNAR 

0.1 P 0.25030 0.22260 0.19450 0.14470 
Bias 0.05894 0.05756 0.05075 0.04037 
Var 0.01296 0.01222 0.01137 0.00983 

MSE 0.01643 0.01553 0.01395 0.01146 

0.2 P 0.40770 0.36870 0.31060 0.22990 
Bias 0.03848 0.03734 0.03453 0.02892 
Var 0.00899 0.00861 0.00824 0.00725 

MSE 0.01047 0.01000 0.00943 0.00809 

0.3 P 0.53740 0.48640 0.42110 0.29690 
Bias 0.02592 0.02454 0.02227 0.02004 
Var 0.00668 0.00673 0.00623 0.00560 

MSE 0.00735 0.00733 0.00672 0.00600 

0.4 P 0.63360 0.56890 0.48550 0.34170 
Bias 0.01612 0.01693 0.01596 0.01447 
Var 0.00530 0.00518 0.00497 0.00471 

MSE 0.00556 0.00546 0.00523 0.00492 

0.5 P 0.70310 0.64210 0.54710 0.37930 
Bias 0.01077 0.01039 0.01031 0.01079 
Var 0.00444 0.00440 0.00431 0.00405 

MSE 0.00456 0.00451 0.00442 0.00417 

0.6 P 0.76770 0.68810 0.58340 0.40490 
Bias 0.00619 0.00699 0.00720 0.00782 
Var 0.00390 0.00384 0.00384 0.00378 

MSE 0.00394 0.00389 0.00390 0.00384 

0.7 P 0.81250 0.73090 0.61110 0.42790 
Bias 0.00397 0.00440 0.00483 0.00543 
Var 0.00341 0.00348 0.00346 0.00336 

MSE 0.00343 0.00350 0.00348 0.00339 

0.8 P 0.83790 0.76130 0.63910 0.44240 
Bias 0.00206 0.00238 0.00270 0.00337 
Var 0.00318 0.00327 0.00320 0.00326 

MSE 0.00318 0.00327 0.00321 0.00327 

0.9 P 0.86130 0.77670 0.66130 0.45070 
Bias 0.00102 0.00115 0.00141 0.00166 
Var 0.00313 0.00308 0.00310 0.00311 

MSE 0.00313 0.00308 0.00311 0.00311 

1.0 P 0.88120 0.80610 0.67380 0.46490 
Bias -1.16e−7 -7.22e−8 -9.61e−8 -1.76e−8 

Var 0.00296 0.00299 0.00302 0.00299 
MSE 0.00296 0.00299 0.00302 0.00299 



151 A.5. Tables relating to Chapter 8 

TABLE A.19: Monte Carlo power, biases, variances and mean squared errors for dif-
ferent combinations of MAR and MNAR using θ̂TE. 

c Estimates 75% MAR/25% MNAR 90% MAR/10% MNAR 100% MAR 

0.1 P 0.10220 0.06720 0.05220 
Bias 0.02926 0.02423 0.01981 
Var 0.00814 0.00672 0.00606 

MSE 0.00900 0.00730 0.00646 

0.2 P 0.14130 0.09150 0.05400 
Bias 0.02266 0.01915 0.01774 
Var 0.00600 0.00544 0.00494 

MSE 0.00652 0.00581 0.00525 

0.3 P 0.17290 0.10450 0.04900 
Bias 0.01858 0.01645 0.01559 
Var 0.00504 0.00449 0.00428 

MSE 0.00538 0.00476 0.00453 

0.4 P 0.19360 0.11130 0.04800 
Bias 0.01412 0.01378 0.01355 
Var 0.00448 0.00417 0.00381 

MSE 0.00468 0.00436 0.00399 

0.5 P 0.21780 0.12150 0.05250 
Bias 0.01115 0.01073 0.01065 
Var 0.00389 0.00377 0.00372 

MSE 0.00402 0.00388 0.00384 

0.6 P 0.23030 0.12460 0.04680 
Bias 0.00845 0.00865 0.00924 
Var 0.00354 0.00354 0.00339 

MSE 0.00361 0.00362 0.00347 

0.7 P 0.23980 0.13060 0.05090 
Bias 0.00602 0.00618 0.00657 
Var 0.00332 0.00336 0.00334 

MSE 0.00336 0.00340 0.00338 

0.8 P 0.24390 0.13190 0.04700 
Bias 0.00390 0.00431 0.00460 
Var 0.00320 0.00314 0.00319 

MSE 0.00321 0.00316 0.00321 

0.9 P 0.25940 0.13510 0.05390 
Bias 0.00200 0.00212 0.00211 
Var 0.00305 0.00303 0.00309 

MSE 0.00306 0.00303 0.00309 

1.0 P 0.25990 0.13830 0.05150 
Bias -3.48e−8 -1.21e−8 -6.77e−10 

Var 0.00301 0.00292 0.00299 
MSE 0.00301 0.00292 0.00299 
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TABLE A.20: Monte Carlo power, biases, variances and mean squared errors for 90% 
MAR and 10% MNAR combination. 

c Estimates θ̂TE θ̂CE θ̂SE 

0.1 Bias 0.0182 0.0251 0.0009 
Var 0.0037 0.0052 0.0053 

MSE 0.0041 0.0058 0.0053 

0.2 Bias 0.0131 0.0217 -0.0011 
Var 0.0025 0.0025 0.0030 

MSE 0.0027 0.0030 0.0030 

0.3 Bias 0.0182 0.0201 -0.0011 
Var 0.0021 0.0025 0.0023 

MSE 0.0022 0.0029 0.0023 

0.4 Bias 0.0094 0.0162 0.0006 
Var 0.0019 0.0022 0.0020 

MSE 0.0020 0.0025 0.0020 

0.5 Bias 0.0088 0.0141 0.0009 
Var 0.0017 0.0019 0.0018 

MSE 0.0018 0.0021 0.0018 

0.6 Bias 0.0056 0.0118 -0.0007 
Var 0.0016 0.0019 0.0017 

MSE 0.0017 0.0020 0.0017 

0.7 Bias 0.0037 0.0079 -0.0004 
Var 0.0016 0.0017 0.0016 

MSE 0.0016 0.0018 0.0016 

0.8 Bias 0.0033 0.0057 0.0004 
Var 0.0016 0.0016 0.0016 

MSE 0.0016 0.0016 0.0016 

0.9 Bias 0.0013 0.0027 -0.0002 
Var 0.0015 0.0015 0.0015 

MSE 0.0015 0.0015 0.0015 

1.0 Bias -2.6364e−8 -1.0614e−16 -6.5010ee−8 

Var 0.0016 0.0016 0.0016 
MSE 0.0016 0.0016 0.0016 
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TABLE A.21: Monte Carlo power, biases, variances, and mean squared errors for dif-
ferent sample sizes using different estimators. 

n Estimates θ̂TE θ̂CE θ̂SE 

500 Bias 0.02930 0.04340 0.00420 
Var 0.00650 0.00600 0.00900 

MSE 0.00730 0.00790 0.00900 

1000 Bias 0.01550 0.02430 -0.00080 
Var 0.00320 0.00310 0.00410 

MSE 0.00350 0.00370 0.00410 

2000 Bias 0.01110 0.02000 -0.00030 
Var 0.00150 0.00180 0.00190 

MSE 0.00160 0.00220 0.00190 

3000 Bias 0.00980 0.01970 -0.00040 
Var 0.00110 0.00160 0.00140 

MSE 0.00120 0.00200 0.00140 

4000 Bias 0.00630 0.01940 -0.00110 
Var 0.00070 0.00150 0.00090 

MSE 0.00070 0.00190 0.00090 

5000 Bias 0.00650 0.01880 -0.00050 
Var 0.00050 0.00140 0.00070 

MSE 0.00050 0.00180 0.00070 

6000 Bias 0.00490 0.01830 -0.00110 
Var 0.00047 0.00130 0.00060 

MSE 0.00049 0.00160 0.00060 

7000 Bias 0.00480 0.01760 -0.00050 
Var 0.00046 0.00120 0.00054 

MSE 0.00048 0.00150 0.00054 

8000 Bias 0.00380 0.01670 -0.00090 
Var 0.00039 0.00120 0.00050 

MSE 0.00041 0.00145 0.00050 

9000 Bias 0.00480 0.01600 -0.00030 
Var 0.00034 0.00110 0.00048 

MSE 0.00036 0.00140 0.00048 

10000 Bias 0.00450 0.01500 -0.00060 
Var 0.00030 0.00100 0.00040 

MSE 0.00030 0.00120 0.00040 
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