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Defining and classifying quadrilaterals, though an established component of the 

school mathematics curriculum, appears to be a difficult topic for many learners. The 

reasons for such difficulties relate to the complexities in learning to analyse the 

attributes of different quadrilaterals and to distinguish between critical and non-

critical aspects. Such learning, if it is to be effective, requires logical deduction, 

together with suitable interactions between concepts and images. This paper reports 

on an analysis of data from a total of 263 learners. The main purpose of the paper is 

to present a theoretical framing that is intended to inform further studies of this 

important topic within mathematics education research. This theoretical framing 

relates prototype phenomenon and implicit models to common cognitive paths in the 

understanding of the relationship between quadrilaterals. 

INTRODUCTION 

The teaching of geometry provides not only a key vehicle for developing learners’ 

spatial thinking and visualisation skills, but also a major opportunity to develop their 

ability in deductive reasoning and proving (Battista, 2007; Royal Society, 2001). In 

this latter aspect of geometry teaching, that of developing deductive reasoning and 

proving, the notion of definitions is very important, especially given the role of 

definitions in identifying, with some precision, new mathematical objects. In this way, 

definitions assign properties to mathematical objects.  

Intimately related to the notion of definition, and just as important in mathematics, 

are ideas of classification (linked to notions of isomorphism). One of the reasons for 

the importance of classification in the teaching and learning of mathematics is 

captured in the following words of the renowned mathematician Henri Poincaré: 

The definition will not be understood until you have shown not only the object defined, 

but the neighbouring objects from which it has to be distinguished, until you have made it 

possible to grasp the difference, and have added explicitly your reason for saying this or 

that in stating the definition. (Poincaré, 1914, p. 452) 

Echoing the importance of such issues, a key focus for mathematics education 

research concerns learners’ understanding both of definitions and of classification, 

given that a range of studies is indicating that learners have difficulties both with 

defining (see, for example, de Villiers, 1998; Vinner, 1991; Zaslavsky and Shir, 2005) 

and classifying (see, for instance, Currie and Pegg, 1998; de Villiers, 1994; 

Monaghan, 2000). Given the importance of this issue, the purposes of this paper are, 
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first, to report findings concerning learners’ knowledge of the definitions of, and 

classification relationships between, quadrilaterals, and, second, to propose a 

theoretical framing that is intended to inform further analyses in this research area. 

THE HIERARCHICAL CLASSIFICATION OF QUADRILATERALS 

In mathematics there is a general preference for a hierarchical classification of 

quadrilaterals and school curricula usually follow this approach, in particular, at the 

lower secondary school level (for more on this, see de Villiers, 1994). One reason for 

the preference for a hierarchical classification is its ‘economical’ character in that, for 

example, if a statement is true for parallelograms, this means that it is also true for 

squares, rectangles and rhombuses as these may be described as ‘special’ types of 

parallelograms.  

A number of international studies have shown that many learners have problems with 

a hierarchical classification of quadrilaterals and the related issue of defining such 

shapes (Currie and Pegg, 1998; de Villiers, 1994; Erez and Yerushalmy, 2006; 

Monaghan, 2000; Pickreign, 2007). In particular, it is evident that learners often have 

difficulties with the formal definitions of shapes and, further, that their geometrical 

reasoning is often significantly influenced by their mental images of shapes. For 

example, Monaghan (2000) reported that the ‘horizontal length’ of typical images of 

rectangles disturbs learners’ perceptions of ‘inclusion relationships’ of quadrilaterals, 

and that 11 year old students in the UK are not likely to accept that a square is a 

special type of rectangle (p. 186). Such difficulties, as Erez and Yerushalmy (2006, p. 

272) explain (following the work of Markman, 1991), are related to the complexities 

in learning to analyse the attributes of different quadrilaterals and to distinguish 

between critical and non-critical attributes of different ones such that understanding 

hierarchical relations involves at least the following:  

• the ability to classify a shape in different ways and label it with different 

names; for example, that a rhombus can also be called a polygon, a 

quadrilateral, a special type of parallelogram or kite, and so on;  

• the need to understand the transitive relations between the concepts of shapes; 

for example, that if a square is a rhombus and a rhombus is a parallelogram, 

then a square is also a parallelogram;  

• the need to understand the asymmetry of relations among quadrilaterals; for 

example, that every rectangle is a parallelogram, but not every parallelogram is 

a rectangle;  

• the need to understand the opposite asymmetry and transitive relations of the 

critical attributes of shape concepts: for example, that the critical attributes of 

the rectangle are included in the critical attributes of the square, but the critical 

attributes of the square are not included in those of the rectangle. 

This difficulty with definitions and classification appears to persist with trainee 

elementary school teachers (perhaps, in some ways, unsurprisingly) even though they 
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are expected to have a sound knowledge of this area of mathematics in order to teach 

the topic effectively. For example, Kawasaki (1992) conducted a survey of Japanese 

trainee elementary school teachers’ knowledge of quadrilaterals (parallelogram, 

rectangle, square and trapezium) and found that just 5% of his sample (N=56) could 

write a formal definition of a rectangle, and that many of the trainees (in their first 

year of university study) used their own image of rectangles for their definition, such 

as ‘a rectangle is a quadrilateral whose sides are different lengths’. Similar findings 

are reported by Pickreign (2007) in the case of trainee teachers in the USA, while 

there are indications that there might be comparable issues in the UK (see, for 

instance, Jones, Mooney and Harries, 2002). 

In the next section, we discuss further the complexities both of geometrical figures 

and of reasoning about the relationships among them. In particular, we explore why 

the hierarchical classification is difficult for many learners in terms of the van Hiele 

theory, and the relationship between images and definitions of geometrical figures.  

THEORETICAL CONSIDERATIONS 

The van Hiele model for the learning of geometry, which suggests that learners 

advance through levels of thought in geometry (Crowley, 1987; van Hiele, 1999), is 

generally considered to be a fairly useful model to describe learners’ behaviours in 

geometry (Battista, 2007; Senk, 1989). The model specifies the following levels (we 

are using the 1-5 numeration, following authors such as Battista, 2007): 

• Level 1:  Visual - identifying shapes according to their concrete examples 

• Level 2:  Descriptive/analytic - identifying shapes according to their properties 

• Level 3:  Abstract/relational/informal deduction - identifying relationships 

between shapes and producing simple logical deduction 

• Level 4:  Formal deduction - understanding logical deduction 

• Level 5:  Rigor/meta-mathematical - axiomatic systems of geometry are 

understood.  

In terms of this model, learners at van Hiele level 3 are, for example, expected to be 

able to deduce that a rectangle is a special type of parallelogram by considering 

definitions and properties of these quadrilaterals. Learners at level 2 start recognising 

properties of individual shapes (for example, that in a square all the sides are the 

same and that all the angles are the same), while learners at level 1 would recognise a 

square or rectangle from their overall shape and that they are different from a circle. 

Research evidence suggests that the rate of progress from level 2 to 3 made by many 

school children and students is slow, or even that many of them remain at level 2 by 

the end of the secondary (high) school (Senk, 1989). Thus, the hierarchical 

classification of quadrilaterals, taken to be van Hiele level 3, can be regarded as a 

difficult task for many learners. 

While the van Hiele model provides us with insights into why the hierarchical 

classification is difficult, we should also explore the cause of these difficulties in 
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terms of the nature of geometrical figures. The terms ‘concept image’ and ‘concept 

definition’ were introduced by Vinner and Hershkowitz (1980) in the context of the 

learning of some simple geometrical concepts, and developed by Tall and Vinner 

(1981) in the context of more sophisticated mathematical ideas of limits and 

continuity. Given that formal concept definitions are definitions that are accepted as 

mathematical, Tall and Vinner (1981, p. 152) defined a concept definition as ‘a form 

of words used to specify that concept’ and concept image as ‘the total cognitive 

structure that is associated with the concept, which includes all the mental pictures 

and associated properties and process’. In terms of geometrical figures a 

characteristic feature is their dual nature, in that both concept and image are closely 

inter-related. In this context, Fischbein (1993) proposed the notion of ‘figural 

concept’ in that, while a geometrical figure (such as a square) can be described as 

having intrinsic conceptual properties (in that it is controlled by geometrical theory), 

it is not solely a concept; it is also an image (p. 141). Thus, when considering a 

square, it can be regarded as ‘a quadrilateral whose sides and angles are equal (a 

concept)’ as well as <  > (an image) and not <  >.  

Taking this approach, and from a purely cognitive perspective, on the one hand 

individual learners can be thought of as having their own concept images and their 

personal concept definitions of basic figures, all constructed through their own 

experiences of learning geometry; for the purposes of analysis in this paper, we call 

examples of these  personal figural concepts. On the other hand, there are formal 

concept images and definitions in geometry such that, when Euclidean definitions are 

used, a square, for instance, is defined as a quadrilateral whose sides and angles are 

equal; we call such an example a formal figural concept.  

When we classify quadrilaterals, we exercise our own personal figural concepts, and 

the result depends on what personal figural concepts of quadrilaterals we have. This 

means, for example, that if one’s personal figural concepts are not fully developed, as 

Vinner (1991) suggests can happen, one’s judgement would likely be influenced by 

‘images’ (perhaps in the van Hiele level 1 sense) only, and this may well result in an 

incorrect (from a mathematical point of view) conclusion. For example, if one’s 

personal figural concept of parallelograms excludes rhombuses from the images of 

parallelograms, one may not accept a rhombus is a special type of parallelogram.  

These theoretical considerations suggest that the hierarchical classification is difficult 

for many learners because of the complex nature of figural concepts of geometrical 

shapes. These complexities also make it difficult for mathematics educators (teachers, 

teacher trainers, curriculum researchers, researchers and so on) to provide useful 

suggestions to improve the situation in the learning and teaching of geometry. Our 

goal is to contribute to these matters.  

RESEARCH DESIGN 

As a starting point for research into learners’ understanding of the classification of 

quadrilaterals, it is valuable to find out at what level of thinking they are in terms of 
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van Hiele’s model, and what personal figural concepts they have of quadrilaterals. 

Having established this, a further aim is to explore the nature of any ‘gap’ between 

personal figural concepts and formal figural concepts (that is, the ‘gap’ between the 

actual knowledge learners appear to have, and the knowledge that educators expect 

learners to have). 

This study is a part of a larger study being carried out in collaboration between 

researchers in the UK and in Japan, and the data presented in this paper is from an 

opportunistic sample of trainee elementary school teachers on a four-year teacher 

training course in Scotland. We consider that it is valid to examine the knowledge of 

trainee teachers as this group are also ‘learners’ (in addition to being future classroom 

educators) in that they are still developing their knowledge to teach mathematics in 

schools, and, as discussed in the previous section, seem likely to display similar 

forms of understanding (and difficulties) as school-age learners. Further details of the 

research design, together with the results from our analysis of two suitable sets of 

data, are presented in the next section.  

LEARNERS’ KNOWLEDGE OF QUADRILATERALS 

Personal figural concepts of quadrilaterals 

The first set of data we consider comes from a survey of 158 learners (noting, as 

mentioned above, that, in this particular component of our study, they are trainee 

elementary school teachers in their first year of university study, and that most were 

18 years old at the time of data collection). These learners were asked, following 

some taught input designed to remind them of the basic properties of and the 

relationships between quadrilaterals, to complete the questionnaire set out in Table 1. 

The purpose of this questionnaire was to reveal any ‘gap’ between the formal and 

personal figural concepts of the learners. The design of this element of the study was 

informed by the research of Kawasaki (1992) mentioned above, which investigated 

possible gaps in trainee teachers’ figural concepts of quadrilaterals in Japan by using 

the questions in Table 1. 

Analysis of data from responses to question 1 indicates that there are, indeed, ‘gaps’ 

in the learners’ knowledge in this area. For example, 14 out of 158 (8.9%) answered 

correctly Q1a about whether a square is a trapezium, 20 (12.7%) answered that a 

square is a rectangle, and 29 (18.4%) answered that a parallelogram is a trapezium 

(note that, in Kawasaki’s study, a trapezium is regarded as a quadrilateral which has 

at least one pair of parallel lines, and therefore a parallelogram is regarded as a 

special type of a trapezium; while we follow this definition in our research, we are 

also aware that alternative definitions may appear in current mathematics textbooks, 

see Usiskin and Dougherty, 2007). The latter result contrasts sharply with Kawasaki’s 

findings that 73% of Japanese trainee teachers (N=56) could define a trapezium 

correctly. There is a possibility that Scottish trainee teachers in our study might not be 

familiar with the type of question, while Japanese trainees are familiar with those 

questions as they have studied the Euclidean style of geometry in lower secondary 
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schools (see Fujita and Jones, 2003b).  

Table 1: Research questionnaire - Quadrilaterals 

Q1. Answer the following questions, and state your reasons briefly.  

a. Is a square a trapezium?  

b. Is a square a rectangle?  

c. Is a parallelogram a trapezium? 

Q2. A kite is defined as ‘a quadrilateral, which has both pairs of adjacent sides 
equal’. Define the following quadrilaterals, and draw an image of each.  

a. A parallelogram 

b. A square 

c. A rectangle  

d. A trapezium 

The results from Q2 (Table 1) are given in Table 2 and Figure 1 - the former showing 

the results from, and the latter comparing the numbers of trainees providing the 

correct image compared to the number providing a correct definition.  

Table 2 and Figure 1: Correct responses to Question 2 

Q2a Image Parallelogram 153 (96.8%) 

Q2a Definition Parallelogram 93 (58.9%) 

Q2b Image of a square 154 (97.5%) 

Q2b Definition of a square 60 (38%) 

Q2c Image of a rectangle 155 (98.1%) 

Q2c Definition of a rectangle 34 (21.5%) 

Q2d Image of a trapezium 96 (60.8%) 

Q2d Definition of a trapezium 19 (12%)  

Comparing the image and definition results displayed in Figure 1 reveals that the 

majority of the learners could at least draw a correct image of the quadrilaterals (with 

the exception of a trapezium) but far less were able to provide their definitions. In the 

theoretical discussion in this paper (see above), it was proposed that images in 

learners’ personal figural concepts have a strong influence when they attempt to 

define/classify figures, and this appears to be borne out in this study. For example, 

almost all learners could draw a correct image of a square, while 62% (98 learners) 

defined it incorrectly. Of these, 80 (about 82% of 98) wrote ‘a quadrilateral whose 

sides are equal’ and did not refer to ‘angles’. If they had fully considered their figural 

concepts, they should have noticed that a rhombus can also satisfy this condition, and 

therefore it would be necessary to include something about the angles as well. It 

could be that the image <  > is so strong for them that many do not recognise the 

need to mention the angles being equal.  

Similarly, while 155 (98%) could draw an image of a rectangle, only 34 (21.5%) 

could define it correctly. Almost 70% (86 out of 124) defined a rectangle as ‘a 

quadrilateral which has two longer sides and two shorter sides’ (similar results are 
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reported, for example, by Monaghan, 2000, p. 186). Again, learners appear to be 

influenced by the image of a rectangle and omit to mention anything about its angles. 

Moreover, 68 (43% of 158) defined both a square and a rectangle without mentioning 

angles. The results for parallelogram are slightly better, with almost 97% being able 

to draw an image of a parallelogram, and almost 60% being able to define it. While 

this more positive result could, perhaps, result from the name ‘parallelogram’ 

reminding the learners of ‘parallel lines’, as revealed in the next section of analysis, 

such an interpretation needs to be treated with some caution as the learners’ 

perceptions/ understanding of parallelograms might be more limited than the data in 

Figure 1 suggests (for example, the learners might consider a parallelogram to be a 

‘slanted’ quadrilateral and, moreover, that a rectangle is not a parallelogram). 

What do learners know about parallelograms? 

Our second set of data comes from a survey of 105 learners (noting that, in this 

particular study, they are trainee elementary school teachers in their second year of 

university study, and most were 19~20 years old). The questionnaire we used, see 

Table 3, was adapted from one originally designed by Koseki (1987, see also 

Kunimune, 2000) to measure the level of understanding of parallelograms held by 

equivalent trainees and school children in Japan
 
and it consists of six questions.  

Table 3 and Figure 2: Research questionnaire - Parallelogram 

Q1. Choose which are parallelograms from the quadrilaterals 1~15 below. 

21 3 4
5 6

8

9

10
11

12

13

14
15

7

 

Figure 2: Quadrilaterals for Q1 

Q2. What is a parallelogram? Draw its image and describe it in words. 

Q3. Is it possible to draw a parallelogram whose four vertices are on the circumference of a 

circle? Choose your answer a. or b. If you choose (a), state your opinion why it is not 

possible. If your answer is (b), draw its shape and name in the circle. (a) No it is not possible, 

because … or (b) Yes, it is possible. 

Q6. Answer whether the following statements are true or false  

a. There is no relationship between a rhombus and a parallelogram. True/False 

b. It is possible to say that a rhombus is a parallelogram.   True/False 

c. It is possible to say that a parallelogram is a rhombus.   True/False 

 

The studies by Koseki and by Kunimune, independent of studies based on the van 

Hiele model, are premised on there being several stages in learners’ thinking about 
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parallelograms; stage 1 for learners who have very limited figural concepts of 

parallelograms, stage 2 for those who began to extend their figural concepts, (for 

example that rhombuses are also parallelograms) but still do not have sound 

understanding, and stage 3 for those who have formal figural concepts of 

parallelogram with the understanding of class inclusion. Due to limitations of space 

in this paper, we report on part of our results – those relating to items 1, 2, 3 and 6 of 

the questionnaire.  

While Q1 and Q2 check learners’ basic knowledge of parallelograms, Q3 asks them 

to determine parallelograms which can be inscribed in a circle (the answer is 

rectangles). Thus this question checks whether learners are able to use a hierarchical 

relationship to solve a problem; that is, whether they can understand that it is not only 

a square, but also any kind of rectangle, of which a square is just one, which can be 

inscribed in a circle.  

Table 4 summarises the marking criteria for each question from the questionnaire in 

Table 3. Each question is measured by 0~3 points which correspond to the stages 

described above.  

Table 4: Marking criteria for Q1, Q2 & Q3 

 3 pt. 2 pt. 1 pt. 0 pt. 

Q1 

At least ten of the 

following: 1, 2, 4, 5, 

6, 7, 9, 11, 13, 14, 15 

At least six of 1, 5, 6, 

9, 11, 14, 15 or eight 

of 1, 2, 4, 6, 7, 9, 11, 

13, 14, 15 

At least three of the 

following: 1, 6, 9, 14 

Others 

Q2 

Correct definition & 

image 

Stating too many 

properties 

Statements involving 

limited images (such 

as ‘slant rectangle’) 

Others 

Q3 

(b) and draws & 

names a rectangle 

(b) and draws & 

names a rectangle and 

a square 

(b) and draws a 

correct image 

(b) and draws & 

names a rhombus 

Others 

Q6 True for b.  True for a. & b. (if 2 

or 3 pt in Q1) 

True for c. (if 2 or 3 

pt in Q1) 

Others 

In Q1, if a student can identify all parallelograms correctly (i.e. 1, 2, 3, 4, 5, 6, 7, 9, 

11, 13, 14 and 15 in fig. 1), s/he receives ‘3’ points for Q1 (and is considered, in the 

Kunimune model, to be at stage 3), whereas a student who chooses very limited 

images of parallelograms such as 1, 6, 9, 14 receives ‘1’ point. Some students might 

be starting to extend their knowledge in parallelograms, and choose, for example, 1, 6, 

9, 14, 5, 11 and 15 (or similarly ‘1, 2, 4, 6, 7, 9, 11, 13 and 14’, ‘1, 2, 4, 6, 9, 13 and 

15’ and so on) as parallelograms, and those students receive ‘2’ points. In Q2, a 

student receives ‘3’ points if s/he states a correct (formal) definition of a 

parallelogram, whereas a statement such as ‘a parallelogram is a slanted quadrilateral’ 

is awarded ‘1’ point. In Q3, if a student says ‘Yes, it is a rectangle’ then s/he has 
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utilised their knowledge ‘a rectangle is a parallelogram’ to solve this question, and 

receives ‘3’ points.  A student who answers either ‘Yes, it is a rectangle and a square’, 

or ‘Yes, it is a square’, is taken as not understanding the inclusion relation between 

rectangle/square and hence s/he receives ‘2’ points (either because, in the first case, 

the square is mentioned unnecessarily, or because, in the second case, the rectangle is 

omitted altogether – in both these case, the student is taken as not being able to see 

that ‘a square is a (special type of) rectangle’).   

Table 5 summarises the results of Q1, Q2, Q3 & Q6 

Table 5: Results of Q1, Q2, Q3 & Q6 

 Q1 Q2 Q3 Q6 

3 pt 21 (20%) 59 (56.2%) 8 (7.6%) 38 (36.2%) 

2 pt 27 (25.7%) 27 (25.7%) 11 (10.5%) 0 (0%) 

1 pt 47 (44.8%) 11 (10.5%) 10 (9.5%) 4 (3.8%) 

0 pt 10 (9.5%) 8 (7.6%) 76 (72.4%) 63 (60%) 

The results for Q2 show that over 80% of the 105 learners in the second data set 

could define a parallelogram almost correctly, and generally they could draw a 

correct image of it. However, as the result of Q1 indicates, it is likely that their 

personal figural concepts of parallelograms consist of a correct concept definition 

and limited images (such as ‘leaned’ parallelograms, Monaghan, 2000, p. 188), given 

that just 20% could identify all correct images of parallelograms - 47 (44.8%) chose 

images 1, 6, 9 and 14 (in Figure 2). This implies that almost half of the learners still 

regard parallelograms in terms of limited images despite the fact that they have a fair 

understanding of the concept definition. Thus, there is a ‘gap’ between their formal 

and personal figural concepts of parallelograms.  

 

 

 

 

 

Figure 3: One form of answer to Q3 

The performance in terms of Q3 shows the learners’ limitations with this topic. While 

just 8 of 105 (7.6%) could answer that ‘it is a rectangle which satisfies the statement 

in Q3’, 76 (72.4%) answered ‘No, it is not possible’. Of these 76, 15 reasoned their 

answer by stating ‘you will always get a right angle if you draw a parallelogram in a 

circle’ or ‘there will be only 2 vertices which touch’, 5 merely drew an image (see 

Figure 3), 20 stated their reasons and drew an image, and 20 gave no answer. In other 

words, 40 of 76 learners who scored ‘0’ points in Q3 used ‘slanted’ images of a 

parallelogram to tackle this question (we discuss this issue later in this paper in terms 
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of ‘prototype phenomenon’).  

We determined a slight correlation between the performances in relation to these 

questions. The value of Pearson’s correlation coefficient between Q1 and Q3 is 

r=0.48 (p<0.01); that is, learners who could choose the correct images of 

parallelograms were likely to get better scores than those who just chose the limited 

images of parallelograms. A reason for why there is not a stronger correlation is that 6 

learners out of the 21 who scored ‘3’ points, and 18 of 28 who scored ‘2’ points for 

Q1, could not answer Q3 correctly, perhaps because their ability to control their 

images still does not appear consolidated when they try to solve geometrical 

problems.  

In Q1, 27 learners scored ‘2’ points, and 17 of them (about 63% of 27) included at 

least one of the images of rectangles (e.g. 2, 7, 13 in Figure 2) or squares (4 or 11 in 

Figure 2) as parallelograms. The others chose the ‘typical’ images of parallelograms 

and rhombuses (1, 6, 9, 14 + 5, 15 in Figure 2). Interestingly, 8 of these 17 could 

achieve ‘1’, ‘2’, or even ‘3’ points for Q3. This implies that one of the important 

factors in solving Q3 is what images of parallelograms they are able to utilise (or how 

they can exercise their ‘geometrical eye’, see Fujita and Jones, 2003a).  

Q6 checks whether the learners could see a rhombus as a parallelogram. The results 

point to a lack of understanding about the relationship between parallelograms, even 

for those who could score 2 or 3 points in Q1: the value of Pearson’s correlation 

coefficient between Q1 and Q6 is r=0.2 (p<0.01). Eight learners who scored 3 points 

for Q1 chose ‘true’ for ‘b’ and ‘c’ in Q6. This indicates that, although they could 

choose correct images of ‘parallelograms’, they simultaneously considered both ‘b’ (a 

rhombus is a parallelogram) and ‘c’ (a parallelogram is a rhombus) to be true. As we 

speculated may be the case for Q1 in the first data set (table 1), there is a possibility 

that the learners in our study might not be familiar with the type of question. 

Considering the findings that our subjects show particular weaknesses in this type of 

question, in follow-up studies more attention could be paid to how questions are 

worded. For example, a formulation such as the following could be considered: ‘It is 

possible to say that a rhombus is a special type of parallelogram?’.  

TOWARDS A FUTURE THEORETICAL FRAMEWORK 

As has been established, the hierarchical classification of quadrilaterals is difficult 

because it requires logical deduction, together with suitable interactions between 

concepts and images. The analysis we present in this paper aligns with related 

research, confirming the difficulties learners have with coming to an understanding of 

the hierarchical relationship between quadrilaterals (and, as such, that many remain at 

level 2  - or even level 1 - in terms of the van Hiele model), and that a ‘gap’ seems to 

exist between learners’ formal figural concepts and their personal figural concepts 

such that images are so influential in learners’ personal figural concepts that they 

dominate their attempt to define basic quadrilaterals. 

These findings confirm that there are crucial issues to be addressed if there are to be 
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improvements in the situation regarding learners’ knowledge of geometrical figures. 

In what follows, both by reflecting on our findings outlined above and through 

theoretical discussion, we propose a theoretical framing intended to inform future 

research in this area. To do so we first revisit the van Hiele model and clarify how we 

might situate the study of the relationships between quadrilaterals within the 

geometry curriculum. We then focus on related theories in this area, in particular 

‘tacit models’ (Fischbein et al, 1985), ‘prototype phenomenon’ (Hershkowitz, 1990), 

and ‘common cognitive paths’ in geometrical thinking (Vinner and Hershkowitz, 

1980).  

The study of the hierarchical classification of quadrilaterals as bridging a gap 

between van Hiele levels 2 and 3 

Hershkowitz (1990) states 'van Hiele’s theory takes the goal of geometry learning to 

be the realization of geometry as a deductive structure, with geometry as the science 

of our environment as a necessary prerequisite' (p. 73). An important research issue is 

to investigate how we might design learning and teaching which would promote 

learners’ advancement from one level to another in the van Hiele model. Given that 

van Hiele calls the stages from levels 1 to 2 and levels 2 to 3 as ‘Period 1’ and ‘Period 

2’ respectively, and considering existing research findings such as Senk’s (1989) 

study, we focus on ‘Period 2’ as this is where the transition between levels 2 and 3 

occurs.  

The van Hiele model suggests that learners at level 2 start recognising the properties 

of individual shapes, and those at level 3 start simple deduction concerning these 

properties. Thus the key factor influencing student progress during period 2 is how 

learners move from regarding ‘shapes’ as the object of their study through a focus on 

‘shape properties’/ to regarding ‘shape/geometrical properties’ as the object of their 

study through a focus on ‘deductive reasoning’ (Okazaki and Iwasaki, 2003). This is 

summarised in Table 6.  

Table 6: Level 2 and 3 of the van Hiele model 

 Level 2 Level 3 

Object Shapes Properties/theorems 

Method Properties Deductive reasoning 

Our suggestion is that the study of the classification of quadrilaterals can be used to 

help promote such changes between object/method in geometrical thinking. To reason 

successfully about the answer to the question about whether a rhombus is a (special 

type of) parallelogram, learners need not only to be able to control its image, but also 

to examine properties (concepts/theorems). In particular, it is likely to be important 

that learners recognise that a geometrical shape can be seen as 'a collection of 

properties' (van Hiele, 1986, p. 62), and that some properties can be deduced from 

other properties (van Hiele calls these 'characteristics'). These activities (examining, 

listing and ordering properties of geometrical shapes) are likely to be important in the 

early stages of deductive reasoning. This indicates that the hierarchical classification, 
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although difficult, should be included in a geometry curriculum. 

Prototype phenomenon and implicit models 

Fischbein et al (1985) found that students’ mathematical behaviours in basic 

arithmetical operations are likely to be influenced by the so-called ‘tacit model’: 

We assume that the models attached to the arithmetical operations are basically 

behavioral in nature. That is, when trying to discover the intuitive model that a person 

tacitly associates with a certain operation, one has to consider some practical behavior 

that would be the enactive, effectively performable counterpart to the operation ... we 

hypothesized that the enactive prototype of an arithmetical operation may remain rigidly 

attached to the concept long after the concept has acquired a formal status. (pp. 5-6) 

In the context of geometrical thinking, a similar situation has been observed: the 

‘prototype phenomenon’ (Hershkowitz, 1990). The key factor is the prototype 

example, which Hershkowitz describes as follows: 

Each concept has one or more prototype examples that are attained first and therefore 

exist in the concept image of most subjects. The prototype examples were usually the 

subset of examples that [had] the “longest” list of attributes – all the critical attributes of 

the concept and those specific (non-critical) attributes that had strong visual 

characteristics. (p. 82) 

Thus, we speculate that learners are likely to regard, for example, a parallelogram as 

‘a quadrilateral whose opposite sides are parallel to each other’ (definition), and they 

implicitly add properties such as ‘in parallelograms, the adjacent angles are not equal’, 

which are likely to be the result of the prototype of images of parallelograms (see 

Okazaki and Fujita, 2007). These properties also function as their implicit models and 

influence their behaviours. As we have seen, learners from our first data set (see 

Table 2 and Figure 1) are likely to regard a rectangle as ‘a quadrilateral which has 2 

longer sides and 2 shorter sides’; further, 40 of 76 students from our second data set 

(see Tables 3 and 5) used limited images of a parallelogram (as in Figure 3) when 

they tackled the question ‘Is it possible to draw a parallelogram whose four vertices 

are on the circumference of a circle?’ We speculate that a reason for this behaviour is 

that they implicitly add ‘rectangles don’t have all equal sides’, or ‘parallelograms 

don’t have right angles’ based on their limited images, that is on prototype 

phenomenon.  

Future research could be designed to reveal more precisely what (implicit) images 

learners have by utilising - for example, by utilising the form of questions presented 

in Table 7 (see also Nakahara, 1995; Okazaki and Fujita, 2007).  

In this exemplar questionnaire, if a learner, for instance, excludes rectangles and 

squares from the Image question (see the first part of Table 7), then s/he is likely to 

put ( X ) for the Property question part (f) (this means ‘no’ for this question). This 

would be taken as indicating that s/he is influenced by the prototype image of 

parallelograms and implicitly adds the property ‘parallelograms don’t have all equal 
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angles’. This would influence her/his mathematical thoughts such as defining, 

classifying, problem solving in quadrilaterals and so on (see, Okazaki and Fujita, 

2007).  

In addition to revealing what (implicit) images learners have, it is also important to 

investigate how we design tasks/teaching sequences that might support learners in 

overcoming these implicit additional properties of geometrical figures. 

Table 7: A possible future research questionnaire 

Image question 

In the following quadrilaterals (the shapes with the thick black lines), next to each 

one, put ( √ ) for those you think are in the parallelogram family, ( X ) for those you 

think do not belong to the parallelogram family, or if you are not sure, put ( ? )  

 
Property question 

Read the following sentences carefully, and put (√ ) for those you think are correct, 

( X ) for those that are incorrect, and, if you are not sure, put ( ? ) 

Questions about Parallelograms 

(a) (    ) The lengths of the opposite sides of parallelograms are equal. 

(b) (    ) There are no parallelograms which have equal adjacent sides. 

(c) (    ) The opposite angles of parallelograms are equal. 

(d) (    ) There are parallelograms which have equal adjacent angles. 

(e) (    ) There is a parallelogram which has all its sides equal. 

(f) (    ) There is a parallelogram which has all equal angles.  

 

Common cognitive path in the understanding of the relationship between 

quadrilaterals 

From the data analysis presented in this paper, we speculate that a hierarchical order 

of difficulties might exist among the understanding of the relationship between 

quadrilaterals. For example, rhombuses might be more likely to be recognised as 

special types of parallelograms than squares or rectangles, because the former ‘look 

like’ parallelograms. As our data indicate, whereas 36% of learners from our second 

data set (see Table 5) could answer ‘A rhombus is a special type of parallelogram’ 

correctly, just 13% of those from our first data set knew that ‘a square is a rectangle’ 

(see Table 2). Also, learners from our second data set had particular difficulties in 

solving Q3 (see Tables 3 and 5), where, to be correct, they should have regarded ‘a 

rectangle as a parallelogram’. 

Given our conjecture that there might an order of difficulties in the relationships 

between quadrilaterals, it might not be effective, for example, to teach the 
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relationship rectangles/parallelograms before learners fully grasp the relationship 

between rhombuses/parallelograms. Thus, another important issue for future research 

is to find ‘common cognitive paths’ (Vinner and Hershkowitz, 1980) in the cognitive 

development of quadrilaterals of learners something which Vinner and Hershkowitz 

describe as follows: 

Let us denote by A, B, C, D, four different aspects (components) that partially form a 

certain concept (or concept image). Assume that a certain learner acquired these aspects 

in the order they were written above. Then A→B→C→D is a cognitive path of the above 

concept for the above learner. Now assume there is a group of people such that 

A→B→C→D is a cognitive path for this group. Then we will say that it is a common 

cognitive path for everybody in the group. (Vinner and Hershkowitz, 1980, p.182) 

Several researchers have already found some common cognitive paths in geometrical 

shapes. For example, Vinner and Hershkowitz (1980) investigated common cognitive 

paths for obtuse and straight angles, right-angled triangles, and the altitude in a 

triangle. Nakahara (1995) investigated quadrilaterals and found a common cognitive 

path for basic quadrilaterals, parallelogram → rhombus → trapezium, among 

Japanese primary school children. In future research, we suggest it would be 

worthwhile investigating what common cognitive paths in each quadrilateral might 

exist for other groups of learners (such as trainee elementary school teachers) – for 

example, ‘square and parallelogram’, ‘rhombus and rectangle’ and so on – as this is 

likely to be useful when determining teaching materials and their sequences in the 

teaching and learning of geometry (see, also, Okazaki and Fujita, 2007).  

CONCLUDING COMMENTS AND THE THEORETICAL FRAMING OF 

FURTHER RESEARCH 

This paper presents an attempt to clarify what knowledge learners have of a particular 

mathematical topic. As our analysis demonstrates, learners studied for this project 

show limitations in their knowledge of basic geometrical figures. In the previous 

section we attempted to synthesise existing research considerations and, as a 

conclusion, we suggest that future research in the understanding of the relationship 

between quadrilaterals might be framed as follows: 

• the study of the hierarchical classification of quadrilaterals might be regarded 

as an area of study which would help to promote the development of 

geometrical thinking from level 2 to 3 of the van Hiele model; 

• given that the understanding of the hierarchical relationship is difficult for 

many learners, with, in particular, their thinking likely to be influenced by 

prototype images of quadrilaterals (something which might result in a ‘longest’ 

list of attributes), it is necessary to reveal what implicit properties learners have 

in terms of the basic quadrilaterals; 

• in order to design an effective geometry curriculum, identifying common 

cognitive paths of understanding of the basic quadrilaterals among learners 

may be helpful.  
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Studying the usefulness of the hierarchical classification of quadrilaterals as a means 

of bridging the ‘gap’ between van Hiele levels 2 and 3, revealing what implicit 

properties learners have in terms of the basic quadrilaterals, and identifying the 

common cognitive paths of understanding of the basic quadrilaterals among learners 

constitute our proposal for a theoretical framing for further research in this area. 

ACKNOWLEDGEMENT 

We would like to thank Prof. Kunimune, Shizuoka University, Japan, who kindly 

allowed us to use his questionnaire (see Kunimune 2000) and provided us with 

further information about his study undertaken in Japan. The section of our paper 

entitled ‘Towards a theoretical framework’ is influenced by Prof. Okazaki’s studies 

(written in Japanese) and we would like to thank Prof. Okazaki for providing us with 

valuable information on his studies (see Okazaki, 1995, 1999; Okazaki and Iwasaki, 

2003; Okazaki and Fujita, 2007, the latter being in English) We would also like to 

thank Stuart Rowlands and Nick Pratt (both of the University of Plymouth) who 

kindly read an early draft of this paper and gave us valuable advice; plus we would 

like to express our thanks to the formal reviewers of this paper for their insightful 

advice and the RME editors for their attention to detail. Finally, we would like to 

thank Willie Magill, Gerry Doyle, and Pat Brown (all of the University of Glasgow) 

for their support and we acknowledge the University of Glasgow who supported this 

research project during the period 2004-6.  

REFERENCES 

Battista, M. T. (2007) The development of geometric and spatial thinking, in: F. 

Lester (Ed) Second Handbook of Research on Mathematics Teaching and Learning 

(Charlotte, NC: NCTM/Information Age Publishing).  

Crowley, M. L. (1987) The van Hiele model of the development of geometric thought, 

in: M. M. Lindquist (Ed) Learning and Teaching Geometry, K-12 (Reston, VA: 

NCTM). 

Currie, P. & Pegg, J. (1998) Investigating students understanding of the relationships 

among quadrilaterals, in: C. Kanes, M. Goos and E. Warren (Eds) Teaching 

Mathematics in New Times, Proceedings of the Annual Conference of the 

Mathematics Education Research Group of Australia, 1, 177–184. 

de Villiers, M. (1994) The role and function of a hierarchical classification of 

quadrilaterals, For the Learning of Mathematics, 14(1), 11-18.  

de Villiers, M. (1998) To teach definitions in geometry or teach to define? 

Proceedings of the 22
nd

 Conference of the International Group for the Psychology 

of Mathematics Education, 2, 248−255.  

Erez, M. & Yerushalmy, M. (2006) “If you can turn a rectangle into a square, you can 

turn a square into a rectangle”: young students’ experience the dragging tool, 

International Journal of Computers for Mathematical Learning, 11(3), 271-299. 



 

 18 

Fischbein, E. (1993) The theory of figural concepts, Educational Studies in 

Mathematics, 24(2), 139-162. 

Fischbein, E., Deri, M., Nello, M. S. & Marino, M. S. (1985) The role of implicit 

models in solving verbal problems in multiplication and division, Journal for 

Research in Mathematics Education, 16(1), 3-17.  

Fujita, T. & Jones, K. (2003a) The place of experimental tasks in geometry teaching: 

learning from the textbooks design of the early 20th Century, Research in 

Mathematics Education, 5, 47-62. 

Fujita, T. & Jones, K. (2003b) Interpretations of National Curricula: the case of 

geometry in Japan and the UK, paper presented at the 2003 BERA Conference, 

Heriot-Watt University, September 2003. 

Fujita, T. & Jones, K. (2006) Primary trainee teachers’ understanding of basic 

geometrical figures in Scotland, Proceedings of the 30th Conference of the 

International Group for the Psychology of Mathematics Education, 3, 14-21.  

Hershkowitz, R. (1990) Psychological aspects of Learning Geometry, in: P. Nesher 

and J. Kilpatrick (Eds) Mathematics and Cognition (Cambridge, Cambridge 

University Press). 

Jones, K., Mooney, C. & Harries, T. (2002) Trainee primary teachers’ knowledge of 

geometry for teaching. Proceedings of the British Society for Research into 

Learning Mathematics, 22(2), 95-100.  

Kawasaki, M. (1992) A study on the influences of visual imagery in the teaching of 

geometry, in: Iwago, K. (Ed.). The New Perspective of Mathematics Education 

(Japan, Seibunsya). [in Japanese] 

Koseki, K. (Ed) (1987) The Teaching of Geometrical Proof (Tokyo, Meiji Tosho 

Publishers) [in Japanese]. 

Kunimune, S. (2000) A change in understanding with demonstration in geometry, 

Japan Society of Mathematical Education, Journal of Japan Society of 

Mathematical Education. Mathematical education, 82(3). 2-12. [in Japanese] 

Markman, E. M. (1991) Categorization and Naming in Children: problems of 

induction (Cambridge, MA: MIT Press). Revised edition. 

Monaghan, F. (2000) What difference does it make? Children views of the difference 

between some quadrilaterals, Educational Studies in Mathematics, 42(2), 179–196. 

Nakahara, T. (1995) Children’s construction process of the concepts of basic 

quadrilaterals in Japan, Proceedings of the 19
th

 Conference of the International 

Group for the Psychology of Mathematics Education, 3, 27-34.  

Okazaki, M. (1995) A study of the growth of mathematical understanding based on 

the equilibration theory: an analysis of interviews on understanding inclusion 



 

 19 

relations between geometrical figures, Japan Academic Society of Mathematics 

Education, Research in Mathematics Education, 1, 45-54. [in Japanese] 

Okazaki, M. (1999) Basic study on activities of defining geometrical figures – 

referring to an investigation on the understanding of inclusion relations between 

geometrical figures, Japan Academic Society of Mathematics Education, Research 

in Mathematics Education, 5, 101-110. [in Japanese] 

Okazaki, M. & Fujita, T. (2007) Prototype phenomena and common cognitive paths 

in the understanding of the inclusion relations between quadrilaterals in Japan and 

Scotland, Proceedings of the 31st Conference of the International Group for the 

Psychology of Mathematics Education, 4, 41-8. South Korea, July 2007. 

Okazaki, M. & Iwasaki, H. (2003) Geometric construction as an educational material 

mediating between elementary and secondary school mathematics: theory and 

practice to promote transformation from empirical to logical recognition, Japan 

Society of Mathematical Education, Report on Mathematical Education, 80, 3-27. 

[in Japanese] 

Pickreign, J. (2007) Rectangle and rhombi: how well do pre-service teachers know 

them? Issues in the Undergraduate Mathematics Preparation of School Teachers, 

1, Content Knowledge. Available online at: http://www.k-12prep.math.ttu.edu 

(published February 2007; accessed 18 June 2007).  

Poincaré, H. (1914) Mathematical definitions and education, in: Poincaré, H, Science 

and Method (trans. F. Maitland) (London, Thomas Nelson). [originally published 

in France in 1908] 

Royal Society (2001) Teaching and Learning Geometry 11-19 (London, Royal 

Society/Joint Mathematical Council). 

Senk, S. L. (1989) van Hiele levels and achievement in writing geometry proofs, 

Journal for Research in Mathematics Education, 20, 309-321. 

Tall, D. O. & Vinner, S. (1981) Concept image and concept definition in mathematics, 

with special reference to limits and continuity, Educational Studies in 

Mathematics, 12(2), 151-169. 

Usiskin, Z. & Dougherty, B. J. (2007) The Classification of Quadrilaterals: a study 

in definition (Charlotte, NC: Information Age Publishing).  

van Hiele, P. M. (1999) Developing geometric thinking through activities that begin 

with play, Teaching Children Mathematics, 5(6), 310-6. 

van Hiele, P. M. (1986) Structure and Insight: a theory of mathematics education 

(Orlando: Academic Press).  

Vinner, S. (1991) The role of definitions in the teaching and learning of mathematics, 

in: D. O. Tall (Ed) Advanced Mathematical Thinking (Dordrecht, Kluwer 

Academic Publishers).  



 

 20 

Vinner, S. & Hershkowitz, R. (1980) Concept images and some common cognitive 

paths in the development of some simple geometric concepts, Proceedings of the 

4th Conference of the International Group for the Psychology of Mathematics 

Education, 177-184.  

Zaslavsky, O. & Shir, K. (2005) Students’ conceptions of a mathematical definition, 

Journal for Research in Mathematics Education, 36(4), 317-346. 


