
Original Manuscript

Journal of Composite Materials
2024, Vol. 0(0) 1–19
© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/00219983241302328
journals.sagepub.com/home/jcm

Development of a lab-based In situXCToven
for vacuum-bag processing of prepreg
laminates

Pedro Galvez-Hernandez1, Ehsan Nazemi2, Arjun Radhakrishnan1,
Fernando Alvarez-Borges2, Mark Mavrogordato2, Ian Sinclair2 and James Kratz1

Abstract
Real-time 3D microstructure changes in prepreg laminates during curing was observed using widely available X-ray
Computed Tomography (XCT) hardware at high temporal resolution (2 min) and spatial resolution (25 µm voxel size). The
methodology was demonstrated in a cylindrical convection oven with an internal diameter of 100 mm, a heating rate of 2°C/
min, a maximum operating temperature of 135°C, and an integrated vacuum line. The technique was applied to three
representative carbon fibre reinforced epoxy prepreg samples having flat, tapered and corner geometries. The increasingly
complex geometries lead to higher void mobility and thickness changes that were captured in 40-50 mm size samples. Image
processing of the XCT data was enhanced by the use of deep learning semantic segmentation for feature extraction.
Uninterrupted microstructure evolution was visualised in larger samples and more realistic processing conditions than
previous lab-based In Situ XCT studies.
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Introduction

The desirable properties of composite laminates rely on the
uninterrupted load transfer between the polymer matrix and
the reinforcing fibre. Even small voids are particularly
detrimental to matrix dominated properties of composite
laminates, such as the shear and compression strength.1 The
voidage in a laminate is inherent to the material and process
being used to make the composite part. While autoclave
processing of prepreg materials has been the standard
technique used to produce high-performance aircraft
composite components,2 such as those found on the Boeing
787 and Airbus A350, lower cost out-of-autoclave (OoA)
processes that rely on vacuum bag only (VBO) pressure and
oven heating are emerging alternatives.3,4 In general, OoA
laminates tend to have higher voidage, especially when less
consolidation pressure is applied or if poor vacuum is
achieved.5

When developing a composite manufacturing process,
the baseline voidage and other material properties are first
measured from flat laminates. As part complexity increases,
a higher occurrence of voids is expected due to pressure
discontinuities, for example corners needed to change the
shape of the part, or due to material discontinuities, for

example when plies are added or dropped to change the
thickness of the part. External corners can experience
thinning, thickening, or wrinkling of the laminate, which is
based on the amount of sliding that is possible between
plies, viscosity, resin bleed conditions, and tooling.6–11 For
the most part, internal corners experience thickening6 with
the extent depending on the same conditions as external
corners and also the percentage of fibres parallel to the
corner.12 Ply drops can lead to voids if the polymer does not
flow into the triangular gap created at the material
discontinuity.13

Given the many variables that contribute to the sub-
surface phenomena occurring at the microscopic level
during consolidation and cure,14 models have been
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developed to help address questions related to void
formation,15,16 void and resin flow,17–19 or OoA prepreg
forming.20 However, they are still limited by a lack of high-
quality validation data. Time-resolved manufacturing pro-
cesses have been studied using a range of different tech-
niques. Digital microscopy has been used for the analysis of
composite surfaces and interfaces containing voids under
different conditions.21–24 Data has also been captured using
ultrasound25–27 and Magnetic Resonance Imaging (MRI)
techniques.28 Although these characterisation techniques
provide valuable data relating to the mechanisms driving
time-resolved phenomena, their implementation often re-
quires modifying the actual composite manufacturing
process to enable the image acquisition and, in most cases,
they do not provide a sharp and accurate characterisation of
the composite volume at a microstructural scale due to
spatial resolution limitations. Recent process monitoring
techniques using pressure mapping sensors7 and embed-
dable shape sensors6 can provide pressure and ply defor-
mation data during consolidation and cure, respectively, but
are unable to detect void movement.

Three-dimensional (3D) visualisation of the composite
can be achieved by X-Ray Computed Tomography (XCT),
which is based on differential attenuation of X-Ray photons
within a sample. At a given X-Ray energy, the magnitude of
the attenuation of the incident X-Ray beam largely depends
on the material density and may therefore provide contrast
between the different phases in the sample. As such, the
voxel (3D pixel) intensity of the resulting image is linked to
the properties of the material.29

XCT has emerged as a critical imaging tool to charac-
terise the time-resolved evolution of composites micro-
structures. XCT is very well suited to observe fatigue
damage evolution30 and use in multi-physical
manufacturing process is emerging. To date, three main
approaches exist to capture time-resolved composite
manufacturing processes using XCT:

· Ex situXCT, consisting of scanning different samples
that were manufactured to a specific point in the
cycle. This is the most widely used approach and a
notable example is the study of dry fibre bundles
impregnation during consolidation of OoA prepreg
laminates.31 The technique offers a simple and a cost-
effective method for quantifying microstructural
changes but may overlook key time-resolved effects
due to the use of different samples and therefore,
different microstructures.

· In line XCT, which enables the visualisation of the
microstructural evolution occurring within a single
sample during manufacturing32–34 or subjected to a
particular loading cycle.35 In this case, the
manufacturing process is stopped at certain pre-
defined points where the scan takes place. When

applied to processes involving heat, care must be
taken to ensure that the thermal inertia does not
process the material beyond the point of interest, as
noted by Torres et al.25 in the study of porosity
evolution in flat panels processed under OoA
conditions.

· In situ XCT, based on the continuous scanning of the
sample as the process of interest runs uninterrupted,
for example damage progression.36,37

Scan time is the key challenge for emerging In Situ XCT
approaches because any movement of the specimen during
scanning will result in a blurred image. XCT for materials
engineering is commonly performed in synchrotron or lab-
based systems. In both cases, a set of projections is pro-
duced at different angles that enables the 3D inspection of
the microstructure after reconstruction. Synchrotron XCT
uses a high-brilliance parallel X-Ray beam, which offers
interesting possibilities to study time-resolved processes
due to the combination of high resolution (∼1 µm) and very
fast scan times (<5 min).38–41 Lab-based XCT systems use a
divergent X-ray cone beam with much lower brilliance,
therefore a compromise between signal-to-noise ratio,
resolution, and scan time is required to maximise the mi-
crostructural detail captured during an In Situ XCT ex-
periment.42 Examples of the use of this technology include
the In Situ inspection of amplified spatial gaps that are
characteristic of automated deposition and how the gaps
evolve during a slowed-down curing process.43 Other
studies have visualised air bubble mobility in neat resin
during the curing process.44

Synchrotron XCT does provide the very short exposure
times needed to observe dynamic processes45 but the main
drawback is availability. Currently, most synchrotron beam
lines have two proposal submission deadlines per year, so if
the proposal is successful, beam time is allocated five to 12
months after submission. Lab-based XCT is much more
widely available and at a much lower cost. The impact of a
lower signal-to-noise ratio in lab-based XCT may be di-
minished with deep learning image segmentation methods,
which have been shown to provide more accurate void
detection than thresholding.46–48

The objective of this study is to apply lab-based XCT to
geometrically complex laminates that have been reported to
have higher voidage than their flat counterparts. An oven
capable of curing composite laminates by vacuum-bag
processing inside a lab-based XCT scanner was devel-
oped to track voids while the manufacturing process was
occurring. In Situ XCT measurements were made every
2 min for an external corner laminate, a ply-drop laminate,
and a flat laminate. The data was analysed using a deep
learning image segmentation technique to observe when
and how the voids move. The results are compared to
previously reported ex situ observations and the role of
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lab-based In Situ XCT as a method to capture prepreg
consolidation and curing defects is discussed.

Methodology

The following sections describe the oven rig development,
XCT settings, and image analysis to process larger, more
complex laminates, using valid heating rates for thermo-
setting prepreg materials in a lab-based environment.

Sample preparation

The carbon fibre epoxy prepreg material used in this study
was MTC400-UD150-HS-35%RW-300 from SHD Com-
posites Materials Ltd (UK). This material designation is for
the MTC400 epoxy resin system, applied at 35% by weight
to unidirectional (UD) high strength (HS) carbon fibre re-
inforcement having an areal weight of 150 g/m2; the roll
width was 300 mm. The specific carbon fibre used in this
prepreg was T700SC 12K 50 C made by Toray. To increase
the areal weight and ply-thickness, prepreg plies with di-
mensions 300 mm × 550 mm were initially laid-up with a
[0°]2 configuration and consolidated at 45°C for 15 min
under vacuum. The resulting samples have 16 consolidated
plies having an areal density of 300 g/m2, that is, 32 plies of
150 g/m2.

A flat tool and a 90° external corner tool with a nominal
radius of 5 mmwere manufactured from nylon for moulding
the three composite samples. Natural colour cast Nylon 6
(from RS Components Ltd) with a maximum operating
temperature of 180°C was chosen as the tooling material
because it offered the appropriate temperature stability
above the target operating temperature of 135°C, it was easy
to machine, and importantly for this application, has low X-
Ray attenuation.

The sample geometries and lay-ups are shown in
Figure 1. The flat (Figure 1(a)) and corner (Figure 1(b))
samples consisted of 16-ply laminates [0,90]8 with ply
dimensions of 50 mm × 40 mm and a thickness of 5 mm.
This balanced but unsymmetric stacking sequence provides
an orthogonal interface between every ply to avoid any
nesting effects. The shorter ply-dimension (40 mm) is
parallel to the fibre 0° fibre direction. The third sample was a
tapered laminate (Figure 1(c)) moulded on to the flat tool
and consisted of 16 unidirectional plies having a lay-up of
[90]16. This sample features dropping of the six central plies
along a length of 15 mm, resulting in a nominal drop ratio of
approximately 8:1.

The three samples were manually laid-up before placing
them on top of the Nylon tools according to the orientations
shown in Figure 2(a) and (b). No intermediate debulking
was applied during the lay-up process. A larger aluminium

Figure 1. Schematic of samples tested: (a) flat, (b) corner, and (c) tapered.
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tool, with the same corner radius as the nylon corner tool,
was used to facilitate the lay-up of the corner sample. After
transferring the samples to the nylon tools, a Vacuum Bag
Only (VBO) configuration was implemented using the set of
consumables shown in Figure 2(c) and (d). Release films
were used to separate the sample from the mould and the
breather cloth. An edge breathing dam, consisting of a cork
piece wrapped with fibreglass cloth, was placed along the
shorter edge of the sample to facilitate air evacuation out of
the sample. Finally, the vacuum line was connected and
sealed to the vacuum port of the mould prior to installing the
vacuum bag. A high quality vacuum level (3 kPa) was
achieved throughout the entire manufacturing cycle of the
three samples, resulting in a consolidation pressure of
98 kPa.

In Situ XCT rig

A custom XCT rig was developed to facilitate the OoA
consolidation and cure of composite laminates under In Situ
XCT conditions (Figure 3). It consists of two main com-
ponents. Firstly, a frame was attached to the static stage of
the CT-scanner to support the oven cover and the in-line
heater (Watlow Fluent with internal baffles). Compressed
air passes through the heater and is blown into the oven,

heating the composite sample by convection. The oven
cover had an internal diameter of 100 mm, a wall thickness
of 5 mm, height of 200 mm and was made of the same cast
Nylon 6 as the tools. Secondly, the Nylon tool is placed on
top of a shaft connected to the rotating stage of the CT-
scanner to rotate the sample and collect the 360° images
needed for subsequent 3D reconstruction. The vacuum
line, providing VBO consolidation of the sample
(Figure 3(b)), runs through the centre of the shaft and is
connected to a vacuum pump located outside the CT-
scanner (Figure 3(c)). Vacuum level was monitored us-
ing a vacuum gauge placed in parallel to the vacuum
circuit. Two K-type thermocouples were used to control
and monitor the temperature within the oven. The ther-
mocouples were placed on top of the oven cover, right
above the sample but out of the field of view (FOV)
(Figure 3(d)).

Manufacturing cycle

The three samples were manufactured under OoA condi-
tions. Vacuum was applied for 15 minutes, approximately,
before the start of the curing cycle. The material supplier
data sheet recommends a curing cycle with a ramp rate
between 0.3 and 3°C/min, and a variety of temperatures

Figure 2. CAD design of (a) the corner tool and (b) the flat tool. The sample is displayed in red and the fibre orientation is indicated for
each. VBO layup of the flat sample (c) showing the placement of the edge breathing before vacuum bag sealing, and (d) final bagged
configuration.
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from 85°C for 16 h to 135°C for 1 h. An initial temperature
ramp of 2°C/min was applied in this study until a set-point
temperature of 120°C was reached, followed by a 1 h dwell
at this temperature. As shown in Figure 4, the part tem-
perature reached 135°C during the curing process. After
curing, the oven was cooled to room temperature at a target
rate of 10°C/min.

In conventional composite manufacturing processes, a
thermocouple is usually placed in the midplane of the
laminate edge to measure the temperature history. Intro-
ducing a thermocouple in the path of the X-ray would have
caused high attenuation and resulted in a bright spot in the
area of interest. Therefore, bench trials were performed
replicating the heating conditions during the In Situ ex-
periments to correlate the part temperature to the air

temperature. Sample rotation that occurs during the In Situ
XCT experiment was not replicated during the bench trial
and could influence the part temperature.

Previously developed cure kinetics and viscosity models
were fit to the measured part temperature from the bench
trials to show the thermal behaviour of the epoxy, as il-
lustrated in Figure 4. The cure and viscosity models are
provided in Appendix A. The sample and set point tem-
peratures are offset by 2.5 min to account for the difference
in the initial temperature of the bench trial (24.5°C) and the
In Situ experiments (19.5 ± 1.1°C). The temperature profile
of the part reveals an exotherm which initiates after 60 min
into the cycle (∼110°C) and increases the part temperature
up to 138°C. At this point the viscosity also reaches its
minimum and the cross-linking is initiated at around 68 min

Figure 3. Experimental setup: (a) the oven between the X-Ray source and detector, (b) VBO configuration of the corner sample, (c)
CAD design of the rig, and (d) location of the thermocouples.

Figure 4. Cure kinetics and viscosity evolution of the flat sample.
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into the cycle, going from uncured to a degree of cure of 0.9
in just under 20 min. This rapid curing, arising from the
exothermic reaction, is evident from the sample temperature
rising above the set-point temperature.

In Situ XCT settings

Three in situ XCT experiments, one for each sample, were
performed at the µ-VIS Imaging Centre at the University of
Southampton with a custom dual-source Nikon 225/450kVp
system, using a microfocus 225kVp source with a tungsten
reflection target and a Perkin Elmer XRD 1621 CN03 HS flat
panel detector. Following the data acquisition, each of the
scans was reconstructed by Filter Back Projection (FBP)
using the Nikon CT Pro software, resulting in a 32-bit
greyscale 3D volume image of 1000 × 1000 × 1000 voxels.

The same set of XCT parameters were used for all the scans
performed across the in situ XCT experiments. The source
voltage and power were set to 120 kV and 33 W, respectively,
and the detector was binned 2 × 2 times, resulting in 1000 ×
1000 detector pixels. The source to object and source to detector
distances were 82.93 mm and 1325.56 mm, respectively. The
above setting resulted in a reconstructed voxel size of 25 µmand
a FOVof 25 mm × 25 mm, which was taken from the centre of
the sample to avoid capturing edge effects.

The selection of the spatial resolution was based on
minimising the distance between the X-Ray source and the
oven cover so that partial volume effects was reduced and the
visualisation of micro-voids was enhanced. The partial
volume effect is the grey scale representation of two or more
material phases smaller than the XCT scan voxel size as the
average of their X-ray attenuation, which can limit their
detectability.49 Further increasing the voxel size would allow
the capturing of a larger sample volume but also hinder the
correct visualisation and further segmentation of micro-voids
and tendency towards overestimation of macro-voids.50,51

The samples were consolidated and cured while a series
of consecutive scans captured the process, which ran

uninterrupted. 60 scans were performed to capture the
evolution of each sample during manufacturing. The first 47
scans captured the temperature ramp and the temperature
dwell, while the remaining 13 scans captured the cooling
phase. The total duration of a single In SituXCTexperiment
was 2.5 h approximately, including the cooling phase.

A total time of about 2 min/scan was achieved by recording
1701 projections at an exposure time of 67 ms per projection
during a 360° rotation. For each scan, an additional 30 seconds
was needed to allow the rotating stage to rotate back to the initial
position before starting the next scan. The resulting re-
constructed 3D images depicts a 2 min averaged state of the
scan, representing a 3.5X improvement of previous lab-based In
Situ CT scanning of composites manufacturing.43

Image processing

The reconstructed volumes were analysed in Fiji (ImageJ)52

to quantify the voids within the sample for each scan. All
volumes were converted to 8-bit, rotated, and re-sliced so
that the 0° plies are orthogonal to the screen. A Gaussian
filter (sigma radius of 1) was applied to denoise the data
based on previous successful segmentation by Deep
Learning X-ray CT scans captured in 2 min and having a
voxel size of 25 microns.48 The Gaussian filter is a special
case of the mean filter and has been widely used in the pre-
processing of X-Ray micrographs in the composite field.32

Histogram stretching was applied to enhance the visual
contrast. An additional 45° rotation was applied to the scans
of the flat and tapered laminates to position the mould
surface parallel to the x axis (Figure 5(a)). Thermal ex-
pansion of the Nylon tool during the experiments induced a
vertical movement of the tool and sample, which was
corrected to ensure that the assessed volume was the same
across all the scans. To maximise the amount of material that
was analysed from each sample and considering the
physical limitations imposed by the different samples and
tool shapes, a final sub-volume of 300 slices of 800 × 800

Figure 5. Images from the in situ experiment of the flat sample: (a) XCT image, (b) the phase segmentation provided by entropy
thresholding, and (c) phase segmentation by Deep Learning.
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voxels (7 mm × 20 mm × 20 mm) was extracted from the
scans capturing the corner evolution, and a sub-volume of
300 slices of 850 × 800 voxels (7 mm × 21.25 mm × 20mm)
was considered for the samples processed on the flat tool
(flat and tapered samples).

The final step of image processing consisted of the seg-
mentation of the porosity within each sample. This process was
particularly challenging as five different phases (background,
breather and vacuum bag, composite, mould, and porosity) were
present in the reconstructed greyscale images, as shown in
Figure 5(a). Even though the background ismainly composed of
air, it should be differentiated from the voids within the sample
and must be considered as a separate class during segmentation.

A preliminary trial considered the application of the Otsu53

and entropy54 thresholding algorithms to provide the phase
segmentation. To facilitate the threshold determination, the
background and porosity phases were considered as a single
phase. The phase segmentation provided by the entropymethod
is shown in Figure 5(b), which was found to provide a better
overall segmentation than by the Otsu method. Additional in-
formation for and analysis of the thresholding segmentation is
provided in Appendix B. The visual results in Figure 5(b) il-
lustrate the poor performance of the thresholding approach to
the separation of phases having a comparable density, such as
the Nylon mould and the composite sample. This limitation
highlights the need for the use of a segmentation technique that
is not based uniquely on the greyscale, but also considers other
properties, such as texture or pixel context.

Deep learning semantic segmentation using Convolutional
Neural Networks (CNN)55 was performed via the definition of
an architecture combining convolutional layers with other types
of layers (e.g., fully connected, dropout, etc…), and displaying
different connections between them.56 The resulting CNN
automatically assigns a class to each of the pixels in an image
after being trained with an image set formed by a set of raw
images and their associated ground truths. The network itera-
tively learns to segment the phases of interest byminimising the
error between the ground truth and its own prediction for each
raw image in the training set. A network based on the U-Net

architecture57 was defined and implemented in Python 3.6 and
Tensorflow 2.5.58 This architecture has been applied to the
semantic segmentation of composite X-Ray micrographs59 and
was successfully used for the segmentation of different phases in
4D XCT datasets.60

In this study, two deep learning models were created, one
for each type of mould, using the training workflow de-
scribed in.60 The models were applied to the segmentation
of the five phases in all the scans within each In Situ XCT
experiment using the methodology proposed in.59 Deep
Learning provided a substantial improvement in the seg-
mentation of the different phases compared to the simple
thresholding approach (Figure 5(b)–(c)). Additionally, it
was able to differentiate between phases displaying similar
grey scale levels, and segmented voids with reasonable
accuracy over a wide range of sizes. Further information
regarding the Deep Learning segmentation and training
strategy is provided in Appendix C.

Microstructure evolution assessment

The evolution of the porosity, average void size and indi-
vidual void counts were registered for each In Situ exper-
iment. For each scan, the calculation of the porosity was
done using the BoneJ plugin,61 available in Fiji (ImageJ),
from the segmented images (Figure 5(c)). During image
processing it is common to eliminate objects with a size
below a certain threshold to remove noise to obtain a cleaner
segmented image for analysis.63 Objects with a minimum
size of three voxels (i.e. 75 micron structures) were con-
sidered here, in line with previous studies,48 where three
voxels were successfully used for an equivalent set of X-
Ray parameters. Dragonfly62 was used to generate the 3D
renderings of the microstructure.

The thickness change occurring over the course of the in situ
experiments was also reported for each laminate. The sample
thickness was measured at the centre and at the edges of each
sample within the field of view of the central 2D slice for each
scan (Figure 6). The thickness of the laminates was

Figure 6. Location of the ROI (red boxes) for the (a) corner, (b) flat and (c) tapered sample. The laminate thickness was measured at the
position indicated by the yellow lines.
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automatically calculated by a custom-built script im-
plemented in Python 3.6 that provides the y coordinate of
the topmost and bottommost pixels of the composite phase
for a given x coordinate. It is important to note that to
calculate the thickness variation at the edges of the corner
laminate, the scan needed to be rotated 45° so that the
laminate is parallel to the cartesian axis.

Finally, the void evolution in a sub-region of the original
scans were studied by selecting a Region of Interest (ROI) in
each sample, as shown in Figure 6. The flat laminate ROI was
chosen because it has a porosity level of 2% composed of small
volume voids, which is characteristic of the voids in high-
performance applications. The ROI within the corner sample
captured the changes occurring in the transition zone from the
corner apex to one of the laminate arms. Finally, the ROI in the
tapered sample covers the evolution of single central ply and its
associated ply gap. The location of the ROI was kept fixed
throughout the entire set of scans for the given In Situ experi-
ment, and their dimensions were adapted to the morphology of
each sample and the feature of interest that was being
investigated.

Results

Microstructure evolution

The porosity evolution during consolidation and curing of all
three samples is shown in Figure 7. The three samples
displayed a similar initial porosity (flat: 3.73%; corner: 3.31%
and tapered: 4%), but the porosity evolved differently in each
sample during the consolidation and cure process. The first
stage of the curing cycle features a temperature ramp from
ambient conditions to the 120°C dwell set-point. In this first
stage, the resin viscosity decreases according to the profile
shown in Figure 4. An increase in the average void volume
and decrease in the void counts was observed across the three
samples as smaller voids agglomerated. This effect was vi-
sually verified in the 3D reconstructions of the three samples
and is shown in Figure 8, where the height of the bounding

box has been adjusted to exclusively show the volume
corresponding to the porosity within the sample.

The second stage of the curing cycle covers the constant
temperature dwell, where resin gelation occurs, and voids
become locked into the microstructure. The third and final
stage of the curing cycle was a cool down to ambient
conditions. No changes in the sample microstructure were
observed at this stage of the curing cycle. For brevity, the
results from the cooling stage are omitted.

The porosity in the flat sample increased in the first stage
of the cure cycle and reached a maximum value of 4.76%
towards the end of the temperature ramp. Porosity remains
constant from this point and until the end of the cure cycle.
The 3D reconstruction shows a re-arrangement of the po-
rosity distribution as the cycle progresses, consisting of
fewer but larger and better-defined voids. The average void
volume increases (initial: 8.39 × 106 µm3, final: 18.6 ×
106 µm3) and void count decreases (initial: 3685, final:
2013) during the manufacturing process.

The porosity of the corner laminate steadily decreased
during the first 50 min, followed by a significant drop during
the next 10 min, leading to a minimum value of 2.1%. Resin
viscosity is at its global minima during this period. Large
voids that initially existed at the edges of the corner sample,
and which are noticeable in the 3D reconstruction
(Figure 8), are pushed out of the scan FOV once the tem-
perature set point was reached. The removal of the larger
voids from the FOV also has a substantial impact on the
average void size, which decreased from a value of 9.67 ×
106 µm3, reached after 45 min into the cycle, to a value of
6.25 × 106 µm3 in the following 23 min. Removal of the
large voids does not substantially change the individual void
counts. No relevant changes were observed after gelation,
resulting in a final porosity value of 2.4%.

Finally, the tapered sample displays an initial reduction
in the porosity value (to 2.73%) after 24 min, as the resin
fills the empty gaps created by the ply-drops, which are
noticeable in the central slice of the initial scan (Figure 8).
The porosity then increased to 3.49% due to voids travelling

Figure 7. Evolution of (a) porosity, (b) average void volume, and (c) individual void counts for each sample during the manufacturing
cycle. Resin gelation occurs around 68 min and is marked by the vertical dashed line.
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Figure 8. XCT observations of the (a) corner, (b) flat, and (c) tapered samples at three key points during the manufacturing cycle. The
red arrows in the tapered sample point at the location of each of the ply-drops. For each sample, the top row shows the central slice of
the scan at the points of interest, whereas the bottom row contains the associated 3D reconstruction of the porosity.
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from outside the field of view into a central ply gap while the
resin viscosity was still low. This effect significantly im-
pacts the microstructure evolution for the rest of the cycle
and will be analysed in section 3.3.

Thickness evolution

The evolution of the thickness is measured at three locations
(right, left and centre of the sample identified in Figure 6)
and the results are shown in Figure 9. Gelation is marked in
Figure 9 as a vertical line, when in reality it is a window that
likely spans 5–10 min. For the material studied here, ge-
lation occurred immediately before the exotherm peak,
therefore some thickness change was observed after gela-
tion due to thermal contraction from the exotherm peak of
135°C to the oven set-point of 120°C.

The corner sample initially displays a similar thickness
across the three locations, with an average initial thickness
of 5.2 ± 0.11 mm. The effect of the external corner con-
solidation process was a thickness reduction at the apex of
the sample, reaching a final value of 4.38 mm (15% de-
crease). This behaviour contrasts with the evolution ob-
served in the arms of the sample, which exhibit a final
thickness of 5.25 mm at both edges, representing a variation
of less than 1% from the initial values.

The flat sample has an initial average thickness of 5.2 ±
0.04 mm. The thickness at the rightmost location is reduced
by 0.28 mm (6% reduction), compared to a reduction of only
0.08 mm and 0.05 mm (average 1% reduction) in the left and
central positions, respectively. This difference can be influ-
enced by the presence of a large void spanning the central and
left sub-volume of the laminate and observable in the central
slice and 3D reconstructions of the flat sample scan (Figure 8)
that hinders the compression of the central and left-hand side
of the sample. From these values, the cured ply thickness of a
150 g/m2 ply was calculated to be 0.16 mm.

Finally, the initial thickness of the tapered sample is highly
dependent on the measurement location due to the central ply
drops. The initial measured thickness was 5.13 mm in the
thickest region of the laminate and 3.15 mm in the thinnest. The
thickness reduction is marginally greater in the thick region
compared to the thin region (6.3% reduction vs 5.5%). The
magnitude of this reduction is also comparable to the thickness
decrease observed in the right edge of the flat sample, where the
edge breathing was installed. The thickness measured at the
central location reached a final thickness of 3.83 mm (3.1%
reduction from an initial thickness of 3.95 mm).

Regions of interest

Three ROI were defined to study the microstructure evo-
lution at specific locations within the samples, as identified
by the red boxes in Figure 6. The porosity evolution for each
ROI is shown in Figure 10.

The volume selected within the corner cross-ply laminate
(3 mm × 3 mm × 7.5 mm) sees enhanced void mobility in
the early stages of the manufacturing cycle. The 3D re-
construction of the porosity evolution is shown in Figure 11.
Most of the voids are oriented in the 90° fibre direction at the
beginning of the cycle, whereas some isolated voids exist at
0°. This observation is expected because the 90° plies re-
quire the fibres to bend over the radius, making ply-to-ply
contact more challenging and resulting in a higher pro-
portion of interlaminar porosity. Small objects, identified as
voids, are also visible within the entire volume. The initial
porosity in this region was 2.22%, and 487 individual voids
with an average size of 3.07 × 106 µm3 were reported. After
33 min, the largest void is no longer visible, and the porosity
reaches its minimum value (1.1%) after 45 min. At this point
in the cure cycle, the lowest number of individual void
counts is also reported (186). Porosity slightly increased and
reached a final value of 1.63% at the end of the cycle. The
average void size remained relatively constant throughout
the curing cycle as both larger and smaller voids were re-
arranged. The porosity distribution at the end of the cycle is
dominated by larger voids oriented in the 90° direction,
whereas most of the smaller voids are no longer visible.

Figure 12 shows the evolution of the porosity within the
ROI defined for the flat cross-ply sample (2.5mm× 1.5mm×
7.5 mm). This sub-volume is characterised by small and
disperse voids, with no predominant orientation at the be-
ginning of the cycle since all plies are laid flat. The initial
conditions were a total porosity of 2.05%, 149 individual
void counts and an average void size of 3.87 × 106 µm3. As
the temperature increases, voids appear to coalesce into
bigger voids oriented parallel to the fibre directions. This
effect can be visually assessed by the evolution of the void
identified by the red arrow and oriented in the 90° direction.
The void is initially surrounded by several voids of similar or
smaller size and displays an irregular and elongated shape.
After 33 min, still in the temperature ramp, the void grows
and most of the smaller voids around it have disappeared. At
118°C the void mobility is maximum and the void continues
to grow, mainly due to the merging with a large transversal
void. By the end of the cycle, the transversal void has
completely merged into the 90° void. The porosity at the end
of the cycle increased to a value of 2.47%, whereas a sub-
stantial increase of the average void size (1.28 × 106 µm3) and
a 63% decrease of the void counts (57) was observed.

The 3D reconstruction of the porosity in the tapered
ROI evolution is shown in Figure 13. The ROI dimen-
sions are 11.25 mm × 0.62 mm × 7.5 mm. The initial
porosity within this sub-volume was 3.72% and was
largely dominated by the void associated to the ply-drop.
As the temperature increased, the porosity reached a
minimum value of 1.17% after 24 min. Four minutes after
this point, a large void entered the ROI and travelled in
the fibre direction towards the central part of the sample,
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inducing the re-appearance of the central ply-drop gap.
The large void travels in the opposite direction to the
location of the edge breathing, creating a sudden increase
in porosity within the ROI, which reached a maximum of
6.04 %. A substantial increase of the average void size
was also observed. As the large void settled within the
central ply-drop gap, the final porosity decreased to a
value of 4.63%.

Discussion

The newly developed combination of lab-based In Situ XCT
and deep learning segmentation was used to observe and
quantify the microstructural changes for prepreg laminates
processed using oven VBO curing. This methodology en-
abled the use of larger volumes, complex shapes and 3.5
times faster scan times compared to the current state-of-the-
art.41 Even though further repeats and an expanded test
matrix are required to account for variations and inhomo-
geneities found in composite materials, some observations
from the current study align with previous work in literature,
while others were more surprising.

A common trend in the porosity evolution was observed
across all three samples, where voids re-arrange into fewer
but bigger volumes that are mostly oriented parallel to the
fibre direction. This effect was particularly visible in the

volume reconstruction (Figure 8) and in the sub-volume
analysed within the flat sample (Figure 12), where the initial
void distribution, characterised by small and disperse voids,
merged into fewer but larger rod-shape voids as the con-
solidation process progressed. This final void morphology
has been observed in previous work in literature63 and the
current study is able to visualise the formation of these
morphologies in real-time.

The measured porosity in the flat sample increased by
25% during the manufacturing cycle with an associated
increase in void volume but a decrease in void counts. A
previous In Situ study on understanding void mechanics
used an analogous 2D microscopy configuration by in-
corporating perforated neat resin film to represent entrapped
air.21 In that work, two factors were observed that led to
increase in void volume: (1) Pressure equilibrium and (2)
Void mobility. The voids expanded if the gas pressure was
higher than sum effects of hydrostatic resin pressure and
surface tension. As the resin viscosity reduces the resin
pressure reduces, which in turn leads void volume in-
creasing. Furthermore, with increasing void mobility voids
coalesce thus increasing the volume and void content. The
current study enables the visualisation of this temporal
phenomenon in a real composite sample.

It is important to note that the final porosity was higher
than the initial state in the current study, even though edge

Figure 9. Thickness evolution registered at three different locations for the (a) corner, (b) flat, and (c) tapered laminates. Resin gelation
occurs around 68 min and is marked by the vertical dashed line.

Figure 10. Evolution of (a) porosity, (b) average void volume, and (c) individual void counts within the ROI for each sample. Resin
gelation occurs around 68 min and is marked by the vertical dashed line.
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breathing was used. This increased void content is poten-
tially due to the exothermic reaction which leaves very little
time for keymechanisms to aid in the reduction of entrapped
air and expanded voids formed from a variety of reasons,
such as moisture. These effects have been previously ob-
served in ex situ studies using OoA prepregs. One study had
indicated significant impact on the final void content from
thermal gradients and edge breathing arising from closing of
evacuation pathways.64 The effect on void evacuation from

the closure of pathways can also be observed in the tapered
sample in the current study (Figure 8). In these samples, the
porosity content closer to the thinner edge is higher than the
thicker edge (closest to the edge breather) as it was evac-
uated earlier in the cycle thus closing the pathways.

The corner samples had a thickness reduction at the apex
that was greater than at the arms. This phenomenon of
corner thinning of laminates manufactured on external radii
have been observed in other studies and is attributed to

Figure 11. 3D reconstruction of the porosity within the ROI defined in the corner sample at different stages of the manufacturing cycle.
The largest void is identified by the red arrow and the edge breathing side is identified by the blue line.

Figure 12. 3D reconstruction of the porosity within the ROI of the flat sample at key stages of the manufacturing cycle. The red arrow
points at a large void that enters the ROI field of view and merges with the ply-drop gap. The edge breathing side is identified by the blue
line.
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increased consolidation pressure.6,7 This increased con-
solidation pressure on 90° plies in the laminate can lead to
percolation or shear flow11 and will depend on the resin
state. In the current form, the In SituXCTsetup is not able to
capture these finer flow phenomenon but is able to capture
void migration away from the apex of the corner indicating

presence of these flow mechanisms at different periods of
the process.

Interestingly, the corner laminate separated from the
mould tool during the constant temperature dwell, as shown
in Figure 14. This separation may be attributed to the de-
velopment of resin modulus and the ability to carry residual

Figure 13. 3D reconstruction of the porosity within the ROI defined in the tapered sample at different stages of the manufacturing
cycle. The evolution of the large void is identified by the red arrow and the edge breathing side is identified by the blue line.

Figure 14. The corner laminate at (a) the start of the cycle and (b) the end of the temperature dwell. The top row shows the central
slice of the scan with the red arrow pointing at the space between the composite and the mould. The bottom row displays the 3D
reconstruction of the porosity (white) and the space between the sample and the mould (orange).
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stresses triggered by chemical cure shrinkage and thermal
contraction, both of which are known to produce spring-in
in composite corner parts.2 Further widening of the gap
between the corner part and tool was observed during cool-
down due to the mis-match in the coefficient of thermal
expansion (CTE) between the fibres and resin. As stated in
section 2.1 the corner laminate did have a cross-ply [0,90]8
lay-up, and while balanced, the lay-up is not symmetric.
Lab-based In Situ CT could be used to better understand
how and when the distortion develops during the
manufacturing process, and compliment the methods
available to predict dimensional stability and residual
stresses.2

The evolution of the tapered sample showed a first stage
where a sharp decrease in the porosity (31% reduction) was
observed. However, an unexpected large void was observed
re-entering the FOV and progressing in the opposite di-
rection to the edge breathing (Figure 13). There was no drop
in vacuum during the process and thus the reason for this
observation cannot be fully ascertained.

There are limitations in the current study in terms of the
need for more samples to confirm the observations. Fur-
thermore, the void content analysis of the FOV could be
affected by the directionality of the void mobility arising
from single edge breathing. However, the current study does
show the role In SituXCTcan play to relate part complexity,
microstructural evolution, processing conditions and ma-
terial properties.

Conclusions

A new methodology for faster In Situ lab-based XCT was
developed for observing time-resolved void interaction and
ply consolidation in composite laminates during oven
vacuum bag moulding. The rig can run an uninterrupted
cure cycle typical for high performance composite with a
ramp rate of 2°C/min and peak temperature of 120°C. The
custom rig and XCT parameters were optimised to achieve a
2-min scan time at voxel size of 25 µm. The scans were
analysed using an improved deep learning image processing
technique to study the microstructural evolution in three
composite sample geometries: (1) Flat, (2) Tapered and (3)
Corner. The rig combined with the deep learning technique
allowed for faster scanning of larger and more complex
samples compared to previous lab-based in situ XCT
studies, reducing costs significantly compared to synchro-
tron methods.

From the proof-of-concept scans performed in this study,
the following observations under the vacuum bag were seen
in real-time:

· Void interaction in flat and tapered laminates: small
and disperse voids merged into fewer but larger rod-
shape voids as the consolidation process progressed.

· Thinning at the apex of external corners relative to the
arms: voids migrated away from the apex of the
corner but finer details of any resin and/or fibre flow
were not captured.

· Laminate separating from the tool during the process:
associated with the development of resin modulus
and ability to carry stress.

Additional samples need to be tested to verify the re-
producibility of the observations outlined above.

In Situ lab-based XCT combined with deep learning
segmentation has proved to be a powerful and cost-effective
tool to provide high-quality data capturing and time-
resolved material behaviour. While shorter scan times
could enable further information and time fidelity of the
experiment, there are signal to noise limits that cannot be
overcome without changing the source and detector hard-
ware. Further investigations may well build on this initial
work but the combination of kV, power, exposure time and
number of projections was able to provide sufficient image
quality for the purposes of observing void interaction and
ply consolidation in composite laminates. With additional
samples, this technology can be applied to study and op-
timise cure cycles for a wide range of industrial
applications.
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Appendix

Appendix A. Cure and rheo-kinetic model

The material characterisation for SHD MTC 400 epoxy
system was conducted in a previous work to develop the
cure and rheo-kinetic models and identify the parameters.65

The model is shown in equation (1) and the model pa-
rameters are summarised in Table A1.

dα
dt

ðT ,αÞ¼
�
A1 � exp

�� E1
R�T
�þA2 � exp

�� E2
R�T
� �αm� � ð1�αÞn

1þexpðD � ðαþαc0�αcT �TÞÞ
(1)

The viscosity evolution was described by the model
shown in equation (2) and the parameters are listed in Table
A2.

Table A1. Cure kinetic parameters for MTC 400 epoxy resin
system.

Parameter Unit Value

A1 [1/s] 2.97 × 106

E1 ( J/mol) 1.36 × 105

A2 [1/s] 1.28 × 1011

E2 ( J/mol) 9.82 × 104

m [-] 0.847
n [-] 2.407
D [-] 28.504
αc0 [-] 1.326
αcT [1/K] 5.73 × 10�3

R [ J/(mol�K)] 8.314

Table A2. Rheo-kinetic parameters for MTC 400 epoxy resin
system.

Parameter Unit Value

A1 [Pa�s] 7.18 × 10�11

E1 ( J/mol) 42.365 × 103

A2 [Pa�s] 6.94× 10�13

E2 ( J/mol) 93.482 × 103

A [-] 0.771
B [-] 22.804
C [-] �28.840
αgel [-] 0.640
R [ J/(mol�K)] 8.314
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Appendix B. Thresholding segmentation

Two standard thresholding approaches were applied to
the phase segmentation of the central slice of the first scan
within the flat sample in-situ data. Otsu method53 is based in
the minimization of the intra-class variance whereas the
method proposed by Kapur et al.54 aims at the maximization
the histogram entropy. Open-source computer vision Py-
thon packages were used to implement and apply both
methods. The visual results shown in Figure B1(c)–(d),
showcases the challenge of separating phases displaying
similar grey vales, such as the composite and the mould,
both being represented by grey intensities in the range of 93-
173. Moreover, the accurate segmentation of the breather is
not possible using thresholding since it is formed by two
phases (cloth and air) (Figure B1(b)) and does not display a
single and distinctive grey value. Entropy-based threshold

provides a better segmentation of the background-porosity
phase as well as reducing the segmentation error of the
composite at the right edge of the field of view. Both
thresholding approaches fail in the segmentation of the
vacuum bag, breather, and the small voids within the
composite.

Appendix C. Deep learning segmentation

Two models were trained, one per each mould, using the
CT data generated in the three in situ experiments and using
the procedure described hereafter.

First, a random number generator function selected a
user-defined number slices across all the scans performed in
each type of mould. The images were manually annotated
using Pixel Annotator Tool developed by Breheret with a
throughput rate of ∼3 images per hour. The images were
selected after the scans had undergone the vertical cali-
bration step, aiming at compensating the increase of height
due to the thermal expansion of the mould. It is worth noting
that in the case of the scans capturing the evolution of the
samples manufactured in the flat mould, the slices were
selected before performing the horizontal calibration of the

Figure B1. Central slice of the first scan relative to the in situ experiment of the flat sample (a), grey scale histogram (b) and the phase
segmentation provided by the Otsu (c) and entropy method (d).
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volumes, which was required due to the 45° inclination with
respect to the x axis of the sample. The model corresponding
to the corner mould was trained using 32 images, while the
model of the flat mould accounted for 15 images of each
type of sample (flat and tapered).

Secondly, the strategy proposed by Stan et al.60 to optimize
the DL training was followed in this study. Each slice within the
original image sets was split into four same-size quadrants. A
patch of 500× 500 pixelswas definedwithin each quadrant. The
coordinates of the patch were randomly set, allowing a maxi-
mum patch overlap of 10% with the adjacent quadrants (Figure
C1(a)). Then, the patches were divided into smaller sub-patches
of 256 × 256 pixels, without overlap between them (Figure
C1(b)). For each model, the training setwas composed by 75%
of the total number of sub-patches, and the control set, used for
assessing the performance of the model in unknown data, ac-
counted for the remaining 25%.

Two preliminary models, one per each type of mould,
were trained and the resulting segmentations were converted
to files readable by the Pixel Annotation Tool and therefore
allowing the manual correction of locations that were not
successfully segmented by the models. These locations were
mostly related to mislabelling of the composite phase as
belonging to the mould phase, as well as some CT artifacts
attributed to either the composite or the mould phase because
their brightness. No significant issues were identified related
to the segmentation of the void phase.

The reconstruction of the segmentations allowed an
approximately two-fold increase of the training sets with a

substantial reduction of the annotation effort (∼10 images/
hour). The definitive number of annotated full-size images
were: 50 images for the corner mould and 60 images for the
flat mould (30 images per sample configuration). The same
process as described previously was used to increase the
training set variability. The two models were trained using
the same hyperparameters (Table C1).

The only notable post-processing step applied to the
segmentation produced by the model was the closing of all
the holes within the segmentation of the composite phase.
This action enabled the computation of the laminate
volume, which was later used for the calculation of the
porosity.

FigureC1. Example of full-sized image and the extraction of the four 500 × 500 pixels patches (a). Partition of each patch into four, non-
overlapping, 256 × 256 pixels sub-patches (b).

Table C1. Set of DL hyperparameters.

Hyperparameter Value

Number of classes 5 (background, void, composite, mould
and breather)

Batch size 4
Epochs 300 (early stopping after 30 epochs if

no change in the validation loss)
Loss metric Categorical cross-entropy
Learning rate 0.0001 (reduction on plateau after 5

epochs (factor = 0.9) of no
improvement in the control set loss)

Optimization algorithm Adam
Cut-off probability
(softmax output)

0.55
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