The University of Southampton
University of Southampton Institutional Repository

Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics

Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics
Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics
We present simulation-based cosmological wCDM inference using Dark Energy Survey Year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky PKDGRAV dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock DES lensing data sets. For wCDM inference, for which we allow −1<w<−13, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives Ωm=0.283+0.020−0.027, S8=0.804+0.025−0.017, and w<−0.80 (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter (ΩDE,w) precision.
astro-ph.CO
Jeffrey, N.
51d70871-5a5a-4c9b-b650-2d64ff9417fd
Whiteway, L.
016405b3-bed6-4530-80cf-f9c68d96409c
Gatti, M.
be9e1f3e-3cb4-4cc3-9d64-01bc9547d290
Williamson, J.
96faf2ca-06fe-4315-a986-ca618deb1e16
Alsing, J.
35cf169a-0b4a-435f-bdb3-344c9fe7e0eb
Porredon, A.
ac63c3ea-7568-4913-9c13-354346234d1a
Prat, J.
7dcb7a84-91ce-4b92-855c-437afc231425
Doux, C.
f59f8b05-cd93-40a5-8cb1-c430070edecd
Jain, B.
b7fb4fa3-ec72-4bb3-89f9-3f8910d2d1ef
Chang, C.
4fefb597-e59b-4f11-a778-e8d956f9a98e
Cheng, T.-Y.
7b86a692-f2c5-4a24-a7c9-92dbec6624b9
Kacprzak, T.
eafb0701-9c49-4282-9fa1-27104e344c4d
Lemos, P.
d15b36bb-7095-44e4-866f-c5a37a6b7436
Alarcon, A.
df0b9a08-759b-4a6b-ad40-5e4c2406e984
Amon, A.
8723f229-3177-4dba-b464-937a5b5fbb42
Bechtol, K.
358c6400-cf1d-4118-ac2d-70e7999a472f
Becker, M.R.
395fc7ab-da0a-4db5-8bbd-5ac803c71448
Bernstein, G.M.
9d12d964-5827-488e-9de3-c4b0b517e8aa
Campos, A.
56dc09d4-7105-4b40-b83c-16ae76702baa
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Chen, R.
0792f9fb-9f4d-492d-b1eb-8e03467b2c9b
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
DeRose, J.
0e595bcc-0c8b-4d69-9845-83ab92a229f7
Drlica-Wagner, A.
d47129ae-3b89-4fca-bab4-8b4019b1da05
Eckert, K.
ca7c3da2-bf65-48a8-8ecd-d5ccdc90e694
Everett, S.
588bed29-c7b6-4c59-9f6a-ac2ff262c307
Ferté, A.
6ebc14f2-4599-469d-ad9d-a8cbe37bbf0d
Gruen, D.
8d960f6a-1219-4ce1-9312-616e463616eb
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Herner, K.
8c5ba564-599d-4452-841e-30937e2e8278
Jarvis, M.
6d4fac6d-1ede-494a-8661-bcab18980f97
McCullough, J.
7cf30948-f18c-4c1c-a0df-eb032eb9ea1a
Myles, J.
1cf9000b-a00c-4870-8e37-443a1a14acf1
Navarro-Alsina, A.
6dae44ab-de38-4c9d-879e-6d984fc45c13
Pandey, S.
39b30180-60c5-4d53-bb11-3c37fad335ef
Raveri, M.
733f98ec-85e9-434f-b45d-2aa8edb781ef
Rollins, R.P.
444ec746-0684-4082-b829-7969702ac726
Rykoff, E.S.
15bb71ea-9258-4221-9c3a-29005789e340
Sánchez, C.
39c847b6-9628-42b0-ac0b-0d8f00018340
Secco, L.F.
92fcf929-e17d-4891-b1bc-3a2cda063a07
Sevilla-Noarbe, I.
a4690b61-feca-4933-887c-121a9f343470
Sheldon, E.
34fc88df-f247-4b45-bf17-5b46f8abf5c5
Shin, T.
959c9e55-4485-4b1d-ae0b-f940c4a95c7d
Troxel, M.A.
98179534-4eec-4118-9883-713aef806609
Tutusaus, I.
e48d5ad4-cc0c-44fc-9639-7da4fa592849
Varga, T.N.
c20ef2ab-466c-4331-b8d5-df07d18bab77
Yanny, B.
84056e28-ba6b-4151-99ba-ee9cf635e9fc
Yin, B.
de82166e-5451-4c99-b291-2c81566b47e0
Zuntz, J.
95e15a37-39f8-42d4-91d7-247b66e492ba
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
et al.
Jeffrey, N.
51d70871-5a5a-4c9b-b650-2d64ff9417fd
Whiteway, L.
016405b3-bed6-4530-80cf-f9c68d96409c
Gatti, M.
be9e1f3e-3cb4-4cc3-9d64-01bc9547d290
Williamson, J.
96faf2ca-06fe-4315-a986-ca618deb1e16
Alsing, J.
35cf169a-0b4a-435f-bdb3-344c9fe7e0eb
Porredon, A.
ac63c3ea-7568-4913-9c13-354346234d1a
Prat, J.
7dcb7a84-91ce-4b92-855c-437afc231425
Doux, C.
f59f8b05-cd93-40a5-8cb1-c430070edecd
Jain, B.
b7fb4fa3-ec72-4bb3-89f9-3f8910d2d1ef
Chang, C.
4fefb597-e59b-4f11-a778-e8d956f9a98e
Cheng, T.-Y.
7b86a692-f2c5-4a24-a7c9-92dbec6624b9
Kacprzak, T.
eafb0701-9c49-4282-9fa1-27104e344c4d
Lemos, P.
d15b36bb-7095-44e4-866f-c5a37a6b7436
Alarcon, A.
df0b9a08-759b-4a6b-ad40-5e4c2406e984
Amon, A.
8723f229-3177-4dba-b464-937a5b5fbb42
Bechtol, K.
358c6400-cf1d-4118-ac2d-70e7999a472f
Becker, M.R.
395fc7ab-da0a-4db5-8bbd-5ac803c71448
Bernstein, G.M.
9d12d964-5827-488e-9de3-c4b0b517e8aa
Campos, A.
56dc09d4-7105-4b40-b83c-16ae76702baa
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Chen, R.
0792f9fb-9f4d-492d-b1eb-8e03467b2c9b
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
DeRose, J.
0e595bcc-0c8b-4d69-9845-83ab92a229f7
Drlica-Wagner, A.
d47129ae-3b89-4fca-bab4-8b4019b1da05
Eckert, K.
ca7c3da2-bf65-48a8-8ecd-d5ccdc90e694
Everett, S.
588bed29-c7b6-4c59-9f6a-ac2ff262c307
Ferté, A.
6ebc14f2-4599-469d-ad9d-a8cbe37bbf0d
Gruen, D.
8d960f6a-1219-4ce1-9312-616e463616eb
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Herner, K.
8c5ba564-599d-4452-841e-30937e2e8278
Jarvis, M.
6d4fac6d-1ede-494a-8661-bcab18980f97
McCullough, J.
7cf30948-f18c-4c1c-a0df-eb032eb9ea1a
Myles, J.
1cf9000b-a00c-4870-8e37-443a1a14acf1
Navarro-Alsina, A.
6dae44ab-de38-4c9d-879e-6d984fc45c13
Pandey, S.
39b30180-60c5-4d53-bb11-3c37fad335ef
Raveri, M.
733f98ec-85e9-434f-b45d-2aa8edb781ef
Rollins, R.P.
444ec746-0684-4082-b829-7969702ac726
Rykoff, E.S.
15bb71ea-9258-4221-9c3a-29005789e340
Sánchez, C.
39c847b6-9628-42b0-ac0b-0d8f00018340
Secco, L.F.
92fcf929-e17d-4891-b1bc-3a2cda063a07
Sevilla-Noarbe, I.
a4690b61-feca-4933-887c-121a9f343470
Sheldon, E.
34fc88df-f247-4b45-bf17-5b46f8abf5c5
Shin, T.
959c9e55-4485-4b1d-ae0b-f940c4a95c7d
Troxel, M.A.
98179534-4eec-4118-9883-713aef806609
Tutusaus, I.
e48d5ad4-cc0c-44fc-9639-7da4fa592849
Varga, T.N.
c20ef2ab-466c-4331-b8d5-df07d18bab77
Yanny, B.
84056e28-ba6b-4151-99ba-ee9cf635e9fc
Yin, B.
de82166e-5451-4c99-b291-2c81566b47e0
Zuntz, J.
95e15a37-39f8-42d4-91d7-247b66e492ba
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072

[Unknown type: UNSPECIFIED]

Record type: UNSPECIFIED

Abstract

We present simulation-based cosmological wCDM inference using Dark Energy Survey Year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky PKDGRAV dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock DES lensing data sets. For wCDM inference, for which we allow −1<w<−13, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives Ωm=0.283+0.020−0.027, S8=0.804+0.025−0.017, and w<−0.80 (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter (ΩDE,w) precision.

Text
2403.02314v1
Available under License Other.
Download (4MB)

More information

Accepted/In Press date: 4 March 2024
Additional Information: 19 pages, 15 figures, submitted to Monthly Notices of the Royal Astronomical Society
Keywords: astro-ph.CO

Identifiers

Local EPrints ID: 497290
URI: http://eprints.soton.ac.uk/id/eprint/497290
PURE UUID: 5f513e1b-09e1-4c50-b71c-37039acb9718
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 17 Jan 2025 17:46
Last modified: 10 Apr 2025 01:59

Export record

Altmetrics

Contributors

Author: N. Jeffrey
Author: L. Whiteway
Author: M. Gatti
Author: J. Williamson
Author: J. Alsing
Author: A. Porredon
Author: J. Prat
Author: C. Doux
Author: B. Jain
Author: C. Chang
Author: T.-Y. Cheng
Author: T. Kacprzak
Author: P. Lemos
Author: A. Alarcon
Author: A. Amon
Author: K. Bechtol
Author: M.R. Becker
Author: G.M. Bernstein
Author: A. Campos
Author: A. Carnero Rosell
Author: R. Chen
Author: A. Choi
Author: J. DeRose
Author: A. Drlica-Wagner
Author: K. Eckert
Author: S. Everett
Author: A. Ferté
Author: D. Gruen
Author: R.A. Gruendl
Author: K. Herner
Author: M. Jarvis
Author: J. McCullough
Author: J. Myles
Author: A. Navarro-Alsina
Author: S. Pandey
Author: M. Raveri
Author: R.P. Rollins
Author: E.S. Rykoff
Author: C. Sánchez
Author: L.F. Secco
Author: I. Sevilla-Noarbe
Author: E. Sheldon
Author: T. Shin
Author: M.A. Troxel
Author: I. Tutusaus
Author: T.N. Varga
Author: B. Yanny
Author: B. Yin
Author: J. Zuntz
Author: P. Wiseman ORCID iD
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×