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1 Introduction

The success of inflationary cosmology in describing the observed cosmic microwave back-

ground (CMB) has led to myriad slow-roll models constructed from an effective field theory

point of view. However, there are various challenges in describing inflation via effective field

theory [1]. Further progress in inflationary cosmology requires an understanding of infla-

tion in a UV complete theory of gravity. In this paper we present a mechanism for inflation

in string theory that can take place in a standard arena for string phenomenology based on

type IIB flux compacifications using warped Calabi-Yau spaces with three-form fluxes [2–5].

This work stems from an investigation of whether the mechanism for unwinding inflation [6,

7] can be embedded into the type IIB context and if so, to what extent must it be modified.

Unwinding inflation is based on the observation [8] that Brown-Bunster bubbles [9] can

be localized inside compact cycles, in which case they cross over the cycle periodically as

they expand. In this way, a single instanton event can discharge many units of flux as the

bubble moves over the periodic domain. This discharge lowers the positive energy stored

in the flux and may generate 60 efolds of inflation [6, 7]. Since this mechanism features

universal ingredients of string theory (fluxes, branes and extra dimensions) it could lead to

a natural model for inflation. Furthermore, this mechanism has the potential to produce

large field inflation, which is notoriously difficult to achieve in string theory.

In unwinding inflation there is a single (p+ 2)-form flux present,1 which is discharged

by a p-brane, but the flux backgrounds of [2–5] have multiple fluxes turned on presenting

some complications to this basic mechanism. Most notably, in the presence of multiple

1This could equivalently be taken to be the dual (8 − p)-form.
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fluxes, one finds tadpole conditions that require changes in flux quanta to be accompanied

by changes in the net number of brane charges. Particularly, in type IIB the three-form

fluxes, H3 and F3, induce three-brane charge as can be derived from the Bianchi-identity

for the five-form field strength:

dF5 = H3 ∧ F3 +Qδ , (1.1)

where Qδ describes the localized three-brane charge density. Due to Gauss’ law, the integral

of this equation over a compact cycle must be zero. Hence, any change in the three-form

fluxes must be accompanied by the creation or annihilation of three-branes. In other words,

if inflation features the decrease of either F3 or H3 via a five-brane bubble, the number of

three-branes must change across the bubble wall.

The mechanism of brane-flux annihilation [10] provides a process whereby one can

reduce flux quanta and the four-dimensional energy density within a controlled set of

approximations. This process begins when anti-D3 branes are introduced to a background

containing three-form flux. Since the anti-D3 branes carry charge opposite to the charge

induced by the three-form fluxes, they can annihilate such that both are reduced in a

way that satisfies the tadpole condition. Furthermore, as long as the antibranes can be

treated as probes, so that the geometry can be argued to remain sufficiently close to a

warped Calabi-Yau, the antibranes induce a positive energy which is equal to twice their

tension [11]. Therefore, as the flux and the anti-D3 charge decreases together, so does the

positive energy. This decrease in energy can be equivalently regarded as coming from a

decrease in the |F3|2 contribution or from a decrease in the anti-D3 brane tension. Once

the anti-D3 charges are annihilated the process can come to an end.

Anti-D3 branes and their possible annihilation with surrounding fluxes has been the

subject of intensive study in the context of string cosmology. Famously, KKLT [3] argued

that in the presence of a small number of anti-D3 branes there can be a meta-stable de Sit-

ter state with a tunably small cosmological constant. Shortly thereafter, KKLMMT [12]2

embedded brane inflation [15], in the KKLT background. This model makes use of the

attractive potential between a mobile D3-brane and the aforementioned anti-D3 branes to

give rise to a sufficient period of inflation. These scenarios require that the string-scale

energy of the anti-D3 branes is sufficiently redshifted relative to the scale of moduli stabi-

lization. This gravitational redshifting occurs inside throats, i.e. regions of large warping

that act as gravitational attractors for anti-D3 branes. We will follow the standard practice

of modeling such throat regions with the Klebanov-Strassler (KS) solution [16].

The dynamical mechanism that we are interested in takes place in the same set-up as

KKLMMT, but in a different region of parameter space. We identify three regions in the

parameter space spanned by the number M of F3 quanta threading the S3 at the bottom

of the KS throat, and the number p of anti-D3 branes. The three regions are

I.
p

M
< 0.08 II.

p

M
∼ 0.08 III.

p

M
� 1 . (1.2)

The KKLMMT model lives in region I where the KKLT vacuum is believed to exist. A

mechanism closely related to the one we propose, the giant inflaton [17], is possible in region

2See also [13, 14] for related work.

– 2 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
7

II, where the potential barrier against brane-flux annihilation turns into a shallow plateau.

The resulting potential can generate inflation via brane-flux annihilation.3 As we will show,

unwinding inflation can be found in region III. The unwinding mechanism we propose makes

use of a flux cascade arising from the repeated brane-flux annihilation of anti-D3 branes

which are confined to the bottom of the throat.4 The role of the inflaton field in both

unwinding inflation (region III) and the giant inflaton (region II) is played by the position

of a fuzzy NS5-brane which wraps the contractible S2 on the S3 at the bottom of the throat.

This fuzzy brane is the result of the anti-D3 branes polarizing in the flux background via

the Myers effect [19]. The unwinding mechanism corresponds to the periodic motion of the

NS5 moving back and forth from the north pole to the south pole of the S3.

One might expect that the limit of large p/M is problematic because a large number

of antibranes may produce a strong backreaction on the geometry. However, it is possible

to retain the limit in which the size of the three-cycle, R2
S3 = `2sgsM , is much larger than

the radius of anti-D3 brane backreaction given by R2
D3 = `2s

√
gsp. This only requires

p

gsM2
� 1 , (1.3)

which is compatible with p/M � 1. In section 2 we will also consider the effect of the

antibranes and the flux cascade on the complex structure and Kähler moduli. Using the

simplified model of KKLT in which non-perturbative corrections are used to stabilize a

single Kähler modulus, we are able to achieve a sufficient period of inflation. However,

because in this set-up the antibranes provide the energy which uplifts the supersymmetric

AdS4 vacuum to de Sitter, we see that if all of the antibranes annihilate against flux the

cascade will end in a vacuum with negative cosmological constant. In section 5 we briefly

discuss some possible dissipative effects that could serve to stop the cascade before all of

the antibrane charge is gone.

Setting aside questions of reheating and focusing only on the period of 60 efolds, we find

that in the KS throat the curvature of the S3 leads to large oscillations in the second slow

roll parameter, η. While the first slow roll parameter, ε remains small, these oscillations

are translated into the power spectrum. A priori, large oscillations in the power spectrum

are not incompatible with the observed CMB as long as their frequency is large enough.

However, these oscillations complicate the use of the usual slow roll techniques and we are

forced to solve the system numerically. Initial investigations show a tension between fixing

the correct amplitude of the power spectrum and satisfying all geometrical constraints.

A more complete study of parameter space is necessary in order to find an acceptable

realization of the power spectrum, or robustly rule out this version of our mechanism.

In order to avoid these issues, in section 4 we discuss our mechanism in a more spec-

ulative background where the cycle at the tip of a throat is a torus. This background

is speculative because we do not know of an explicit example of a geometry that fits this

description, however there are explicit examples of compact Calabi-Yau manifolds that con-

tain three-cycles that are topologically tori (e.g. [20]). In this case the same process works

3Although, the authors of [17] conclude that it is not possible to get the requisite 60 efolds within the

validity of their approximations.
4A study of non-perturbative brane-flux annihilation in the KKLT setup was first carried out in [18].
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using a D5/anti-D5 pair (or NS5/anti-NS5 pair) moving periodically over a one-cycle in the

torus. Because the torus is flat, the troublesome oscillations can be made small allowing

for standard slow roll inflation and agreement with CMB observations.

Of particular importance is the fact that this mechanism naturally allows for a trans-

Planckian inflaton field range. This occurs because the inflaton is identified with the

position of a five-brane which moves repeatedly over the same fundamental domain of a

compact cycle, and in each pass fluxes are annihilated against antibrane charges. Therefore,

there is no physical obstruction to achieving a large field range. The monodromy effect is

similar to axion monodromy inflation [21, 22] (see also [23–26]): the periodic brane position

is unfolded by the change in charge and energy. The resemblance to axion monodromy

extends to the effective potentials which are linear plus oscillations. A further discussion

of the relation to the models of [21, 22], and particularly how the present model differs, is

contained in section 5.

Finally, we note that for the de Sitter vacuum of KKLT, or the inflationary scenario of

KKLMMT to be valid, the anti-D3 branes have to be protected against direct brane-flux

annihilation by a potential barrier. The reliability of this potential barrier is currently

under debate.5 One of the primary objections to these scenarios is the use of the probe

NS5 brane action at weak coupling [10]. This action is obtained by S-dualizing the D5

brane action and is strictly only valid at strong coupling. In this paper we avoid this issue

by placing our mechanism in the S-dual of KS at weak coupling. The unwinding process

process is then mediated by a D5 brane, rather than an NS5, moving many times over an

S3 in the S-dual of the KS throat. This may ameliorate some of the concerns regarding NS5

backreaction, and futhermore, in section 5 we will argue that the antibrane backreaction

is expected to improve the agreement with the CMB spectrum.

2 The flux background

In this section we review the technical details of the flux background and discuss under

what approximations the background remains stable during the cascade. Because we are

ultimately interested in an inflationary solution that could describe our universe, we need

to begin with a compactification that exhibits a separation of scales between the compact

directions and the length scales accessible to a four-dimensional observer. We work in

the well-studied type IIB supergravity compactifications of [2] (see also [32–35] for related

earlier work) where the ten-dimensional geometry is a warped product of a four-dimensional

spacetime and a six-dimensional conformal Calabi-Yau manifold X. Denoting the Calabi-

Yau metric by gmn we write the full metric as

ds2 = `2s
(
e2Ads2

4 + e−2Agmndymdyn
)
. (2.1)

The warp factor eA only depends on the internal coordinates ym, and ds2
4 denotes the metric

on the four-dimensional spacetime. The compactification on gmn leads to an effectiveN = 1

supergravity theory in four dimensions which is specified by the Kähler potential K and

5See the following biased selection of recent papers [27–31] and references therein.
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the superpotential W. The tree-level superpotential is given by [36]

W =

∫
X
G3 ∧ Ω , (2.2)

where Ω is the holomorphic (3, 0)-form on X and G3 is the type IIB complex three-form

G3 = F3 − τH3 . (2.3)

Here F3 and H3 are the RR and NSNS three-forms respectively and the axio-dilaton τ is

defined by

τ = C0 + ie−φ . (2.4)

The three-form fluxes give rise to masses for the many complex-structure moduli of X.

These fluxes satisfy a quantisation condition, which in our convention takes the form

Mi ≡
1

(2π`s)2

∫
Σi

F3 ∈ Z , Ki ≡ −
1

(2π`s)2

∫
Σ̃i

H3 ∈ Z , (2.5)

where the integrals run over a three-cycle Σi and its Poincaré dual Σ̃i. Each complex struc-

ture modulus — which is roughly associated with a three-cycle — receives a mass associated

with the flux that is threaded on the Poincaré dual cycle. The superpotential (2.2) also

provides a stabilization mechanism for the axio-dilaton through the appearance of τ in G3.

We are interested in an inflationary scenario that discharges some flux to gradually

lower the four-dimensional vacuum energy; a natural candidate is one of the three-form

fluxes, either F3 or H3. However, it is important that discharging such a flux does not

upset the stabilization of the complex structure moduli. Therefore, we will require that

the amount of flux discharged is small compared to the total number of flux units.

As discussed above, these fluxes enter the right hand side of the Bianchi identity (1.1)

on the same footing as standard D3-branes. Integrating the Bianchi identity over the

compact manifold X leads to the tadpole cancellation condition

1

(2π`s)4

∫
X
H3 ∧ F3 +ND3 =

χ

24
, (2.6)

where ND3 counts the total quantized D3 brane charge and χ accounts for D3-charges

of 7-branes in F-theory compactifications and is given by the Euler number of the F-

theory fourfold [2]. To accommodate the tadpole condition while discharging flux in the

compactifications of [2] (which include non-zero H3-flux) we will employ the brane-flux

annihilation mechanism of [10]. In section 3 we will explain the details of this mechanism,

and how it can lead to a flux cascade giving rise to 60 efolds of inflation. The cascade

simultaneously decreases the number of units F3 flux,6 M , and the number of antibranes

present which we denote by p. For each unit of F3 that is discharged, the number of

antibranes decreases by K, such that the tadpole condition is satisfied. The change in M

6We are currently discussing the mechanism in the S-dual of KS where F3 flux is discharged and the

regions described in (1.2) are characterized by the value of p/K.
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throughout the cascade will then be given by p/K, thus in order not to upset the complex

structure stabilization we require:

p < KM . (2.7)

In addition to the complex structure moduli, we must ensure that our mechanism does

not upset the stability of the Kähler moduli, which are not stabilized by fluxes. One can

stabilize the Kähler moduli via non-perturbative quantum corrections [3] or a combination

of perturbative and non-perturbative as in [4]. In this paper we use the simple example of

a single modulus, ρ, stabilized by non-perturbative effects as in [3]. The non-perturbative

effects give rise to a correction to the superpotential

W =W0 +AKeiaKρ , (2.8)

where W0 is given by (2.2). The modified superpotential leads to a nontrivial potential for

the Kähler modulus [3, 12]

VK =
aKAKe−aKσ

2σ2

(
1

3
σaKAKe−aKσ +W0 +AKe−aKσ

)
+
z4/3

g2
sσ

2

2pµ3

gs
, (2.9)

where σ = Imρ and z is the redshift factor discussed below. When no antibranes are present,

the potential has a minimum in which the moduli are stabilized in a supersymmetric AdS4

vacuum. Including p anti-D3 branes provides the well-known uplift effect that can raise

the vacuum energy density to positive values [3]. In the p� K regime of parameter space

the antibranes are not stable and their decay gives rise to inflationary dynamics. This will

result in 2pµ3/gs in the last term of (2.9) being replaced by a function that depends on

the position of the inflaton.

Ensuring the stability of the Kähler moduli throughout inflation constitutes one of the

main challenges for any proposal for inflation in string theory (see e.g. the discussion in [12].)

Since we are interested in a large number of antibranes annihilating against many units of

flux to ensure a long-lasting cascade, it would seem that stability is severely compromised.

However, by placing the branes inside a deep warped throat where z is small, the energy

of the antibranes can be redshifted to a small value such that all geometric moduli remain

stable throughout the process. This constraint is in tension with an arbitrarily large inflaton

field range, however in the example discussed in section 3.4 by a delicate tuning of the

parameters in (2.9) we achieve a trans-Planckian field range and 60 efolds of inflation in a

controlled setting.

2.1 The Klebanov-Strassler throat and its S-dual

As noted above, it is desirable that the brane-flux annihilation be contained in a highly

warped region of the internal manifold. Since the branes carry anti-D3 brane charge, they

will naturally be attracted to such regions and the dynamics will therefore be confined in

warped throats. We devote this section to a summary of a commonly used local represen-

tation of such a throat: the Klebanov-Strassler (KS) solution [16]. We also briefly discuss

the S-dual of the KS solution which is used throughout section 3.

– 6 –
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The KS solution is a non-compact example of a background that fits into the description

of [2, 35]. In the throat region the type IIB axio-dilaton is constant

τ =
i

gs
. (2.10)

In the bulk of the Calabi-Yau, this need not be true: the presence of seven-branes wrapping

cycles of the internal manifolds leads to dynamical axio-dilaton. In this case the proper

framework to describe the background is F-theory. However, these details will be unim-

portant for our purposes as we are only interested in dynamics taking place deep in the

throat where the dilaton is constant. The remaining type IIB supergravity fields satisfy

the equations

e4Ag−1
s = α , (2.11)

?6G3 = iG3 , (2.12)

in the gauge

C4 = α vol4 , (2.13)

where vol4 is the volume form of ds2
4.

The KS solution describes a deformation of the singular conifold [37]:

ds2
6 = dr2 + r2ds2

T 1,1 , (2.14)

where ds2
T 1,1 is the metric on the Sasaki-Einstein manifold T 1,1, which is topologically

S2 × S3. In the presence of three-form fluxes the deformation of the conifold replaces the

singular region of the conifold metric (r → 0) with a smooth space by blowing up the S3

at the tip to a finite size. In this tip region the metric takes the form

ds2
6 → dr̃2 + dΩ2

3 + r̃2dΩ2
2 . (2.15)

The full type IIB solution on the deformed conifold with a metric that interpolates between

the tip region (2.15) and the cone region (2.14) is known [16] but we will not require its

precise form as the antibrane dynamics are confined to the tip region. The warp factor in

the tip region is constant and fixed to be:

e−2Atip 'Mgs , (2.16)

where henceforth M refers to the F3 threaded through the three-sphere at the tip.

The KS solution can be embedded in compact space by sewing it to a compact Calabi-

Yau. The description of the throat breaks down and the bulk Calabi-Yau description takes

over when e2A reaches the value determined by the hierarchy between the tip and the bulk.

This hierarchy was calculated in [2] and is

e2(Atip−Abulk) ∼ z2/3 ∼ (Mgs)
−1e
− 4πK

3Mgs , (2.17)

where K is the number of units of H3 that must have legs along the r̃ and S2 directions

perpendicular to the S3 such that the imaginary self-dual (ISD) condition (2.12) is satisfied.

– 7 –
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A very similar background can be obtained by S-dualizing the KS solution (SDKS).

Since the dilaton in [16] is a modulus we can dial it to large values, perform the SL(2)

transformation and end up with a weakly coupled background. The physical difference

between KS and its S-dual is therefore only in the fluxes. The KS solution has M units

of F3 flux threading the S3 at the tip whereas SDKS has K units of H3-flux at the tip.

This will be important for us as the difference will result in a flux cascade involving an NS5

brane in KS [10] or D5 branes in SDKS. We expect that both throat backgrounds should be

common in the landscape of type IIB compactifications, and so we discuss both possibilities.

While the behavior of the metrics in both solutions is virtually identical, the different role

of the three-form fluxes translates into different expressions for (2.16) and (2.17)

SDKS: e−2Atip ' K , (2.18)

e2(Atip−Abulk) ∼ K−1e−
4πMgs

3K . (2.19)

Since the flux cascade is confined to the tip region, we must make sure that the branes

that mediate the cascade do not destabilize the local geometry of the tip. This simply

means keeping the horizon radius of the antibranes small compared to the local geometry

of the tip. The size of the tip geometry is set by (2.16) and (2.18) in KS and SDKS

respectively whereas the horizon radius of the antibranes is determined by gsp. Therefore,

the probe approximation will be valid as long as the following are satisfied:

KS: R2
S3 = `2sMgs � `2s

√
gsp = R2

D3 , (2.20)

SDKS: R2
S3 = `2sK � `2s

√
gsp = R2

D3 . (2.21)

3 Inflation from cascading brane-flux annihilation

In this section we describe in detail how the brane-flux annihilation of [10] proceeds when

a large number, p � 1, of anti-D3 branes are placed into a throat region. We will see

that in this case the five-brane must pass over the sphere many times before reaching

the supersymmetric vacuum. In contrast to [10] we begin SDKS where the anti-D3 branes

polarize into a D5-brane that wraps an S2 inside the S3 at the tip of the throat (cf. figure 1).

This three-sphere carries K units of H3-flux, and as the D5 moves in the S3, F3 flux is

discharged in the dual cycle.

Througout this section we will only be interested in the tip region of the throat where

the antibranes are confined. The metric there takes the local form

ds2 = `2s
(
e2Ads2

4 + e−2A
(
dψ2 + sin2(ψ) dΩ2

2 + ds2
M3

))
. (3.1)

For now, we will continue using the generic warp factor e2A, as opposed to restricting to

the value fixed by the deformation of the conifold given in (2.16) or (2.18).

3.1 The action

We start with the probe action of a D5:

S =
−µ5

gs

∫
d6ξ

[
− det(G‖) det(G⊥ −F2)

]1/2 − µ5

∫
{C6 + F2 ∧ C4} , (3.2)

– 8 –
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M

M−1

D5

Figure 1. Schematic representation of the polarized five-brane on an S3. The flux cascade corre-

sponds to the periodic motion of the brane between the two poles.

where G⊥ is the induced metric along the S2, G‖ is the metric along the non-compact and

ψ directions, and F2 = 2π`sF2 + B2. To use this action to solve for the dynamics of the

D5, we simply need to compute each component as a function of the position of the D5 in

the compact space.

Starting with the Chern-Simons action, we note that in the gauge chosen in (2.13),

F7 = − ?10 F3 = H ∧ C4 . (3.3)

Since F7 = dC6 +H ∧ C4, this implies that C6 is pure gauge and can be set to zero. The

other term in the Chern-Simons action,
∫
F2∧C4, is the coupling that allows the D5-brane

to carry D3 charge. Schematically, whatever sits in front of C4 is the effective D3 charge —

therefore at the beginning of the cascade this should be −µ3p. Looking at F2 we see that

because K units of H3-flux thread the three-sphere spanned by ψ, flux quantization (2.5)

gives:

B2 = −K`2s
(
ψ − 1

2
sin(2ψ)

)
vol2 , (3.4)

where vol2 is the volume form on S2. At the beginning of the cascade ψ ≈ 0 and this term

vanishes. This allows us to fix the world volume field strength, F2 = p`s
2 vol2. Integrating

over the S2 in the Chern-Simons action one can check

QD3 = −µ5

∫
S2

F2 = −(2π`s)
2µ5K

π
U(ψ) . (3.5)

Here, we have defined U(ψ), which measures the D3 charge:

U(ψ) =
πp

K
− ψ +

1

2
sin(2ψ) . (3.6)

Since µ3 = (2π`s)
2µ5, we see that when ψ = 0 we start with the correct amount of anti-D3

charge, and this charge decreases by K units each time ψ increases by π. The tadpole

condition (2.6) is satisfied by decreasing M by one unit as the D5 passes across the S3. It

is in this sense that the anti-D3 branes annihilate against the F3 flux. It is clear that in

order to achieve a flux cascade we will need:

p

K
� 1 . (3.7)

– 9 –
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Next, we need to evaluate the kinetic term in (3.2). As mentioned above, G⊥ is simply

the metric on the S2 (cf. eq. (3.1).) Using the values for F2 from above we can write:√
det(G⊥ −F2) =

√
e−4A sin4(ψ) +K2U2(ψ)

√
gS2 . (3.8)

The metric G‖ is the induced metric in the spacetime directions. The D5 should be thought

of as a bubble in the three extended spatial directions and the ψ direction (while it trivially

wraps the S2.) Then, neglecting perturbations, an observer at a fixed position in spacetime

will see ψ as a function of t alone:√
− det(G‖) = `4se

4Aa3(t)

√
1− e−4Aψ̇2 , (3.9)

where a(t) is the scale factor of a Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-

time.

Combining the kinetic terms and the Chern-Simons action and integrating over the S2

we write the four-dimensional action for the D5:

S = −A0

∫
d4x a3(t) e4A

(
V2(ψ)

√
1− `2se−4Aψ̇2 + U(ψ)

)
, (3.10)

with

V2(ψ) =

√
e−4A

K2
sin4(ψ) + U(ψ)2 , A0 =

µ3K

gsπ
. (3.11)

In (3.10) we have rescaled the four-dimensional coordinates by a factor of `s such that they

are now dimensionful. The position of the D5 in the ψ-direction will play the role of the

inflaton. Setting the inflaton kinetic energy to zero, we find the inflaton potential (figure 2):

VD5(ψ) = A0 e4A

[√
e−4A

K2
sin4(ψ) + U(ψ)2 + U(ψ)

]
. (3.12)

In the following sections we will examine the dynamics of the cascading brane-flux

annihilation that takes place in region III, p � K (cf. (1.2)). We are interested in seeing

whether the resulting cascade process can give rise to inflationary dynamics, and further-

more, when inflation is possible, what are the CMB observables predicted by this model.

3.2 Regime of validity and comparison to NS5 in KS

Before moving on to the inflationary dynamics, it is interesting to note what happens if we

look at this process in KS, rather than its S-dual. If we re-do the calculation of this section

in the KS background, the resulting potential is the potential for an NS5 brane [10]:

VNS5(ψ) =
µ3

gsπ
M

[√
e−4A

(Mgs)2
sin4(ψ) + Ũ(ψ)2 + Ũ(ψ)

]
,

Ũ(ψ) =
πp

M
− ψ +

1

2
sin(2ψ) .

(3.13)
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0

Figure 2. The D5 potential neglecting the overall dimensionful factor. The only relevant pa-

rameters are the ratio p/K (or p/M if you consider the NS5), which we set to 50. Here we have

specialized to the SDKS case where e−4A = K2.

The potentials in both cases are subject to the following string of inequalities:

KS : (Mgs)
2 � gsp�Mgs ,

SDKS : K2 � gsp� gsK ,
(3.14)

where the first inequality follows from making the antibrane backreaction small compared

to the size of the cycle, and the second inequality is the condition for having a cascade.

The cascade condition changes between KS and SDKS because in the S-dual case that we

consider, we discharge the F3-flux, whereas in the original case of [10], which takes place

in KS, the H3 flux is discharged.

3.3 A canonically normalized approximation

To solve the system described by (3.10) it is necessary to use numerics, however in order to

gain some intuition we will first make several approximations that allow us to canonically

normalize the scalar field and make analytic estimates for the cosmological observables.

First, we expand the DBI kinetic term for small velocity, keeping terms up to second order,

O
(

e−4Aψ̇2
)

. Then we expand in large p/K — this is the quantity that counts the number

of steps in the cascade. In the second expansion we keep terms at next to leading order,

which is (p/K)0, but drop terms of order (p/K)0ψ̇2 as they are also next to leading order in

the velocity expansion. These expansions will ultimately need to be justified by comparison

to the full numerical solution, and we find that for a certain range of parameters they are

appropriate.

These approximations allow us to write the action for a canonically normalized scalar,

φ =
√
`2sA0πp/Kψ ≡ fψ:

S =

∫
d4xa3(t)

(
1

2
φ̇2 − 2A0e4A

(
πp

K
− φ

f
+

1

2
sin

(
2φ

f

))
− Λ

)
. (3.15)
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Here we have added the negative cosmological constant corresponding to the supersym-

metric vacuum for the Kähler moduli prior to adding antibranes. In the next subsection

we will present a numerical solution that generates 60 efolds of inflation and Λ is calculated

via the potential (2.9).

We can apply standard methods to calculate inflationary observables for a scalar field

with a linear potential plus oscillations (3.15). Particularly, we will be interested in finding

at least 60 efolds of inflation that result in a power spectrum in agreement with the observed

value. These quantities are given by the standard formulae7 [38]:

N =

∫
H

φ̇
dφ Pζ =

H2

8π2M2
plε

ε =
Ḣ

H2
. (3.16)

While the potential of (3.15) is monotonically decreasing, the oscillations are not small

in that ∂φV (φ = nπf) = 0, where n is an integer. The fact that the derivative of the

potential goes to zero means that we cannot be in the traditional slow roll regime where

one makes the approximation that acceleration is negligible and φ̇ ≈ V ′/3H. In this regime

our inflaton gets stuck at the first pole where φ̇→ 0 and we do not see a cascade. However,

scenarios in which the second slow roll parameter, η = ε̇/(εH), is large are not ruled out

as long as η oscillates and ε remains small. In these cases acceleration is not negligible and

the inflaton will not get stuck.

Despite these issues we will continue by dropping the oscillating term in the potential:

Vlin = 2A0e4A(πp/K − φ/f) . (3.17)

This will obviously cause us to miss the oscillations in both the field velocity and also

the resulting power spectrum, however we will be able to attain the average behavior,

which is useful for the order of magnitude estimates we seek. Subtleties arising due to the

oscillations, as well as cases that have large η will be discussed in section 3.4 where we

examine the full numerical solutions that these approximations are meant to capture.

Using the simplified linear model and the slow roll approximations,

Hlin =
√
Vlin/(3M

2
pl) and φ̇lin = −∂φVlin/(3Hlin) , (3.18)

one can calculate the total number of efolds, as well as the value of φ that corresponds to

60 efolds before the end of inflation

Ntot '
f2

2Mpl2

(
πp

K
+

e−4AΛ

2A0

)2

φ∗ = f

(
πp

K
+

e−4AΛ

2A0

)
− 2
√

30Mpl , (3.19)

where the end of inflation is set to be the point where the potential energy reaches zero.

Given these assumptions, the power spectrum, Pζ , is simply given by:

Pζ |φ∗ =
40
√

30A0e4A

π2M3
plf

. (3.20)

7The DBI kinetic term results in non-trivial speed of sound, cs. However, for all realizations of this

model we find cs ∼ 1 and cs varies adiabatically such that Pζ in (3.16) is valid.
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The challenge now is to determine whether there exists a set of parameters in which Ntot &
60, Pζ |φ∗ ∼ 10−9 and we are within the regime of validity of the probe approximation and

other requirements for a stabilized geometry.

The four-dimensional Planck scale, Mpl, can be expressed in terms of the other pa-

rameters:

M2
pl = 2

∫
d6ye−4A√g6

(2π)7`2sg
2
s

≡ 2
V

(2π)7`2sg
2
s

, (3.21)

where g6 is the unwarped metric and the spacetime coordinates are dimensionful while the

internal coordinates are not. In writing the parametric dependence of Mpl, we introduced

a new parameter, the warped volume of the Calabi-Yau denoted by V. We require that

the total warped volume is greater than the warped volume of the throat region which is:

Vthroat '
√

27π9(gsKM)3/2e
4πMgs

3K . (3.22)

The exponential factor in this expression results from the exponential hierarchy between

the warp factor at the bottom of the throat and the bulk of the Calabi-Yau (2.19). This

volume is also computed for the KS throat in [17].8

One is left with a six-dimensional parameter space spanned by p, gs, M , K, Λ and

V. One of these can be fixed by requiring that the power spectrum (3.20) to its observed

value ∼ 10−9. However, the remaining five-dimensional parameter space must satisfy our

collection of constraints:

• The probe approximations: M,K � 1, MK � p, and
√
gsp/K2 � 1

• The inflaton is the only light scalar during inflation requires H � MKK = V−1/6,

where MKK is the mass of the bulk Calabi-Yau Kaluza-Klein modes. Additionally

the masses of the infrared modes, z1/3MKK , must be heavier than the Hubble scale.

• In order to stabilize the geometry the magnitude of Λ cannot be much less than the

uplift energy from the antibranes:

|Λ| . 2µ3p

gsK2
. (3.23)

• The warped volume of the Calabi-Yau is larger than the warped volume of the throat:

V > Vthroat . (3.24)

Due to the large hierarchy required to redshift the energy of the antibranes, the throat

volume (3.22) must be large in string units. This means that the Kähler modulus σ

which is related to the unwarped volume should be stabilized at a large value. In this

paper, we take the warped volume of the Calabi-Yau to be a free parameter and do

not directly relate it to σ. This is not strictly valid, however, due to the large warping

the relationship between V and σ is non-trivial (see references [39–42]). We leave a

full computation of the relationship between these parameters for future work.

8The differing exponential factor here is due to the fact that we use warped units, whereas [17] does not.

– 13 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
7

• There are at least 60 efolds: Ntot/60 > 1.

• The cascade occurs: p/K > 1 and η & 1. Although the slow roll approximations

push us into the regime of small η, if it is too small the brane gets stuck at the poles

and there is no cascade.

It is possible to find examples which satisfy all of these constraints, however we have not

been able to simultaneously satisfy all constraints and find an observationally valid power

spectrum. Until a systematic exploration of this high-dimensional, highly-constrained pa-

rameter space has been carried out, we cannot either rule out or accept this model.

3.4 Full numerical solutions

In this subsection we will use the analysis of the previous subsection to find a set of

parameters which satisfy all constraints. Using these parameters and the intuition given

by analytic estimates, we take into account proper stabilization of the Kähler modulus

and solve the system numerically. We begin by considering the effect of the cascade on the

potential for σ given in (2.9) [3, 12]. The uplift term is proportional to the potential energy

of p stationary anti-D3 branes, 2µ3p/gs. During the flux cascade this potential energy is

replaced by the potential energy (3.12):

2µ3p

gs
→ e−4AVD5(ψ) = K2VD5(ψ) , (3.25)

where here and throughout the rest of this section we specialize to SDKS where e−4A = K2.

Instead of solving the coupled system of the Kähler modulus and the position of the D5

simultaneously, we will first find a stable potential for σ, and then check that its value

does not evolve too much (or destabilize) throughout the cascade. In figure 3 we show the

evolution of the Kähler potential throughout the cascade for the parameters given in table 1.

Using these values we can read off the negative energy density in the supersymmetric

vacuum and add this Λ to the D5 brane action, (3.10).

Once the Kähler modulus is stabilized, we are ready to solve the inflationary dynamics.

Following [17] we pass to the Hamiltonian formalism and solve the system of first order

equations. We give the parameters and the degree to which they satisfy our constraints

for a typical example in table 1, and show the resulting dynamics figure 4. There is an

additional caveat regarding these parameters. The product KM at the end of inflation is

O(106) and should be cancelled by χ/24 in (2.6). This implies that the Euler number of

our fourfold is an order of magnitude larger than the largest known Euler number of an

elliptically fibered fourfold.9 While it is not impossible that a Calabi-Yau with larger Euler

number exists, it would be preferable to find a set of parameters with smaller KM .

As mentioned in the previous section, this example has large oscillations in the slow

roll parameters which translate into large oscillations in the power spectrum. Although

the first slow roll parameter, ε = Ḣ/H2, is always small, the second slow roll parameter,

η = ε̇/(εH) is oscillating with a large amplitude. This is not the typical η-problem, where

9We thank Liam McAllister and Alexander Westphal for pointing this out to us.
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Figure 3. The evolution of the Kähler potential throughout the cascade. It is important that the

modulus is stable and that its value, σ∗, does not evolve significantly. Although the minimum of the

potential at ψ = 0 looks dangerously shallow, the reader should bear in mind that the ψ−direction

of the potential is unstable.

∆φ/Mpl = 12.1 H/Mpl = 6.5× 10−11 H/MKK = 1.7× 10−4 V = 5.3× 1012`6s

z1/3 = .012 V/Vthroat = 1.1 gsp/K
2 = .06 p/KM = .54

p = 4.5× 106 K = 4500 M = 1852 gs = .27

AK = 3 aK = 2π/31 W0 = 1.31 σ∗ = 10.4

Table 1. One set of parameters that satisfies our constraints. We have chosen the average value

of σ∗ throughout the cascade.
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Figure 4. Left: the position of the D5 as a function of time in the case of parameters given by

table 1. The horizontal line marks the end of inflation where the potential energy is zero. Right: the

log of the scale factor with vertical lines showing the observational window and the end of inflation.

The total period of inflation is 69 efolds.
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η becomes large, drives ε to become large, and ends inflation before 60 efolds, however it

is still a problem in that even oscillations in a small ε translate into large oscillations in

the power spectrum. However, it may be possible to find an acceptable set of parameters

in which these oscillations are fast, i.e. 10 per efold. In this case late time physics can

smooth them out in agreement with observations. These oscillations will also give rise to

resonances and resonant non-Gaussianity [43, 44].

The results presented here are not in agreement with the scale invariant spectrum that

we observe. The magnitude of the power spectrum is smaller than the observed value. This

is the reason that despite having an trans-Planckian field range, the scale of inflation is

much lower than the GUT scale. However, we should stress that the parameter space for

this model is far from being fully explored. In the absence of analytic estimates, which were

only available for a small portion of the parameter space, more sophisticated techniques

must be employed to impose constraints and find acceptable power spectra. We leave this

to future work. Despite the apparent difficulties in KS and SDKS, if one allows for less

well-understood geometries, we are able to find observationally viable realizations. This is

the topic of the next section.

4 Brane-flux annihilation on T 3

The large oscillations in the power spectrum that we found in the previous section can be

traced to the curvature of the sphere. Therefore, we expect that if the flux cascade takes

place on an flat internal 3-manifold the power spectrum will not suffer from these large

oscillations. We will consider a cascade that takes place on T3, whose coordinates Ti are

intervals from 0 to Li. Despite the fact that there are no one cycles within Calabi-Yaus, toric

special Lagrangian (sLag) submanifolds are common [20]. In order for the brane dynamics

to be confined to the toric submanifold, we simply need to be in a region of large warping —

something that we already require for the flux cascade. Since branes are attracted to regions

of large warping they will be confined to the submanifold and not “see” the rest of the

Calabi-Yau. We are not aware of any example where such toric sLags appear at the bottom

of a warped throat but we are also not aware of any argument against their existence.

For simplicity, we will also consider an anisotropic torus where L1 > L2 = L3. The

reason for this is so that we can consider the case where the anti-D3 branes does not

polarize in an isotropic way, but rather forms a brane/antibrane pair that wrap the two-

cycle over T2,3, but are localized in the T1 direction (see figure 5). This will simplify the

dynamics of the cascade because the cascade takes place only in the T1 direction where

the pair is co-dimension 1. As shown in [7], if the anti-D3 branes polarize into a spherical

D5 that is localized in all directions on the three-torus, the cascade will continue in all

three directions, discharging the flux faster, and resulting in a different power law for the

inflationary potential. This is also an interesting case to consider, however we will stick to

the simplest realization here, where the cascade is only in a single direction.

A calculation identical to the one detailed in section 3.1 but using the metric on a torus:

ds2 = h−1/2(dxµdx
µ + h(dT 2

2 + dT 2
3 )) + h1/2(dT 2

1 + dr2 + r2dΩ2
2) , (4.1)
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Figure 5. The polarisation of anti-D3 branes on a long thin torus. The sides of the rectangle

should be identified to form the torus. A stack of antibranes first forms a spherical D5-brane that

grows and collides with itself forming a wrapped pair of D5/anti-D5.

leads us to the action for the D5/anti-D5 pair:

S = −2
µ3K

gs

∫
d4xa3(t)h−1

[√
1− h(∂tT1)2

√(
L2

2π`s

)4 h

K2
+

(
p

K
− T1

L1

)2

−
(
L2

2π`s

)2 h1/2

K
+

p

K
− T1

L1

]
.

(4.2)

There is an overall factor of two to count both the D5 position T1, and its anti-D5 partner

at −T1. Additionally, there is a term that should be included to account for the interaction

of the D5/anti-D5 pair. This can be taken into account by computing the backreaction of

the D5 on the torus geometry, and then placing the anti-D5 into the backreacted geometry

at the probe level. This computation mimics the calculation of the D3/anti-D3 interaction

in the KS throat of [12] and is the S-dual of the NS5/anti-NS5 interaction in [31].

Comparison to the usual backreaction due to the presence of a D brane, ds2 =

h−1/2dx2
‖ + h1/2dx2

⊥ implies that the backreaction of the D5 gives h → h + δh. Then

the system we need to solve is:

ds2 = h−1/2H−1/2(dxµdx
µ + h(dT 2

2 + dT 2
3 )) + h1/2H1/2(dT 2

1 + dr2 + r2dΩ2
2) ,

F7 = g−1
s d(hH)−1 ∧ vol‖ ,

(4.3)

where the harmonic function, H = H(r, T1) ∼ (1 + δh/h), cannot be the usual harmonic

for the D5-brane because of the periodicity in the T1 direction. The periodic harmonic

that solves this system is:

H = 1 +
π(2π`s)

2

hL1r

sinh
(

2πr
L1

)
cosh

(
2πr
L1

)
− cos

(
2πT1
L1

) . (4.4)
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The new action should now be evaluated using the potential resulting from back reaction,

C6 = (hH)−1. Evaluating at r = 0 we find:

µ5

∫
C6 =

µ3K

gs

∫
d4x a3(t)h−1

(
L2

2π`s

)2 h1/2

K

sin2
(
πT1
L1

)
(
π
L1

)2
(2π`s)2 + h sin2

(
πT1
L1

) . (4.5)

This backreacted value for the potential C6 can be substituted into (4.2) to include the

mutual attraction between the brane and the antibrane

We now pass to a to a canonically normalized field. As in section 3.3 we will expand

to second order in velocity and keep next to leading order terms in p/K as long as they

do not multiply higher derivative terms. This leads to a canonically normalized field:

φ =
√

2µ3p/gsT1 ≡ fT1/L, with the action:

S=

∫
d4x a3(t)

1

2
φ̇2 − 2Kf2

hpL2
1

 p

K
− φ

f
−
(
L2

2π`s

)2 h1/2

K

sin2
(
πφ
f

)
(
π
L1

)2
(2π`s)2 + h sin2

(
πφ
f

)
 .
(4.6)

We see that there are small periodic perturbations to the linear potential coming from the

interaction terms. These deviations from the linear potential are necessarily small due to

both the supergravity approximations where L1 � `s, and because the size of the cycle

should be fixed by the flux number h ∼ K2 � 1. In this case we see that the oscillations

are negligible and there is no obstruction to the standard slow roll scenario with a linear

potential. This is the same potential as Axion Monodromy — linear with tunably small

periodic perturbations.

5 Discussion and outlook

We have argued that the mechanism of unwinding inflation [6, 7] can be embedded in well-

known compactifications of type IIB string theory. The essential mechanism relies on the

perturbative annihilation of antibranes against the surounding fluxes at the bottom of a

warped throat. The inflationary mechanism we point out is based on generic ingredients of

flux compactifications and seems rather natural. The inflaton corresponds to the position

of five-branes that moves back and forth over a compact cycle discharging a fixed amount of

flux in each period of that motion. Therefore the inflaton range is not strickly bounded in

the same way as the axion-monodromy models [21, 22] and large field inflation is possible.

The difficulties in finding large field inflation in string theory involve not only achieving

a super-Planckian field excursion, but also ensuring that quantum corrections to the effec-

tive potential are suppressed. We control quantum corrections by ensuring that all length

scales set by geometric moduli are large in string units, and the string coupling is small. In

this way α′ and string loop corrections to the geometry are sub-leading. Additionally, as

discussed in the introduction, corrections to the inflaton potential are negligible when the

probe approximation is valid. This is notoriously problematic when using the NS5 probe

action which is strictly speaking only valid at strong coupling. We evade this issue by using

a D5 brane probe in the S-dual of Klebanov-Strassler at weak coupling. Finally, corrections
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arising from the brane dynamics backreacting on the moduli stabilization should be taken

into account and are a topic for future research.

We study this mechanism in two throat geometries, the first is the well known

Klebanov-Strassler solution, whereas the second is a more speculative throat containing

a T 3 at its tip. The four-dimensional effective potentials that we find in these two cases

are:

VS3(φ) = 2A0e4A

(
πp

K
− φ

f
+

1

2
sin

(
2φ

f

))
, (5.1)

VT 3(φ) =
2Kf2

hpL2
1

(
p

K
− φ

f
+O(1/K)× oscillations

)
. (5.2)

In both geometries we find a potential that is linear plus oscillatory corrections as was pre-

viously found in axion monodromy models [21, 22]. Despite this similarity the underlying

mechanisms are not the same. In particular, the inflaton in this case is not an axion, but

rather a D-brane modulus. The geometry is also different: whereas the dynamics in the

flux cascade take place on a three-cycle at the bottom of a throat, the axion monodromy

scenarios employ two related throat regions (the bifid throat) that have homologous two-

cycles at the bottom. However, the relation between these models is not fully understood

and is something that we would like to explore in future work.

Using the fully stabilized scenario in the KS throat we are able to achieve a 60 efold

inflationary period in which the inflaton has a trans-Planckian field range, but we have yet

to find a set of parameters that are also consistent with CMB observations. Relaxing our

control of the geometry and using a speculative toric throat we find no obstacles in finding

observationally valid large field inflation. As this is the first string theory embedding of the

flux cascade, there remain many open questions which are outside the scope of this work.

We list a few here:

• As mentioned in the text, we find that inflation ends when the positive energy from

the anti-D3 branes is no longer large enough to compensate for the negative vacuum

energy for the Kähler modulus σ. If the cascade continues past this point, inflation

will end in AdS and we would need to posit some unknown phase transition or uplift

mechanism in order to restore de Sitter space. However, there is some reason to hope

that dissipative effects will stop the cascade before all the anti-D3 charge is gone.

These dissipative corrections should come from open string production and closed

string bremsstrahlung [45–47]. While there are no current estimates for these effects

for spherical branes or that apply in the presence to RR fields, we expect that these

effects become important where the acceleration becomes large. Indeed, we find a

spike in the acceleration directly before the total vacuum energy becomes negative.

Additionally, one might worry that open string production at the poles of the sphere

is large enough to immediately stop the cascade. However, the fact that the cascade

takes place at non-relativistic velocities means that open string masses should be

changing adiabatically, suppressing string production. Furthermore, because the D5

brane is carrying anti-D3 charge, it cannot simply annihilate at the poles as one

might expect for a spherical brane.
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• By going beyond the probe approximation for the five-brane, one can potentially

reduce the amplitude of oscillations in (5.1). Corrections to the probe potential

should come in powers of RD3/Rcycle. As argued in [17], the probe potential breaks

down near the poles of the three-sphere10 where the oscillations are most prominent.

The arguments in [27, 30, 31] suggest that backreaction suppresses the oscillations.

The reasoning is that the predicted corrections are such that the tendency to create

meta-stable states is lost.

• It is possible that the anti-D3 branes polarize into multiple D5 branes instead of just

one.11 These multiple D5 channels are energetically unfavorable, and so we have

neglected them here. However the kinetic energy of the D5 during the cascade could

cause these channels to be populated. This would result in an altered inflationary

potential because more units of flux, and therefore more antibrane charges, would be

discharged in each step of the cascade.

• There remain some aspects of moduli stabilization that are not well under control.

First, the relation between the Kähler modulus σ and the warped volume of the

Calabi-Yau is non-trivial, however the two are not independent. In the absence of

warping one finds σ ∼ V2/3. Using this as an estimate we see that the warped

volume in table 1 exceeds this value by many orders of magnitude. Second, the

flux numbers mentioned in table 1 are in conflict with the known Euler numbers for

elliptically fibered fourfolds. Although there may exist a Calabi-Yau with an Euler

number large enough to accommodate this amount of flux, it would be preferable to

work with an Euler number that is known to exist. Alternatively, we could arrange

the parameters such that after inflation KM is significantly reduced. This would

require the majority of the fluxes to be discharged by the cascade. This change in

fluxes would backreact in an important way on the throat geometry and the flux

superpotential. Both of these issues require further study and probably necessitate

going beyond the simplest single-Kähler modulus stabilization mechanism of KKLT.
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