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Interdisciplinary research fuels innovation. In this paper, we examine the interdisciplinarity 
of research output driven by funding. Considering 36 major infectious diseases, we model 
interdisciplinarity through temporal correlation networks based on funded and unfunded research 
from 1995-2022. Using hierarchical clustering, we identify coherent periods of time or regimes 
characterised by important research topics like vaccinations or the Zika outbreak. We establish 
that funded research is less interdisciplinary than unfunded research, but the effect has decreased 
markedly over time. In terms of network growth, we find a tendency of funded research to focus 
on readily established connections leading to compartmentalisation and conservatism. In contrast, 
unfunded research tends to be exploratory and bridge distant knowledge leading to knowledge 
integration. Our results show that interdisciplinary research on prominent infectious diseases 
like HIV and tuberculosis tends to have strong bridging effects facilitating global knowledge 
integration in the network. At the periphery of the network, we observe the emergence of 
vaccination-related and Zika-related knowledge clusters, both with limited systemic impact. We 
further show that despite the surge in publications related to COVID-19, its systematic impact 
on the disease network remains relatively low. Overall, this research provides a generalisable 
framework to examine the impact of funding in interdisciplinary knowledge creation. It can assist 
in priority setting, for example with horizon scanning for new and emerging threats to health, such 
as pandemic planning. Policymakers, funding agencies, and research institutions should consider 
revamping evaluation systems to reward interdisciplinary work and implement mechanisms that 
promote and support intelligent risk-taking.

1. Introduction

Interdisciplinary research (IDR), a process of knowledge integration (Rafols & Meyer, 2010), has been seen as a source of creativity 
and innovativeness (Rousseau et al., 2019). Various policy and funding initiatives have been developed to facilitate IDR (Wang & 
Shapira, 2015). However, it has been discovered that highly interdisciplinary (Bromham et al., 2016) and highly novel (Boudreau et 
al., 2016) ideas that integrate knowledge in unprecedented ways (Uzzi et al., 2013; Fontana et al., 2020) tend to be penalised during 
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grant proposal evaluation. Given such conservatism towards highly interdisciplinary ideas at the stage of funding application, does 
it carry further to research output generated by funding? It is an important question to ask as proposals represent the intention of a 
scientific idea while publications represent the realisation (Packalen & Bhattacharya, 2020), i.e., when the intention of knowledge 
integration is discouraged, what happens to the realisation of knowledge integration?

Funding’s ifluences have been explored in a wide range of aspects, including on research methods and goals (Serrano Ve
larde, 2018; Luukkonen & Thomas, 2016), team composition (Davies et al., 2022), scientific productivity (Hottenrott & Lawson, 
2017), and scholarly (Roshani et al., 2021; Mosleh et al., 2022; Coccia & Roshani, 2024a, 2024b), technological and social impact 
(Heyard & Hottenrott, 2021; Yang, 2024) of the associated research output. Funded research has been found to exhibit higher schol
arly impact than its unfunded counterpart in various fields (Roshani et al., 2021; Mosleh et al., 2022; Coccia & Roshani, 2024a,
2024b).

Of those studies examining various aspects related to research output produced by funding (Jacob & Lefgren, 2011; Wahls, 2019; 
Packalen & Bhattacharya, 2020; Arora & Gambardella, 2006; Heyard & Hottenrott, 2021; Arora et al., 2000; Benavente et al., 2012; 
Yang, 2024; Roshani et al., 2021; Mosleh et al., 2022; Coccia & Roshani, 2024a, 2024b), limited attention has been paid to examine 
its interdisciplinarity (ID). In addition, studying funded research output beyond individual funder level at scale remains a gap (Yang, 
2024).

In this paper, we address the above gaps. By identifying all funded and unfunded publications in the field of infectious disease 
from 1995 to 2022 and considering a set of major infectious diseases to be the unit of analysis, we propose a novel temporal network 
approach to characterise and compare the ID of funded and unfunded research. We aim to answer the following research questions 
(RQ)s:

RQ1: Can we identify coherent periods of time, i.e., temporal regimes, in the evolution of ID in funded and unfunded research?
RQ2: What are the main trends in the time-dependence of ID in funded and unfunded research?
RQ3: Since IDR is discouraged at grant application, is funded research less interdisciplinary in general compared to unfunded re

search? What are the most under/over-funded interdisciplinary research areas?
RQ4: What roles does research into prominent infectious diseases like HIV and coronavirus play in terms of interdisciplinary knowl

edge generation?
RQ5: What is the effect of important events like the 2002-2004 SARS outbreak or the COVID-19 pandemic on the ID of funded and 

unfunded infectious disease research?

The paper is structured as follows: Section 2 provides a brief review of research on ID and funded research, Section 3 introduces the 
data source and computational implementation of IDR measures, Section 4 presents the main results and Section 5 summarises the 
results and discusses real-world implications, limitations, and future work.

2. Literature review

We briefly review research on IDR in Section 2.1 and the central concepts of quantitative IDR measures (diversity, coherence 
and intermediation) in Section 2.2; then, we will review research on funded research and highlight the gaps in the field in Sec
tion 2.3.

2.1. Interdisciplinary research: overview

According to the National Academies of Sciences of the USA National Academy of Sciences et al. (2005), IDR is ``a mode of research 
by teams or individuals that integrates information, data, techniques, tools, perspectives, concepts and/or theories from two or more 
disciplines or bodies of specialised knowledge to advance fundamental understanding or to solve problems whose solutions are beyond 
the scope of a single discipline or area of research practice.'' IDR, as a process of knowledge integration, generates creativity and 
innovativeness (National Academy of Sciences et al., 2005; Rafols & Meyer, 2010; Rousseau et al., 2019). Current research on IDR 
has concluded that IDR could take place cognitively or socially (Glänzel & Debackere, 2022), meaning the integration either happens 
in a scientist’s mind (Rafols & Meyer, 2010) or in a social process (Abramo et al., 2012, 2017), i.e., formation of a team of researchers 
with different expertise, experiences, or academic background. Based on these two perspectives, researchers have been exploring a 
broad range of questions on IDR: from the quantification of the ID of articles (Rafols & Meyer, 2010), journals (Leydesdorff, 2007; 
Rodríguez, 2017; Leydesdorff et al., 2018), scientists (Porter et al., 2007; Leahey et al., 2017), institutes (Rafols et al., 2012; Soós 
& Kampis, 2012; Biancani et al., 2018), grant proposals (Bromham et al., 2016; Nichols, 2014), and research fields (Leydesdorff & 
Rafols, 2011), to mapping the global structure of science (Leydesdorff & Rafols, 2009; Rafols et al., 2010), further to the scholarly 
and social impact of IDR (Okamura, 2019; Hu et al., 2024; Shi et al., 2009; Wang et al., 2015; Yegros-Yegros et al., 2015; Biancani 
et al., 2018; Leahey et al., 2017). For example, Rafols and Meyer (2010) used diversity and coherence as a framework to compare 
the ID of a set of bionanoscience articles. Leydesdorff and Rafols (2009) and Leydesdorff (2007) analysed the ID of journals based 
on betweenness centrality and diversity. Porter et al. (2007) proposed the measures of integration, reach and specialisation and used 
them to measure the ID of 47 researchers. Soós and Kampis (2012) analysed and compared the disciplinary structure of a sample of 
Hungarian Research Institutions based on the science overlay maps (Rafols et al., 2010).

IDR may lack institutional appreciation due to mono-disciplinary academic structures (Rousseau et al., 2019) and is poorly re
warded by funders (Bromham et al., 2016) due to disciplinary-based evaluations (Rousseau et al., 2019; Woelert & Millar, 2013; 
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Rylance, 2015; Fontana et al., 2022). Rafols et al. (2012) compared the ID of Innovation Studies (IS) units with leading Business & 
Management Schools (BMS) in the UK. Despite IS units being more interdisciplinary, they were disadvantaged in evaluation and ob
taining resources due to the bias of the Association of Business Schools’ (ABS) journal rankings favouring mono-disciplinary research. 
Biancani et al. (2018) found interdisciplinary research centres have superior performance in knowledge production, instruction, col
laboration and funding acquisition. Leahey et al. (2017) found that being interdisciplinary is a high risk high reward endeavour in a 
scientific career, i.e., a trade-off between productivity and scientific impact. IDR has been found to exhibit higher scholarly impact 
(Okamura, 2019) but Shi et al. (2009), Wang et al. (2015) and Yegros-Yegros et al. (2015) reported mixed results across different 
measures (Wang et al., 2015; Yegros-Yegros et al., 2015) and different fields (Shi et al., 2009). IDR has also been found to attract 
more attention from policy documents (Hu et al., 2024).

2.2. Central concepts in quantitative research on IDR

In IDR studies considerable effort has been used to develop quantitative measures to inform policymakers, research managers, 
evaluators and sociologists of science (Wagner et al., 2011). Here we briefly revisit relevant concepts in the quantification of IDR, 
but see Wagner et al. (2011) and Wang and Schneider (2020) for more comprehensive reviews.

There are three central concepts that quantitative IDR measures have been based on: diversity, coherence, and intermediation. 
Diversity refers to the difference in the bodies of knowledge that are integrated, and it consists of variety, balance, and disparity 
(Stirling, 2007). The Rao-Stirling (RS) index is one of the most widely-used diversity-based metrics (Wang & Schneider, 2020; Nichols, 
2014), and Zhang et al. (2016) proposed the Hill-type measure as an improvement to the low discriminating power of the RS index. 
In addition, diversity measures adapted from evolutionary biology (Bromham et al., 2016) have also been used to measure ID, 
e.g., Bromham et al. (2016) used the Phylogenetic Species Evenness (PSE), a measure of the biodiversity of species, to capture 
ID.

Coherence describes the extent of relatedness of bodies of knowledge (Rafols & Meyer, 2010; Rafols, 2014). Coherence can be 
dfined and used differently (Rafols & Meyer, 2010; Soós & Kampis, 2012; Rafols et al., 2012), and measures of coherence (and also 
intermediation) are still at an exploratory stage (Rafols et al., 2012). When coherence was first proposed (Rafols & Meyer, 2010), 
it was used to measure the overall compactness of an article’s knowledge structure. Rafols used a bibliographic coupling network 
to represent the knowledge structure. The nodes were the article’s references and the links measured connection strengths (based 
on shared references of references). The coherence of each article is then computed as the mean linkage strength of the network. 
In contrast, Soós and Kampis (2012) focused on the coherence of research institutions, expressed by the sum of weighted distances 
of the Web of Science (WOS) Subject Category1 (SC) in an institute’s publication prfile. Distances between WOSSCs are based on 
the global map of science (Leydesdorff & Rafols, 2009), and the weights assigned to the distances are the intensity of interactions 
between WOSSCs in an institute’s publication prfile, i.e., cooccurrences. Soós and Kampis (2012) further suggested multimodality 
could also rflect coherence, where multimodality is dfined as the size distribution of connected components of the network of 
SCs and quantfied by the Shannon-Wiener entropy (Shannon, 1948). Rafols (2014) later proposed tentatively that the concept of 
coherence of interconnected bodies of knowledge consists of density (number of links), intensity (strength of links) and disparity 
(degree of difference in two bodies of knowledge that links bridge), but its added value and feasibility remain uncertain (Rousseau 
et al., 2019).

Intermediation refers to the ability to link distant bodies of knowledge (Leydesdorff, 2007). Betweenness was first proposed by 
Leydesdorff (2007) as a measure of intermediation. Leydesdorff thinks journals with high betweenness are more interdisciplinary 
due to their capability to relate otherwise non-interacting journals. The average Local Clustering Coefficient (LCC) was also used to 
capture the effect of intermediation (Rafols et al., 2012; Soós & Kampis, 2012). The LCC of a body of knowledge rflects to what extent 
its neighbouring fields are directly connected (or integrated), indicating the tendency of transitivity in the neighbouring field, i.e., to 
what extent intermediation ``results'' in integration (Soós & Kampis, 2012). In Rafols et al. (2012), this concept was operationalised 
slightly differently by assigning weights (the proportion of publications from each body of knowledge) to each LCC. Soós and Kampis 
(2012) further proposed the network diameter (or the maximal shortest path length) to capture both coherence and intermediation. 
A low diameter means nodes are quickly reachable from each other, i.e., highly coherent. On the other hand, a high diameter indicates 
some constituent fields are distant but are still linked through a ``mediator'', implying the role of intermediation.

2.3. Funded research and interdisciplinarity

The ifluence of funding on research has been studied in various aspects (see Thelwall et al. (2023) for further detail), including 
research methods or goals (Serrano Velarde, 2018; Luukkonen & Thomas, 2016), team composition (Davies et al., 2022), researcher, 
team and institutional level productivity (Heyard & Hottenrott, 2021; Hottenrott & Lawson, 2017), output types (Thelwall et al., 
2023), and scholarly (Roshani et al., 2021; Mosleh et al., 2022; Coccia & Roshani, 2024a, 2024b), technological and social impacts 
of outputs (Heyard & Hottenrott, 2021; Yang, 2024).

Funding sources, especially those that routinely issue topic-focused calls (Viergever & Hendriks, 2016), seem to have the greatest 
ifluence on most science and health research which are resource intensive (Thelwall et al., 2023; Whitley et al., 2018); however, the 

1 Formerly known as the Institute for Scientific Information (ISI) Subject Category.
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degree of such ifluence depends on individual funders’ requirements (Serrano Velarde, 2018; Luukkonen & Thomas, 2016; Thelwall 
et al., 2023).

Funding has demonstrated great value to knowledge creation by facilitating scientific productivity (Heyard & Hottenrott, 2021; 
Hottenrott & Lawson, 2017). Funding also plays a key role in knowledge diffusion (Roshani et al., 2021; Mosleh et al., 2022; Coccia 
& Roshani, 2024a, 2024b), where funded research tends to be more often cited than unfunded research in a wide variety of fields 
including computer science, economics, physics, chemistry and medicine. Moreover, funded research also tends to produce higher 
technological impact (through citation by patent) and social engagement (through citation by Tweets) (Yang, 2024).

Studies on funded research output have been mostly based on publications associated with individual funders, e.g., the National 
Institutes of Health (NIH) (Jacob & Lefgren, 2011; Wahls, 2019; Packalen & Bhattacharya, 2020; Yang, 2024), the National Science 
Foundation (NSF) (Arora & Gambardella, 2006; Yang, 2024), the Swiss National Science Foundation (Heyard & Hottenrott, 2021), 
the Italian National Research Council (Arora et al., 2000), the Chilean National Science and Technology Research Fund (Benavente et 
al., 2012). The recent development of the SciSciNet (Lin et al., 2023) has opened the possibility for larger-scale analyses of research 
output and outcome generated by NIH and NSF funding (Yang, 2024). Yet, there are still two open questions: (i) limited attention has 
been paid to thoroughly study the ID of funded research output as the existing works mainly focused on funding proposals (Bromham 
et al., 2016; Nichols, 2014), and (ii) studying a more complete set of funded research beyond individual funder level remains a gap 
(Yang, 2024).

We address these gaps by identifying and comparing all funded and unfunded publications in the field of infectious disease research 
in the WOS. By regarding funded and unfunded research as two dynamic processes and portraying the development of their ID from 
a temporal network perspective, our work also addresses the frequently stressed limitation that existing analyses of IDR are often 
static (Rafols & Meyer, 2010; Wagner et al., 2011; Wang & Schneider, 2020; Rousseau et al., 2019). Lastly, categorising papers based 
on journal classfication systems causes inaccuracies (Wagner et al., 2011; Rafols, 2014; Rousseau et al., 2019) and such systems are 
often too coarse to capture knowledge integration at finer levels (Rafols et al., 2012). Therefore, instead of using journal classfication 
systems like the WOSSC, we conduct topic-level analysis based on a selected set of major infectious diseases.

3. Data and methods

3.1. Data source and extraction procedure

Infectious diseases continue to be a major global health issue with significant impact on human society (Baker et al., 2022), for 
example the COVID-19 pandemic, and the threat of climate change upon human health and infections (Mora et al., 2022). IDR is 
required to address this multifaceted challenge (Wilcox & Colwell, 2005). Knowledge integration across infectious diseases has already 
contributed greatly to clinical and research knowledge (Schwetz & Fauci, 2019). Following one of our co-author’s work Head et al. 
(2020), we based our study on research into 34 major infectious diseases.2 In addition here, we included coronavirus and diphtheria. 
The inclusion of coronavirus is due to its recent prominent role in the field of infectious disease research. The inclusion of diphtheria 
is because two other highly related terms, pertussis and tetanus, have already been included in the group (the DTP combination 
vaccine prevents against all three diseases and they are thus commonly considered together; the three diseases will be addressed by 
DTP onwards). This gives us 36 selected infectious diseases which were considered as the units of analysis in this paper. They account 
for $70 billion infectious disease research funding (65% of overall total) from G20 countries between 2000 and 2017 (Head et al., 
2020), and 94% of the total infectious disease burden3 in the 2021 Global Burden of Disease data.4

We selected the Web of Science (WoS) Core Collection database as our data source due to its extensive usage in the scientometrics 
studies (Birkle et al., 2020). The collection of publications on each disease can be seen as a body of knowledge (Hamburg, 2008), and 
thus the co-occurrence of diseases in the title, abstract or author keywords represents the practice of knowledge integration (National 
Academy of Sciences et al., 2005). We extracted, for each of the 36 diseases, both funded research and all research, the number of 
records containing the disease in their title, abstract, or author keywords, i.e., the number of occurrences. We also extracted, for both 
funded and all research, the number of records containing each possible pair of diseases in their title, abstract, or author keywords, 
i.e., the number of co-occurrences.

To retrieve maximum funded records efficiently, we adopt the method of the right-hand truncation search strategy in both the 
funding agency (FO) and funding grants (FG) field suggested in Liu et al. (2020), as detailed in Search Query 1. We refer to papers 
that have FO or FG information in the WoS as funded research (labelled ``F'')5 and those that don’t as unfunded research (labelled 
“U''). We searched only the document types of original research article, data paper, and proceeding paper, and we specifically 
excluded any withdrawn or retracted publications, as detailed in Search Query 2. The timespan considered in this paper is from 

2 The authors of Head et al. (2020) selected a group of 37 prominent infectious diseases for their funding versus disease burden analysis. Our selection excluded 
sexually transmitted infections and enteric infections because they are a higher level concept than others. We also added consideration of causal relations: trachoma 
is caused by chlamydia trachomatis but chlamydia also happens to be in the set, so we excluded trachoma.

3 Measured in Disability-Adjusted Life Years (DALYs). One DALY represents the loss of the equivalent of one year of full health.
4 Available from https://vizhub.healthdata.org/gbd-results/. (Date last accessed: 2024.9.4).
5 All research will be labelled ``A'' hereafter.
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1995 to 2022 inclusive.6 See Table A.1 for the search strategy for each disease7,8 as well as the total and funded number of records 
returned.

Search Query 1: FO = (A* OR B* OR C* OR D* OR E* OR F* OR G* OR H* OR I* OR J* OR K* OR L* OR M* OR N* OR O* 
OR P* OR Q* OR R* OR S* OR T* OR U* OR V* OR W* OR X* OR Y* OR Z* OR 0* OR 1* OR 2* OR 3* OR 4* OR 5* OR 6* OR 7* 
OR 8* OR 9*) OR FG = (A* OR B* OR C* OR D* OR E* OR F* OR G* OR H* OR I* OR J* OR K* OR L* OR M* OR N* OR O* OR P* 
OR Q* OR R* OR S* OR T* OR U* OR V* OR W* OR X* OR Y* OR Z* OR 0* OR 1* OR 2* OR 3* OR 4* OR 5* OR 6* OR 7* OR 8* 
OR 9*)

Search Query 2: DT = ((Article OR Data Paper OR Proceedings Paper) NOT (Retracted Publication OR Withdrawn Publication 
OR Retraction))

To explore the possibility that an instance of co-occurrence of diseases in the abstract of a paper is not because they are the 
primary research objective of the paper but merely a mention as an aside we carried out some manual checks on a sample of papers. 
For this purpose, we selected five pairs of representative infectious diseases (HIV-TB, Dengue-Zika, Tetanus-Diphtheria, HCV-HBV, 
Clamydia-Gonorreahea) which have important contributions to the system dynamics and performed a sample test of size 100 on each 
pair to examine the proportion of wrong identfications. As shown in Table A.2, we found that the false positive rates are consistently 
less than 3% and we found no bias towards particular disease pairs.

The extracted occurrences and cooccurrences of infectious diseases were recorded in tensors (𝐶𝐹 )36×36×28 for F and (𝐶𝐴)36×36×28
for A. An entry 𝑐𝑡

𝑖𝑗
of 𝐶𝐹 (or 𝐶𝐴) gives the cooccurrence count between disease 𝑖 and 𝑗 in F (or A) in time slice 𝑡9 if 𝑖 ≠ 𝑗, and 

the occurrence of 𝑖 otherwise. The tensor of U (𝐶𝑈 )36×36×28 is a direct result of element-wise subtraction between 𝐶𝐴 and 𝐶𝐹 . The 
data extraction was performed using the Web of Science API Lite10 in Python, and the network analysis was performed using R. For 
abbreviations of diseases used in this study, please refer to Table A.3.

We used one of the most widely-used normalisation measures in scientometrics to normalise the cooccurrence matrix, namely the 
cosine (Eck & Waltman, 2009) (also known as the Ochiai index (Zhou & Leydesdorff, 2016) or Salton’s index (Adnani et al., 2020)), 

i.e., 𝑤𝑡
𝑖𝑗
=

𝑐𝑡
𝑖𝑗√
𝑐𝑡
𝑖𝑖
𝑐𝑡
𝑗𝑗

. In our setting, the cosine normalises the cooccurrences between 𝑖 and 𝑗 at time slice 𝑡 by the geometric mean of 

the occurrences of 𝑖 and 𝑗 at 𝑡 when 𝑖 ≠ 𝑗, and thus measures the correlation between numbers of publications about diseases. When 
𝑖 = 𝑗, 𝑤𝑡

𝑖𝑗
= 0. By normalising 𝐶𝐴, 𝐶𝐹 and 𝐶𝑈 , we ended up with 𝑊𝐴, 𝑊𝐹 , 𝑊𝑈 , based on which we then performed the following 

analysis. Note that we regarded the collection of all WoS publications related to infectious diseases as the system of infectious disease 
knowledge, where 𝑤𝑡

𝑖𝑗
is the association, or the cognitive proximity, or the current extent of knowledge integration between disease 𝑖

and 𝑗 at time 𝑡. A high value of 𝑤𝑡
𝑖𝑗

implies an established knowledge link between the pair while a low value suggests a non-established 
state.

We also note an important limitation of using the WoS for funding analysis: funded research is under-represented in the database. 
The WoS has begun to collect funding information since Aug 2008, and the assignment of funding information of publications before 
this time has been done retrospectively (Liu et al., 2020), so likely a lesser proportion of funded papers have been identfied pre-2008 
compared to post-2008 as can be seen from Table A.4. However, we can see research on infectious diseases has much better coverage 
of funding information than the average level pre-2008 publications (around three times more), which enabled us to perform analysis 
on pre-2008 years. We acknowledge that the error rate of pre-2008 analysis would tend to be relatively larger, but we argue that the 
effect of this should not be substantial: we focus on correlations and not absolute numbers -- unless there is a bias in the un-identified 
funded research pre-2008, this should only cause noise and not systematically affect our results. In addition, the research practices of 
scientists could also be an underlying factor that has made funded research less identfiable (Álvarez Bornstein et al., 2017), which 
highlights the need to better regulate research and funding practices.

3.2. Network measures and analysis

We dfined a temporal network to model the evolution of the ID of infectious disease research, with the nodes being the bodies 
of infectious disease knowledge and links being their connection strength quantfied by the cosine. To quantify ID, we studied the 
coherence and intermediation measures of the constructed networks.11

We adopt a similar measure of coherence with Rafols and Meyer (2010), i.e., the mean linkage strength, due to its simplicity, 
although at a different level of aggregation. We used the mean node strength to represent the overall compactness of the knowledge 
system, i.e.,

6 The WoS did not include the author keywords for articles until 1991. The years 1991-1994 were excluded from our analysis as the link prfiles of these years 
were very volatile and did not seem to form coherent clusters with any of the rest of the years like the ones in Fig. 1.

7 Search terms for each disease are firstly picked based on experts’ advice and the entry terms (a list of synonyms) in the Medical Subject Heading (MeSH) database. 
A further selection of search terms was done after testing the added benfit of the search terms, i.e., search terms with low or no additionally identfied papers were 
dropped.

8 The search term of herpes in our study contains infections related to Herpes Simplex Viruses (HSV) and Shingles.
9 The 28 time slices correspond to years from 1995 to 2022.

10 The Web of Science API Lite: support search and data integration using Web of Science data returned as JSON or XML. https://developer.clarivate.com/apis/woslite
(Date last accessed: 2024.9.4).
11 Note that every measure discussed in this section is computed given a time 𝑡, so we omitted index 𝑡 for simplicity.
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𝑠 = 1 
𝑁

∑
𝑖 
𝑠𝑖 =

1 
𝑁

∑
𝑖 

∑
𝑗≠𝑖 

𝑤𝑖𝑗 (1)

where 𝑁 represents the number of nodes in the network. Note that the node strength 𝑠𝑖 is a measure of how well an infectious disease 
integrates knowledge locally.

Following Leydesdorff (2007), we adopted betweenness centrality (BC) (Brandes, 2001) to track node-level ID from the interme
diation perspective, i.e., one disease’s ability to bridge otherwise disjoint disease knowledge. BC of a node 𝑖 is computed as

𝑏𝑖 =
∑
𝑗≠𝑘 

𝑔𝑗𝑘(𝑖)
𝑔𝑗𝑘

(2)

where 𝑔𝑗𝑘 is the number of shortest path between any two nodes and 𝑔𝑗𝑘(𝑖) is the number of shortest path between two nodes going 
through node 𝑖.

Soós and Kampis (2012) proposed network diameter (or the maximal shortest path length) as a measure of both coherence and 
intermediation. This measure provides an upper bound of how quickly information flows from one place to another. We proposed a 
similar measure, the average shortest path length (ASPL) (Jahanshad et al., 2012), to capture the average shortest distance between 
infectious diseases. A low ASPL indicates that the disease network is compact. The shortest path length (Brandes, 2001) between 
node 𝑖 and 𝑗 is

𝑑(𝑖, 𝑗) = min
(

1 
𝑤𝑖ℎ

+⋯+ 1 
𝑤ℎ𝑗

)
(3)

with ℎ being intermediary nodes between node 𝑖 and 𝑗. ASPL is the average of 𝑑(𝑖, 𝑗) over all possible pairs of diseases (𝑖, 𝑗).
Closeness centrality (Freeman et al., 2002) offers a comparative perspective to betweenness centrality. As a node-level measure, 

it quantfies how close a disease is to all other diseases in the network. It is computed as

𝑐𝑖 =
1 

1
𝑛 
∑𝑛

𝑗=1 𝑑(𝑖, 𝑗)
(4)

where 𝑛 is the number of all reachable node from 𝑖.
Beyond coherence and intermediation measures proposed in earlier literature, we were also interested in clustering patterns of 

the infectious disease knowledge network. For this purpose, following Blondel et al. (2008), we evaluated the networks modular
ity and used the Louvain method (Blondel et al., 2008) to determine modules of interconnected diseases. Modularity is computed 
as

𝑄 = 1 
2𝑚

∑
𝑖,𝑗

(
𝑤𝑖𝑗 −

𝑠𝑖𝑠𝑗

2𝑚 

)
𝛿(𝑐𝑖, 𝑐𝑗 ) (5)

where 𝑚 is the sum of link weights, 𝑠𝑖 refers to the strength of node 𝑖, and 𝑠𝑖𝑠𝑗

2𝑚 is the expected link strength between 𝑖
and 𝑗 assuming a random distribution of connections which preserves the strength distribution across nodes. A high mod
ularity 𝑄 represents a well-defined community structure with many intra-community links and few links connecting sepa
rate communities, i.e., compartmentalisation (Cohen & D’Esposito, 2016), while a low 𝑄 indicates a weak community struc
ture.

4. Results

4.1. RQ1: identfication of temporal regimes in interdisciplinary research

Given two yearly slices of the correlation network at times 𝑡1 and 𝑡2, 𝑤𝑡1 and 𝑤𝑡2 , we can quantify the distance between them 
by the Euclidean distance, i.e., 

√∑
𝑖≠𝑗 (𝑤

𝑡2
𝑖𝑗
−𝑤

𝑡1
𝑖𝑗
)2. We then used bottom-up hierarchical clustering based on UPGMA (Unweighted 

Pair Group Method with Arithmetic mean) (Sokal & Michener, 1958) to partition the temporal evolution of publication patterns into 
distinct regimes. Further analysis of the obtained partitioning using the elbow method reveals three regimes for funded, unfunded 
and all research respectively (see Fig. 1) which we identify with coherent periods of time, i.e. 1995-2007 (F1),12 2008-2015 (F2), 
and 2016-2022 (F3) as regimes for funded research; 1995-2003 (U1), 2004-2015 (U2) and 2016-2022 (U3) for unfunded research; 
1995-2003 (A1), 2004-2015 (A2), and 2016-2022 (A3) for all research.13

Regimes for F and U were visualised in Fig. 2. Each visualisation represents the average network in the corresponding regime. 
We observe regimes F1 and U1 tend to be relatively weakly connected compared with later regimes, indicating a weaker level of 
knowledge integration. This can also be seen from Table 1 where the average node strength 𝑠𝐹 and 𝑠𝑈 in F1 and U1 are 0.24 and 0.35, 
the lowest across all regimes. We note the existence of a well-integrated community of four curable sexually transmitted infections 

12 We combined the single element clusters 1997 and 2004 with the bigger cluster to make F1 continuous as all years within F1 are already quite distant compared 
with that of F2 and F3. Years in F1 being more distant might be attributed to the larger noise in funded research as it is under-represented pre-2008 in the WoS, as 
discussed in Section 3.1. Visualisations with and without 1997 and 2004 were compared in Fig. A.1.
13 Note that unfunded research has the same regimes as all research, so the following analysis will only be focusing on funded and unfunded regimes.
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Fig. 1. Bottom-up hierarchical clustering of yearly time slices for the funded, unfunded and aggregated networks. Hierarchical clustering using UPGMA was performed 
for all (A), funded (F), and unfunded (U) networks respectively. The highlighted identfied significant clusters were based on the elbow method as in Fig. A.2 in the 
appendix.

(STIs), i.e., chlamydia, gonorrhoea, syphilis and trichomoniasis in F1 and U1. The following links in F1 and U1 also demonstrate strong 
extents of integration: Hepatitis B (HBV) and Hepatitis C (HCV), dengue and yellow fever, varicella and herpes,14 and diphtheria and 
tetanus (especially in U1).

Investigating the 2nd temporal regime, we observe that both F2 and U2 are more densely connected compared with the previous 
regimes, as can also be seen from 𝑠𝐹 and 𝑠𝑈 rising to 0.35 and 0.43, respectively, see Table 1. What stands out is that the knowledge 
integration among the three diseases of DTP is strongly reinforced.

Moving to F3 and U3, we observe that DTP gets integrated further, and the group of vector-borne (Aedes mosquitoes) diseases, 
i.e., yellow fever, zika and dengue, becomes relatively well integrated. Throughout the entire time period, the continuous integration 
of DTP knowledge is very likely caused by an increase in vaccination-related research. The sudden increase in the integration between 
zika, yellow fever, and dengue in the last regime is highly likely due to the increased attention on zika and its closely related neighbours 
on the knowledge network, as a reaction towards the emergence of zika as a public health emergency in 2016.15 The integration 
of the four curable STIs (chlamydia, gonorrhoea, syphilis and trichomoniasis) and the group of hepatitis infections is found to be 
relatively stable, which might indicate an already well-established knowledge structure in those su-fields.

We measure individual disease contributions to system change by characterising each disease’s relative impact in terms of relative 
link strength change 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 versus the volatility 𝜎(𝑑𝑖𝑓𝑓 [𝑠𝑖(𝑡)]) in its time evolution of link strengths. More precisely, we dfined 
𝜎(𝑑𝑖𝑓𝑓 [𝑠𝑖(𝑡)]) to be the standard deviation of the change in node strength 𝑠𝑖 between consecutive years in the regime (𝑑𝑖𝑓𝑓 represents 
differencing of the time series), and 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 to be the change of node strength from the beginning to the end of a regime normalised 

to the average level of change of all nodes, i.e., if a regime starts from year 𝑡1 and ends in year 𝑡2, 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 =
𝑠𝑖,𝑡2−𝑠𝑖,𝑡1|||𝑠𝑡2−𝑠𝑡1 ||| , where 𝑠𝑖,𝑡2

represents the mean of 𝑠𝑖 across 𝑡2, 𝑡2 − 1, 𝑡2 − 2, 𝑠𝑖,𝑡1 represents the mean of 𝑠𝑖 across 𝑡1, 𝑡1 + 1, 𝑡1 + 2, and 𝑠𝑡2 and 𝑠𝑡1 represents the 
average of 𝑠𝑖,𝑡2 and 𝑠𝑖,𝑡1 over all 𝑖 respectively. An increase in 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 indicates the presence of relatively stronger local connections, 
thus being more integrated locally during the regime. In Fig. A.3, we plotted the relative link strength change 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 on the y
axis versus the volatility 𝜎(𝑑𝑖𝑓𝑓 [𝑠𝑖(𝑡)]) on the x-axis. We observe that the changes in the different regimes seem to be driven by 
different diseases (Fig. A.3). Hepatitis A (HAV), chlamydia and dengue gain relatively more strength in F1 while yellow fever and 
three curable STIs (gonorrhoea, syphilis, and trichomoniasis) stand out in U1 (Fig. A.3). DTP emerges during F2 while varicella 
and pertussis stand out during U2. Throughout F3, there is a significant gain in the strength of coronavirus and zika, while for U3, 
coronavirus, tetanus and ifluenza stand out. All of the highlighted infectious diseases emerge with rather high volatility. The strong 

14 Varicella is linked with shingles as they are both caused by Varicella-Zoster Virus (VZV).
15 On 01 Feb 2016, WHO declared Zika and its complications constitutes a Public Health Emergency of International Concern. See the discussion for further details.
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Fig. 2. Network visualisation of funded and unfunded temporal regimes. The link strength 𝑤𝑖𝑗 shown in the visualisation of the regime is computed by the average of 
the link strength across the regime. Node size of disease 𝑖 represents the proportion of publications on 𝑖 during the regime. The network layout was produced using 
R based on the Fruchterman-Reingold method (Fruchterman & Reingold, 1991) applied on F1. The community structure was detected based on the Louvain method 
(Blondel et al., 2008).

emergence of coronavirus-related bodies of knowledge in F3 and U3 is likely due to the huge attention paid to the COVID-19 global 
pandemic since 2019.

4.2. RQ2: compartmentalisation and integration of funded and unfunded research

In Table 1 we reported the average node strength 𝑠, the modularity 𝑄 and the average shortest path length 𝐴𝑆𝑃𝐿 of the averaged 
networks for the regimes identfied in Section 4.1. Comparing trends in 𝑠, 𝑄 and 𝐴𝑆𝑃𝐿 for the different time regimes we make the 
following observations. First, regarding the average node strength 𝑠, we find 𝑠𝐹 increases from 0.24 to 0.35 to 0.44 and 𝑠𝑈 from 
0.35 to 0.43 to 0.54. This increase in the intensity of connection indicates that funded and unfunded research has become more 
interdisciplinary. Second, regarding the average shortest path length 𝐴𝑆𝑃𝐿, we note a substantial decrease over time. The observed 
trend indicates a tendency towards higher interdisciplinarity in funded and unfunded research through stronger intermediation. 
Third, regarding the modularity 𝑄, we find an opposite trend with 𝑄𝐹 increasing and 𝑄𝑈 decreasing, meaning that funded research 
becomes more compartmentalised while unfunded research becomes more globally integrated.

From the above, we infer that knowledge integration in funded research tends to reinforce community structure. This indicates 
that funded research tends to be more specialised and stays on the conservative side, i.e., it focuses on deepening already established 
relationships of diseases (Rzhetsky et al., 2015; Foster et al., 2015). Knowledge integration in unfunded research, on the other hand, 
tends to take place through weakening community structures, which indicates that unfunded research is relatively less conservative 
and focuses more on bridging distant diseases.16 These interpretations are further supported by results shown in Fig. A.5 and Fig. A.6, 
where we have compared relative increments in link strengths between time periods for the strongest (top 5%) and weaker (bottom 
50%) links in the evolution of IDR in funded and unfunded research. We note, that the strongest links in funded research have 
consistently gained more in link strength compared to unfunded research (relative gains 4.96 > 3.74 from 1995-2008 to 2009-2015 
and even more so 4.13 > 2.67 from 2009-2015 to 2016-2022). In contrast, for the majority of weaker links, links have gained more 
in strength for unfunded research than for funded research (relative gains 0.26 > 0.16 from 1995-2008 to 2009-2015 and 0.22 >

0.15 from 2009-2015 to 2016-2022). Both observations make it very clear that strength gains in funded research tend to be more 

16 The observation that unfunded research is more widely exploratory in terms of ID is consistent with the fact that unfunded researchers have a higher degree of 
freedom in setting their own goals (Edwards, 2022).
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Table 1
Average node strength 𝑠, modularity 𝑄 and average shortest path 
length 𝐴𝑆𝑃𝐿 for funded (F) and unfunded (U) regimes.

Periods F1:1995-2007 F2:2008-2015 F3:2016-2022 
𝑠𝐹 0.24 0.35 0.44 
𝑄𝐹 0.46 0.47 0.49 
𝐴𝑆𝑃𝐿𝐹 127 98 89 
Periods U1:1995-2003 U2:2004-2015 U3:2016-2022 
𝑠𝑈 0.35 0.43 0.54 
𝑄𝑈 0.45 0.43 0.40 
𝐴𝑆𝑃𝐿𝑈 92 77 64 

Fig. 3. The evolution of the level of knowledge integration in funded research compared with unfunded research for (A) U1:1995-2003, U2:2004-2015 and U3:2016
2022; and (B) F1:1995-2007, F2:2008-2015 and F3:2016-2022. For each plot, the y-axis represents the average link strength of a pair of infectious diseases in funded 
research and the x-axis in unfunded research. Each error bar represents the standard error of the link strength of a pair within the regime. The red line represents the 
45-degree line: any link lying on the line represents the same level of ID in funded and unfunded research, above (below) indicates more (less) funding is allocated to 
the pair than should be. A regression line is fitted to the points and the slope of the fitted regression line, the standard error of the slope, and the R-squared value of 
the fitted regression line were reported in the top left corner. The shaded area around the fitted line represents one standard error of the slope. Yellow labels represent 
the top seven ifluential links that appeared in F3 or U3, and their corresponding positions were shown in F2, F1, U2, and U1 plots.

aligned with already strong connections, whereas strength gains in unfunded research tend to be more exploratory, reinforcing weak 
connections.

4.3. RQ3: analysing research funding into interdisciplinary research

In Section 4.2, observing that in contrast to unfunded research funded research tended to become more compartmentalised, we 
noted different trends in the organisation of funded and unfunded research over time. Here, we are interested in a more complete 
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Table 2
Top three ranked diseases, ranked by node strength 𝑠𝑖 , betweenness cen
trality 𝑏𝑖 , and closeness centrality 𝑐𝑖 for the funded (F) and unfunded (U) 
regimes.

Regimes F1:1995-2007 F2:2008-2015 F3:2016-2022

Top Three 𝑠𝑖 HIV(0.59) 
Gono(0.51) 
Chlamy(0.51)

Teta(0.89) 
Diph(0.86) 
Pert(0.71)

Teta(1.18) 
Diph(1.17) 
Pert(1.03)

Top Three 𝑏𝑖 HIV(0.44) 
TB(0.24) 
Leprosy(0.20)

HIV(0.41) 
Malaria (0.36) 
HBV(0.18)

HIV(0.32) 
Malaria(0.24) 
Pneum(0.15)

Top Three 𝑐𝑖 HIV(0.013) 
TB(0.012) 
HCV(0.012)

HIV(0.016) 
HCV(0.015) 
Syphilis(0.015)

HIV(0.016) 
HCV(0.015) 
TB(0.015)

Regimes U1:1995-2003 U2:2004-2015 U3:2016-2022

Top Three 𝑠𝑖 Diph(0.86) 
Teta(0.83) 
HBV(0.82)

Diph(1.26) 
Teta(1.19) 
Pert(0.99)

Diph(1.46) 
Teta(1.41) 
Pert(1.32)

Top Three 𝑏𝑖 HIV(0.30) 
HBV(0.29) 
Syphilis(0.20)

HIV(0.27) 
Malaria(0.22) 
TB(0.16)

HIV(0.25) 
Malaria(0.17) 
Dengue(0.16)

Top Three 𝑐𝑖 HIV(0.017) 
HBV(0.016) 
HCV(0.016)

HIV(0.020) TB 
(0.019) 
HBV(0.018)

HIV(0.023) 
Measles(0.022) 
Diph(0.022)

understanding of how research investment has driven the evolution of interdisciplinarity. For this purpose, one could see unfunded 
research as representing general scientific interest and compare this to research driven by funding allocation.

To operationalise this comparison, for each temporal regime, we measured average correlations between pairs of diseases in 
funded and unfunded research and plotted them against each other in Fig. 3. Note that in Fig. 3 we show results based on partitions 
for the temporal regimes in both U and F (top and bottom rows), which show essentially the same trends. The 45-degree line in Fig. 3
represents a situation where research corresponding to a pair of diseases is as well-funded as represented in general scientific interest, 
i.e. in unfunded research. Inspecting the figure, we first observe that most of the pairs stay below the 45-degree line, indicating that the 
level of interdisciplinarity in funded research is generally lower than in unfunded research. In other words, IDR in infectious disease 
research tends to be underfunded. However, this changes over time as the slope of the fitted regression line keeps increasing and 
approaches one, getting closer to where funding allocation matches overall scientific attention. Simultaneously, also the R-squared 
value increases over time, indicating an increasingly closer alignment between research investment and scientific interest regarding 
the importance of interdisciplinary infectious disease areas.

Further to the above, Fig. 3 also allows to analyse how well a pair of diseases is funded relative to all other pairs. Visually, 
such relative over- or underfunding is indicated by whether the corresponding datapoint is above or below the fitted regression line. 
For instance, in Fig. 3, we highlight seven pairs of diseases that received the most scientific attention in the last temporal regime. 
Looking at trends over time, we note that in F1 and U1, the research area chlamydia-gonorrhoea stays above the fitted regression line 
indicating a relatively well-funded status, whereas the DTP-related areas stay slightly below the line indicating they are relatively 
underfunded. These observations remain true for F2 and U2, except that HCV-HBV becomes slightly underfunded and DTP-related 
areas move slightly closer to the fitted line. In F3 or U3, dengue-zika becomes very well-funded relative to other areas whereas 
HCV-HBV becomes relatively underfunded.

4.4. RQ4: comparing the roles of diseases in knowledge integration

To identify the diseases with the strongest global and local impact, we ranked the diseases by strength, betweenness and closeness. 
Table 2 reports the top three ranked strengths 𝑠𝑖, betweenness centrality 𝑏𝑖 and closeness centrality 𝑐𝑖 of the infectious diseases for 
F and U regimes. 𝑠𝑖 represents the knowledge integration at a local level and 𝑏𝑖 and 𝑐𝑖 at a global level, thus comparing these three 
allows us to compare the local and global impact of the top-ranked diseases. Comparing the different time regimes we make the 
following observations. Regarding the betweennees centrality 𝑏𝑖 and closeness centrality 𝑐𝑖, we find HIV has the highest 𝑏𝑖 and 𝑐𝑖 in 
all regimes for both F and U, followed by other prominent diseases like tuberculosis, HBV, or malaria. This indicates that prominent 
infectious diseases like HIV stay in the centre of the network and bridge distant bodies of knowledge. Regarding 𝑠𝑖 , we find DTP are 
the top three in 𝑠𝑖 in F2, F3, U2 and U3 with a remarkable increase in magnitude through time, but none of DTP appears in the top 
three 𝑏𝑖 of F or U regimes. This indicates that DTP stay on the periphery of the network and only enhance established connections 
between bodies of knowledge.

We investigated the relative change in the diseases’ betweenness 𝑟𝑏,𝑤𝑖𝑡ℎ𝑖𝑛 with respect to their volatility 𝜎(𝑑𝑖𝑓𝑓 [𝑏𝑖(𝑡)]) in Fig. A.4. 
𝑟𝑏,𝑤𝑖𝑡ℎ𝑖𝑛 and 𝜎(𝑑𝑖𝑓𝑓 [𝑏𝑖(𝑡)]) were calculated in analogy to 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 and 𝜎(𝑑𝑖𝑓𝑓 [𝑠𝑖(𝑡)]) in Section 4.1. Note that 𝑟𝑏,𝑤𝑖𝑡ℎ𝑖𝑛 for each in
fectious indicates a change in its ability to act as a bridge between other diseases relative to the average change in betweenness of 

Journal of Informetrics 19 (2025) 101634 

10 



A. Du, M. Head and M. Brede 

all infectious diseases within a regime. From Fig. A.4, we note that HCV, HAV and HIV have gained notable betweenness during F1, 
while dengue and HAV have gained the most betweenness during U1. Malaria has gained strongly in betweenness in F2 with high 
volatility, whereas during U2 pertussis and varicella have gained betweenness with moderate volatility. Throughout F3, coronavirus 
has gained significant betweenness with moderate volatility, while during U3 it is ebola, pertussis and measles that have gained 
notable betweenness. The significant gain of coronavirus is likely due to the COVID-19 pandemic, but interestingly this pattern is not 
found in unfunded research.

4.5. RQ5: quantifying the role of coronavirus research in IDR

To further explore the role of the coronavirus pandemic in infectious disease research, in Fig. 4(a) we reported the changing 
ranking of coronavirus research in terms of the number of publications, node strength and betweenness over time. We also marked 
two important coronavirus-related public health events in the figure, i.e., the 2002-2004 SARS outbreak (yellow regions) and the 
2019-2022 COVID-19 pandemic (red regions).

For both the SARS and COVID-19, we observe a significant rise in the publication ranking of both F and U. During SARS the 
publication ranking of coronavirus broke into the top 15 for F and top 10 for U, while during COVID-19 it attained the top rank 
for both F and U. Unsurprisingly, we see that both events led to an increase in scientific attention, with COVID-19 to the greatest 
extent. This is consistent with the result in Fig. 2 where the proportion of coronavirus-related research (represented by the node 
size) outweighs HIV and becomes the highest in F3 and U3. However, in terms of the ranking of node strength, despite experi
encing moderate ranking gains during SARS and COVID-19, coronavirus stayed out of the top 15 for both F and U. This might 
indicate that the outbreaks caused some local knowledge integration around coronavirus but not at a significant extent at the system 
level.

Moreover, in terms of the betweenness ranking, U exhibited only minor fluctuations around the 20th to 25th during both events, 
while F showed a minor drop around the 20th rank during SARS but a considerable jump from the 30th to a top 10 position during 
COVID-19. Such a jump might indicate coronavirus has become increasingly important by moving more into the centre of the infec
tious disease network and starting to bridge distant knowledge. However, even though coronavirus has had a very important role in 
terms of the number of publications, its systemic impact on the interdisciplinarity of infectious disease research has been relatively 
small to date. This might be due to the fact that coronavirus is conceptually not so strongly related to other disease areas. Another 
potential reason is there perhaps exists a temporal delay before systemic impact is observed.

To explore the potential for delays in the systemic impact of COVID-19 on coronavirus research, we compared to another infectious 
disease with a sudden increase in prominence for which a longer timeframe of observations is available. This is provided by the zika 
virus which strongly gained in attention during the global outbreak between 2015 and 2016. For both F and U, strength seemed to 
immediately follow publication ranking during the outbreak 2015-2016 (Fig. 4(b)), which is different to COVID-19. The betweenness 
ranking in F lagged a bit behind but then became quite volatile, while in U there seemed no delay. We conclude there is no sufficient 
evidence for a delay in the systemic impact of the zika outbreak. Funded research of zika has demonstrated extraordinary local 
integration (perhaps with other vector-borne diseases) with strength ranking being the best performer among all three rankings 
(peaked at the top 5 and sustained at that level ever since). This result on funded research on zika shows consistency with results in 
Section 4.1, Section 4.2, and Section 4.3.

5. Discussion

We summarise the results and discuss the contribution of this study in Section 5.1, then discuss the implications of the results, 
limitations and future work in Section 5.2.

5.1. Summary of results and contributions

We have investigated the evolution of interdisciplinarity in funded and unfunded research on infectious diseases over the period 
1995-2022. Constructing correlation networks of research output relating to pairs of diseases, we identfied three regimes for funded 
and unfunded research respectively where each regime is a coherent period of time characterised by a particular knowledge structure. 
Based on the regimes, we found that both the funded and unfunded research had an increase in the extent of knowledge integration 
through time in terms of coherence and intermediation. However, while increases in interdisciplinarity in funded research took place 
through compartmentalisation, increases in unfunded research have typically occurred through global integration. Besides, we also 
found that IDR on infectious disease is underfunded in general but also note that this effect has decreased through time. Our analysis 
further allows to identify individual well-funded and underfunded interdisciplinary areas.

Investigating the role of individual diseases in these trends, we found IDR on prominent diseases like HIV, malaria and tuberculosis 
has strong bridging effects, while IDR on diphtheria, tetanus, and pertussis has strong local enhancement. Lastly, we found that 
coronavirus has attracted the most publications in infectious disease research since the emergence of COVID-19. In spite of this, 
however, the systemic impact of coronavirus research to date on infectious disease knowledge integration has been relatively small.

The results of this study contribute to the understanding of the roles played by the research on individual infectious disease in 
interdisciplinary knowledge generation, and the relationship between global public health emergencies and interdisciplinary research 
efforts. These could provide valuable insights for future health priority setting, for example with horizon scanning for new and 
emerging threats to health, such as pandemic planning.
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Fig. 4. Temporal change in the ranking of the annual number of publications, strength and betweenness of (a) coronavirus-related publications (b) zika-related 
publications in the funded and unfunded disease network 1995-2022. The yellow area in (a) indicates the SARS outbreak 2002-2004, and the red area in (a) indicates 
the COVID-19 outbreak 2019-2022. The red area in (b) indicates the zika outbreak 2015-2016.

Overall, this research presents a generalisable framework to examine the impact of funding in interdisciplinary knowledge creation 
and provides important insights to science policy.

5.2. Implications, limitations and future work

Conservatism in scientific knowledge (Foster et al., 2015; Rzhetsky et al., 2015) manifests in infectious disease research through a 
compartmentalised structure shaped by funding patterns. This trend aligns with broader observations by Park et al. (2023) that scien
tific disruptiveness and innovation are declining due to an over-reliance on a narrower scope of existing knowledge—a ``conservative 
trap'' (Fortunato et al., 2018). The conservatism in idea selection in science comes down to scientists’ inclination to prefer productivity 
over riskier innovation (IDR for instance), where the rewards of additional impact do not compensate for the risk of publishing noth
ing (Fortunato et al., 2018). Research institutions and funding agencies should encourage intelligent risk-taking through establishing 
mechanisms that diversify risks across a portfolio of scientific projects during evaluation (Rzhetsky et al., 2015), perhaps adopting 
models like the group-based evaluations at Bell Labs or the people-centred approach of the Howard Hughes Medical Institute.

Such conservatism could also be attributed to and reinforced by rigid disciplinary-based research evaluations (Rousseau et al., 
2019; Woelert & Millar, 2013; Rylance, 2015; Fontana et al., 2022) where evaluators that are subject to bounded rationality and 
hold disciplinary-based standards tend to penalise novelty (Boudreau et al., 2016; Packalen & Bhattacharya, 2020; Woelert & Millar, 
2013). As a consequence, despite being repeatedly advocated in science policy documents (Woelert & Millar, 2013), IDR becomes 
systematically disadvantaged (Bromham et al., 2016), forming the ``paradox of interdisciplinarity'' (Woelert & Millar, 2013). Ad
dressing this might require a dual approach: relaxing stringent classfication systems, despite the political and bureaucratic costs 
(Woelert & Millar, 2013), and directly channelling support to interdisciplinary initiatives (Lyall et al., 2013) through schemes like 
the UKRI’s cross research council responsive mode pilot scheme or the Gates Foundation’s Grand Challenges. Moreover, establishing 
interdisciplinary research centres, as the NSF has done, could further support this shift, although the impact of such centres should 
be continuously assessed to cofirm their efficacy (Woelert & Millar, 2013).

The rising consistency between funded and unfunded research might suggest a better allocation of funding in the sense that 
interdisciplinary research areas with high scientific interest have been addressed by research funding. However, this would need 
further in-depth examination as we did not take into account the complex interplay between funded and unfunded research in our 
study.

We note that the focus of our work is on topic-level ID instead of ID based on conventional classfication systems. Looking at a 
specific field like infectious disease research and considering the sub-topics allows us to capture the more granular level dynamics 
of knowledge integration that has typically been overlooked by past research (Rafols & Meyer, 2010; Rafols, 2014). However, we 
note that the granularity of the choice of classfications is likely to have an impact on the resulting ID (Rousseau et al., 2019) and we 
leave an in-depth examinations of the effects of granularity for future work. We also note that although this research focuses on the 
dynamics of infectious disease research, the proposed framework is generalisable to any other research field.

We distinguished (the research on) infectious diseases with two different patterns of knowledge integration: diseases that tend 
to integrate locally (e.g. DTP) and diseases that tend to integrate globally (e.g. HIV, tuberculosis, and malaria). There is no simple 
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answer to what drives these integrations as the collection of knowledge on infectious diseases spans multiple domains including 
pathogenesis, diagnosis, cause, treatment, prognosis, spread, prevention, social impact and policy (Hamburg, 2008). However, there 
may be fundamentally two types of driving factors: intentional or unintentional (Wagner et al., 2011; Glänzel & Debackere, 2022). 
Policymakers, funders and researchers have been targeting specific groups of diseases to meet their respective priorities and goals: 
these are intentional efforts, and they may tend to focus on more established groups of diseases that have been associated with great 
disease burdens at that time. For instance, the WHO has created global health programmes focusing on Hepatitis B and C,17 STIs,18

and vector-borne infections.19 Therefore, it might be that emergence of the diseases with strong local integration is the result of such 
intentional effort. For example, DTP, the diseases found with the largest extent of local integration, have been a part of the WHO 
Expanded Programme on Immunisation,20 and a focus of Gavi, the Vaccine Alliance,21 and there has been ongoing development of 
a variety of DTP-related combination vaccines.22

Unintentional factors like discoveries on biological associations, patterns of comorbidity, or a technology or knowledge spill-over 
across diseases could all play a role in advancing knowledge integration. HIV, tuberculosis, and malaria being the main drivers of 
global integration, account for 52.1% of total infectious disease funding from G20 countries in 2000-2017 while HIV alone accounts 
for 40.1% of total funding with 42.1 billion US dollar (Head et al., 2020). The substantial resources specifically devoted to HIV 
research have led to collateral benfits to other disease areas (Schwetz & Fauci, 2019). Some examples include advancing antiviral 
drug development (on hepatitis C), improving vaccine research techniques (on ebola, zika, and ifluenza), enhancing understanding 
of immunology (on the role of 𝐶𝐷4+ 𝑇 cells in fighting other infectious diseases and certain cancers) and advancing structural 
biology (on structure-based vaccine design that can be applied to other pathogens) (Schwetz & Fauci, 2019). Such unintentional but 
broad spin-offs might have enabled research on prominent diseases like HIV to bridge a wide range of bodies of knowledge and drive 
knowledge integration in the field of infectious disease research. Further disentanglement of different mechanisms behind integration 
might require identifying research fields and types of science of the publications on infectious diseases, and we leave this task to future 
research.

We also found that the number of publications on coronavirus has skyrocketed since COVID-19 emerged. The generated scientific 
knowledge of coronavirus research has been informing public health responses, treatments, and vaccine development (Micah et 
al., 2023). However, it has been argued that this surge rflects opportunism by both researchers and journals (Clark, 2023). For 
researchers, there has been a ``covidisation'' of research to remain relevant and secure funding; for journals, there has been a loose 
“gate-keeping'' followed by fraudulent and poor quality research but eventually higher impact factors due to bulk citations (Clark, 
2023; Glasziou et al., 2020). Despite the surge in publications, the systemic impact of coronavirus on IDR was found to be fairly 
small. We suspected there might be a temporal delay for the systemic impact to catch up, but after validating the idea on the zika 
outbreak we found no evidence for such a delay. We encourage future research to further investigate this in depth.

6. Conclusion

This research provides a generalisable framework to examine the impact of funding in interdisciplinary knowledge creation. 
There is limited money available for global health research and development, especially from public and charitable funders. Thus, 
we must invest wisely. Effective research funding is vital in driving breakthroughs in science and technology. However, we caution 
that funded research output has witnessed a growing conservatism in the past decades, potentially slowing down scientific progress. 
We urge funding agencies and policymakers to better recognise and reward interdisciplinary contributions. Funding agencies and 
research institutions should prioritise mechanisms that encourage intelligent risk-taking.
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Appendix A

Table A.1

Search terms, total and funded number of records for each disease from 1995 to 2022. The data extraction was 
performed on 2024.03.29.

Disease Search Term A Records F Records 
Coronavirus ``COVID'' OR ``COVID-19'' OR ``Coronavirus'' OR 

“Corona virus'' OR ``2019-nCoV'' OR ``SARS-CoV'' 
OR ``MERS-CoV'' OR ``Severe Acute Respiratory 
Syndrome'' OR ``Middle East Respiratory 
Syndrome''

284084 120371

HIV ``HIV'' OR (``AIDS'' AND (immun* OR patient* OR 
epidem* OR pandemic*)) OR ``Human 
immunodficiency virus'' OR ``Acquired Immune 
Dficiency syndrome'' OR ``acquired 
immunodficiency syndrome''

277242 143086

Pneumonia ``Pneumonia'' OR ``pneumonias'' OR ((lower 
respiratory tract infection*) OR (severe 
respiratory tract infection*))

106260 40569

Tuberculosis ``Tuberculosis'' 102360 48078

Influenza (``flu'' AND (pandemic* OR vaccin* OR shot* OR 
season*)) OR ``ifluenza''

74697 44141

Hepatitis C ``Hepatitis C'' OR (``hcv'' AND (infect* OR virus* 
OR patient* OR hepatitis OR liver))

68295 28374

Malaria ``Malaria'' OR ``Malarial'' OR Plasmodium infect* 65608 39227

Salmonella ``Salmonella'' 61690 31563

Hepatitis B ``Hepatitis B'' OR (``hbv'' AND (infect* OR virus* 
OR patient* OR hepatitis OR liver))

57374 26185

Herpes (``HSV'' AND (infect* OR vaccin* OR 1 OR 2 OR 
virus*)) OR ``Herpes'' OR ``Shingles''

37844 17525

Urinary Tract Infection ``Urinary Tract Infect*'' OR (``UTI'' AND (E. coli 
OR antibiotic OR chlamydia OR Patient*))

30919 10037

Meningitis ``Meningitis'' 27475 8692

Dengue ``Dengue'' 22639 13916

Chlamydia ``Chlamydia'' OR ``Chlamydiae'' OR ``Chlamydial'' 17801 8137

Leishmaniasis ``leishmaniasis'' 17421 9651

Pertussis ``Pertussis'' OR ``whooping cough'' 15864 6943

Measles ``Measles'' 11464 4622

Tetanus ``Tetanus'' 10857 4462

Chagas ``chagas'' OR ``American trypanosomiasis'' 10684 6126

Syphilis ``syphilis'' 10313 3810

Varicella ``Varicella'' OR ``Chickenpox'' 9049 3032

Schistosomiasis ``Schistosomiasis'' 8833 4685

Zika ``Zika'' 8182 6129

Rabies ``Rabies'' 7935 3540

Ebola ``Ebola'' OR ``Ebolavirus'' 7559 4565

Hepatitis A ``Hepatitis A'' OR (``hav'' AND (infect* OR virus* 
OR patient* OR hepatitis OR liver))

7458 2367

Diphtheria ``Diphtheria'' 7299 3536

Leprosy ''Leprosy'' 6963 2262

Hepatitis E ''Hepatitis E'' OR (``hev'' AND (infect* OR virus* 
OR patient* OR hepatitis OR liver))

5080 2747

Gonorrhoea ``N gonorrhoeae'' infect* OR ``Neisseria 
gonorrhoeae'' Infect* OR ``Gonorrhoea''

4932 2543 
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Table A.1 (continued)

Disease Search Term A Records F Records 
Yellow fever ``yellow fever'' 4245 2464

filariasis (filaria* AND (lymph* OR Elephantia* OR 
BANCROFTI* OR MALAYI OR Brugia*))

3723 1972

trypanosomiasis ``Sleeping Sickness'' OR ``African trypanosomiasis'' 
OR ``Trypanosoma brucei gambiense'' OR 
“Trypanosoma brucei rhodesiense''

3571 2301

Scabies ``Scabies'' 2126 615

Onchocerciasis ``Onchocerciasis'' 1730 802

Trichomoniasis ``Trichomoniasis'' 1569 770 

Table A.2

False positive rate of knowledge integration in 
a paper’s abstract considering five representative 
pairs of infectious diseases. The sample size for 
each pair is 100. The false positive rates are consis
tently less than 3% and we found no bias towards 
particular disease pairs.

Pair False Positive Rate 
HIV-TB 2% 
Dengue-Zika 1% 
Tetanus-Diphtheria 0% 
HCV-HBV 2% 
Clamydia-Gonorreahea 3% 

Table A.3

Disease names and abbreviations used in this study.

Abbreviation Disease 
Corona Coronavirus 
HIV HIV 
Pneum Pneumonia 
TB Tuberculosis 
Influenza Influenza 
HCV Hepatitis C 
Malaria Malaria 
Salm Salmonella 
HBV Hepatitis B 
Herpes Herpes 
UTI Urinary Tract Infection 
Mening Meningitis 
Dengue Dengue 
Chlamy Chlamydia 
Leishma Leishmaniasis 
Pert Pertussis 
Measles Measles 
Teta Tetanus 
Chagas Chagas 
Syphilis Syphilis 
Vari Varicella 
Schisto Schistosomiasis 
Zika Zika 
Rabies Rabies 
Ebola Ebola 
HAV Hepatitis A 
Diph Diphtheria 
Leprosy Leprosy 
HEV Hepatitis E 
Gono Gonorrhoea 
YF Yellow Fever 
Fila Filariasis 
Trypano Trypanosomiasis 
Scabies Scabies 
Onchocer Onchocerciasis 
Trichomo Trichomoniasis 
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Table A.4

The number and proportion of funded publications through time in the WOS Core Collection. All WOS: the total number of WoS publications (filtered 
by SQ1). F WOS: all funded WoS publications (filtered by SQ1 and SQ2). WOS F%: the proportion of funded WoS publications. All 36: the total number 
of WoS publications on the 36 diseases (filtered by SQ1 and all 36 diseases’ search terms joined by ‘OR’ in the Topic field). F 36: the total number of 
WoS publications on the 36 diseases (filtered by SQ1 and SQ2 and all 36 diseases’ search terms joined by ‘OR’ in the Topic field). 36 F%: the proportion 
of funded WoS publications on the 36 diseases. Data extraction was done on 10/04/2024. The drop in 36F% starting the year 2020 was due to the 
mass increase in coronavirus publication coupled with a low rate of identfied funded research as shown in Table A.5.

Year WOS F% 36 F% All WOS F WOS All 36 F 36 
1995 0.06 0.18 798461 43966 18818 3372 
1996 0.05 0.17 886477 47519 22566 3801 
1997 0.05 0.17 898426 47278 22952 3853 
1998 0.05 0.17 923073 47735 23595 4097 
1999 0.05 0.17 897754 48810 24177 4161 
2000 0.05 0.17 939156 47548 24608 4063 
2001 0.05 0.16 933384 48926 24073 3922 
2002 0.05 0.16 951628 50729 24596 3910 
2003 0.05 0.16 1008291 54242 25677 4156 
2004 0.06 0.17 1050680 59610 27334 4727 
2005 0.06 0.19 1179694 75764 29187 5622 
2006 0.11 0.21 1251501 140190 31235 6520 
2007 0.12 0.21 1371632 158111 33888 7168 
2008 0.22 0.34 1527949 328555 36557 12463 
2009 0.39 0.53 1638275 635089 39573 21012 
2010 0.43 0.58 1688059 730003 43165 25125 
2011 0.46 0.61 1796994 820457 46694 28267 
2012 0.47 0.62 1902726 893601 48418 30011 
2013 0.48 0.64 2000048 960986 50688 32378 
2014 0.48 0.64 2108895 1007809 51995 33419 
2015 0.48 0.65 2191395 1059818 53713 35027 
2016 0.51 0.65 2295920 1165592 55004 35863 
2017 0.57 0.67 2381988 1354334 56551 37834 
2018 0.58 0.67 2442581 1416402 56792 38025 
2019 0.59 0.66 2644412 1564103 59708 39574 
2020 0.60 0.52 2795066 1672916 110972 57726 
2021 0.62 0.51 3023128 1871583 181063 91837 
2022 0.62 0.51 3078441 1911288 188602 95997 

Table A.5

The number and proportion of funded Coronavirus publications through time in the WoS. Corona: total number of Coronavirus-related publica
tions (filtered by SQ1). Corona F: total number of Coronavirus-related funded publications (filtered by SQ1 and SQ2). Corona 36%: proportion of 
Coronavirus-related publications within all WoS publications on the 36 diseases. Corona F%: proportion of funded Coronavirus-related publications out 
of all Coronavirus-related publications. 36 F%: the proportion of funded WoS publications on the 36 diseases. Data extraction was done on 16/04/2024.

Year Corona Corona F Corona 36% Corona F% 36 F% 
1995 116 32 0.01 0.28 0.18 
1996 96 24 0.00 0.25 0.17 
1997 112 27 0.00 0.24 0.17 
1998 138 28 0.01 0.20 0.17 
1999 101 23 0.00 0.23 0.17 
2000 95 20 0.00 0.21 0.17 
2001 122 29 0.01 0.24 0.16 
2002 82 15 0.00 0.18 0.16 
2003 325 33 0.01 0.10 0.16 
2004 775 59 0.03 0.08 0.17 
2005 711 91 0.02 0.13 0.19 
2006 615 122 0.02 0.20 0.21 
2007 454 101 0.01 0.22 0.21 
2008 447 166 0.01 0.37 0.34 
2009 393 259 0.01 0.66 0.53 
2010 372 247 0.01 0.66 0.58 
2011 310 225 0.01 0.73 0.61 
2012 308 231 0.01 0.75 0.62 
2013 380 288 0.01 0.76 0.64 
2014 474 349 0.01 0.74 0.64 
2015 497 330 0.01 0.66 0.65 
2016 541 366 0.01 0.68 0.65 
2017 553 410 0.01 0.74 0.67 
2018 507 391 0.01 0.77 0.67 
2019 583 441 0.01 0.76 0.66 
2020 48666 16710 0.44 0.34 0.52 
2021 116651 49424 0.64 0.42 0.51 
2022 127050 57309 0.67 0.45 0.51 

Journal of Informetrics 19 (2025) 101634 

16 



A. Du, M. Head and M. Brede 

Fig. A.1. Comparison of the average funded network 1995-2007 including or not including(*) the years 1997 and 2004. There is no major difference in the network 
structure after including these two years, except that certain links get slightly weakened due to the noise introduced.

Fig. A.2. Elbow method of identifying the optimal number of clusters. The within-cluster sum of squares (WSS) for different cluster numbers is measured, where the 
WSS of a cluster is its sum of squares to the centroid, i.e., WSS =∑𝑘

𝑖=1
∑

𝑥∈𝐶𝑖
|𝑥− 𝑐𝑖|2 , with 𝐶𝑖 the set of years belonging to cluster 𝑖’s and 𝑐𝑖 the clusters centroid. The 

funded elbow plot is created by removing the years 2004 and 1997. We observe that choosing three clusters would be a suitable choice for funded, unfunded, and all 
research.
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Fig. A.3. Analysis of contributions of individual diseases to system change within funded regimes (F1:1995-2007, F2:2008-2015, F3:2016-2022) and unfunded regimes 
(U1:1995-2003, U2:2004-2015, U3:2016-2022) in terms of relative change in node strength 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 plotted against volatility 𝜎(𝑑𝑖𝑓𝑓 [𝑠𝑖(𝑡)]). The diseases with the 
highest 𝑟𝑠,𝑤𝑖𝑡ℎ𝑖𝑛 were highlighted in each regime. Hepatitis A (HAV), chlamydia and dengue were highlighted in F1 while yellow fever, gonorrhoea, syphilis, and 
trichomoniasis in U1; DTP in F2 while varicella and pertussis in U2; coronavirus and zika in F3 while coronavirus, tetanus and ifluenza in U3.

Fig. A.4. Analysis of contributions of individual diseases to system change within F regimes (F1:1995-2007, F2:2008-2015, F3:2016-2022) and U regimes (U1:1995
2003, U2:2004-2015, U3:2016-2022) in terms of relative change in betweenness 𝑟𝑏,𝑤𝑖𝑡ℎ𝑖𝑛 versus volatility 𝜎(𝑑𝑖𝑓𝑓 [𝑏𝑖(𝑡)]). The diseases with the highest 𝑟𝑏,𝑤𝑖𝑡ℎ𝑖𝑛 were 
highlighted in each regime. HCV, HAV and HIV were highlighted in F1 while dengue and HAV in U1; malaria in F2 while varicella and pertussis in U2; coronavirus 
in F3 while measles, ebola and pertussis in U3.
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Fig. A.5. Comparison of relative increments of the top 5% strongest links. Bar height represents the average link strength of the corresponding disease pair in the first 
period, and the solid line represents the pair’s increment in strength to the second period, relative to the average change in link strength. The dashed lines give average 
relative increments for all pairs included in the figure for funded (blue) and unfunded (orange) research. (a) Change from F1 (1995-2008) to F2 (2009-2015) with 
average relative increments of 4.95 for funded and 3.74 for unfunded research. (b) Change from F2 (2009-2015) to F3 (2016-2022), with average relative increments 
of 4.13 for funded and 2.67 for unfunded research.
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Fig. A.6. Comparison of relative increments of the bottom 50% weakest (non-zero) links. Bar height represents the average link strength of the corresponding disease 
pair in the first period, and the solid line represents the pair’s increment in strength to the second period, relative to the average change in link strength. The dashed 
lines give average relative increments for all pairs included in the figure for funded (blue) and unfunded (orange) research. (a) Change from F1 (1995-2008) to F2 
(2009-2015), with average relative increments of 0.16 for funded and 0.26 for unfunded research. (b) Change from F2 (2009-2015) to F3 (2016-2022), with average 
relative increments of 0.15 for funded and 0.22 for unfunded research.

Data availability

Data and code are available on request.
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