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ABSTRACT 15 

In 1951, Skempton introduced the concept of similarity to obtain predictions of non-linear settlement of rigid 16 

circular footings on deep clay deposits under undrained conditions. This approach is based on the premise that the 17 

pressure-settlement curve of the footing and a stress-strain curve from a characteristic point in the soil can be 18 

linearly scaled to collapse into a single “master” curve. The method has been extended to predict deflections of 19 

axially and laterally loaded piles and is widely used in the offshore industry. Despite the theoretical and practical 20 

appeal of the method as well as its wide application in a range of geotechnical problems, limited investigation and 21 

validation exists in the literature. In this work, (1) existing “classical” similarity methods are reviewed, including 22 

a Boussinesq solution for elastic soil and the Mobilisable Strength Design (MSD) method by Bolton and co-23 

workers. (2) The similarity factors derived from these methods are compared with those obtained from a novel 24 

non-linear cone model solution. (3) The resulting expressions are evaluated against rigorous numerical analyses 25 

undertaken by the authors in FLAC. These are based on two different non-linear constitutive models calibrated 26 

against triaxial tests from three clay deposits. Two alternative families of similarity methods are also compared 27 

with classical similarity. (4) Firstly, a “two-part” similarity technique (based on separate scaling factors for elastic 28 

and plastic strains) and  (5) secondly, a “stiffness” similarity approach introduced by Atkinson (based on secant 29 

stiffness degradation). Finally, (6) three field test results are evaluated as case studies to demonstrate the  30 

applicability of the method in real-life problems. It is concluded that similarity approaches offer a rational yet 31 

approximate tool for non-linear settlement analysis of footings. 32 
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1. INTRODUCTION 34 

Improved understanding of the non-linear pressure-settlement response of surface footings on clay would enable 35 

more efficient design to prevent excessive settlements. Simple analytical solutions are available to determine both 36 

the “fully-elastic” initial slope of the pressure-settlement curve as well as the “perfectly-plastic” failure load (e.g., 37 

Skempton 1951, Brinch Hansen 1970 – see recent summary by Salgado 2022). Of particular interest is the elastic 38 

solution for the stiffness of a rigid footing on the surface of an elastic half-space established by Boussinesq (Poulos 39 

and Davis 1974, Davis and Selvadurai 1996). Some empirical solutions for the pressure-settlement response of 40 

surface footings (e.g., Jardine et al. 1995, Lehane 2003, Agaiby and Ahmed 2022) are available in the literature, 41 

as well as some numerical solutions (e.g., Osman and Bolton 2005, Ghosh Dastider et al. 2021). However, these 42 

solutions are limited to specific soil-footing configurations and may require site-specific studies that are costly 43 

and time consuming to undertake. Alternatively, non-linear pressure-settlement curves can be determined using 44 

theoretical models such as the cavity expansion theory introduced by Bishop et al. (1945) for metals and later 45 

extended by Gibson (1950) to clay soils (also employed for penetration resistances in sand, e.g., Salgado et al. 46 

1997 and Salgado and Prezzi 2007). This method has been employed by McMahon et al. (2013) using an energy 47 

approach to estimate a nonlinear pressure-settlement curve for a surface footing on an elastic-perfectly plastic half 48 

space and has been further extended by McMahon et al. (2014) to incorporate the non-linear soil constitutive 49 

model. Alternatively, Klar and Osman (2008) developed a non-linear pressure-settlement curve by combining an 50 

elastic and an elastoplastic mobilisable strength design (MSD) solution using an energy method to weight the 51 

contributions of the two mechanisms. However, despite the frequency this problem is encountered in routine 52 

engineering practice and its importance in settlement estimation, limited analytical solutions are available to 53 

determine the full non-linear pressure-settlement curve.  54 

A simple approach to obtain a non-linear pressure-settlement curve for footings was introduced by 55 

Skempton (1951), who suggested that a pair of linear scaling factors for stresses and strains can be used to 56 

transform a stress-strain curve directly into a pressure-settlement curve and vice-versa. This similarity approach 57 

(which is referred to in the ensuing as “classical similarity”) is based on the premise that there is similarity in 58 

shape between a stress-strain curve from a laboratory test and the foundation pressure-settlement curve (Figure 59 

1). In the realm of this approach, the non-linear pressure-settlement curve of a vertically loaded footing can be 60 

obtained directly from a routine laboratory test using two linear transformation factors, one scaling each axis. 61 

Classical similarity has been employed for surface footings by Elhakim (2005), Osman et al. (2007) and 62 

Agaiby and Ahmed (2022). An analogous similarity has been utilised to obtain “t-z” curves for axially-loaded 63 
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piles (e.g., Seed and Reese 1957, Fu et al. 2020, Bateman et al. 2022a), as well as “p-y” curves for laterally-loaded 64 

piles (e.g., McClelland and Focht 1956, Matlock 1970, Kagawa and Kraft 1981, Bransby 1999, Reese and Van 65 

Impe 2011) and associated “m-θ” curves (e.g., Fu et al. 2020, Bateman et al. 2023). While the cost and time 66 

benefits from this approach can hardly be overstated, there is no guarantee that such similarity exists for each case 67 

considered and the resulting predictions should be considered as approximate. 68 

For the classical similarity method (as originally suggested by Skempton 1951) to be usable in routine 69 

design of vertically loaded circular footings, suitable values of the scaling factors must be determined. 70 

Furthermore, the accuracy and limits of the similarity approach should be established. This could be done through 71 

either numerical modelling (e.g., finite element analysis), or field and laboratory testing where both stress-strain 72 

and pressure-settlement curves are obtained. 73 

1.1 Alternative Similarity Approaches 74 

The classical similarity approach has also been extended using a “two-part” similarity method that consists of 75 

individual scaling factors applied individually on the elastic and plastic portions of the curve. Previously, this 76 

approach has been employed for “t-z” curves for axially loaded piles by Fu et al. (2020); “p-y” curves by Jeanjean 77 

et al. (2017), Zhang and Anderson (2017; 2019) and Fu et al. (2020); and base curves for laterally loaded piles by 78 

Fu et al. (2020) and Lai et al. (2020). This approach has also been used implicitly by Jakub (1977) who assumed 79 

that a secant stiffness-stress curve can be given in the same form as a secant stiffness-load curve for a strip footing 80 

under dynamic horizontal and moment loading. 81 

Additionally, Atkinson (2000) suggested a “stiffness” similarity approach based on the shapes of the 82 

secant stiffness-strain (𝐺 − 𝛾) curve from a triaxial soil test and a secant stiffness-settlement (𝐾 − 𝑤𝑏) curve of a 83 

footing. Employing similar arguments to those of Skempton, Atkinson (2000) proposed a linear transformation 84 

factor to relate between these two curves. 85 

1.2 This Paper 86 

Despite the theoretical importance and practical appeal of these simplified methods, their existence for a long 87 

period of time and their applicability in a wide range of geotechnical problems, limited validation has been carried 88 

out, and some authors have even questioned some of the fundamental assumptions (Burland et al. 1966, Randolph 89 

and Wroth 1978). More importantly, there is currently limited understanding of the underlying principles and the 90 

way these methods relate to and differ from one another. 91 

Motivated by this gap in knowledge, this paper investigates the similarity proposal and its variants as applied 92 

to obtain a pressure-settlement curve of a vertically loaded (circular) surface footing on clay from a corresponding 93 
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stress-strain curve of a soil element test. This involves (1) a review of existing methods related to the similarity 94 

approach, (2) reformulating these solutions into a consistent framework, and (3) developing and validating the 95 

novel expressions for the required transformation factors using both analytical and numerical methods. 96 

Specifically,  97 

• the classical similarity proposal by Skempton (1951) to directly relate stress-strain and pressure-98 

settlement curves is first reviewed. To this end, two related methods, an elastic stiffness approach based 99 

on the Boussinesq solution and the MSD method, are reformulated in a consistent framework to derive 100 

linear-transformation factors. 101 

• a novel non-linear solution using a cone model for pressure-settlement curves is derived, inspired by 102 

related elastic solutions to dynamic footing problems. This is used to derive linear-transformation 103 

factors for specific non-linear soil constitutive models. 104 

• the above methods are compared and validated by means of rigorous numerical solutions in the finite 105 

difference software FLAC 2D. Two different non-linear soil constitutive models are used, calibrated 106 

against three different types of clay. 107 

• the alternative two-part similarity approach is applied to the vertically loaded foundation problem for 108 

the first time. An analytical solution, in conjunction with further numerical results, is employed to derive 109 

novel linear-transformation factors for this method. 110 

• the stiffness similarity approach proposed by Atkinson (2000) to directly relate secant stiffness-strain 111 

with secant stiffness-settlement curves is reviewed. A novel, closed form expression for the similarity 112 

factor for an elastic-perfectly plastic material is derived and compared with the original values from 113 

Atkinson (2000) and those obtained from the FLAC results. 114 

• the three similarity methods are compared and the appropriate choice of linear transformation factors is 115 

discussed for different loading ranges. These factors are applied to predict the pressure-settlement curve 116 

for three case study examples and demonstrate the use and limitations of these approaches. 117 

2. CLASSICAL SIMILARITY 118 

The classical similarity approach is demonstrated in Figure 1. Employing this method requires the selection of 119 

two linear transformation factors, one for each axis. Given the two curves are similar in shape, the linear 120 

transformation factor of the y-axis can be obtained by comparing the ultimate capacity of each curve, which 121 

naturally bounds both curves between 0 and 1. Specifically, the pressure-settlement curve approaches the ultimate 122 

capacity of the footing, 𝑞𝑢 and the stress-strain curve approaches the undrained soil shear strength, 𝑠𝑢. It is well 123 
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known that the ultimate capacity of a footing in clay can be given by a dimensionless bearing capacity factor, 𝑁𝑐, 124 

multiplied by 𝑠𝑢. Therefore, the scaling factor on the y-axis is simply 𝑁𝑐 (values for which are discussed later). 125 

Secondly, the x-axis of the pressure-settlement curve should be normalised by a characteristic dimension, with 126 

the aim of collapsing the two curves into a single “master” curve. This characteristic dimension is selected here 127 

to be proportional to the footing diameter, 𝐷, with a dimensionless proportionality constant, defined here as a 128 

linear transformation factor, 𝑐𝑞. Therefore, the linear transformation of the x-axis can be expressed by: 129 

 𝛾𝑟𝑒𝑝 =
𝑤𝑏

𝑐𝑞𝐷
  (1a) 

where 𝛾𝑟𝑒𝑝 is a representative “average” shear strain of the soil under the footing. 130 

Inverting this equation gives the footing settlement, 𝑤𝑏 , obtained by scaling the representative strain by 131 

the characteristic dimension 𝑐𝑞𝐷 as follows: 132 

 𝑤𝑏 = 𝛾𝑟𝑒𝑝  𝑐𝑞 𝐷  
(1b) 

The key idea behind this approach is that 𝛾𝑟𝑒𝑝 can be established from a pertinent soil element test under the same 133 

level of normalised stress (i.e., 𝜏𝑟𝑒𝑝 = 𝑞/𝑁𝑐). Therefore, after appropriate 𝑁𝑐 and 𝑐𝑞 values have been selected, 134 

the following simple steps should be followed to employ this approach in design: 135 

1. Divide 𝑞, the pressure applied to the foundation, by 𝑁𝑐 to get the corresponding 𝜏𝑟𝑒𝑝, the shear stress 136 

on the representative soil sample. 137 

2. Use a representative soil element test (or an assumed constitutive model) to obtain 𝛾𝑟𝑒𝑝, the strain in the 138 

representative soil sample at 𝜏𝑟𝑒𝑝. 139 

3. Use Equation 1b to obtain 𝑤𝑏 , the foundation displacement, under the applied pressure. 140 

It should be noted that the selection of the footing diameter to normalise settlement is an arbitrary decision and 141 

alternative selections (e.g., the footing radius) can be equally valid, and merely scale the transformation factor 𝑐𝑞. 142 

Furthermore, Equation 1 is defined with a “representative shear strain” that is obtained from a soil element test 143 

undertaken on a representative soil sample. To employ the similarity approach, the location of a representative 144 

soil sample under the footing must be identified and a suitable soil element test (e.g., triaxial compression) 145 

selected. Using Finite Element Analysis (FEA), Osman and Bolton (2005) suggest that this representative sample 146 

should be taken from a depth of 0.3𝐷 beneath the centre of the footing. However, a greater understanding of the 147 

relevance of the location of the representative soil sample is required before this approach can be adopted in 148 

design. Additionally, the stress-strain curve of the representative soil sample may depend on which type and shear 149 
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mode of element test is chosen. Within the original similarity proposal, Skempton (1951) suggested an undrained 150 

compression (triaxial) test would be suitable. Since the choice of sample location and test type are outside the 151 

scope of this work, an idealised isotropic homogeneous clay is considered. This means that any element test will 152 

produce identical results for a test in any location.  153 

The value of 𝑁𝑐 at the surface has been considered by many authors and is dependent on the foundation 154 

shape and roughness. Shield (1955) and Eason and Shield (1960) calculated 𝑁𝑐 for a circular rigid footing to be 155 

5.69 and 6.05 for a perfectly smooth and rough footing conditions, respectively. Alternative 𝑁𝑐 values for footings 156 

are available (e.g., Ishlinky 1944, Skempton 1951, Meyerhof 1951, Cox et al. 1961, Brinch Hansen 1970, Tani 157 

and Craig 1995, Salgado et al. 2004, Gourvenec et al. 2006). These solutions vary between 5.58 < 𝑁𝑐 < 6.23. 158 

However, the solutions by Shield (1955) and Eason and Sheild (1960) are both lower and upper bounds and have 159 

subsequently been verified by Houlsby and Wroth (1983) as essentially exact values (Martin and Randolph 2001). 160 

Similarly, some solutions for 𝑐𝑞 in various forms can be found in the literature. Notably, the mobilisable 161 

strength design (MSD) method used by Osman and Bolton (2005) is a form of classical similarity. These authors 162 

derive a coefficient 𝑀𝑐 (the reciprocal of the linear transformation factor) as the average shear strain within an 163 

assumed displacement mechanism. Any 𝑀𝑐 value can be converted to a 𝑐𝑞 value that follows the definition used 164 

in Equation 1 (discussed below). In fact, any method that obtains a pressure-settlement curve from a soil stress-165 

strain curve, including numerical analysis and experimental data, can be reformulated as a 𝑐𝑞 value. Therefore, 166 

the methods to obtain 𝑐𝑞 can be broadly split into two main categories: firstly, those which obtain 𝑐𝑞 directly, 167 

without employing a pressure-settlement curve; and secondly, those which derive 𝑐𝑞 by comparing a pressure-168 

settlement curve with the respective stress-strain curve. While a single 𝑐𝑞 value would suggest perfect similarity 169 

exists, for most cases, 𝑐𝑞 will vary with applied load as well as soil properties.  170 

2.1 Elastic Stiffness Approach 171 

Skempton (1951) suggested a method to analytically obtain 𝑐𝑞 for a circular surface footing by assuming an elastic 172 

half-space and matching the stiffnesses of the two curves. To this end, the linear-elastic soil constitutive model 173 

can be expressed in normalised form as:  174 

 
𝜏

𝑠𝑢
 = (

𝐺

𝑠𝑢
)  𝛾  

(2) 

where 𝜏 and 𝛾 are the shear stress and strain, respectively, 𝐺 is the soil shear modulus and 𝑠𝑢 is the soil undrained 175 

shear strength. 176 
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The elastic settlement of a rigid circular footing can be established using the Boussinesq solution (Poulos 177 

and Davis 1974, Davis and Selvadurai 1996). The resulting pressure-displacement relationship can be normalised 178 

by the ultimate bearing pressure 𝑞𝑢(= 𝑁𝑐𝑠𝑢  for undrained conditions), to yield the dimensionless equation: 179 

 
𝑞

𝑞𝑢
=

𝐾𝑖𝑤𝑏

𝑞𝑢
=

8

𝜋(1−𝜈𝑠)
(

𝐺

𝑁𝑐 𝑠𝑢
) 

𝑤𝑏

𝐷
  

(3) 

where 𝑞 is the mean pressure acting on the soil-footing interface, 𝑞𝑢 is the corresponding ultimate bearing 180 

pressure, 𝐾𝑖 is the elastic stiffness of the footing, 𝜈𝑠 is the Poisson's ratio of the soil, and 𝑁𝑐 is the bearing capacity 181 

factor (values for which are discussed above). 182 

The above solution was developed assuming a smooth footing-soil interface. An alternative solution is 183 

available for a rough footing-soil interface (Spence 1968); however, for undrained conditions, this is equivalent 184 

to Equation 3, subject to the selection of appropriate 𝑁𝑐 values. 185 

For soft soil, the left-hand sides of Equations 2 and 3 are naturally bounded between 0 and 1. Therefore, 186 

equating the right-hand side of these equations and introducing 𝑐𝑞 in the form of Equation 1 yields the linear-187 

transformation factor: 188 

 𝑐𝑞 =
𝜋

8
(1 − 𝜈𝑠) 𝑁𝑐 ≈ 1.1 − 1.2  

(4) 

which, remarkably, is independent of 𝐺 and 𝑠𝑢. 189 

The essentially exact 𝑁𝑐 values for smooth and rough circular footings produced by Shield (1955) and 190 

Eason and Shield (1960) - 5.69 and 6.05 - and considering 𝜈𝑠 = 0.5,  result in a 𝑐𝑞 of 1.12 and 1.19, respectively. 191 

This value is roughly equivalent to the factor of 2 (applied to normal strain instead of shear strain) obtained by 192 

Skempton (1951), dependent on the selected 𝑁𝑐. The full range of available 𝑁𝑐 mentioned in this paper result in 193 

𝑐𝑞 values of 1.10 < 𝑐𝑞 < 1.22. 194 

2.2 Mobilisable Strength Design (MSD) Method (Osman and Bolton 2005) 195 

The mobilisable strength design (MSD) method was introduced by Bolton and Powrie (1988) for earth pressures 196 

and has primarily been used in the design of deep excavations (e.g., Osman and Bolton 2004). The method has 197 

been extended by Osman and Bolton (2005) to obtain 𝑐𝑞 values for vertically loaded circular footings. The 198 

resulting values have been compared against numerical and field data (Osman et al. 2007). 199 

Osman and Bolton (2005) employed a displacement field where the outer boundaries are defined using 200 

a Prandtl-like failure mechanism modified for axisymmetric loading. Within the boundaries, three regions are 201 

defined: the active, fan and passive zones, in which the displacement field was chosen such that shear strains and 202 

displacements remain compatible (Figure 2). Either side of the fan zone (boundaries OF and OG) vertical and 203 
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radial displacements are equal in magnitude and direction. Beyond the mechanism boundaries (boundary FGP) 204 

the soil is assumed perfectly rigid. Finally, as the loading conditions are undrained, no volume change is assumed. 205 

The soil strains are therefore constrained by the following equation: 206 

 𝜀𝑟 + 𝜀𝜃 + 𝜀𝑧 = −
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟
−

𝜕𝑣

𝜕𝑧
= 0  

(5) 

where 𝑢, 𝑣 are the radial and vertical displacements, respectively. 𝜀𝑟 = − 𝜕𝑢 𝜕𝑟⁄ , 𝜀𝜃 = − 𝑢 𝑟⁄ , 𝜀𝑧 = − 𝜕𝑣 𝜕𝑧⁄  are 207 

the normal strains in the cylindrical coordinate system defined by 𝑟, 𝜃, 𝑧 as illustrated in Figure 2, respectively. 208 

Additionally, shear strains in axisymmetric conditions are 𝛾𝑟𝜃 = 0, 𝛾𝜃𝑧 = 0 and 𝛾𝑧𝑟 = −(𝜕𝑣 𝜕𝑟⁄ + 𝜕𝑢 𝜕𝑧⁄ ). 209 

Regarding the selection of the displacement mechanism, Osman and Bolton (2005) assume the variation 210 

of vertical displacements along the centre line (CF) can be given by a quadratic polynomial. They also assume 211 

that within the active zone, the vertical displacements are independent of radial distance. Thus, by considering 212 

Equation 5 and applying boundary conditions (𝑢 = 0 at 𝑟 = 0; 𝑣 = 𝛿 at 𝑟 = 0 and 𝑧 = 0; 𝑢 = 𝑣 along boundary 213 

OF) 𝑢 and 𝑣 can be derived as shown in Table 1. It should be noted that these assumptions correspond to a smooth 214 

footing (i.e., there are non-zero radial soil displacements at the footing-soil interface). Also note that, contrary to 215 

Prandtl’s mechanism, soil is not at a state of failure so the displacement field is continuous and displacements are 216 

zero along the outer boundary PGF. 217 

Following the assumption that the radial and vertical displacements either side of each zone boundary 218 

are equal, the 𝑢 and 𝑣 in the fan and passive zones can be calculated, also given in Table 1. Note that to ensure 219 

zero volume change, the total displacement in the fan and passive zones (√𝑢2 + 𝑣2) must decay proportional to 220 

1/𝑟 (Osman and Bolton 2005). 221 

The radial and vertical displacements in Table 1 can be converted into normal and shear strains which 222 

are employed to calculate the principal strains, 𝜀1, 𝜀2, 𝜀3. The resulting mobilised engineering shear strain 223 

(𝜀1 − 𝜀3) can then be averaged over the mechanism and set equal to the representative shear strain 𝛾𝑟𝑒𝑝 in 224 

Equation 1, as follows (Osman and Bolton 2005): 225 

 𝛾𝑟𝑒𝑝 =
∫ |𝜀1−𝜀3|𝑑𝑣𝑜𝑙

 
𝑣𝑜𝑙

∫ 𝑑𝑣𝑜𝑙
 

𝑣𝑜𝑙

= 𝑀𝑐
𝑤𝑏

𝐷
=

𝑤𝑏

𝑐𝑞𝐷
  

(6) 

This approach yields a single value of 𝑐𝑞 = 0.74 (equivalent to 𝑀𝑐 = 1 𝑐𝑞⁄ = 1.35 in the notation of Osman and 226 

Bolton 2005) that is independent of the footing dimension and developing settlement. This value implies a smaller 227 

characteristic dimension (lower 𝑐𝑞) than the elasticity solution of Equation 4, which is associated with the confined 228 

area of plastic strain concentration, compared to strain distribution across a wider area in the elastic half-space 229 
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solution. Thus, it is thought that this value may pertain better to situations of higher load levels, where significant 230 

plastic deformation has taken place. 231 

The MSD method has the advantage that it calculates 𝑐𝑞 directly and does not depend on the selection of 232 

a soil constitutive model and the level of applied load. However, it is dependent on the geometry (size) of the 233 

chosen deformation mechanism, which, indirectly relates to the level of concentration of high strains near the 234 

footing. 235 

3. CONE MODEL 236 

Cone models have been widely used in footing displacement calculations. Considering a surface footing, of 237 

diameter, 𝐷, and area, 𝐴𝑏, loaded by a vertical traction, 𝑞, vertical stress attenuates with depth based on a selected 238 

cone opening line 𝑓(𝑧), assumed here to be linearly varying with gradient 1 𝑚𝑐𝑜𝑛𝑒⁄ , as shown in Figure 3. Original 239 

applications often refer to this approach as the “2:1 method” and set 𝑚𝑐𝑜𝑛𝑒 between 1 and 2 (Bowles 1997). Wolf 240 

and Deeks (2004) also provide static solutions using the cone model for lateral and rocking modes. This paper 241 

applies a cone model to determine novel solutions for the non-linear vertical pressure-settlement curves of footings 242 

from which 𝑐𝑞 values are derived. 243 

Following the cone model logic, it is assumed that the vertical strain, 𝜀, can be integrated over the depth, 244 

𝑧, to furnish the settlement of the footing, 𝑤𝑏: 245 

 𝑤𝑏 = ∫ 𝜀(𝑧) 𝑑𝑧
∞

0
  

(7) 

The vertical strain, 𝜀, can be written as a function of the normalised deviatoric stress, 𝑔(𝜎𝑞 2𝑠𝑢⁄ ), by introducing 246 

a pertinent soil constitutive model in flexibility form. The normalised deviatoric stress within the soil, 𝜎𝑞(𝑧)/2𝑠𝑢, 247 

is taken as equal to the normalised vertical stress at depth 𝑞𝑧(𝑧)/𝑞𝑢 due to the footing load. This is arguably a 248 

similarity assumption itself. Additionally, vertical equilibrium is assumed between horizontal layers of the cone 249 

itself and the stress at depth, 𝑧, which is considered to be uniform over the area 𝐴𝑧(𝑧). This  can be written as: 250 

 𝑞𝑧(𝑧)𝐴𝑧(𝑧) = 𝑞𝐴𝑏  
(8) 

where 𝐴𝑧(𝑧) depends on the chosen 𝑚𝑐𝑜𝑛𝑒. This key assumption implies that tractions developing along the cone 251 

boundary are horizontal. It also means 𝑚𝑐𝑜𝑛𝑒 must have a dependency on the Poisson’s ratio of the soil in order 252 

to match the overall elastic stiffness of the foundation. Therefore, by using a constant 𝑚𝑐𝑜𝑛𝑒 value over the full 253 

range of stresses, it is effectively assumed that the Poisson’s ratio of the soil remains constant. 254 

Based on these assumptions, the vertical strain is given by: 255 
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 𝜀 = 𝑔 (
𝜎𝑞

2𝑠𝑢
) = 𝑔 (

𝑞𝑧(𝑧)

𝑞𝑢
) = 𝑔 (

𝑞

𝑞𝑢
(

𝐴𝑏

𝐴𝑧(𝑧)
))  

(9) 

Firstly, assuming the soil is described using a linear-elastic soil constitutive model (Equation 2) [𝜀 = 𝛾 (1 + 𝜈𝑠)⁄ , 256 

𝜎𝑞 = 2𝜏(𝑧)]: 257 

 𝜀 =
𝜎𝑞

2𝐺(1+𝜈𝑠)
=

𝑠𝑢

𝐺(1+𝜈𝑠)
(

𝑞𝑧(𝑧)

𝑞𝑢
)  

(10) 

Substituting this function into Equation 7 and evaluating the integral using the depth-varying area 𝐴𝑧(𝑧) shown 258 

in Figure 3, yields the elastic settlement of the footing as a function of the applied stress: 259 

 
𝑤𝑏

𝐷
=

𝑚𝑐𝑜𝑛𝑒

2(1+𝜈𝑠)
(

𝑠𝑢

𝐺
) (

𝑞

𝑞𝑢
)  

(11) 

By employing the concept of similarity and comparing this equation with the normalised shear stress-strain curve 260 

(Equation 2), 𝑐𝑞 simplifies to: 261 

 𝑐𝑞 =
𝑚𝑐𝑜𝑛𝑒

2(1+𝜈𝑠)
  

(12) 

which is again independent of the footing dimension and the soil stiffness and strength. In addition, the 262 

proportionality with 𝑚𝑐𝑜𝑛𝑒 indicates that when the cone is assumed to be narrower and strains are distributed over 263 

a larger depth, the characteristic length 𝑐𝑞𝐷 increases. The unknown gradient coefficient 𝑚𝑐𝑜𝑛𝑒 can be calculated 264 

to ensure compliance with other similarity models. For instance, in the case of a linear-elastic model where 𝑐𝑞 is 265 

known (Equation 4), 𝑚𝑐𝑜𝑛𝑒 can be calculated by equating Equation 4 with Equation 12, for a smooth (𝑁𝑐 = 5.69) 266 

and a rough (𝑁𝑐 = 6.05) footing, respectively:  267 

 𝑚𝑐𝑜𝑛𝑒 =
𝜋

4
(1 − 𝜈𝑠

2)𝑁𝑐 ≈ 3.4 − 3.6  
(13) 

This value of 𝑚𝑐𝑜𝑛𝑒 is used in the numerical applications below. Note that this calibration of 𝑚𝑐𝑜𝑛𝑒 is higher than 268 

that given by Wolf and Deeks (2004), who derive a value of 𝑚𝑐𝑜𝑛𝑒 = 𝜋(1 − 𝜈𝑠) ≈ 1.6 for the vertical mode in 269 

incompressible soil. However, this value was calibrated for elastic settlement prediction and not in a similarity 270 

context. 271 

Equation 9 also enables nonlinear stress-strain functions to be employed to obtain analytical non-linear 272 

pressure-settlement curves. For example, it can be assumed that the soil can be modelled using a hyperbolic soil 273 

constitutive model in the form: 274 

 
𝐺𝑠

𝐺𝑖
= [1 +

𝛾𝐺𝑖

𝑠𝑢
]

−1

  
(14) 
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where 𝐺𝑠(= 𝜏 𝛾⁄ ) is the secant shear modulus and 𝐺𝑖 is the initial (low-strain) shear modulus. Substituting this 275 

function, rearranged into vertical strains, into Equation 7 and evaluating the integral, yields the non-linear 276 

pressure-settlement curve in flexibility form: 277 

 
𝑤𝑏

𝐷
=

𝑠𝑢𝑚𝑐𝑜𝑛𝑒

2 𝐺𝑖 (1+𝜈𝑠) √
𝑞

𝑞𝑢
[arctanh (√

𝑞

𝑞𝑢
)]  

(15) 

Comparison of the constitutive model (Equation 14) and the pressure-settlement curve in Equation 15 enables 𝑐𝑞 278 

to be obtained: 279 

 𝑐𝑞 =
𝑚𝑐𝑜𝑛𝑒(

𝑞𝑢
𝑞

−1)

2 (1+𝜈𝑠)
√

𝑞

𝑞𝑢
[arctanh (√

𝑞

𝑞𝑢
)]  

(16) 

Remarkably, once again, 𝑐𝑞 is independent of soil parameters 𝐺𝑖 and 𝑠𝑢, but it depends on the geometry of the 280 

cone, the soil’s Poisson’s ratio and, most significantly, on the intensity of loading, 𝑞/𝑞𝑢. This is plotted in Figure 281 

4 for three example soils, assuming 𝑚𝑐𝑜𝑛𝑒 from Equation 13, as estimated above. Example parameters for the 282 

hyperbolic soil model have been determined by Bateman et al. (2022b), by fitting this model to two triaxial tests 283 

from Soga (1994) in (1) Pisa clay, and (2) kaolinite. A third example, London clay, has been fitted here using the 284 

same approach as that employed by Bateman et al. (2022b) using a triaxial test from Gasparre (2005). The 285 

parameters for the three examples are shown in Figure 4b. 286 

Additionally, a hyperbolic tangent (tanh) soil constitutive model is considered in the form: 287 

 𝛾 =
𝜏

𝐺𝑖
+ 𝛾𝑟 arctanh2 (

𝜏

𝑠𝑢
)  

(17) 

Substituting this equation into Equation 7 (rearranged into vertical strains) yields an integral whose solution could 288 

not be established in closed form. A numerical solution is presented in Figure 5 for the same three example soils 289 

considered for the hyperbolic soil constitutive model. This results in the more complex 𝑐𝑞 plot shown in Figure 290 

5b, that, in addition to the aforementioned parameters, 𝑞/𝑞𝑢, 𝜈𝑠 and 𝑚𝑐𝑜𝑛𝑒, the 𝑐𝑞 value for this constitutive model 291 

also depends on 𝐺𝑖/𝑠𝑢 and 𝛾𝑟. This result is unsurprising due to the addition of a parameter in the model.  292 

The first point to observe is that for both the hyperbolic and tanh models, 𝑐𝑞 varies with the applied load. 293 

At nearly zero load, both models start at a 𝑐𝑞 = 1.12, as per the elastic solution that 𝑚𝑐𝑜𝑛𝑒 was calibrated to, 294 

followed by a decrease of 𝑐𝑞 with increased loading. This result aligns with the idea that a higher applied footing 295 

load results in increased strength mobilisation and strain concentration in the area close to the footing, thus 296 

decreasing the characteristic dimension (𝑐𝑞𝐷). The dependence of 𝑐𝑞 on load intensity is a calibration parameter 297 

of the model and implies that perfect similarity does not exist, and 𝑐𝑞 is dependent on load intensity. However, an 298 

appropriate 𝑐𝑞 may still be determined for a given range of 𝑞/𝑞𝑢. The second observation involves the dependence 299 
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of the transformation factor on the adopted soil model. In the case of a hyperbolic stress-strain relationship, there 300 

is no additional effect of soil parameters. However, in the case of the tanh model, a further variation of 𝑐𝑞 is 301 

demonstrated for the different types of clay examined. 302 

4. DISCUSSION 303 

A summary of the derived 𝑐𝑞 values is shown in Figure 6a, for the classical similarity methods examined so far. 304 

Evidently, as shown by results from the novel cone model, 𝑐𝑞 is dependent on the load intensity, the constitutive 305 

model and parameters, and the footing roughness. 306 

 Firstly, for approaching zero applied load, the elastic stiffness approach (Section 2.1) gives a single value 307 

of 𝑐𝑞 - Equation 4 (1.12 − 1.19 for smooth and rough footings, respectively). In this work, these values are derived 308 

as closed-form expressions based on the original assumptions made by Skempton (1951). For higher stress 309 

regions, selection of an appropriate 𝑐𝑞 value is more uncertain. Since geotechnical design practice usually involves 310 

safety factors equivalent to around 2 to 3, the main stress region of interest is 𝑞 𝑞𝑢⁄ < 0.5. While significant 311 

variation of 𝑐𝑞 values can be seen in this stress region on Figure 6a, the curves start from the aforementioned 312 

elastic value and decrease with increasing 𝑞/𝑞𝑢 values to an approximate range of 0.5 < 𝑐𝑞 < 0.8. For a higher 313 

stress range (𝑞 𝑞𝑢⁄ > 0.5), 𝑐𝑞 can vary significantly and appears to approach zero. This implies that the normalised 314 

stress-strain curve for a given soil specimen asymptotes faster than the pressure-settlement curve that incorporates 315 

the response of soil over a wider area underneath the footing. At this stress range similarity is unlikely to be 316 

applicable and more complex analysis considering plasticity and failure should be sought. 317 

5. NUMERICAL ANALYSIS 318 

To explore the values of the linear transformation factor, 𝑐𝑞, in a more rigorous manner, idealised element tests 319 

can be compared to the pressure-settlement curves obtained from non-linear numerical analysis. Osman et al. 320 

(2007) considered vertical, horizontal and moment loading on a pad foundation using this approach and updated 321 

the 𝑀𝑐 = 1.35 value obtained in Osman and Bolton (2005) to 𝑀𝑐 = 1.25, corresponding to 𝑐𝑞 = 0.8. 322 

In this work, non-linear numerical analysis was carried out in FLAC 2D (Itasca Consulting Group Inc, 323 

2011) using (1) a hyperbolic soil constitutive model (Equation 14) and (2) a hyperbolic tangent (tanh) soil 324 

constitutive model (Equation 17). These models were implemented in FLAC using the CPPUDM (user-defined) 325 

option using isotropic shear hardening. To this end, a Tresca yield surface was defined according to the mobilised 326 

soil shear strength. The evolution of the yield surface is controlled by a hyperbolic or tanh relationship, expressed 327 

in terms of plastic shear strain. This approach is undertaken for the three example soils discussed in Section 3. 328 

Numerical element-level undrained direct simple shear tests were initially conducted for the different soil types 329 
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examined (model parameters and results shown in black in Figure 7a and Figure 8a). These tests were undertaken 330 

to validate the accuracy of the model implementation at element level. Further validation of the boundary value 331 

problem examined herein was obtained by comparing the initial stiffness and ultimate values against available 332 

analytical solutions. 333 

The footing  pressure-settlement curves were obtained by applying a constant settlement rate to a rigid 334 

footing in large-scale axisymmetric-mode analyses (results shown in grey in Figure 7a and Figure 8a). The model 335 

is set up with ~850 rectangular zones, with 10 grid points along the footing radius and the boundaries sufficiently 336 

extended to have negligible effect on the results. As expected, the pressure-settlement curve asymptotes towards 337 

an ultimate bearing capacity, 𝑞𝑢, which can be used to obtain the bearing capacity factor, 𝑁𝑐 (𝑞𝑢 = 𝑁𝑐𝑠𝑢 for 338 

undrained conditions). 𝑁𝑐 of 5.58 − 5.61 (smooth) and 6.03 − 6.08 (rough) were obtained for both the hyperbolic 339 

and tanh models, all within 2% of the exact theoretical values from Shield (1955) and Eason and Shield (1960).  340 

To obtain 𝑐𝑞, the y-axis of the stress-strain and the pressure-settlement curve are normalised by their 341 

ultimate capacities, taken from the numerical results (𝑠𝑢 and 𝑞𝑢, respectively). Comparing the two normalised 342 

curves enables a 𝑐𝑞 to be obtained as a function of load intensity. Figure 7 and Figure 8 show the numerical results 343 

for the hyperbolic and tanh models, respectively. Comparison with the corresponding results from the elastic and 344 

cone models (Figure 4) indicate a very good match between the initial values of 𝑐𝑞 and its variation with load 345 

intensity.  The general trend of decreasing 𝑐𝑞 with load intensity indicates that the size of the mechanism is 346 

decreasing which aligns with the lower 𝑐𝑞 value obtained from Osman and Bolton (2005) based on a smaller 347 

plastic displacement mechanism. Notably, the hyperbolic 𝑐𝑞 results are essentially independent of soil properties. 348 

Evidently, 𝑐𝑞 is dependent on the roughness of the footing-soil interface. From the elasticity approach 349 

the 𝑐𝑞 at low 𝑞/𝑞𝑢 values for a perfectly rough footing are approximately 5% larger than that of a smooth footing.  350 

The numerical results indicate that the 𝑐𝑞 for a rough footing decreases slower with load intensity than that for a 351 

smooth footing. 352 

5.1 The elastic-perfectly-plastic model “paradox” 353 

Both soil constitutive models employed in the FLAC analyses above asymptote towards an undrained shear 354 

strength 𝑠𝑢. However, numerical models with an elastic-perfectly-plastic response are often used in geotechnical 355 

practice (e.g., the Mohr-Coulomb soil model). If such a model is selected, the 𝑐𝑞 factor at zero loading starts from 356 

an elastic value that remains consistent with the results discussed in the sections above. This is shown in Figure 9 357 

which summarises the results of FLAC analyses with the Mohr-Coulomb model. The elastic 𝑐𝑞 value is maintained 358 
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until a loading intensity of approximately 0.3 𝑞 𝑞𝑢⁄  at which point yielding of soil elements under the footing 359 

starts occurring. From this point onwards, the pressure-settlement curve asymptotes towards the ultimate bearing 360 

capacity of the footing, but the stress-strain curve remains linear-elastic until the undrained shear strength is 361 

reached. The transformation factor 𝑐𝑞 increases towards a maximum value of: 362 

 𝑐𝑞,𝑢 =
𝑤𝑏,𝑢

𝛾𝑢𝐷
  

(18) 

where 𝑤𝑏,𝑢 is the settlement at failure of the footing, 𝛾𝑢 is the failure strain of the soil and 𝑐𝑞,𝑢 is the 𝑐𝑞 value at 363 

𝑞 𝑞𝑢⁄ = 1. As a result, when 𝛾𝑢 is finite (as per the Mohr-Coulomb model) and the pressure-settlement curve 364 

asymptotes towards infinite settlement, 𝑐𝑞 approaches infinity at large applied loads. 365 

Evidently, any elastic-perfectly-plastic model would significantly underpredict the failure strain, or, 366 

alternatively overpredict the initial stiffness 𝐺𝑖. Therefore, this increase of the transformation factor 𝑐𝑞 is 367 

unrealistic and such models should be avoided in the context of similarity. 368 

5.2 Sensitivity to 𝑵𝒄 369 

To employ the similarity approach, the applied pressure is factored by 𝑁𝑐 to get the shear stress to input into the 370 

representative soil sample. While the 𝑁𝑐 values provided by Shield (1955) are exact, the solutions for non-circular 371 

or slightly embedded foundations are not. This, in addition to soil heterogeneity and the non-linearity of the 372 

foundation response means these “exact” values may not match field test results. Therefore, the effect of selecting 373 

an inaccurate 𝑁𝑐 has been investigated with an example analysis in FLAC, using both a hyperbolic and a tanh soil 374 

constitutive model. As shown in Figure 10a, the same pressure-settlement curve from the surface footing in FLAC 375 

is normalised against 𝑁𝑐 values that have been under-predicted or over-predicted by 10%. Figure 10b demonstrates 376 

that the error in the 𝑐𝑞 propagates to the prediction of the elastic, low-load value of the transformation factor, with 377 

the underestimation of 𝑁𝑐 resulting in underpredictions of 𝑐𝑞 (and consequently foundation settlement) by an 378 

equal percentage, and vice versa. 379 

6. “TWO-PART” SIMILARITY 380 

As discussed in the above sections, it is evident from the results that perfect similarity across the full loading range 381 

is unlikely, and instead, 𝑐𝑞 appears to decrease with increased load intensity. To tackle this issue, one possible 382 

solution is a “two-part” similarity procedure that employs separate scaling factors for the elastic and plastic 383 

components of strain in the normalised stress-strain curve, to produce the corresponding elastic and plastic 384 

components of displacement in the normalised pressure-settlement curve. Comparable to Equation 1, this can be 385 

written as: 386 
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𝑤𝑏

𝐷
=

𝑤𝑏,𝑒

𝐷
+

𝑤𝑏,𝑝

𝐷
= 𝑐𝑞,𝑒  𝛾𝑒 + 𝑐𝑞,𝑝 𝛾𝑝  

(19) 

where 𝛾𝑒 and 𝛾𝑝 are the elastic and plastic components of the soil shear strains, 𝑤𝑏,𝑒 and 𝑤𝑏,𝑝 are the elastic and 387 

plastic components of settlement and 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 denote the corresponding elastic and plastic linear 388 

transformation factors, respectively. This approach is shown in Figure 11. 389 

In a similar way to the “classical” similarity approach, to employ this method in design (after appropriate 390 

𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 values are selected), the following simple steps should be followed: 391 

1. Divide 𝑞, the pressure applied to the foundation, by 𝑁𝑐 to get 𝜏𝑟𝑒𝑓 , the equivalent shear stress on the 392 

representative soil sample. 393 

2. Split the representative soil element test into the elastic and plastic components using 𝐺𝑖. 394 

3. Use this soil element test to obtain the elastic strain, 𝛾𝑒, and the plastic strain, 𝛾𝑝 in the representative 395 

soil sample at 𝜏𝑟𝑒𝑓 , the equivalent shear stress. 396 

4. Use Equation 19 to obtain the foundation displacement, 𝑤𝑏 , under the applied pressure, 𝑞. 397 

Note that step 2 requires the value of 𝐺𝑖 to be known, a soil parameter often hard to determine in the laboratory 398 

without special equipment (e.g., a resonant column or bender element tests). However, this is typically easier to 399 

obtain with in-situ methods, such as correlating with CPT results or through geophysical testing (such as SASW, 400 

MASW) – see Foti et al. (2015) for more details. 401 

Equivalent values for 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 have previously been derived for curves relating to axially- and 402 

laterally- loaded piles (e.g., Fu et al. 2020; Jeanjean et al. 2017). This approach has also been used implicitly by 403 

Jakub (1977) who assumed that a secant stiffness-stress curve can be given in the same form as a secant stiffness-404 

load curve for a strip footing under dynamic horizontal/moment loading. Since the two-part similarity approach 405 

has not been explicitly applied to a vertically loaded footing in axisymmetric mode this paper will go on to extend 406 

the method employed by Jakub (1977) to obtain novel 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 values for the particular case. 407 

6.1 Jakub-Roesset Method 408 

Working with Roesset, Jakub (1977) suggested that lateral load-displacement curves and moment-rotation curves 409 

for strip footings can be given in the same functional form as a stress-strain curve. Jakub (1977) employed a 410 

Ramberg-Osgood soil constitutive model, given by:  411 

 
𝐺𝑠

𝐺𝑖
=

𝜏

𝛾𝐺𝑖
=

1

1+𝑎(
𝜏

𝑠𝑢
)

𝑏−1  (20a) 
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 𝛾 = 𝛾𝑒 + 𝛾𝑝 =
𝜏

𝑠𝑢

𝑠𝑢

𝐺𝑖
+ 𝑎

𝑠𝑢

𝐺𝑖
(

𝜏

𝑠𝑢
)

𝑏

  
(20b) 

where 𝐺𝑠 and 𝐺𝑖 are the secant and initial (or low-strain) shear modulus, respectively, 𝑎 = 𝛾𝑝𝑓𝐺𝑖/𝑠𝑢 is a fitted 412 

model parameter corresponding to the plastic shear strain at failure, 𝛾𝑝𝑓, and 𝑏 is a model exponent. Note that this 413 

model does not asymptote to an ultimate value but requires a cap at 𝑠𝑢 (see Section 5.1). 414 

 Following the assumption of Jakub (1977), the corresponding pressure-settlement curve is given by: 415 

 
𝐾𝑠

𝐾𝑖
=

𝑞

𝑤𝑏𝐾𝑖
=

1

1+χ𝑎 (
𝑞

𝑞𝑢
)

𝑏−1  (21a) 

 𝑤𝑏 =
𝑞

𝑞𝑢

𝑁𝑐𝑠𝑢

𝐾𝑖
+ 𝜒𝑎

𝑁𝑐𝑠𝑢

𝐾𝑖
(

𝑞

𝑞𝑢
)

𝑏

  
(21b) 

where 𝐾𝑠 and 𝐾𝑖 are the secant and initial stiffness of the pressure-settlement curve, respectively (𝐾𝑠 = 𝑞 𝑤𝑏⁄ ) 416 

and 𝜒 is a fitting parameter discussed below.  417 

Evidently, both Equations 20b and 21b are naturally split into the elastic and a plastic portion of the 418 

curves. Furthermore, the assumption that Equations 20a and 21a can be given in the same form is equivalent to 419 

assuming a “two-part” similarity. Therefore, 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 can be calculated directly (substituting in 420 

𝐾𝑖 = 8𝐺𝑖 (𝜋(1 − 𝜈𝑠)𝐷)⁄  from Equation 3): 421 

 𝑐𝑞,𝑒 =
𝑤𝑏,𝑒

𝛾𝑒𝐷
=

𝜋

8
(1 − 𝜈𝑠)𝑁𝑐  

(22a) 

 𝑐𝑞,𝑝 =
𝑤𝑏,𝑝

𝛾𝑝𝐷
= 𝜒 [

𝜋

8
(1 − 𝜈𝑠)𝑁𝑐] = 𝜒𝑐𝑞,𝑒  

(22b) 

As expected, 𝑐𝑞,𝑒 (Equation 22a) is identical to the elasticity solution for 𝑐𝑞 in Equation 4. 422 

 Jakub (1977) originally suggested determining 𝜒 by fitting Equation 21 to numerical pressure-settlement 423 

curves, obtained using a Ramberg-Osgood model simplified by setting 𝑏 = 2. This is undertaken here using FLAC 424 

2D following the same method as discussed in Section 5. Following the assumption that the pressure-settlement 425 

curve can be given in the form of Equation 21, plotting 𝐾𝑖𝑤𝑏 𝑞⁄  against 𝑎𝑞 𝑞𝑢⁄  would be expected to result in a 426 

straight line with a gradient 𝜒 and an intercept at 𝑞 = 0 defined by 𝐾𝑖 = 𝐾𝑠 (shown in Figure 12a). Evidently, this 427 

assumption is not perfect, but a simple linear regression can be applied to obtain 𝜒. The results are plotted in 428 

Figure 12a for different 𝑎 values, with interpreted trend lines shown. These give 𝜒 = 0.45 and 𝜒 = 0.43 for rough 429 

and smooth footings, respectively which correspond to 𝑐𝑞,𝑝 = 0.53 and 𝑐𝑞,𝑝 = 0.48 (see Equation 22b). For 430 

preliminary analysis, Jakub (1977) suggested that these values can be also used in cases with alternative 𝑏 values 431 

or even for different constitutive models. 432 
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Given 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 in the form of Equations 22a and 22b, an equivalent value of the “classical” 𝑐𝑞 can 433 

be obtained: 434 

 𝑐𝑞 =
𝑤𝑏

𝛾𝐷
=

𝑐𝑞,𝑒 𝛾𝑒 + 𝑐𝑞,𝑝 𝛾𝑝

𝛾𝑒 + 𝛾𝑝
  

(23) 

Equation 22 suggests that 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 are constant with applied load. The low stress region is governed by 𝑐𝑞,𝑒 435 

since 𝛾𝑝 = 0 as the applied load approaches zero. However, the variation of 𝑐𝑞 with increased applied loads is 436 

governed by the value of 𝑐𝑞,𝑝. Evidently, if 𝑐𝑞,𝑝 < 1 (suggested by the fit in Figure 12a), this would suggest that 437 

𝑐𝑞 decreases with increased applied load. Remarkably, this agrees with the results presented in Sections 3, 4 and 438 

5 and has the additional benefit of being controlled by a constant 𝑐𝑞,𝑝. 439 

 Applying Equation 23 to the hyperbolic and tanh models (given by Equation 14 and 17, respectively) 440 

results in 𝑐𝑞 values that can be compared with those obtained previously. Assuming that 𝜒 can be given by those 441 

obtained in Figure 12a, the resulting values are plotted in Figure 6b. 442 

6.2 Representative soil sample 443 

Jakub (1977) also proposed rewriting the footing secant stiffness (Equation 21a) in an alternate form: 444 

 
𝐾𝑠

𝐾𝑖
=

𝑞

𝑤𝑏𝐾𝑖
=

1

1+𝑎(
𝜏𝑟𝑒𝑓

𝑠𝑢
)

𝑏−1  (24) 

where 𝜏𝑟𝑒𝑓  is the shear stress at a reference location at a certain depth below the edge of the footing. This is 445 

illustrated in Figure 12b and allows converting 𝜒 into a reference location (for 𝑏 = 2), resulting in: 446 

 χ = 𝑁𝑐
𝜏𝑟𝑒𝑓

𝑞
= 𝑁𝑐𝜓 (

𝑧

𝐷
)  

(25) 

where 𝜓(𝑧 𝐷⁄ ) = 𝜏𝑟𝑒𝑓/𝑞 describes the dimensionless attenuation of shear stress with depth.  447 

 For lateral loading in plane strain conditions, Jakub (1977) proposed that the representative soil element 448 

is located at 𝑧 = 0.25𝐷 under the edge of the footing. This is notably similar to a depth of 𝑧 = 0.3𝐷 for the vertical 449 

mode suggested independently by Osman and Bolton (2005) in the context of the MSD method. Assuming a depth 450 

of 𝑧 = 0.3𝐷 in the problem examined here, the corresponding dimensionless attenuation can be obtained from 451 

Poulos and Davis (1974) as 𝜓(𝑧/𝐷) = 0.23, leading to 𝑐𝑞,𝑝 = 1.6. This is substantially higher than the values of 452 

0.48 to 0.53 presented above. On the other hand, the values of 𝜒 obtained in Figure 12a correspond to attenuation 453 

coefficients approximately 𝜓 = 0.08, which would apply to locations of the representative soil sample between 454 

𝑧 = 0.9𝐷 and 1𝐷 below the edge of the footing. This is much deeper than the representative soil element location 455 

suggested by Osman and Bolton (2005), from the MSD approach. 456 
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6.3 Numerical analysis 457 

As a comparison to the 𝑐𝑞,𝑝 values determined using the Jakub-Rosett method above, 𝑐𝑞,𝑝 can also be interpreted 458 

directly from the numerical results obtained in Section 5. As expected, the elastic component 𝑐𝑞,𝑒 is consistent 459 

with the value of 𝑐𝑞 at zero loading. To obtain 𝑐𝑞,𝑝, the y-axis of the stress-strain and the pressure-settlement curve 460 

are normalised by their ultimate capacities, taken from the numerical results (𝑠𝑢 and 𝑞𝑢, respectively), similar to 461 

what was done in Section 5. However, the predicted elastic component of the corresponding strain/displacement 462 

is also subtracted from the original x-axis value for the hyperbolic and tanh models calibrated to the three example 463 

soils, respectively. Comparing the two normalised curves (with elastic portions removed), enables 𝑐𝑞,𝑝 to be 464 

obtained as a function of load intensity. This is done for rough and smooth footings, shown in Figure 13. 465 

The numerical results shown in Figure 13 are compared to the values obtained using the Jakub-Roesset 466 

method. The numerical results in Figure 13 show less variation of 𝑐𝑞,𝑝 with load intensity than observed for 𝑐𝑞 in 467 

the “classical” similarity method (see Figure 7b and Figure 8b). This good agreement applies over a wider range 468 

of load intensity when compared to the classical similarity solutions, possibly as high as 𝑞 𝑞𝑢⁄ = 0.8. 469 

7. “STIFFNESS” SIMILARITY 470 

An alternative similarity method has been proposed by Atkinson (2000), who suggested that similarity in shape 471 

exists between (1) the secant shear modulus degradation of a soil element with increasing strain (𝐺𝑠 − 𝛾) and (2) 472 

the secant stiffness decay of a surface foundation with increasing normalised settlement (𝐾𝑠 − 𝑤𝑏/𝐷). This will 473 

be denoted herein as “stiffness similarity” and is employed in a similar manner to the classical similarity method 474 

suggested by Skempton (1951). 475 

Firstly, the two curves are normalised by their ultimate values, naturally bounding the curves between 0 476 

and 1 on the y-axis. These are the initial (low-strain) shear modulus, 𝐺𝑖, and the initial stiffness of the pressure-477 

settlement curve, 𝐾𝑖, respectively. This is given by the Boussinesq solution in Equation 3 when 𝐺 = 𝐺𝑖 . Therefore, 478 

the linear transformation factor of the y-axis is given by: 479 

 
𝐾𝑖

𝐺𝑖

=
8

𝜋(1 − 𝜈𝑠)
 

(26) 

Secondly, the abscissa (x-axis) of the 𝐺𝑠 − 𝛾 curve is factored (stretched or compressed) by a 480 

characteristic dimension, typically selected to be proportional to the footing diameter, 𝐷. This method is illustrated 481 

in Figure 14. The linear transformation of the x-axis can be expressed by: 482 

 𝛾𝑟𝑒𝑝 =
𝑤𝑏

𝑐𝑞,𝑠 𝐷
 (27) 
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This linear transformation factor, 𝑐𝑞,𝑠 , appears to be in the same form as Equation 1, namely defining a 483 

characteristic dimension, 𝑐𝑞,𝑠 𝐷, normalising the footing settlement, 𝑤𝑏 . However, the derived transformation 484 

factors using the two similarity approaches (𝑐𝑞 from Section 2 and 𝑐𝑞,𝑠 here) cannot be directly compared since 485 

the form of the soil element test that is scaled is not the same.  486 

 Unlike the previous similarity approaches discussed, the “stiffness” similarity approach does not allow 487 

an engineer to start with an applied foundation pressure and estimate the settlement. Instead, after an appropriate 488 

𝑐𝑞,𝑠, is determined, the following simple steps should be employed (see Atkinson 2000 for more details): 489 

1. Choose an allowable settlement, 𝑤𝑏/𝐷 (normalised by the footing diameter). 490 

2. Divide the normalised settlement by 𝑐𝑞,𝑠 to calculate the representative shear strain within the soil 491 

(Equation 27).  492 

3. Use a representative soil element test (or assumed constitutive model) to obtain the secant shear modulus 493 

in the representative soil sample, 𝐺𝑠, at this representative shear strain. 494 

4. Use the Boussinesq equation (Equation 3) to calculate the allowable pressure that can be applied to the 495 

foundation. 496 

If the settlement at a known applied pressure is desired instead, these steps can be applied iteratively. Note that 497 

Step 4 is equivalent to applying the scaling factor in Equation 26 to the secant shear modulus, 𝐺𝑠, to calculate the 498 

secant stiffness of the footing, 𝐾𝑠, and then multiplying by the normalised footing settlement, 𝑤𝑏/𝐷. 499 

Atkinson (2000) compared empirical settlement values for surface (and piled raft) footings on London 500 

clay with triaxial tests undertaken in the same material (for 0.05 < 𝐾𝑠 𝐾𝑖⁄ < 0.25). Atkinson (2000) did this by 501 

calculating equivalent undrained secant Young’s modulus values for the footing using the bearing pressure and 502 

observed settlement in Equation 3. This is equivalent to the method discussed above. From this comparison, 503 

Atkinson (2000) established that the normalised foundation settlement was three times larger than the 504 

corresponding axial strains from the triaxial test. This is equivalent to 𝑐𝑞,𝑠 ≈ 2 for an undrained material as the 505 

linear transformation factor in this work is applied to shear strain rather than axial strain. This value was then 506 

verified by Atkinson (2000) using centrifuge modelling on kaolin clay (for 0.05 < 𝐾𝑠 𝐾𝑖⁄ < 0.6) and model plate 507 

load tests in sand (for 0.05 < 𝐾𝑠 𝐾𝑖⁄ < 0.75). Further validation was subsequently provided by Osman et al. 508 

(2007), using nonlinear FEA analysis. 509 

 In the classical similarity approach the y-axis is normalised by the capacity, which means an elasticity 510 

solution is used to derive a 𝑐𝑞 value. However, in the stiffness similarity approach the y-axis is normalised by an 511 
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elasticity solution, which means it cannot be employed to analytically derive 𝑐𝑞,𝑠 and the predicted capacity can 512 

be used instead. In both the classical and stiffness similarity solutions, these analytical methods are both equivalent 513 

to matching the intersection between the elasticity solution and the capacity, i.e. the yield point in an elastic-514 

perfectly plastic model. In the stiffness similarity case, the normalised stiffnesses for the soil element and the 515 

footing after yield are: 516 

 
𝐺𝑠

𝐺𝑖
=

𝑠𝑢

𝐺𝑖
(

1

𝛾
)  

(28a) 

 
𝐾𝑠

𝐾𝑖
=

𝑞𝑢

𝐾𝑖
(

1

𝑤𝑏
)  

(28b) 

where 𝐾𝑖 can be found using the Boussinesq solution (Equation 3). Therefore: 517 

 𝑐𝑞,𝑠 =
𝑤𝑏

𝛾𝐷
=

𝜋

8
(1 − 𝜈𝑠)𝑁𝑐 ≈ 1.1 − 1.2  

(29) 

More specifically, this would yield a 𝑐𝑞,𝑠 of 1.12 and 1.19 for smooth and rough footings, respectively. Although 518 

this value is identical to the 𝑐𝑞 calculated in Equation 4, there cannot be a direct comparison between these cases. 519 

Firstly, this is because classical similarity is performed on the basis of stress-strain and pressure-settlement curves, 520 

while stiffness similarity is applied on secant shear modulus and foundation stiffness degradation. Secondly, the 521 

transformation factor in Equation 4 refers to small load intensities 𝑞 𝑞𝑢⁄ → 0 while Equation 29 corresponds to 522 

loading close to failure 𝑞 𝑞𝑢⁄ → 1. 523 

In addition to the analytical validation presented above, this paper proceeds to evaluate the applicability 524 

of the stiffness similarity method by calculating 𝑐𝑞,𝑠 values from the FLAC analysis conducted (both for 525 

Hyperbolic and tanh model) in Section 5. The results are shown in Figure 15. As it can be observed, the 𝑐𝑞,𝑠 value 526 

rapidly approaches infinity at low strain ranges (where 𝐺𝑠 is still close to 𝐺𝑖, i.e.  𝐺𝑠/𝐺𝑖 > 0.9), where the classical 527 

similarity approach may be more applicable. For 0.2 < 𝐺𝑠 𝐺𝑖⁄ < 0.8, 𝑐𝑞,𝑠 can be seen to be in the range 528 

0.8 < 𝑐𝑞,𝑠 < 1.5 for the hyperbolic model and obtain a slightly higher range of approximately 1.2 < 𝑐𝑞,𝑠 < 2 for 529 

the tanh model. Interestingly, in general, the two models are bounded by the elastic perfectly plastic solution and 530 

the proposed value from Atkinson (2000). 531 

8. CASE STUDY 532 

Three case study examples are provided to illustrate the use and applicability of the three similarity methods 533 

investigated in this paper: (1) classical similarity – Sections 2, 3, 4 and 5, (2) two-part similarity – Section 6 and 534 

(3) stiffness similarity – Section 7. The various similarity factors determined in the above sections have been 535 
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employed and compared. The three examples considered include both pressure-settlement curves from vertically 536 

loaded footings as well as triaxial test data from the same site. Details about each case are discussed below. 537 

8.1 Bothkennar  538 

Firstly, Jardine et al. (1995) obtained vertical pressure-settlement curves from rigid pad foundations in Bothkennar 539 

(Scotland) on clays and silts. Full details about the material are provided in the original paper and other 540 

publications from the site (Hight et al. 1992a, 1992b, Allman and Atkinson 1992, Nash et al. 1992). Jardine et al. 541 

(1995) conducted tests on two reinforced concrete foundations cast at a depth of 0.8m. “Pad A” was loaded to 542 

failure under short term loading conditions and thus, is selected for use in this case study. The footing is 2.2m 543 

square, with an estimated equivalent diameter of 2.48m (Jardine et al. 1995) and is assumed perfectly rough. 544 

Following the original paper, an 𝑁𝑐 value of 6.1 (Eason and Shield 1960) can be corrected for a depth of 0.8m 545 

using Brinch Hansen’s (1970) depth correction factor [1 + 0.4𝑧/𝐷] giving an overall 𝑁𝑐 = 6.9. The pressure-546 

settlement curve is shown in Figure 16a (in black) which approaches an ultimate stress, 𝑞𝑢, of 138 kPa. 547 

 Undrained triaxial compression and extension tests were undertaken by Hight et al. (1992a) in 548 

Bothkennar clay at multiple depths. As the 𝑠𝑢 value increases with depth, it is important to select a representative 549 

soil sample. Given 𝑁𝑐 = 6.9 a representative undrained shear strength of 𝑠𝑢 ≈ 20𝑘𝑃𝑎 should be employed. This 550 

occurs at a depth of approximately 1.6m − 2.7m (0.3 < 𝑧 𝐷⁄ < 0.8). Therefore, an undrained triaxial 551 

compression test using a Sherbrooke sampler at a depth of 2.67m is selected as the only test within this depth 552 

region. However, 𝑠𝑢 = 16𝑘𝑃𝑎 was obtained from this test, resulting in a predicted capacity of 𝑞𝑢 = 108𝑘𝑃𝑎 553 

(used to normalise the results). Where relevant, an initial shear modulus, 𝐺𝑖, value of 3MPa is used, as obtained 554 

from pressuremeter tests detailed in Hight et al. (1992b), and 𝐾𝑖 is determined theoretically from Equation 3. 555 

 The predicted 𝑁𝑐 value (6.9) is multiplied by the 𝑠𝑢 obtained from the soil element test to predict the 556 

capacity of the footing. This value is used to normalise both the field test and the predicted pressure-settlement 557 

curve (𝑞𝑢,𝑝𝑟𝑒𝑑 = 𝑁𝑐𝑠𝑢). 558 

8.2 Kinnegar  559 

Secondly, a vertically loaded footing test was undertaken by Lehane (2003) at Kinnegar in Northern Ireland. The 560 

footing was cast at 1.6m depth on a silty stratum. Full details of the material properties are provided by Lehane 561 

(2003). The footing consisted of a 2m square, 1.7m thick reinforced concrete footing, which is assumed here to 562 

have an equivalent circular diameter of 2.26m (Osman and Bolton 2005). Following the original paper, an 𝑁𝑐 563 

value of 6.2 (using a shape correction factor of 1.2 and an inclination factor of 0.98) can be corrected for a depth 564 
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of 1.6m using Brinch Hansen’s (1970) depth correction factor [1 + 0.4𝑧/𝐷] giving an overall 𝑁𝑐 = 7.8. The 565 

pressure-settlement curve is shown in Figure 16b, which approaches an ultimate stress, 𝑞𝑢 = 96.5kPa. 566 

 Lehane (2003) also presents an undrained triaxial compression test on the silt, presented in secant 567 

stiffness form, normalised by the initial mean effective stress (30kPa as per the original paper). A triaxial test from 568 

the recommended depth beneath the footing is not available. This interpretation results in an 𝑠𝑢 of 9.2𝑘𝑃𝑎, 569 

resulting in a predicted capacity of 𝑞𝑢,𝑝𝑟𝑒𝑑 = 60𝑘𝑃𝑎 (used to normalise both the field test results and predicted 570 

pressure-settlement curve). Where relevant, an initial shear modulus, 𝐺𝑖 = 11.8MPa was selected as the maximum 571 

measured shear modulus in the triaxial test, and the corresponding 𝐾𝑖 is determined theoretically from Equation 572 

3. 573 

8.3 Ballina 574 

Finally, two vertically loaded footing tests were undertaken by Gaone et al. (2018) at the Australian National Field 575 

Testing Facility (NFTF), near Ballina. Full details of the site investigation are provided by Doherty et al. (2018a). 576 

The footings consisted of a 1.8m square (assumed equivalent to 2.04m diameter circular footing) constructed at a 577 

depth of 1.5m in a pit on soft clay. Doherty et al. (2018b) interpreted a 𝑞𝑢 = 63𝑘𝑃𝑎. The pressure-settlement 578 

curves are shown in Figure 16c. 579 

 Undrained triaxial compression tests from the site are available from Doherty et al. (2018a,b). A triaxial 580 

test taken at a depth below the footing of 0.3𝐷 (as suggested by Osman and Bolton 2005) is selected, which 581 

resulted in 𝑠𝑢 = 10.5𝑘𝑃𝑎. Taking 𝑁𝑐 = 5.69 and applying a shape factor of 1.2 gives 𝑁𝑐 = 6.8 and yields 𝑞𝑢 =582 

67𝑘𝑃𝑎, used to normalise the results. Where relevant, 𝐺𝑖 = 1600𝑘𝑃𝑎 is assumed (Doherty et al. 2018b), and the 583 

corresponding 𝐾𝑖 is determined from Equation 3. 584 

8.4 Application of Similarity 585 

For each example, the three similarity approaches are employed. For classical similarity, the pressure-settlement 586 

and stress-strain curves are normalised by 𝑁𝑐 (discussed above). The shear strain of the triaxial test is then scaled 587 

by different 𝑐𝑞 values discussed in Section 4. Firstly, the strain is scaled by 𝑐𝑞 from Equation 4 suggested for very 588 

low stress (𝑞 𝑞𝑢⁄ < 0.05), and secondly, by a range of 0.5 < 𝑐𝑞 < 0.8, as suggested for medium stress levels 589 

(𝑞 𝑞𝑢⁄ ≈ 0.5) – see the discussion in Section 4. The resulting transformed normalised stress-strain curves are 590 

compared to the corresponding normalised pressure-settlement curves in part (i) of Figure 16 for the three case 591 

study examples. 592 
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Two-part similarity is employed by separating the elastic and plastic components of the stress-strain 593 

curve. The elastic portion (calculated using 𝐺𝑖) and plastic portions (remaining after subtracting the elastic 594 

component) are scaled by Equations 22a and 22b (setting 𝜒 = 0.45), respectively. The results are shown in Part 595 

(ii) of Figure 16 for the three case studies. 596 

Finally, stiffness similarity is performed by converting the triaxial test stress-strain curve into the 597 

stiffness space (𝐺𝑠𝑒𝑐 = 𝜏/𝛾) and scaling the shear strain of the triaxial test by the different 𝑐𝑞,𝑠 values discussed 598 

in Section 7 to get 𝑤𝑏/𝐷. The curves are scaled by 𝑐𝑞,𝑠 from Equation 29 (suggested in this work for very high 599 

stress, 𝑞 𝑞𝑢⁄ = 1), and by 𝑐𝑞,𝑠 = 2 (as suggested by Atkinson 2000 and in this work for medium stresses, 𝑞 𝑞𝑢⁄ =600 

0.5). To get the corresponding applied pressure, 𝑞, the Boussinesq solution (Equation 3) is applied to each 𝐺𝑠𝑒𝑐 601 

value from the triaxial test and the resulting 𝐾𝑠𝑒𝑐 value is multiplied by 𝑤𝑏 . The results are shown in Part (iii) of 602 

Figure 16 for the three case studies. 603 

The three similarity approaches employed to predict pressure-settlement curves of the field tests for the 604 

three case study examples demonstrate reasonable results in the loading range considered. The absolute percentage 605 

errors of the predicted settlement against the measured value are shown in Table 2 at 𝑞 𝑞𝑢,𝑝𝑟𝑒𝑑⁄ = 25% and 606 

𝑞 𝑞𝑢,𝑝𝑟𝑒𝑑⁄ = 50%. The classical similarity method provides remarkably good results for both the Bothkennar and 607 

Ballina sites. The best results were obtained with 𝑐𝑞 = 0.8, which showed a maximum error of 15%, increasing 608 

to 67% when including the Kinnegar site. Two-part similarity works well for the Bothkennar site (less that 25% 609 

error). The remaining errors are higher and increase to over 100% for 𝑐𝑞,𝑠 = 2 as suggested by Atkinson (2000) 610 

for stiffness similarity. 611 

It is worth noting that as additional complexities, the pressure-settlement curve itself will be affected by 612 

the rate of loading, and behaviours such as creep or consolidation are not considered by the simplified approach 613 

of similarity presented herein.  614 

The errors obtained from this approach should also be taken in context. Doherty et al. (2018b) conducted 615 

an international competition to predict the footing displacement of the two Ballina footing field-tests. Out of the 616 

50 submissions, they found that around 15% of submissions predicted the footing settlement to be within 50% of 617 

the measured value for 𝑞/𝑞𝑢 = 0.25 and 22% for 𝑞/𝑞𝑢 = 0.5. It is also worth noting that Doherty et al. (2018b) 618 

refer to the two field-tests as “almost identical foundations”. Using the same method as above, if Test 1 from the 619 

Ballina site is used to predict Test 2, percentage errors of 53% (𝑞/𝑞𝑢 = 0.25) and 25% (𝑞/𝑞𝑢 = 0.5) are obtained. 620 

This demonstrates the variability and uncertainty inherent in geotechnical design, even when a comprehensive 621 
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site investigation is conducted. This also indicates that a simplified method such as similarity is well-suited for 622 

settlement estimation in routine design. 623 

9. SUMMARY AND CONCLUSIONS 624 

A simplified approach to obtain non-linear pressure-settlement curves of vertically loaded, rigid, circular footings 625 

on clay has been presented. The “classical” similarity approach, originally suggested by Skempton (1951), relates 626 

the x-axis of a normalised stress-strain curve with that of a normalised pressure-settlement curve (Figure 1). This 627 

transformation factor is defined in this work using a dimensionless linear-transformation factor 𝑐𝑞, defined by 628 

Equation 1. In the original work, Skempton (1951) suggested that the stress-strain curve should be obtained from 629 

a routine soil element test (undrained triaxial compression) undertaken on a representative soil sample. Despite 630 

the theoretical importance and practical appeal of this simplified approach as well as its wide application in a 631 

range of geotechnical problems, limited investigation and validation exists in the literature. Motivated by this lack 632 

of knowledge, this paper initially investigated the classical similarity approach (Section 2, 3, 4 and 5). To this 633 

end: 634 

1. Three related methods - an elastic stiffness approach based on the Boussinesq solution in Equation 4 635 

(Skempton 1951), the existing MSD method in Equation 6 (Osman and Bolton 2005), and a novel cone 636 

model solution in Equation 16 - are reviewed and extended to derive 𝑐𝑞. A summary of 𝑐𝑞 values obtained 637 

is shown in Figure 6a and discussed in Section 4. 638 

2. The novel cone model solution demonstrates that 𝑐𝑞 depends on the pressure applied to the foundation 639 

and gives a simple approach to determine this non-linear function. The resulting 𝑐𝑞 values are shown in 640 

Figure 6a. 641 

3. It was found that for low stresses (𝑞/𝑞𝑢 < 0.05), the elasticity value of 𝑐𝑞 = 1.2 (Equation 4) would be 642 

sufficient to “stretch” a stress-strain curve. 643 

4. For higher stress levels, 𝑞 𝑞𝑢⁄ ≈ 0.5, (applicable in geotechnical engineering where safety factors of 2 to 644 

3 are common) values in the range of 0.5 < 𝑐𝑞 < 0.8 are needed to “compress” a stress-strain curve 645 

(range from Figure 6a). 646 

5. For even higher stress regions the 𝑐𝑞 value appears to approach zero (Figure 6a). At this stress range 647 

classical similarity is unlikely to be applicable and more complex analysis considering soil plastic flow 648 

and failure should be sought. These results indicate that a higher applied footing pressure invariably 649 
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results in increased strength mobilisation and strain concentration in the area close to the footing, thus 650 

decreasing the characteristic dimension (𝑐𝑞𝐷). 651 

6. For a rough footing, 𝑐𝑞 was shown to be approximately 5% larger than that of a smooth footing, which 652 

indicates a marginally larger area of influence around the footing, increasing 𝑐𝑞𝐷. 653 

Contrary to the implied assumption in classical similarity, this paper has demonstrated that perfect similarity is 654 

unlikely for the problem at hand, and instead, 𝑐𝑞 depends on load intensity. As an alternative, a “two-part” 655 

similarity procedure that consists of individual scaling factors on both the elastic, 𝑐𝑞,𝑒 , and plastic, 𝑐𝑞,𝑝, portions 656 

of the stress-strain curve is investigated and applied to vertically loaded foundations for the first time. To this end 657 

(Section 6): 658 

7. 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 can be obtained from the Ramberg-Osgood model, applied for both the stress-strain curve 659 

and the pressure-settlement curve (Equation 22) and calibrated with the aid of numerical analyses. 660 

According to Jakub (1977) and as further validated herein by comparison with numerical analyses, the 661 

elastic and plastic transformation factors obtained from the Ramberg-Osgood model can be generalised 662 

to other models as well. 663 

8. The two-part similarity approach yields 𝑐𝑞,𝑒 = 1.2 and 𝑐𝑞,𝑝 = 0.5 𝑐𝑞,𝑒 (Section 6.1). Whilst these results 664 

remain dependent on footing roughness, the dependency on load intensity is reduced and can be 665 

applicable possibly as high as 𝑞 𝑞𝑢⁄ = 0.8 (Figure 13). 666 

9. 𝑐𝑞,𝑒 and 𝑐𝑞,𝑝 can be converted into a single 𝑐𝑞 value using classical similarity (Equation 23). At low stress 667 

levels 𝑐𝑞 is naturally governed by 𝑐𝑞,𝑒; however, the variation of 𝑐𝑞 with increased applied loads is 668 

governed by the value of 𝑐𝑞,𝑝. This paper recommends 𝑐𝑞,𝑝 < 1 (Section 6.1) which would suggest 𝑐𝑞 669 

decreases with an increasing applied load. Remarkably, this agrees with the classical similarity results 670 

but has the additional benefit of being controlled by a constant 𝑐𝑞,𝑝. 671 

As another alternative to the classical similarity method, Atkinson (2000) proposed a “stiffness” similarity 672 

approach that suggests similarity exists between the shear modulus reduction curve of a soil element with 673 

increasing strain (𝐺𝑠 − 𝛾) and the stiffness reduction curve of a surface foundation with increasing normalised 674 

settlement (𝐾𝑠 − 𝑤𝑏/𝐷). The transformation factor, 𝑐𝑞,𝑠, and the application of this approach has been investigated 675 

in this paper. To this end (Section 7): 676 

10. Once again, perfect similarity does not exist and the similarity factor, 𝑐𝑞,𝑠 is dependent on the applied 677 

load intensity (Section 7; Figure 15). 678 
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11. For a perfectly plastic material, a value 𝑐𝑞,𝑠 = 1.2 can be analytically established (Equation 29). This 679 

value is applicable at high stress ranges (𝑞/𝑞𝑢 = 1). 680 

12. For lower applied stresses, values in the range 1.5 < 𝑐𝑞,𝑠 < 3 would be applicable. This agrees with the 681 

𝑐𝑞,𝑠 suggested by Atkinson (2000) in the original work. However, it is evident that 𝑐𝑞,𝑠 is dependent on 682 

the load intensity and thus, a single value of 𝑐𝑞,𝑠 is hard to determine. The stiffness similarity approach 683 

does not work well for low strains but, contrary to the other methods discussed, accuracy may improve 684 

with increased load intensity. 685 

The results for all three approaches have been validated using numerical solutions in FLAC 2D using hyperbolic 686 

and tanh soil constitutive models and have been applied to three case study examples in Figure 16. 687 

It is important to mention that the similarity methods discussed are approximate solutions to obtain a non-688 

linear pressure-settlement curve of a vertically loaded circular footing. The transformation factors determined are 689 

(to varying extents) dependent on soil properties, applied load and soil constitutive models. Although the methods 690 

are fundamentally approximate and accuracy in the results cannot be guaranteed, this should be considered in the 691 

context of the wider uncertainties present when predicting foundation settlements. These approaches enable 692 

simple, easy to understand solutions with clear assumptions, which can be easily obtained from standard site 693 

investigation tests.   694 
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