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1 Introduction

Breaking supersymmetry in a controlled manner remains one of the hard challenges in

constructing string theory vacua. A reliable mechanism would be welcome for many ap-

plications in string theory. One way to make progress is to combine two objects which are

both individually supersymmetric, while their combination is not. In practice, one changes

a sign of a charge such that the BPS conditions of these two elements are incompatible.

Consider for example an M2-brane in flat space whose 16 Killing spinors obey

Γ012ε = ±ε , (1.1)
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where the sign reflects the charge of the brane. Combining two M2-branes with opposite

charge results in incompatible BPS conditions and supersymmetry is broken. Such a solu-

tion is however also unstable; the branes attract each other and will eventually annihilate.

The same game can be played by combining M2-branes with nontrivial flux

dG7 = QM2δ(M2)− 1

2
G4 ∧G4 . (1.2)

One then also breaks supersymmetry in much the same way as for two oppositely charged

M2-branes. Brane/flux set-ups have already proved useful in string cosmology [1, 2], the

black hole microstate program [3, 4] and dynamical supersymmetry breaking in holographic

field theories [5–9]. Stability of such a background is however more complicated to analyse

since the decay generically occurs through the Myers effect [10], with the M2-branes po-

larising into M5-branes that then subsequently decay. The M2-branes are then effectively

annihilated against flux quanta in a process called brane/flux annihilation [6].

A concrete set-up involves placing anti M2-branes in the resolved cone background of

Cvetič, Gibbons, Lü and Pope (CGLP) [11] analogous to a similar one found by Klebanov

and Strassler in type IIB supergravity [12]. This set-up was analysed using a probe brane

in [13] where it was found that the M2 would polarise to a spherical M5-brane which

finds a metastable state close to the original M2-brane location. Later, various approaches

used to study the backreaction of M2-branes on the geometry revealed a divergent energy

density for G4 which could not be attributed to the presence of M2-branes [14–18]. One

reasonable interpretation of the singularity is that because the M2s want to polarise to an

M5-brane they induce the observed singularity in G4. The singular flux pile-up could signal

that the brane/flux annihilation process occurs classically rather than through quantum

tunnelling [19–21]. If not, we would expect to be able to hide the singularity or any polarised

metastable state behind a horizon by heating up the branes [22]. Reference [18] found that

smeared antibranes exhibit a singular horizon at any temperature. A toy model analysis of

localised branes showed that the result of [18] might be an artifact of the smearing [23]. In

this paper we aim to determine what is required so that a extremal polarised state exists,

but we also revisit the non-extremal scenario.

Before discussing our results let us point out that the story outlined above closely

follows a similar one for anti D3-branes in the Klebanov-Strassler background [6]. These

also exhibit a singularity that could not be attributed to the presence of D3-branes [24–

29]. Many attempts to interpret the singularity have yielded negative results [21, 30–35].

Nevertheless, a recent discussion has showed some promise in resolving the puzzle that the

singularity raises. First, some have suggested that the singularity does not pose particular

problems when only one anti brane is placed in KS as opposed to many [36, 37]. Then it was

discovered recently that a possible loophole exists in previous arguments that allows for a

polarised state and a finite temperature version of it that resolves the singularity [23, 38, 39].

In this paper, we study the backreaction of anti M2-branes and polarised M5-branes in

the background of [11], using a technique employed in [40] and further developed in [34, 38].

After reviewing the essential ingredients of the CGLP background in section 2, we derive

in section 3 the Smarr relation for a system of M2 and M5-branes placed at the tip of
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that geometry. It relates the energy measured far away from the branes to the charge and

surface gravity of the M2/M5 system

E =
7

6

κA
8πGN

+ ΦM2QM2 + ΦM5QM5 , (1.3)

where κ and A denote the surface gravity and area respectively, ΦM2 and QM2 denote the

potential and M2-charge of the system, while ΦM5 and QM5 denote the dipole potential

and charge of the brane system. Note that since the M5-branes are contractible, as we

explain later, their monopole charge vanishes. However, we find similar to [38, 41] that the

dipole charge of the M5s contribute with a non-vanishing term to the Smarr relation. A

non-vanishing dipole contribution is only possible for horizons with a non-trivial topology.1

In section 4 we warm up by discussing smeared antibranes, which we will show cannot be

regular. Then, in section 5, we extend the results of [14, 15, 18] to localised branes, showing

that extremal anti M2-branes with trivial horizon topology cannot have a regular horizon.

If the horizon topology is non-trivial on the other hand, then the Smarr relation does not

constrain the horizon to be singular. This is most likely the metastable state found by

Klebanov and Pufu [13] although a full solution remains to be found. Finally in section 6

we consider non-extremal branes. There we argue that localised branes posses at least two

possible phases, differing in their horizon topology, which we briefly discuss. We conclude

with section 7.

2 Anti M2-branes in CGLP

In this section we review the smooth background of [11] which is a warped product of R1,2

and a Stenzel manifold. We start with the construction of Stenzel spaces before turning to

the full supergravity field configuration.

Let us consider Calabi-Yau hypersurfaces in Cn+1 with a conical singularity at

the origin:

Cn =
{
z ∈ Cn+1 : zizi = 0

}
. (2.1)

For n ≥ 3, the base spaces of the cones are Sasaki-Einstein manifolds of dimension 2n− 1

and can be identified by intersecting Cn with the unit sphere in Cn+1:

B2n−1 =
{
z ∈ Cn : ziz̄i = 1

}
. (2.2)

For n = 3 the base space is B5 = T 1,1 whereas for n = 4 the base is B7 = V5,2. A resolution

of the conical singularity of (2.1) can be achieved by modifying the defining equation by

adding an inhomogeneous term to the right hand side

Cnε =
{
z ∈ Cn+1 : zizi = ε2

}
, (2.3)

1One could wonder whether the backreacted solution has no horizon but is rather supported by a

topological contribution as in [42]. In this paper we will not explore this possibility as we assume a presence

of a horizon.
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where ε ∈ R. For n = 2 the hypersurface is the Eguchi-Hanson resolution of the A1

singularity [43] while n = 3 gives the well-known deformed conifold [44]. The explicit

metrics can be derived using a Kähler potential K which only depends on the variable

ρ = ziz̄i , (2.4)

and satisfies the differential equation [45]

ρ(K ′)n + (ρ2 − ε4)K ′′(K ′)n−1 = c2 , (2.5)

for some normalization constant c. After solving this equation the metric can be written

down

ds2
2n = K ′(ρ)

n+1∑
i=1

dzidz̄i +K ′′(ρ)
n+1∑
i=1

|zidz̄i|2 . (2.6)

We will focus exclusively on n = 4 with c = 9/4ε3 for which an explicit form of the

metric can be found in [13]. Since we do not require its explicit form in this paper we omit

writing it. From now on we will rescale our coordinates to absorb ε, then the coordinate

ρ ranges between 1 and ∞ and for large ρ the metric reduces to that of the cone (2.1).

Finally, for ρ = 1 the metric reduces to that of a 4-sphere with radius
√

3/2.

2.1 The CGLP background

The supergravity background of [11] is a warped product of the metric (2.6) with n = 4

and flat 3-dimensional spacetime:

ds2 = H−2/3
(
− dt2 + (dx1)2 + (dx2)2

)
+H1/3ds2

8 . (2.7)

This metric solves the Einstein equation derived from the action of 11-dimensional

supergravity

S =
1

16πGN

∫ {
?11R−

1

2
?11 G4 ∧G4 −

1

6
G4 ∧G4 ∧A3

}
, (2.8)

where the form fields are

G4 = −vol3 ∧ dH−1 +mω4 (2.9)

G7 ≡ ?11G4 = H2 ?8 dH−1 −mH−1vol3 ∧ ω4 . (2.10)

Here vol3 = dt∧ dx1 ∧ dx2 and ω4 is an anti self-dual closed 4-form on C4
ε , m is a constant

and ?8 is the Hodge operator on ds2
8. The Bianchi identity dG4 = 0 is trivially solved

for (2.9) whereas the Bianchi identity for G7:

dG7 +
1

2
G4 ∧G4 = 0 , (2.11)

implies

d ?8 dH =
1

2
m2 ?8 ω4 ∧ ω4 , (2.12)
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which can be written as

∇2
8H = −1

2
m2|ω4|2 . (2.13)

This equation can be integrated assuming H ≡ H(ρ) and regularity at ρ = 1 [11, 13]

H = c0 +
(
123 38

)1/4
m2

∫ ∞
(2+ρ)1/4

dt

(t4 − 1)5/2
. (2.14)

The constant c0 controls the asymptotic behaviour of the solution. We will consider both

c0 = 0 for which the metric is asymptotically AdS4×V5,2, and c0 6= 0 for which the solution

is asymptotically Ricci flat, R1,2 ×C4. For c0 6= 0 we can rescale the coordinates as well as

m to absorb c0. Therefore we will only consider c0 = 1 in addition to c0 = 0.

2.2 Probe anti M2-branes

Anti M2-branes placed in the M-theory background just described experience a radial force

which pulls them towards the resolved tip of the cone. In [13] Klebanov and Pufu performed

a probe analysis to determine the behaviour of p anti M2-branes sitting at the tip. In this

section we review their results.

Locally, close to the tip, the metric (2.6) reduces to the metric on the 4-sphere

ds2
8 −→
ρ→1

3

2

[
dψ2 + sin2 ψdΩ2

3

]
, (2.15)

where dΩ2
3 is the metric on the round three-sphere and ψ ∈ [0, π] is the azimuthal angle

on the four-sphere. Without loss of generality, one may assume that the antibranes are

initially located at the North pole, with ψ = 0. The interaction between the branes and the

background flux gives rise to a polarisation process through the Myers effect. Concretely,

the anti M2-branes polarise into an M5-brane carrying finite M2 charge wrapping a finite

size S3 at a certain value of ψ.

The probe calculation follows closely the initial work of [6]. By evaluating the

Lagrangian of a probe M5-brane with p units of M2 charge, one obtains an effective poten-

tial as a function of the azimuthal angle and the ratio p/M , where M is the total G4 flux

threading the four-sphere:2

M =
1

(2π`p)3

∫
S4

G4 =
18π2m

(2π`p)3
. (2.16)

Depending on the value of p/M , this potential has either only one absolute minimum at

ψ = π, corresponding to the supersymmetric state where the M5-brane has p−M units of

M2-brane charge which preserves the same supersymmetry as the flux background, or one

absolute minimum at ψ = π plus a local minimum at some value ψ = ψmin, corresponding

to a metastable polarised state.

The analysis of [13] was carried out after a dimensional reduction along one of the

coordinates of the anti M2-branes. We then have anti fundamental strings in type IIA

2We use conventions where 16πGN = (2π)8`9p.
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Figure 1. The polarisation potential V (ψ) for different values of p/M . The black line shows the

estimate for the position of the metastable minimum given in eq. (2.20).

supergravity, which polarise into D4-branes. The polarisation angle ψmin is found at the

minimum of the polarisation potential

V (ψ) =

√
h sin6 ψ + U2(ψ)− U(ψ) , (2.17)

where

U(ψ) =
1

8
cos3 ψ − 3

8
cosψ +

1

4
− p

2M
, (2.18)

and

h =
H(1)

96m2
=

c0

96m2
+

(
3

4

)7/4 ∫ ∞
31/4

dt

(t4 − 1)5/2
≈ 0.0114 , (2.19)

where we used that m� 1. In figure 1 we plot the polarisation potential for different values

of p/M . A metastable minimum of the potential only exists for small range of parameters

0 < p/M . 0.0538. Furthermore, for small p/M the minimum satisfies

ψ2
min ≈

1

8h

p

M
. (2.20)

3 A Smarr relation for M2-branes

In this section we derive the Smarr relation (1.3) for p anti M2-branes in the CGLP

background with flux number M . We will assume that p/M � 1, in line with [13].

In sections 4, 5 and 6 we then use this formula to constrain both extremal and non-

extremal antibrane solutions. We find that smeared and extremal pointlike anti M2-branes

are not consistent with the Smarr relation, whereas polarised and non-extremal states are.

Our approach is reminiscent of the one employed in [40] and later [34] for type II antibrane

systems. In appendix D we derive the Smarr relation for such set-ups.
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In order to perform the calculation, we make an important assumption that asymptot-

ically, far away from the tip of the cone, the solution should look like the CGLP solution

described above. In particular the M2 charge measured at infinity is fixed to the one for

a CGLP background for a given m. When the antibranes are introduced we adjust m so

that the charge remains the same. This will lead to a nonvanishing ADM mass measured

at infinity as we will explain in section 5. It is the aim of this section to obtain the Smarr

relation between the ADM energy density, area, charge and chemical potentials of the

antibrane system.

The full antibrane metric is assumed to take the form

ds2
11 = e2A

(
−e2fdt2 + (dx1)2 + (dx2)2

)
+ ds̄2

8 , (3.1)

where ds̄2
8 is a modification of the metric on C4

ε which takes into account the backreaction

of the M2 branes on the flux background. We omit writing an explicit warp factor in front

of the 8-dimensional metric but assume that asymptotically, for large ρ,

ds̄8 → H1/3ds2
8 , (3.2)

where ds2
8 is given in eq. (2.6). Note that we have introduced a metric function e2f that

breaks the Lorentz symmetry of R1,2 to incorporate a possible non-extremal state. The

metric is general enough to describe either a stack of anti M2-branes or polarised M5-branes

carrying M2 charge.

In the following it will be useful to introduce notation for the gauge fields that is

adapted to the metric (3.1). We write

G4 = −e3A+fvol3 ∧ F1 + F̃4 , (3.3)

G7 = e3A+fvol3 ∧ F4 + F7 , (3.4)

which implies F4 = ?8F̃4 and F7 = −?8F1. In this section ?8 refers to the Hodge operator on

ds̄2
8. With these definitions the equations of motion in absence of source terms take the form

dF7 +
1

2
F̃4 ∧ F̃4 = 0 , (3.5)

d(e3A+fF4) + e3A+fF1 ∧ F̃4 = 0 , (3.6)

d(e3A+fF1) = 0 , (3.7)

dF̃4 = 0 . (3.8)

For pointlike M2-branes in the internal space, only eq. (3.5) receives a delta function

contribution on the right hand side. For M5-branes that wrap three internal dimensions

only eq. (3.8) receives a contribution, unless the M5 carries M2 charge which then disguises

itself as a contribution to eq. (3.5). For large ρ, the asymptotic expansion of all field

strengths and warp factor should equal the one for the CGLP background to leading

order. Beyond leading order, fields will generically differ from their background values.

We therefore let

e2f → 1 , e2A → H−2/3 , (3.9)

as ρ→∞.
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We will from now on assume that there are globally well-defined gauge potentials for

F4 and F1, defined by

e3A+fF1 = dC0 and e3A+fF4 = dC3 − C0F̃4 . (3.10)

Despite the suggestive notation, C0 appears in the Wess-Zumino (WZ) terms for M2-branes

while C3 appears in the WZ terms for M5-branes. In the limit ρ → ∞ the potentials

reduce to

C0 → H−1 and C3 → 0 , (3.11)

and so these are globally defined for the CGLP background. The presence of M2-branes

or their polarised state does not affect the existence of C0 and C3 in line with the dis-

cussion below eqs. (3.5)–(3.8). The gauge transformations that leave the field strengths

invariant are

δC0 = 0 , δC3 = dλ2 . (3.12)

3.1 ADM energy

We now turn our attention to the ADM energy density of the anti M2-branes. We will relate

it to the potentials C0 and C3 evaluated at the horizon of the brane configuration. The

general expression for the ADM energy density of a p-brane configuration in D dimensions

is derived in appendix A, which extends the results of [46] to spacetimes which are not

transverse asymptotically Ricci flat. The result is

E = − 1

16πGN

∮
∞
?D

[
dη ∧ Λp + ξ ∧ η ∧ Λp +

1

D − p− 3
d(η ∧ Λp)

]
, (3.13)

where Λp = λ(1) ∧ · · · ∧ λ(p), η is a one-form dual to the timelike Killing vector ∂t and

λ(i) are one-forms dual to p spacelike killing vectors ∂xi , i = 1, . . . , p. Finally, ξ is a one-

form that takes care of subtracting the background contribution to the energy density and

corresponds to adding a counter-term to the action∫
d ?D ξ . (3.14)

We normalize the energy with respect to the CGLP background for which (see appendix A)

ξ = d logH . (3.15)

Using this (3.13) reduces to

E =
1

16πGN

1

3

∮
∞

e3A+f ?8 d(9A+ 7f + 3 logH) . (3.16)

We now use the Einstein equation to bring the integration surface from ρ → ∞ close to

the horizon of the branes. To this end we write the components of the Einstein equation

along the brane worldvolume,

Rµν +
1

6
gµν

(
2|F7|2 + |F̃4|2

)
= 0 , (3.17)
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for µ, ν = 0, 1, 2. Using the form of the metric (3.1) the Ricci tensor on R1,2 can be

explicitly written down,

R00 = −g00 [�8(A+ f) +∇(3A+ f) · ∇(A+ f)] , (3.18)

Rij = −gij [�8A+∇(3A+ f) · ∇A] , (3.19)

where i, j = 1, 2 and the dot-product is performed using the transverse metric ds̄2
8. The

Einstein equation (3.17) reduces to two differential equations that will enable us to rewrite

the ADM energy,

d
(

e3A+f ?8 df
)

= 0 , (3.20)

d
(

e3A+f ?8 dA
)

= −e3A+f

3
?8

(
|F7|2 +

1

2
|F̃4|2

)
. (3.21)

We define an 8-dimensional submanifold M8 that has boundaries at ρ → ∞ and at

the horizon of the brane configuration. Using the above differential equations together

with (3.16) yields

E =
1

16πGN

1

3

∮
H

e3A+f ?8 d(9A+ 7f)

− 1

16πGN

∫
M8

e3A+f ?8

(
|F7|2 +

1

2
|F̃4|2

)
(3.22)

+
1

16πGN

∮
∞

e3A+f ?8 d logH ,

where the subscript H in the first term denotes the horizon.

We will analyse the three terms of (3.22) individually. First, by construction the warp

factor A is completely regular at the horizon and3

e3A+f → 0 as ρ→ ρH . (3.23)

This implies that we can rewrite the first term of (3.22) as

1

3

∮
H

e3A+f ?8 d(9A+ 7f) = −7

6

∮
H
?11dη ∧ λ(1) ∧ λ(2) . (3.24)

The integral on the right-hand side above yields exactly minus two times the horizon surface

gravity κ times the effective area of the horizon A [46, 47] (see also appendix B), and so

1

16πGN

1

3

∮
H

e3A+f ?8 d(9A+ 7f) =
7

6

κA
8πGN

. (3.25)

The second term of eq. (3.22) can be rewritten using (3.5)–(3.7) together with the defini-

tions (3.10)

e3A+f ?8

(
2|F7|2 + |F̃4|2

)
= d(C3 ∧ F̃4 + 2C0F7) . (3.26)

3Note that for extremal horizons A diverges, wheras f vanishes. It is simple to verify that all results

obtained in this section are valid also for extremal horizons taking the limit f → 0.
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The bulk integral can therefore be transformed into a surface integral evaluated at the

horizon and at infinity. At infinity we can use the behaviour of the fields (3.9)–(3.11) so that

− 1

16πGN

∮
∞

(
1

2
C3 ∧ F̃4 + C0F7

)
= − 1

16πGN

∮
∞
C0F7 = −QM2 lim

ρ→∞
H−1(ρ) , (3.27)

where4

QCGLP =
µM2

(2π`p)6

∫
F7 = µM2

M2

4
, (3.28)

is the M2 charge of our solution which we assume to be the same as the one of the CGLP

background (see appendix C). When c0 = 0 the term (3.27) diverges as ρ9/4 but is exactly

cancelled by the last term in (3.22)

1

16πGN

∮
∞

e3A+f ?8 d logH = QCGLP lim
ρ→∞

H−1(ρ) . (3.29)

Combining the above results we can write the ADM energy as

E =
7

6

κA
8πGN

+
1

16πGN

∮
H

(
1

2
C3 ∧ F̃4 + C0F7

)
. (3.30)

For the CGLP background the horizon area vanishes and the regularity of the background

ensures that the second integral also vanishes so that we end up with the expected result

ECGLP = 0 . (3.31)

The equation (3.30) has non-trivial implications for the consistency of the supergravity

solutions describing anti M2-branes and polarised M5-branes at the tip of the cone. It

allows us to relate the UV behaviour of the solution, characterized by the ADM energy

measured at infinity, to the IR structure of the horizon. In [34, 38] such a relation was

used to argue for a singular flux at the horizon of localised anti D3-branes sitting at the

tip of the Klebanov-Strassler background as a result of demanding a non-vanishing ADM

energy. However, we will use (3.30) in a somewhat different way: we will assume that the

solutions have regular horizons, and from there on investigate what it implies for the ADM

energy measured in the UV.

3.2 Charges and potentials

We now close the ADM discussion by interpreting the last term in (3.30). First of all, from

the equations of motion (3.5)–(3.8) we can write a local gauge potential for F̃4:

F̃4 = dH3 , F7 = F̃7 −
1

2
H3 ∧ F̃4 , (3.32)

where F̃7 is a closed 7-form. With this we can rewrite the horizon integral as∮
H

(
1

2
(C3 − C0H3) ∧ F̃4 + C0F̃7

)
. (3.33)

4In our units the charge of a single M2-brane is µM2 = 2π/(2π`p)3 and the unit charge of an M5-brane

is µM5 = 2π/(2π`p)6.
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The integral involving C0 and F̃7 has the structure of the potential-charge (ΦM2QM2) term

that is standard in Smarr relations for black holes. Indeed, we will see that C0 is constant

at the horizon. Moreover, the integral of F̃7 corresponds to the Page charge sourced by the

branes, and hence measures the localised M2 charge present in the geometry through

QM2 =
µM2

(2π`p)6

∮
F̃7. (3.34)

We are left with
1

16πGN

∮
H
C0F̃7 = ΦM2QM2, (3.35)

where ΦM2 equals to the gauge potential C0 evaluated at the horizon:

ΦM2 = C0|H . (3.36)

As for the other term in the integral (3.33), we will now argue that the three form

(C3 − C0H3) restricted to the horizon is closed. The Einstein equation for 11-dimensional

supergravity takes the form

Rµν −
1

2 · 3!
Gµρ1ρ2ρ3G

ρ1ρ2ρ3
ν +

1

6
gµν |G4|2 = 0 , (3.37)

from which we derived eq. (3.17). At the Killing horizon of the timelike Killing vector ξ

we have5

|ξ|2 = 0 and ξµξνRµν = 0 . (3.38)

Contracting the Einstein equation with ξ at the horizon yields

|ιξG4|2 = 0 . (3.39)

Analogously we can write the Einstein equation in terms of the dual field strength G7 and

run the same argument to show that at the horizon

|ιξG7|2 = 0 . (3.40)

Using the definitions (3.3) and (3.4), we can rewrite the previous equations as:

e−4A|e3A+fF1|2 = e−4A|dC0|2 = 0 , (3.41)

e−4A|e3A+fF4|2 = e−4A|dC3 − C0F̃4|2 = 0 . (3.42)

It follows that C0 is constant along the horizon as stated before and furthermore that

C3 − C0H3 restricted to the horizon is closed. The latter allows us to write

C3 − C0H3 = ω3 + exact , (3.43)

where ω3 is harmonic at the horizon. Furthermore since dF̃4 = 0, the integral of

(C3 − C0H3) ∧ F̃4 reduces to∮
H

(C3 − C0H3) ∧ F̃4 =

∮
H
ω3 ∧ F̃4 =

(2π`p)
9

π
ΦM5QM5 . (3.44)

5The second equality follows from the Raychaudhuri equation.
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Here the M5-charge QM5 is defined by

QM5 =
µM5

(2π`p)3

∫
M4

F̃4 , (3.45)

where M4 is a submanifold of the horizon which is related to the Poincaré dual of ω3 by

a constant of proportionality 2ΦM5. We are now in position to write Smarr’s relation for a

system of anti M2-branes normalised for the background energy of the CGLP background:

E =
7

6

κA
8πGN

+ ΦM2QM2 + ΦM5QM5 . (3.46)

The numerical factor 7/6 seems rather ad-hoc in this equation but is correct. We can see

this by deriving the first law of black hole thermodynamics. It is easy to verify that κ

scales with the area in a non-trivial way

[κ] = L−1 = [A]−1/7 , (3.47)

whereas the chemical potentials do not scale with the charge. Using this, the first law takes

the expected form

dE =
κ

8πGN
dA+ ΦM2 dQM2 + ΦM5 dQM5 . (3.48)

3.3 Relation to on-shell brane actions

In [40] a similar relation between brane charges and the cosmological constant of a com-

pactification of type II supergravity was obtained. There the derivation relied on using

delta functions in the equations of motion, which result from varying the brane worldvol-

ume action. This is only relevant for extremal branes for which the worldvolume actions

are known. We can also do this in 11-dimensional supergravity where the modified form

equations of motion take the form

dF7 +
1

2
F̃4 ∧ F̃4 = QM2δ8 −QM5F3 ∧ δ5 , (3.49)

dF̃4 = −QM5δ5 . (3.50)

In these equations F3 is the self-dual tensor field living on the M5 brane. It is fixed by gauge

invariance of the M5 action to be F3 = db2+A3 with b2 a 2-form and A3 the gauge potential

for G4. The Einstein equation will also receive delta function contributions from the DBI

actions of the branes but since we only use its external components in the derivation of the

ADM energy, we only need to consider the couplings to form fields.

We can now repeat the evaluation of the ADM energy using delta functions in the

equations of motion, following closely the calculation performed in the last two subsections.

All equations remain unchanged up to (3.26), which now takes the form:

e3A+f ?8

(
2|F7|2 + |F̃4|2

)
= d(C3 ∧ F̃4 + 2C0F7)

− (C3 − 2F3C0) ∧QM5δ5 − 2C0QM2δ8 , (3.51)
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where b2 is assumed to only have legs transverse to the M2 worldvolume. The first

term of equation (3.22) is zero since we only discuss extremal branes, the second one

reduces to an integral over the delta functions after cancelling the infinite contribution

using the third term:

E = QM2

∫
C0δ8 +

QM5

2

∫
(C3 − 2F3C0) ∧ δ5 . (3.52)

Note that we have assumed that the delta functions take care of the singularities and that

the total derivative in (3.51) is free of any singularities. Identifying the chemical potential

ΦM2 with C0 and ΦM5 with the integral

ΦM5 =
1

2

∫
(C3 − 2F3C0) ∧ δ5 , (3.53)

we reproduce the Smarr relation (3.46). It is interesting to note that the Smarr relation

has the form of a sum of on-shell brane actions in analogy with the results of [40]. A

recent paper has suggested that this is not an accident and in general the on-shell actions

of branes will arise in the calculation of the on-shell gravitational action (or free energy)

of a given system [48].

4 Smeared anti M2-branes

As a warm-up we will start by considering smeared antibranes. Smeared branes preserve

the full SO(5) symmetry of the 4-sphere at the tip of the background. This implies that

the gauge potential C3 vanishes. Regularity of the horizon then implies that

ΦM2 = C0|H = 0 , (4.1)

as follows from eq. (3.42). Finally, it easy to verify that a Smarr relation for smeared

branes cannot have a dipole contribution. This follows from eq. (3.44) together with the

previous result that C3 = C0 = 0. The final Smarr relation for smeared branes then takes

the form

E =
7

6

κA
8πGN

. (4.2)

Such a Smarr relation cannot be attributed to branes with antibrane charge. In particular

an extremal limit would give zero energy to the Smarr relation which cannot represent a

stack of supersymmetry breaking antibranes sitting at the tip of the geometry.

This result has previously been observed as singular backreaction of the antibranes on

the flux background [14, 15, 18]. Our calculation does not allow for such a singularity since

we assumed a regular horizon. If we would not have done so, then we could not conclude

that ΦM2 vanishes, but we would then also see that the solution exhibits the previously

found singularity.
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5 Extremal anti M2-branes

In this section we use eq. (3.46) to constrain localised extremal antibrane solutions. Ex-

tremality implies that (3.46) reduces to

E = ΦM2QM2 + ΦM5QM5 . (5.1)

All quantities on the right hand side of (5.1) are evaluated in the limit of zero horizon area.

For the set-up in question, the ADM energy measured at the UV is proportional to two

times the red-shifted tension of the p anti M2-branes sitting at the tip of the throat [13],

E = 2pTM2e
3A/2 . (5.2)

Here e3A is the red-shift factor generated by the warping of the background evaluated at

the tip. This equation can be understood as follows. We fix the M2-charge at infinity

to be the same as for a CGLP background with a given m. This charge is calculated in

appendix C and appears in equation (C.5). For every anti M2-brane introduced into the

background, m must be adjusted so that the charge remains constant. This is equivalent

to adding an M2-brane together with every anti M2-brane at the tip of the geometry which

explains the factor of 2 in eq. (5.2).

There is the further constraint from eq. (3.42) that restricted to the horizon,

dC3 = C0F̃4 . (5.3)

We now focus on the component of this equation along the 4-sphere at the tip. F̃4 must

be proportional to the volume form on the 4-sphere at the tip, since its integral there is

proportional to M . The symmetries of the solution require that the only component of C3

along the 4-sphere takes the form

f(ρ, ψ)volS3 (5.4)

for a function f of the cone coordinate ρ and the azimuthal angle ψ on the 4-sphere with

the antibranes sitting at ψ = 0. Since C3 is globally defined by construction, we conclude

that f(ρ, ψ) should reach either a minimum or a maximum at the poles, and therefore dC3

restricted to ψ = 0 at the tip vanishes. Then eq. (5.3) yields:

C0|H = ΦM2 = 0 (5.5)

for pointlike antibranes. The conclusion is that the first term in the right-hand side of (5.1)

cannot contribute and the Smarr relation reduces to

E = ΦM5QM5 . (5.6)

Moreover, it is simple to see that for a pointlike horizon, just like for a smeared one, the

M5-charge QM5 as defined in (3.45) is zero. This can be seen by freely transforming the

integration domain in the definition of QM5 in (3.45) to infinity using the fact that F̃4 is

closed. Since we demand CGLP asymptotics, and therefore no M5 charge as measured at

infinity, we obtain

QM5 = 0 . (5.7)

We conclude that there is no way to satisfy the Smarr relation (5.1) for pointlike anti

M2-branes present at the tip.
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A crucial step in our argument above was that F̃4 was regular at the horizon and that

we could freely transform the integral of F̃4 to infinity where it is zero, thereby leading to a

contradiction. Once the antibranes polarise to spherical M5 branes with induced anti M2-

charge both of these arguments break down. First of all we do expect a singular F̃4 close

to an M5-brane to account for the charge. Secondly, since the topology of the polarised

state is non-trivial one cannot freely transform the integral of F̃4 to infinity. In fact, there

will be obstructions whenever the integration surface M4 is non-trivial in homology on

the horizon (see figure 2). Note that for M5-branes the horizon is not 7-dimensional as for

M2-branes, so three of the directions in the integral∮
H

(C3 − C0H3) ∧ F̃4 , (5.8)

are parallel to the brane worldvolume. It is for this reason that we clarify that the inte-

gration surface in eq. (3.45) must be non-trivial as for example in figure 2 in order to give

a non-vanishing contribution. The polarised antibranes have much in common with black

ring solutions in five dimensions [41] whose thermodynamics was studied in [49]. The black

rings had the surprising feature that the dipole charge entered into the first law. This was

understood as a consequence of the horizon not being spherical as was previously assumed

in the black hole thermodynamics literature. If QM5, which we will denote as the dipole

charge, is non-vanishing we can obviously satisfy eq. (5.1).

In the set-up we are considering, we expect the M5-branes to source a component of

C3 extending along the three-sphere they are wrapping. In fact there is a very natural way

of satisfying the Smarr relation by letting again C0|H = dC3|H = 0 and C3 = f(ψ)volS3 ,

so that the gauge potential C3 equals the volume from on the brane times a function

f(ψ). Then the potential ΦM5 is proportional to f(ψH), the function f(ψ) evaluated at

the polarisation radius. The Smarr relation (5.1) reduces to

2pTM2e3A = E = ΦM5QM5 = µM5f(ψH) , (5.9)

where we used that QM5 is the charge of a single M5-brane, µM5. Comparing to the probe

result (2.20) we can rewrite this as

f(ψH) =
3π2

8hm

p

M
. (5.10)

We learn that in order to recover the probe result in the p/M → 0 limit of the backreacted

solution, the function f(ψH) should scale as ψ2
H .

6 Black branes

After having discussed extremal antibranes, let us take a look at what would be the effect of

heating up the system away from extremality. The Smarr relation (3.46) now also includes

non-zero contributions from the area,

E =
7

6

κA
8πGN

+ ΦM2QM2 + ΦM5QM5 . (6.1)

Remember that
κA

8πGN
= TS , (6.2)

– 15 –



J
H
E
P
0
5
(
2
0
1
6
)
1
7
5

M4

M 4M4

Figure 2. The left figure depicts a black M2 horizon for which the dipole charge vanishes. Since

F̃4 is regular and closed, the integration surface M4 can be shrunk down to zero size which implies

that QM5 = 0. In contrast the fact that polarised antibranes have a nontrivial horizon implies that

the dipole charge can be non-zero.

ψ

ρ

b

ψ

ρ

b

Figure 3. The left figure represents a spherical black M2 horizon for which QM5 vanishes. The

right figure depicts a non-extremal M5-brane with induced antibrane charge. For small horizon

area we expect the latter to be the dominant phase.

where T is the temperature and S is the entropy of the black brane. Starting from the

extremal state discussed in last section we expect a near-extremal antibrane to have a non-

trivial horizon topology. This corresponds to a black M5-brane wrapping a contractible

three-cycle on the four-sphere at the tip of the cone. The dipole M5-charge does not vanish

(see figure 2) if the topology is non-trivial and ΦM2 can be small, or zero as in last section.

As the horizon area increases we expect an instability towards a collapse to a spherical

black brane which cannot support a dipole charge (see figure 2). A regular horizon then

demands a cancellation between the form fields

dC3 − C0F̃4 = 0 , (6.3)

when restricted to the horizon. This spherical phase, however, does not have a regular

extremal limit and so we expect that below some critical area Acrit the dominant phase

has non-trivial topology. In figure 3 we sketch these two phases as horizons in the ρ − ψ
plane close to the tip.
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Let us remark that the spherical phase of anti M2-branes (as well as anti D3-branes)

was studied in a linear approximation in [23], where the branes were inserted in a toy

model background which captures some of the features of the set-up studied here. There

it was observed that the spherical antibranes become singular as the area shrinks to zero

size which is consistent with our results.

7 Conclusion

In this paper we derived the Smarr relation for anti M2-branes (and their polarised state)

immersed in the CGLP background [11]. We followed a similar procedure as in [34, 40]

where the supergravity equations of motion were combined to find a constraint on the

boundary conditions of the solutions at the antibrane location. We showed that these con-

straints arise when trying to satisfy the Smarr relation (1.3). We argued that smeared

antibranes do not satisfy the Smarr relation without a singular horizon in agreement

with [14, 15, 18]. We extended these results to localised extremal anti M2-branes in the

CGLP background, and showed that these also cannot be regular while satisfying the Smarr

relation. The relation can however be satisfied for an extremal polarised antibrane, i.e. an

M5-brane with induced antibrane charge. A crucial feature of the polarised brane is that

the dipole M5-charge is nonzero. We do therefore not find a contradiction with the probe

results of Klebanov and Pufu [13]. Let us stress that moving away from smeared branes and

discussing fully localised branes was crucial to reach this conclusion. Finally, by combining

the probe results with ours, we give boundary values for the form fields that could serve

as starting points for numerical study of the full supergravity solution.

We briefly discussed non-extremal antibranes where we expect at least two phases

differing in their horizon topology. We argued that an antibrane with trivial horizon area

is unstable towards a black ring-like state for a small horizon area. We leave a closer

study of the different phases of antibranes in flux backgrounds and their instabilities to

future research. The technology used in this paper could also be employed to study black

hole microstate backgrounds that make use of antibranes as their method of breaking

supersymmetry. The antibrane charge is carried by a non-supersymmetric supertube that

polarises and carries dipole charge. It would certainly be interesting to analyse whether

conditions posed by the Smarr relation can be used to evaluate the accuracy of probe

calculations for supersymmetric and non-supersymmetric supertubes.

Acknowledgments

We are grateful to Thomas Van Riet and Bert Vercnocke for many discussions and mo-

tivations during the completion of this work. We also thank Adam Bzowski, Alessandra

Gnecchi, Gavin Hartnett, Marjorie Schillo and Matthew Williams and especially Nikolay

Bobev for helpful discussions. DCM would like to acknowledge the Becas Chile scholar-

ship programme of the Chilean government. FFG and JD are supported by the National

Science Foundation of Belgium (FWO) grant G.0.E52.14N Odysseus and Pegasus. We also

acknowledge support from the European Science Foundation Holograv Network.

– 17 –



J
H
E
P
0
5
(
2
0
1
6
)
1
7
5

A ADM energy for p-branes in general backgrounds

In this appendix we extend the Komar integrals for asymptotically flat black branes of [46]

to black branes with arbitrary asymptotics.

We will follow the Noether procedure as presented for instance in [50]. This method

leads to Komar-like integrals and is closely related to the approach of [51], which one

can use to calculate the energy of a p-brane in D dimensions with an asymptotically flat

transverse space [46]. The main ideas of [46] generalize to non-asymptotically flat p-branes

in a natural way, by adding a counter-term to the action that takes care of the infinite

contribution of the background.

First of all, we consider the solution obtained by dimensionally reducing along the p

spatial dimensions of the brane. The reason for doing this is the fact that Komar surface

integrals are uniquely defined for p = 0 (up to a normalisation factor) as opposed to p ≥ 1,

as explained in [46]. To this end, we write the metric as a warped product

ds2
D = gIJ(x)dxIdxJ + v(x)gmn(y)dymdyn , (A.1)

with I, J = 0, p+1, p+2, . . . , D−1 and m,n = 1, 2, . . . , p. We will assume that the solution

is maximally symmetric along the p spatial directions of the brane. In the D-dimensional

theory, the Einstein-Hilbert term in the action is

1

16πG
(D)
N

∫
dDx
√
gR =

1

16πG
(D)
N

∫
dD−pxdpy

√
−gD−p

√
gp v

p/2R , (A.2)

where gD−p and gp are the determinants of the (D− p) and p-dimensional metrics, respec-

tively. Let us now define

g̃IJ = v
p

D−p−2 gIJ . (A.3)

For this tilde metric g̃IJ , one has√
−g̃D−pR̃D−p =

√
−gD−pvp/2RD−p + (· · · ) , (A.4)

where (· · · ) are terms containing the vector and scalar fields that we get from the metric

when dimensionally reducing. With the transformation to g̃IJ we get the usual Einstein-

Hilbert term in the reduced action, with Newton’s constants related as usual through

G
(D)
N = G

(D−p)
N ·Volp , Volp =

∫
dpy
√
gp . (A.5)

Our solution is here just a point-like black hole, for which we can use the Noether approach

in order to compute its mass as explained in [50]. To do this, we need to find a one-form ζ

such that the combination (dη̃ + ζ ∧ η̃) vanishes asymptotically, and is identically zero for

the background metric. Here, η̃ is the timelike Killing vector of the tilde metric. To find

this ζ, we can can evaluate η̃ for the background:

η̃ = g̃00dt = e
2(D−2)
D−p−2

AB

dt (A.6)

dη̃ =
2(D − 2)

D − p− 2
dAB ∧ η̃ , (A.7)
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where e2AB
is the warp factor of the background solution. This implies that

ζ = − 2(D − 2)

D − p− 2
dAB. (A.8)

We are now in state of calculating the ADM energy. It is given by [46, 50]

M = N

∮
?̃D−p (dη̃ + ζ ∧ η̃) , N ≡ − 1

16πG
(D−p)
N

D − p− 2

D − p− 3
. (A.9)

This formula follows from adding a total derivative d?̃D−pζ to the original Lagrangian [50],

which will serve as a counter-term for the infinite contribution of the background to the

energy. We remark that

?̃D−p(dt ∧ dr) = e
p(D−p−4)
D−p−2

A
?D−p (dt ∧ dr) . (A.10)

Further, we know that η̃ = e
2p

D−p−2
A
η, so our expression for the mass becomes

M = N

∮
epA ?D−p

[
dη +

p

D − p− 2
d(2A) ∧ η + ζ ∧ η

]
. (A.11)

For the next step, we need the following relation:6

?D dy1 ∧ · · · ∧ dyp ∧ dt ∧ dr = e−pA ?D−p dt ∧ dr , (A.15)

so that

M = N

∮
e2pA ?D dy1 ∧ · · · ∧ dyp ∧

[
dη +

p

D − p− 2
d(2A) ∧ η + ζ ∧ η

]
. (A.16)

Finally, recalling our definitions of the one forms associated with the spatial Killing vectors

λi = giidy
i = e2Adyi , (A.17)

we get

M = − 1

16πG
(D)
N

∮
?D

[
dη ∧ λ1 ∧ · · · ∧ λp +

1

D − p− 3
d(η ∧ λ1 ∧ · · · ∧ λp)

+ ξ ∧ η ∧ λ1 ∧ · · · ∧ λp
]
, (A.18)

where we defined

ξ ≡ D − p− 2

D − p− 3
ζ . (A.19)

For our set-up, we have

ξ = d logH . (A.20)
6We normalise the Hodge operators in different dimensions by demanding volD = volp ∧ volD−p, where

volD =
√
gDdt ∧ dr ∧ dy1 ∧ · · · ∧ dyp ∧ dxp+2 ∧ · · · ∧ dxD−1 , (A.12)

volp =
√
gpdy1 ∧ · · · ∧ dyp , (A.13)

volD−p =
√
gD−pdt ∧ dr ∧ dxp+2 ∧ · · · ∧ dxD−1 . (A.14)
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B Surface gravity and horizon area

In this appendix we derive the form of the κA term appearing in (3.25) in a general set-up,

with that equation being a special case. Let us consider a static metric of the form

ds2 = −e2f(r)g̃00dt2 + gµνdxµdxν + e−2f(r)dr2 + gijdx
idxj , (B.1)

where µ, ν = 1, . . . , p and i, j = p + 2, . . . , D − 1. The factor e2f vanishes at the horizon,

while the component g̃00 is regular.

For the timelike Killing vector with components ξµ = δµ0 , the surface gravity κ is

defined as

κ =
√
∂µV ∂µV , V =

√
−ξµξµ , (B.2)

with both terms evaluated at the horizon. Clearly for the metric at hands

V =
√
e2f g̃00 , (B.3)

so that at the horizon

∂µV ∂
µV = grr(∂rV )2 =

(∂re
2f )2grrg̃00

4f
=

(∂re
2f )2g̃00

4
, (B.4)

where we have taken into account the fact that there e2f → 0. Hence

κ =
1

2

√
g̃00∂re

2f . (B.5)

Next, we have

dη = d(−e2f g̃00dt) = −g̃00(∂re
2f )dr ∧ dt . (B.6)

Therefore

?D dη ∧ λ1 ∧ · · · ∧ λp = −
√
g̃00(∂re

2f )
√
gp volD−2−p (B.7)

= −2κ
√
gp volD−2−p (B.8)

at the horizon, so that ∮
H
?D dη ∧ λ1 ∧ · · · ∧ λp = −2κAeff , (B.9)

with

Aeff =

∮
H

√
gpvolD−2−p . (B.10)

In the main text we avoid writing explicitly the subscript of Aeff.
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C M2 charge of the CGLP background

The total M2 charge of the background as measured at the UV can be computed by integrat-

ing G7 along the base of the cone for large values of the radial coordinate ρ. Asymptotically,

from (2.14) we see that

H(ρ) ≈ c0 + 2
3
2 3

3
4m2ρ−

9
4 . (C.1)

At the UV, the component F7 of G7 with all its legs on the base of the cone is

F7 ≈ 2
1
2 3

11
4 m2ρ−

13
4 ?8 dρ . (C.2)

As explained in [13], it is useful to perform the coordinate transformation

ρ =
3

1
3

4
r

8
3 , (C.3)

in which the metric of the cone becomes ds2
8 = dr2 + r2dV 2

5,2. Then we find

F7 ≈ 273m2r−7 ?8 dr . (C.4)

From the form of the metric, it is clear that ?8dr = r7volV5,2 . The volume of the base is

calculated in [52], and it turns out to be equal to 33π4/27. Therefore the total M2 Maxwell

charge of the CGLP background is

QCGLP =
µM2

(2π`p)6

∫
V5,2

F7 = µM2
81π4m2

(2π`p)6
= µM2

M2

4
. (C.5)

D ADM energy for D-branes

In this appendix we present a general derivation of the ADM energy for Dp-branes immersed

in flux backgrounds of type II supergravity with p + 1-dimensional maximally symmetric

spacetime. We assume a background three-form flux H and (6− p)-form flux F6−p which

are internal and support a smooth asymptotically Ricci flat metric. We also allow for a

fluctuating internal (8 − p)-form F8−p. Asymptotically AdS metrics can be treated in a

similar way as was done in the main text.

Once the Dp-brane is introduced into the game, we expect a backreaction onto the

metric and the form fields. The metric splits into the worldvolume metric and a trans-

verse part

ds2 = e2A
(
−e2fdt2 + dx2

p

)
+ ds2

9−p , (D.1)

where t and xp span the worldvolume coordinates of the antibrane.

The trace reversed Einstein equation (in Einstein frame) along the brane world-

volume is

Rµν = − 1

16

(
2e−φ|H|2 + (7− p)e

p−3
2
φ|F8−p|2 + (5− p)e

p−1
2
φ|F6−p|2

)
gµν (D.2)
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The form field equations can be written in terms of the magnetic dual forms

dFp+2 = 0 , (D.3)

dFp+4 −H ∧ Fp+2 = 0 , (D.4)

dH7 + ηF6−p ∧ σ(Fp+2) = 0 , (D.5)

where η = (−1)p and the operator σ reverses all form indices. The forms in these equations

are related to the ones in the Einstein equation by the usual duality rules

H7 = e−φ ?10 H , Fp+2 = e
p−3
2
φ ?10 σ(F8−p) , Fp+4 = e

p−1
2
φ ?10 σ(F6−p) . (D.6)

Using the form equations above we write a set of globally defined gauge potentials:

Fp+2 = −η σ(volp+1) ∧ dA0 , (D.7)

Fp+4 = −η σ(volp+1) ∧ [dA2 +HA0] , (D.8)

H7 = η volp+1 ∧ [dA5−p − ηF6+pA0] . (D.9)

The existence of these potentials is not affected by the presence of the anti-Dp brane or its

polarised states. We can now rewrite the right hand side of the Einstein equation as

?10 1
(

2e−φ|H|2 + (7− p)e(p−3)φ/2|F8−p|2 + (5− p)e(p−1)φ/2|F6−p|2
)

= −volp+1 ∧ d (−2A5−p ∧H − (7− p)A0 F8−p − (5− p)A2 ∧ F6−p) . (D.10)

Since we want to end up with a ADM energy density we redefine the potentials we work

with. Finally using the form of the metric the worldvolume Einstein equations can now be

written as two PDEs

d
(

e(p+1)A+f ?9−p df
)

= 0 , (D.11)

d
(

e(p+1)A+f ?9−p dA− B
)

= 0 . (D.12)

where

B = − 1

16
[2A5−p ∧H + (7− p)A0 F8−p + (5− p)A2 ∧ F6−p] . (D.13)

Evaluating the general ADM energy density formula (3.13) we obtain

E =
1

16πGN

1

7− p

∮
∞

e(p+1)A+f ?9−p [16dA+ 2(8− p)df ] . (D.14)

The equations (D.11)–(D.12) allow us to move the integration surface down to the horizon

16πGNE =
1

7− p

∮
H

{
e(p+1)A+f ?9−p [16dA+ 2(8− p)df ] + 16B

}
− 1

7− p

∮
∞

16B .

At infinity we expect that A5−p, A2 → 0 while the A0 → 1. The last term will therefore

give the Dp charge of the background, and we can normalise this away in the same way as

in the main text by including a counter-term in the action. Here we will simply drop this

– 22 –



J
H
E
P
0
5
(
2
0
1
6
)
1
7
5

finite term from the expression. The first term in the integrand gives the surface gravity

times the area as explained in appendix B. This leaves us with

E =
8− p
7− p

κA
8πGN

+
1

16πGN

∮
H

16B
7− p

. (D.15)

At this stage we define local gauge potentials at the horizon

dB2 = H , dB5−p = ηF6−p . (D.16)

These can be used to rewrite B at the horizon

16B = −2(A5−p +A0B5−p) ∧H − (7− p)A0 F̃8−p − (5− p)(A2 +A0B2) ∧ F6−p , (D.17)

where

F̃8−p = F8−p −
5− p
7− p

B2 ∧ F6−p −
2

7− p
B5−p ∧H , (D.18)

and is closed. The Einstein equations imply that on a regular horizon7

H7 , Fp+4 , Fp+2 → 0 (D.19)

which implies that the forms

A0 , A5−p +A0B5−p , A2 +A0B2 (D.20)

are closed when restricted to the horizon. This implies that on the horizon we can write

A5−p +A0B5−p = ω5−p + exact , A2 +A0B2 = ω2 + exact , (D.21)

where ω5−p and ω2 are harmonic. Repeating the same arguments as in the main text, i.e.

identifying the Poincaré duals of the harmonic forms and defining the chemical potentials

as their proportionality factors, we are left with

E =
8− p
7− p

κA
8πGN

+ ΦDpQDp + ΦD(p+2)QD(p+2) + ΦNS5QNS5 . (D.22)

All the terms in this expression are analogous to the ones we discussed in the main text.

QDp is the Page charge, defined as the integral of F̃8−p over the horizon.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

7Here we make use of the fact that the D-branes in question are at finite temperature, which regularises

their horizon. All extremal D-branes have singular horizon except for the D3-brane.
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