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1 Introduction

Studying four-dimensional quantum field theories with a mass gap using holography is

bound to offer insights into their strong-coupling dynamics. This was appreciated in the

early days of AdS/CFT and an intense effort to construct and study examples of the

holographic duality in a non-conformal setting was undertaken. This program is under

good technical control for models arising from string or M-theory which preserve a certain

amount of supersymmetry. Nevertheless, it still remains challenging to construct explicit

supergravity solutions dual to a four-dimensional QFT in a confining vacuum.

Two well-studied examples in this context are the Klebanov-Strassler [1] and

Maldacena-Núñez [2] backgrounds in type IIB supergravity. Both examples present ana-

lytic supergravity solutions which are dual to a non-conformal vacuum of a supersymmetric

QFT and they have been used extensively to study the dynamics of the gauge theory. It
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is worth noting however that in both of these setups there are some exotic features. The

Klebanov-Strassler solution is dual to an SU(N +M)× SU(N) N = 1 quiver gauge theory

which undergoes an infinite cascade of Seiberg dualities. This is manifested in the super-

gravity dual by the absence of an asymptotically locally AdS5 region. In addition, it was

shown in [3, 4] that the vacuum of the gauge theory is not massive due to the presence

of massless glueballs. The Maldacena-Núñez background arises from D5-branes wrapped

on an S2 so as to preserve N = 1 supersymmetry in four dimensions. The supergrav-

ity solution however does not exhibit a separation between the “QCD scale” and the KK

scale which is problematic for interpreting the holographic dual as a four-dimensional field

theory.

Our goal here is to revisit another well-known setup for constructing a gravitational

dual to a massive supersymmetric QFT in four-dimensions, namely the N = 1∗ mass

deformation of N = 4 SYM [5–7]. This gauge theory has a rich set of supersymmetric

vacua which have been studied extensively in the past, see for example [8–10] for a field

theory discussion and [6, 11, 12] for an analysis in a holographic context. Some of the

supersymmetric vacua have a mass gap and can be studied quantitatively using various

tools. In particular it is possible to compute the low-energy effective superpotential in

the massive vacua using the S-duality of the parent N = 4 SYM theory [10–12] or matrix

model techniques [13]. However, the physics of other supersymmetric vacua of the theory

is not amenable to study with these methods and remains poorly understood.

The gauge/gravity duality offers an alternative vantage point that may elucidate the

gauge theory physics. The first problem in this context is to construct explicit supergrav-

ity solutions dual to the supersymmetric vacua of the gauge theory. There are at least

two approaches to address this. One can use the five-dimensional maximal SO(6) gauged

supergravity theory of [14–16] to construct asymptotically AdS5 supersymmetric domain

wall solutions which implement, holographically, the RG flow from the N = 4 SYM theory

to some of the vacua of N = 1∗. This was pursued in [5] (see also [7]), where explicit

analytic supergravity solutions of this type were found. The GPPZ solutions in [5] are

dual to the N = 1∗ theory with equal values of the mass parameters and thus enjoy an

SO(3) flavor symmetry. They exhibit a naked singularity in the IR, which prohibits the

study of their physics using five-dimensional supergravity. An alternative approach is to

implement the N = 1∗ mass deformation directly in type IIB supergravity by a suitable

deformation of the AdS5×S5 solution which is dual to the N = 4 conformal vacuum. The

mass deformation of the gauge theory breaks the SO(6) R-symmetry of N = 4 SYM and

thus one has to look for ten-dimensional supergravity solutions with little or no isometry

on the internal S5. This is clearly a technically challenging problem. Nevertheless, progress

was made in this direction by using various approximations [6]. As shown in [6] the mass

deformation in the gauge theory amounts to turning on R-R and NS-NS three-form flux

on S5. The D3-branes which make up the undeformed AdS5 × S5 background are affected

by this flux and undergo polarization to five-branes through the Myers effect [17]. Com-

pelling evidence for this polarization mechanism was presented in [6], and a map between

some of the supersymmetric vacua of N = 1∗ and polarized (p, q) five-branes was pro-

posed. Nevertheless, a fully backreacted supergravity solution which captures this physics
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remains out of reach. A possible way to remedy this impasse is to exploit the fact that the

five-dimensional maximal supergravity is a consistent truncation of type IIB supergravity

on S5. This was suspected to be true for a long time but was rigorously established only

recently in [18, 19]. Using the explicit uplift formulae of [19, 20] one can find analytic

ten-dimensional solutions which are the uplift of the GPPZ solutions. Recently this was

done explicitly in [21, 22].

The goal of our work is to study the naked singularity of the GPPZ solutions in ten

dimensions, understand the physics of the vacuum in the dual gauge theory, and shed

light on some of the qualitative features anticipated by Polchinski-Strassler. To this end

we provide a brief summary of the ten-dimensional supergravity solutions of [21, 22] and

proceed to study their behavior near the naked singularity. The backgrounds in [21, 22]

are labelled by a real parameter λ which is the holographic dual of the dimensionless ratio

of the gaugino bilinear vev and the mass in the dual gauge theory. The criteria proposed

in [23, 24] for physically acceptable naked singularities in string theory restrict the value of

λ to lie in the range −1 ≤ λ ≤ 1. For |λ| < 1 we find that the naked singularity is smeared,

in an SO(3) invariant way, along a one-dimensional submanifold of S5 parametrized by

an angular coordinate α. The divergences of the ten-dimensional supergravity fields near

this locus are compatible with those of a smeared distribution of polarized five-branes

with an R1,3 × S2 world-volume. This is qualitatively similar to the physics anticipated

in [6] however there are some differences. We show that as one varies the angle α the

supergravity background undergoes an SL(2,R) rotation. Therefore the type of polarized

(p, q) five-brane one finds near the singularity depends on the value of the angle α. For

example, at α = 0 we have an NS5-brane, while for α = π/4 one finds an (1, 1) five-brane.

A complementary way to understand the physics of the naked singularity is to study probe

strings in the ten-dimensional background. We perform a detailed analysis of (m,n) probe

string solutions for |λ| < 1 and find additional evidence for the interpretation of the naked

singularity as a smeared distribution of polarized (p, q) five-branes. The regularized on-

shell action of these probe strings is dual to the expectation value of line/loop operators

in the N = 1∗ gauge theory. Our calculations show that the vevs of the loop operators

exhibit a screening behavior. This suggests that the supergravity solutions with |λ| < 1

are not dual to a confining vacuum of N = 1∗.

The nature of the singularity in the solutions of [21, 22] for |λ| = 1 is qualitatively

different and does not admit an interpretation as polarized five-branes. We study probe D3-

branes and show that for |λ| = 1 they have vanishing effective tension near the singularity.

This signals the presence of new light modes near the singularity and suggests that one

should not interpret the singular solution in supergravity. We show explicitly how to

regulate the singular supergravity solution with λ = 1 while preserving supersymmetry.

To do this one has to employ the regular Euclidean supergravity solutions in [25]. These

solutions are dual to the N = 1∗ theory on S4 of radius R and we show that for large

values of R one finds λ = 1. The existence of these smooth solutions with an S4 boundary

suggests that for λ = 1 the planar N = 1∗ theory is in a massive vacuum.

The N = 1∗ gauge theory admits supersymmetric vacua with non-vanishing vevs for

bosonic bilinear operators in the 20′ of SO(6). The five-dimensional gauged supergravity

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
5

truncation we use contains a scalar dual to one of these operators and we look for super-

symmetric domain wall solutions with nontrivial vevs for it. We find that there are no

such supersymmetric solutions which are physically acceptable according to the criteria

in [23, 24].

In the next section we present a short summary of well-known results about the N = 1∗

SYM theory and its vacuum structure. We also briefly discuss the Polchinski-Strassler de-

scription of some of the gauge theory vacua in terms of polarized five-branes. In section 3

we show how to construct the GPPZ solution in a consistent truncation of five-dimensional

supergravity and show that there are no other physically relevant solutions in this trunca-

tion. In section 4 we analyze in detail the ten-dimensional uplift of the GPPZ solution and

the nature of the naked singularity. To this end we study probe strings and D3-branes in

the ten-dimensional background and their dual gauge theory interpretation. We conclude

in section 5 with a discussion on the implications of our results for holography and some

of the open problems. The four appendices contain an amalgam of technical results used

in the main text.

2 The N = 1∗ field theory

The N = 1∗ theory is a deformation of the N = 4 SYM theory. To establish our notation

we start with a brief review of N = 4 SYM.

The N = 4 vector multiplet consists of a gauge field1 Aµ, four gaugini ψm, and six

scalars XI , all of which transform in the adjoint of the gauge group SU(N). The N = 4

SYM enjoys a SU(2, 2|4) superconformal symmetry. The bosonic subalgebra consists of

the SU(2, 2) ' SO(2, 4) four-dimensional conformal algebra and an SU(4) ' SO(6) R-

symmetry. The fermions transform in the 4 of SU(4), the scalars transform in the 6 and

the vector is a singlet. The Lagrangian can be written as2

L =
1

g2
YM

Tr

(
1

2
|F |2 + |DXI |2 + ψm /Dψm + (ψ

m
[Xmn, ψ

n] + h.c.) + [XI , XJ ]2
)

+
θ

8π2
F ∧ F , (2.1)

where to write the Yukawa interaction terms we have transformed the SO(6) index I to

a pair of antisymmetric SU(4) indices mn. In this paper we focus on a mass deformation

of the N = 4 theory that preserves N = 1 supersymmetry. It is therefore convenient to

write the N = 4 theory in manifestly N = 1 language. This is achieved by organizing the

N = 4 vector multiplet into an N = 1 vector multiplet, V , and three chiral multiplets, Φi,

as follows

V = (Aµ, ψ4) , Φi = (ψi, φi) , (2.2)

where φi = (Xi + iXi+3) /
√

2. In this rewriting of the theory only an SU(3)×U(1)r ⊂ SU(4)

R-symmetry is manifest. The index i = 1, 2, 3 transforms in the fundamental representation

of SU(3). From the perspective of N = 1 supersymmetry, the global SU(3) symmetry can

1In this paper we choose the gauge group to be SU(N).
2The fermions ψm are four-dimensional left-handed Majorana spinors whereas ψm are right-handed.
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be viewed as a flavor symmetry. The advantage of writing N = 4 SYM in N = 1 language

is that the chiral Lagrangian is fully determined by the Kähler and super potentials

K =
1

g2
YM

Tr Φ†iΦi , W =
1

g2
YM

Tr [Φ1,Φ2] Φ3 . (2.3)

It is now easy to write down the mass deformation of interest in this work as the following

modification of the superpotential above

∆W =
1

g2
YM

Tr
(
m1Φ2

1 +m2Φ2
2 +m3Φ2

3

)
. (2.4)

Here m1,2,3 are three independent complex parameters. For generic choices of m1,2,3 super-

symmetry is explicitly broken to N = 1, however for the specific choice m1 = m2 6= 0 and

m3 = 0, the two chiral multiplets Φ1 and Φ2 combine into an N = 2 hyper multiplet and

the N = 1 vector multiplet together with Φ3 form an N = 2 vector multiplet and we obtain

the so called N = 2∗ theory. The Lagrangian then enjoys N = 2 supersymmetry where

the SU(3) symmetry is broken to SU(2)R ×U(1). The N = 2 R-symmetry is a product of

SU(2)R and a linear combination of U(1) and U(1)r. Another special deformation is ob-

tained by setting two of the masses to zero. In this case the theory flows to an interacting

conformal fixed point in the IR [26–28]. In this paper we focus on the deformation in (2.4)

where we take the three masses equal, i.e. m = m1 = m2 = m3. In this case the SU(3)

flavor symmetry is broken to its real subalgebra SO(3). This theory exhibits a rich vacuum

structure which was studied in [9], and discussed further in [6].

2.1 Vacua of N = 1∗

The classical vacua are determined by solving the F-term equation

[φi, φj ] = −mεijkφk . (2.5)

Since all matter fields are in the adjoint representation of SU(N), the solutions to these

equations are given by N -dimensional representations of SU(2). A generic SU(2) repre-

sentation is of course reducible and therefore a vacuum of the theory is determined by a

partition of N , such that
N∑
d=1

d kd = N . (2.6)

Here kd are non-negative integers that determine the frequency of the appearance of the

d-dimensional irreducible representation of SU(2). Almost all classical vacua break the

SU(N) gauge group and the preserved gauge symmetry is (
∏
d U(kd))/U(1). Note that for

any divisor D of N (including N itself) the vacuum specified by taking kD = N/D and all

other kd = 0 has a preserved gauge group SU(N/D). As we discuss below, it is justified to

refer to these as the massive vacua of the theory. The case D = N is distinguished as the

classical massive vacuum with a completely broken gauge group and is called the Higgs

vacuum. A solution to the classical vacuum equations (2.5) in which multiple distinct kd
are nonzero (thus, not falling into the class of massive vacua just discussed) will have at

least one unbroken U(1) gauge group factor and is therefore a Coulomb vacuum.
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Quantum mechanically, the structure is quite a bit richer. As demonstrated in [9], the

massive vacua (with an unbroken SU(N/D) gauge group) split into N/D separate vacua,

which can be classified using the algebra of line/loop operators developed in [29]. To each

such operator one associates a pair of integers x = (m,n) which represent its electric and

magnetic charges.3 These charges take values in the compact charge lattice F = ZmN ×ZeN ,

where ZeN is the center the gauge group and ZmN = π1 [SU(N)/ZeN ]. The algebra of loop

operators is equipped with a natural pairing 〈·, ·〉 : F → ZN such that for x = (m,n) and

y = (m′, n′)

〈x, y〉 = mn′ −m′n mod N . (2.7)

In direct analogy with the Meissner effect, the condensation of a charge x leads to a

confinement of any charge y for which 〈x, y〉 6= 0. Furthermore, two charges x and z which

simultaneously condense have zero product: 〈x, z〉 = 0. One can then deduce (as was

shown in [29]) that the vacua with a mass gap are precisely those for which N charges

(electric or magnetic) condense and all others confine. These vacua correspond 1-to-1 with

the N -dimensional subgroups of F = ZmN × ZeN . Any such subgroup can be generated by

a pair of elements [9]

x = (b,D) , y = (N/D, 0) , mod N , (2.8)

where D is a positive divisor of N and 0 ≤ b ≤ N/D − 1. The elements of each such

subgroup then label the charges that condense in that vacuum. The classical Higgs vacuum

with completely broken gauge group has N/D = 1 and therefore has a unique quantum

representative generated by x = (0, 0) and y = (1, 0). The classical vacuum with d = 1,

kd = N has N/D = N and therefore splits into N quantum vacua, the confining vacua,

generated by x = (0, 1) through x = (N − 1, 1) and y = (0, 0). In between are the vacua

with N/D = kD for some integer 1 < kD < N ; these are the oblique confining vacua where

some mixture of electric and magnetic charges condense, and to each such classical vacuum

there correspond kD massive, quantum vacua. The SL(2,Z) electric-magnetic duality acts

on the charge lattice as follows [30]:

T : (m,n) 7→ (m+ n, n) mod N ,

S : (m,n) 7→ (−n,m) mod N ,
(2.9)

which induces a non-trivial duality between the massive vacua. In particular the Higgs

vacuum is invariant under T , but under S gets mapped to the b = 0 confining vacuum

generated by (0, 1). The confining vacua are permuted by T , which has the effect of

incrementing the parameter b → b + 1 mod N . Under S, the (0, 1) confining vacuum

is mapped to the Higgs vacuum, whereas the other (b, 1) confining vacua are mapped

to various oblique vacua. In general, T will permute (by varying b) the quantum vacua

corresponding to a given classical vacuum (with particular D), whereas S will act in a way

that exchanges different classical vacua. In the special case where N = D2 is a square

number, then the vacuum generated by

x = (0, D) , y = (D, 0) , (2.10)

3These operators can be thought of as products of m Wilson line operators and n ’t Hooft line operators.
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is S-duality invariant. This is the only massive vacuum invariant under S-duality and we

refer to it as the self-dual vacuum.

The infrared physics of the field theory in one of the massive vacua is controlled by

the effective superpotential. This was computed in [10] for a subclass of the massive vacua

by reducing the field theory on a circle to three dimensions and identifying an integrable

system that controls the dynamics. This result was later extended in [6, 11, 12] to include

all the massive vacua and arrive at the following IR effective superpotential

WIR =
m1m2m3N

2

24

[
E2(τ)− N

D2
E2

(
Nτ

D2
+

b

D

)
+A(τ,N)

]
. (2.11)

Here the three masses mi are generic and τ = 4πi/g2
YM + θ/2π. The function E2(τ) is

the regulated Eisenstein series of modular weight two and A(τ,N) is an undetermined

holomorphic function of τ discussed in some detail in [11, 12]. Using the superpotential we

can compute the chiral and gluino condensates4

〈
Tr Φ2

i

〉
= g2

YM

∂WIR

∂mi
, 〈Tr(ψ4ψ4 + 2Φ1[Φ2,Φ3])〉 = −16πi

(
∂WIR

∂τ
− i

WIR

Imτ

)
. (2.12)

We note that in the self-dual vacuum (2.10), the Eisenstein terms vanish and the super-

potential reduces simply to the holomorphic function A(τ,N). Thus the chiral condensate〈
Tr Φ2

i

〉
is proportional to A(τ,N). We also note that there are subtle questions about

operator mixing along the RG flow from the N = 4 theory to a given vacuum of N = 1∗.

These were discussed in [12] but a fully general analysis is not present in the literature.

So far, we have focused on the massive vacua; however, the vast majority of vacua have

unbroken U(1) gauge factors, and therefore massless photons in the IR. These Coulomb

vacua do not yet have an elegant classification in the literature along the lines given for

the massive vacua. As we explain below, both massive and Coulomb vacua will play a

role in interpreting our holographic solutions. In [6] some properties of the Coulomb vacua

were determined using inspiration from the physics of five-branes in type IIB string theory

which we now review.

2.2 Relation to five-branes

Polchinski and Strassler argued that the vacua of N = 1∗ are related to the polarization of

D3-branes into five-branes which are immersed in a three-form flux background of IIB string

theory [6]. The strength and shape of this three-form flux is controlled by the three mass

parameters of the field theory. The physics of polarized branes studied by Myers in [17]

shows features reminiscent of the discussion of the N = 1∗ vacua above. For completeness

we sketch the arguments in [6] that lead to the mapping of the massive vacua of N = 1∗

to the polarization states of three-branes and their five-brane interpretation.

Consider a stack of D3-branes in a constant background RR three-form flux back-

ground. It proves convenient to dualize the three-form to a seven-form and write it in

4The operator Tr(ψ4ψ4 + 2Φ1[Φ2,Φ3]) receives a correction at one loop due to the Konishi anomaly

which we are ignoring.
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terms of a six-form potential5

F7 = −g−1
s ?10 F3 = dC6 . (2.13)

The effective action for a stack of D3-branes contains couplings of the form

µ3

∫
TrP

[
C4 + 2πi`2sιXιXC6

]
, (2.14)

where P denotes the pull-back of the ten-dimensional fields onto the brane world-volume,

µ3 is the charge of the D3-branes and X = XI∂I denotes collectively the coordinates

transverse to the D3-branes. Since we are dealing with a stack of D3-branes the transverse

coordinates are now matrix-valued and transform in the adjoint of the gauge group living on

the brane. The appearance of C6 in this action shows that, for a non-abelian configuration

of the X’s, the D3-branes carry a D5-brane charge. For non-abelian D-branes Myers argued

that the DBI term is modified to include commutators of X. For static D3-branes in flat

space the DBI action reduces to the potential of N = 4 SYM given in (2.1)

VDBI = µ3N + µ3π
2`4s Tr

[
XI , XJ

]2
+ · · · , (2.15)

where the dots stand for corrections obtained by expanding the square root in the DBI

action to higher order in the coordinates XI . Let us assume that the D3-branes extend

along the coordinates x0,4,5,6 and the three-form F3 is constant in the three transverse

directions x7,8,9. Then the seven-form can be written as F7 = fεijkvol4 ∧ dxi ∧ dxj ∧ dxk

where i, j, k = 1, 2, 3 and f determines the magnitude of the flux. Minimizing the probe

action we find the vacuum equation for the stack of D3-branes [17]

[Xi, Xj ] = ifεijkXk , (2.16)

which has a form similar to the classical N = 1∗ vacuum equation (2.5). Equation (2.16)

shows that the flux induces a polarization of the D3 branes, and they arrange themselves

on a (fuzzy) two-sphere of radius proportional to f [17]. This fuzzy sphere carries D5-brane

charge according to (2.14) and therefore has a dual interpretation in terms of D5-branes.

The D5-brane charge of the polarized state depends on which solution of (2.16) is realized.

The lowest energy solution is the irreducible one that corresponds to unit D5-brane charge.

Other irreducible representations correspond to polarization to multiple two-spheres, each

carrying their own D5 charge. By relating the magnitude of the three-form flux f to the

mass deformation of the gauge theory, this argument shows that the physics of polarized

D3-branes should play an important role in the holographic description of the N = 1∗ gauge

theory. The same conclusion can be reached for D3-branes in NS-NS three-form background

where now the radius of polarization is scaled by a factor of g−1
s . Myers showed that there

exists a dual description in terms of a single stack of spherical D5-branes with N units

of D3-brane charge encoded in the flux of its world-volume U(1) gauge field. Again this

5Here we treat the branes as probes and assume that the dilaton is constant and F5 vanishes in the

background.
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can be understood by studying the coupling of the D5-brane to the ten-dimensional R-R

potentials

µ5

∫
P
[
C6 + 2π`2sF ∧ C4

]
, (2.17)

where 2π`2sF = 2π`2sF + P [B2] and F is the world-volume U(1) field strength. Let us now

consider the gauge flux F = (N/2)vol2, where vol2 is the volume form of the two-sphere

in the (x1, x2, x3) plane in polar coordinates. The normalization is chosen such that the

quantized flux of F equals N (B2 is assumed to vanish). One can show that the static

configuration for a D5-brane with such a world-volume flux in the above background is

R1,3 × S2 where the radius of the sphere matches the non-commutative picture above. In

the foregoing discussion we assumed that the D3-branes would polarize into a single stack

of D5-branes. However, the situation can be more involved. For example, the D3-branes

could polarize into D D5-branes each carrying N/D D3-brane charge. This can be further

generalized to polarization into (p, q) five-branes, with NS5-brane charge p and D5-brane

charge q.

It is reasonable to expect that the holographic description of the vacua of N = 1∗

involves polarized five-branes of various flavors. Indeed Polchinski and Strassler found

non-trivial evidence that this expectation is realized [6]. They constructed an approximate

solution to type IIB supergravity by deforming AdS5 × S5 with 3-form fields in a small

mass (flux) expansion which asymptote to (p, q) five-branes in the IR. In particular they

argued that the Higgs vacuum should correspond to a single polarized D5-brane, and the

confining vacuum to a single polarized NS5-brane. The various oblique confining vacua

are then described in terms of polarized (p, q) five-branes. This correspondence between

massive vacua of N = 1∗ and polarized five-brane states in type IIB string theory is

supported by the fact that the SL(2,Z) of the gauge theory and the SL(2,Z) of type IIB

string theory act identically on the vacua and the five-branes. In [6] it was also argued

that the Coulomb vacua are dual to multiple stacks of (p, q) five-branes of different radii.

This is inspired by a direct analogy between the solutions of (2.16) and (2.5).

3 Five-dimensional supergravity

The supergravity dual of (at least some vacua of) the N = 1∗ theory can be constructed

using five-dimensional N = 8 SO(6) gauged supergravity [5, 7]. When all three masses are

equal, one can use the SO(3) flavor symmetry of the model to restrict to the corresponding

SO(3)-invariant subsector of the five-dimensional N = 8 theory. This was discussed in

detail in [7] where it was found that the SO(3)-invariant truncation contains eight real

scalar fields in addition to the five-dimensional metric. This consistent truncation can

be truncated further by imposing additional discrete symmetries. A particular choice of

discrete group leads to a supergravity model with four real scalars [7, 25]. In the dual

field theory, imposing this discrete symmetry corresponds to restricting the complex mass

parameter and gaugino bilinear vev to be real. The solution of GPPZ [5] is a particular
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solution of this five-dimensional model for which only two of the four scalars flow.6 In this

section we will briefly review the four-scalar model and its solutions. We refer to [25] for

further discussion on it.

The five-dimensional Lagrangian7 can be written in terms of the metric and two com-

plex scalars zi:

L =
1

4πGN

√
|g|
(

1

4
R+

1

2
Ki̄∂µzi∂µz̄ ̄ − P

)
, (3.1)

where the Kähler potential, K, determines the kinetic term metric Ki̄, and the superpo-

tential W specifies the scalar potential P via the relations

Ki̄ = ∂i∂j̄K , K =− log
[
(1− z1z̄1) (1− z2z̄2)3

]
,

W =
3g

4
(1 + z1z2)

(
1− z2

2

)
, P =

1

2
eK
[
Ki̄DiWD̄W −

8

3
WW

]
.

(3.2)

Here g is the gauge coupling constant of the parent N = 8 supergravity theory and the

Kähler covariant derivative is defined as Dif = (∂i + ∂iK) f . This model admits super-

symmetric domain wall solutions with metric

ds2
5 = dr2 + e2Ads2

4 , (3.3)

where ds2
4 denotes the flat metric on Minkowski space. The metric function A and the

scalars z1,2 are assumed to only depend on the radial coordinate r. The BPS equations of

the model are obtained by imposing that part of the supersymmetry of the N = 8 super-

gravity theory is preserved, i.e. by demanding that the fermion supersymmetry variations

δψµ and δχ vanish. The BPS equations take the form

EA ≡ A′ −
2

3
eK/2|W| = 0 , E i ≡ (zi)′ + eK/2

W
|W|
Ki̄D̄W = 0 . (3.4)

In these equations the prime denotes a derivative with respect to the radial coordinate r.

A field configuration that solves the equations in (3.4) automatically provides a solution

to the full set of equations of motion derived from the Lagrangian in (3.2). This can be

readily seen by rewriting the Lagrangian in (3.2) supplemented with the Gibbons-Hawking

boundary term as a sum of squares

L+ LGH =
1

4πGN

√
|g|
[
3E2

A −
1

2
E iKi̄E

̄
]

+
1

4πGN
∂r

(√
|g|eK/2|W|

)
. (3.5)

A simple solution of the BPS equations in (3.4) is given by the maximally supersymmetric

AdS5 vacuum which takes the form

z1 = z2 = 0 and A =
gr

2
. (3.6)

It is clear that the gauge coupling of the supergravity theory is related to the length scale

of AdS5 by L = 2/g.

6In [25] it was shown that the four-scalar model, with all four scalars developing non-trivial profiles,

allows for a family of solutions dual to the equal mass N = 1∗ theory on S4. We discuss these solutions

further below.
7In contrast to [22], we will work entirely in mostly-plus signature.
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3.1 UV expansion and holographic renormalization

The domain wall solutions we are interested in are asymptotic to the AdS5 solution in (3.6).

They realize, holographically, the RG flow triggered by the mass terms in (2.4), and the

asymptotically-AdS5 region of the solution corresponds to the N = 4 UV conformal fixed

point. We can solve the BPS equations (3.4) in a systematic expansion around the AdS

vacuum and use holographic renormalization8 to map this solution to observables in the

dual QFT. As in [25], it is convenient to perform this UV expansion after doing the following

change of variables for the scalar fields

z1 = tanh
1

2
(3α+ ϕ− 3iφ+ iφ4) ,

z2 = tanh
1

2
(α− ϕ− iφ− iφ4) .

(3.7)

In these variables the scalar potential takes the form

P = −3g2

64

4 cosh 4α cos 2(φ+ φ4) + 7 cos(2φ− 2φ4) + cos(6φ+ 2φ4) + 4 cos 4φ

cos(3φ− φ4) cos3(φ+ φ4)
. (3.8)

Notice the the potential is independent of the field ϕ. This implies that the BPS equations

in (3.4) have an integral of motion. The BPS equations are rewritten in terms of the new

variables in appendix A.

Expanding the scalar potential (3.8) to quadratic order around the AdS5 vacuum leads

to the following masses for the four scalar fields

m2
φ4
L2 = −3 , m2

φL
2 = −3 , m2

αL
2 = −4 , m2

ϕL
2 = 0 . (3.9)

This indicates that the scalars φ and φ4 are dual to dimension ∆ = 3 fermion bilinear

operators, α is dual to a dimension ∆ = 2 scalar bilinear and ϕ is dual to a marginal

operator. More precisely we have the following map between the bulk scalar fields and

operators in N = 4 SYM9

φ↔ Oφ =

3∑
j=1

Tr(ψjψj + ψ̄jψ̄j) , φ4 ↔ Oφ4 = Tr(ψ4ψ4 + ψ̄4ψ̄4) ,

α↔ Oα =
3∑
j=1

Tr(φ2
j + φ̄2

j ) , ϕ↔ Oϕ = TrFµνF
µν .

(3.10)

8See [31] for a review.
9Note that the four-scalar model we use here is different from the one employed in [21], where all four

scalars are in the 10⊕ 10 and correspond to the complexified operators on the first line of (3.10).
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The UV expansion of the BPS equations has the following form

φ = m̂ε1/2 − 5

6
m̂3ε3/2 +O(ε2) ,

φ4 = wε3/2 +O(ε2) ,

α = vε+O(ε2) ,

ϕ = ϕ0 +O(ε2) ,

A = −1

2
log ε− m̂2

2
ε+O(ε2) . (3.11)

Here ε = e−gr is a small parameter controlling the distance from the AdS5 boundary. The

parameter m̂ corresponds to a source term for the fermion bilinear operator in (3.10) and

is proportional to the mass parameter in the N = 1∗ Lagrangian (2.4).10 The parameter w

is related to a vev for the gaugino bilinear operator in (3.10) and v is related to a vev for

the bosonic bilinear in (3.10). We refer to these vev as the gaugino and chiral condensate,

respectively. To compute the exact values of these vevs one must carefully perform the

holographic renormalization procedure for the four-scalar model.

As we discuss in section 3.3 the only physically interesting flat-sliced domain wall solu-

tion is the GPPZ solution. We therefore restrict our holographic renormalization analysis

to it. This analysis has already appeared in several places in the literature, see section 5

of [31] as well as [32, 33]. For the GPPZ flow one has α = ϕ = 0 and it proves useful

to simplify the supergravity Lagrangian by using the scalar variables mGPPZ and σGPPZ

employed in [5] since they have canonical kinetic terms. This is achieved by the following

change of variables

tan

(
1

2
(φ4 − 3φ)

)
= − tanh

(
1

2
(
√

3mGPPZ − σGPPZ)

)
,

tan

(
1

2
(φ4 + φ)

)
= tanh

(
1

6
(
√

3mGPPZ + 3σGPPZ)

)
.

(3.12)

The scalars mGPPZ and σGPPZ have the following linearized expansion in the AdS5

UV region

mGPPZ =
√

3m̂ε1/2 +
m̂3

√
3
ε3/2 +O(ε2) ,

σGPPZ = (w − m̂3)ε3/2 +O(ε2) ,

(3.13)

where we have used the same coefficients as in the asymptotic expansion in (3.11). With

this at hand we can readily apply the results in section 5 of [31] to find that the vev of the

gaugino bilinear is given by11

〈Oφ4〉 =
N2

π2
(w − m̂3) . (3.14)

10There is a also a source for the Konishi operator
∑3
j=1 Tr(φj φ̄j) but this operator does not correspond

to a supergravity mode.
11Note that this expression corrects a typo in Equation (4.34) of [25].
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Here we have used that the five-dimensional Newton constant is related to the number of

D3-branes via GN = 4π/(N2g3).

3.2 The GPPZ solution

The GPPZ solution [5] solves the BPS equations of the four-scalar model and has the

explicit form12 [22]

ds2
5 =

4

g2t2

(
dt2 +

(
1− t2

) (
1− λ2t6

)1/3
ds2

4

)
,

z1 = i
µ− ν3

µ+ ν3
, z2 = i

1− µν
1 + µν

, µ =

√
1 + λt3

1− λt3
, ν =

√
1 + t

1− t
,

(3.15)

where t = m̂ exp (−gr/2) is a new radial variable and m̂ is defined in (3.11). Note that

the scalars z1,2 are purely imaginary, so only two of the four real scalars have a non-trivial

profile. The solution is asymptotic to the AdS5 vacuum as t → 0. Expanding near the

AdS boundary we can relate the integration constant λ to the UV parameters m̂ and w

in (3.11)

(λ+ 1)m̂3 = w . (3.16)

Combining this with (3.14) we find that the vev of the operator dual to φ4 is

〈Oφ4〉 = N2

π2 m̂
3λ.

The metric in (3.15) has a naked singularity at t = 1 which corresponds to the IR

regime of the dual gauge theory. The structure of the singularity depends on the value of

λ. It was argued by Gubser that physically acceptable naked singularities in the context

of holography should have an on-shell value of the scalar potential which is bounded from

above [23]. Applying the Gubser criterion to the solution in (3.15) we find that the naked

singularity is acceptable for |λ| ≤ 1.13 From now on we focus only on the physically

acceptable values of λ and we analyze the structure of the naked singularity in detail when

we uplift the GPPZ solution to ten dimensions.

3.3 Looking for a chiral condensate

The BPS equations of the four-scalar model are compatible with a non-trivial vev for the

operator dual to the scalar α, i.e. a non-trivial chiral condensate in N = 1∗. It is thus

natural to ask whether there are supersymmetric gravitational domain wall solutions which

obey the Gubser criterion and have a non-trivial profile for the scalar α. Unfortunately the

general BPS equations for the four-scalar model in (3.4) do not admit analytic solutions and

to answer this question we have to resort to perturbation theory and a numerical analysis.

It is a daunting task to systematically explore the parameter space (m,w, v, ϕ0) as intro-

duced in (3.11) and construct numerical solutions for all values of the UV parameters. We

circumvent this by taking a slightly different approach. All domain wall solutions for which

12The map to the scalar fields used in [5] is µ = eσGPPZ and ν = emGPPZ/
√

3.
13The GPPZ solution is invariant under the simultaneous action λ → −λ and t → −t. Since the UV is

always located at t = 0 solutions can either have t ≥ 0 or t ≤ 0, but not both. We can always choose the

coordinate t to be positive but then we must consider any value −1 ≤ λ ≤ 1.
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at least one scalar flows have a naked singularity in the IR region. We are only interested

in acceptable naked singularities as dictated by the Gubser criterion. We therefore start

by classifying the possible singular behavior in the IR region for all solutions of the BPS

equations and perform a series expansion of the BPS equations around these singular IR

solutions. This analysis proves sufficient to understand whether a given naked singularity

obeys the Gubser criterion without the need to fully integrate the BPS equations.

Performing this analysis, we conclude that all domain wall solutions in which α and

one of φ, φ4 have non-trivial profiles are either unphysical due to the Gubser criterion, or

cannot be connected to the UV AdS5 region. The inability to connect the latter flows

to AdS5 is due to an intricate structure in the superpotential W when both α and one

of φ or φ4 are non-vanishing. Effectively, the superpotential partitions the scalar domain

in two regions, one that contains the AdS5 vacuum solution and one that does not. The

physically acceptable naked singularities with non-vanishing α flow into the region of the

scalar manifold without the AdS5 vacuum and terminate on a line where the superpotential

vanishes. This is depicted in figure 1 and some more details of our analysis can be found

in appendix A. Therefore we see that the only physically acceptable domain wall solution

(with flat slicing) of the four-scalar model with non-trivial profile for the scalars φ or φ4 is

the GPPZ solution, which has α = 0 and ϕ = const.

There is a regular, analytic solution of the four-scalar model with a non-trivial profile

for the scalar α, but it has φ = φ4 = 0, and corresponds to a particular RG flow on

the Coulomb branch of N = 4 SYM [28]. For completeness we present this solution in

appendix A. It is important to note that the discussion above was restricted to holographic

domain walls with flat slicing, i.e. the four-dimensional metric in (3.3) is that on Minkowski

space. There are smooth supersymmetric domain wall solutions of the four-scalar model

with S4 slicing constructed in [25] which we discuss in some detail in appendix C.

4 The ten-dimensional solution

The five-dimensional GPPZ solution in (3.15) can be uplifted to a solution of type IIB

supergravity using the explicit uplift formulae in [19]. This was done in [22] and we

summarize the relevant results below. In [21], which appeared simultaneously with [22], a

similar strategy was pursued and the full uplift of the GPPZ solution was also presented.14

He we briefly point out that in order to apply the uplift formulae of [19], one must make

a choice of coordinates on the S5, and there are many choices which are compatible with

the SO(3) symmetry. The uplifts given in [22] and [21] make different choices for these

S5 coordinates, and as a result some of the ten-dimensional fields of type IIB supergravity

appear differently; however, we have checked explicitly that the two presentations of the

uplift agree once one takes into account the difference in coordinates. For completeness

in appendix D we provide the explicit relation between the coordinates used in this paper

and the ones in [7] and [21].

14It should be noted that a partial uplift of the GPPZ solution was found in [7] where the ten-dimensional

metric and the axio-dilaton were written explicitly.
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Figure 1. Contour plot of eKWW as a function of the scalars φ and φ4 on the surface α = 0. We

restrict the plot to the fundamental domain of the two scalars. The AdS5 solution has vanishing

scalar fields and corresponds to the solid dot. The coloured curves represent BPS domain wall flows

with non-trivial scalars projected onto the (φ, φ4) plane. The two blue lines correspond to GPPZ

flows with λ = ±1, the GPPZ flows with −1 < λ < 1 all lie in between the two blue curves and are

represented by the green curves. The two red lines denote unphysical domain wall flows according

to the Gubser criterion which asymptote to the UV AdS5 region. The red line in the upper half of

the domain corresponds to an acceptable singular flow which does not connect to the AdS5 solution.

The Coulomb branch solution with φ = φ4 = 0 is not visible on the plot since it starts from AdS5

and extends in the direction orthogonal to the (φ, φ4) plane.

The solution in [22] was written explicitly as a deformation of AdS5 × S5 and the

coordinates on S5 were chosen to reflect the SO(3) symmetry of the five-dimensional su-

pergravity solution and the dual N = 1∗ gauge theory. The round metric on S5 in these

coordinates takes the form of a U(1) fibration over CP 2

dΩ̂2
5 = ds2

CP 2 +(dα+sin 2χ σ3)2 , ds2
CP 2 = dχ2+sin2 χ σ2

1 +cos2 χ σ2
2 +cos2 2χ σ2

3 . (4.1)

Here we have introduced the SO(3) left-invariant one-forms

σ1 =− sin ξ2 dξ1 + sin ξ1 cos ξ2 dξ3 ,

σ2 =− cos ξ2 dξ1 − sin ξ1 sin ξ2 dξ3 ,

σ3 =− dξ2 − cos ξ1 dξ3 ,

(4.2)

and the coordinates have the following ranges

0 ≤ α ≤ 2π , 0 ≤ χ ≤ π

4
, 0 ≤ ξ1 ≤ π , 0 ≤ ξ2 ≤ π , 0 ≤ ξ3 ≤ 2π . (4.3)
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In order to write down the type IIB supergravity solution in a relatively compact form we

introduce the following functions

K1 = (1 + t2)(1− λ2t8) + 2t2
(
(1− λ2t6)− λt2(1− t2) cos(4α)

)
cos 2χ ,

K2 = (1 + t2)(1− λ2t8)− 2t2
(
(1− λ2t6)− λt2(1− t2) cos(4α)

)
cos 2χ ,

K3 = 2λt4(1− t2) cos 2χ sin 4α ,

K4 = (1 + t2)2(1 + λt4)2 − 4t4(1 + λt2)2 cos2 2χ .

(4.4)

The Einstein frame metric can then be written as

ds2
10 =

(K1K2 −K2
3 )1/4

√
gs

(
ds2

5

(1− t2) (1− λ2t6)1/2
+

4
(
1− λ2t6

)1/2
g2(K1K2 −K2

3 )
dΩ2

5

)
, (4.5)

where ds2
5 is the five-dimensional metric in (3.15). The squashed metric on S5 can be

written as

dΩ2
5 = K4dχ2 − 4λt4(1− t2)2(cos 2α dχ− sin 2α cos 2χ σ3)2

− 4λt6 d(cos 2α cos 2χ)2 +
(1− λ2t8)2(1− t2)

(1− λ2t6)
(dα+ sin 2χ σ3)2

+ cos2 2χ(1 + λt4)2(4t2dα2 + (1− t2)2σ2
3)

+ (1− t2)
(

sin2 χ K1σ
2
1 + sin 2χ K3σ1σ2 + cos2 χ K2σ

2
2

)
.

(4.6)

The axion and dilaton are given by

eΦ =
gs(1 + λt4)√
K1K2 −K2

3

(
(1 + t2)(1− λt4) + 2t2(1− λt2) cos 2χ cos 2α

)
,

C0 =− 2t2(1 + λt2)(1− λt4) cos 2χ sin 2α

gs(1 + λt4)
(
(1 + t2)(1− λt4) + 2t2(1− λt2) cos 2χ cos 2α

) . (4.7)

These can be combined into the complex axion-dilaton τ = C0 + ie−Φ which has nice

transformation properties under the SL(2,R) symmetry group of type IIB supergravity.

Note the appearance of the string coupling constant gs which is related to the coupling

constant of the dual field theory via

g2
YM = 4πgs . (4.8)

The NS-NS and R-R two-forms can be written compactly as

B2 + igsC2 =
4

g2

te−iα

K1K2 −K2
3

[(
a1dχ+ a2σ3 − i

(
1− λ2t8

)
(K1 +K2) sin 2χ dα

)
∧ Σ

−
(
a3dχ+ a4σ3 − i

(
1− λ2t8

)
(K1 −K2 − 2iK3) sin 2χ dα

)
∧ Σ

]
,

(4.9)
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where we have defined the functions

a1 =− 2iK3

(
1 + t2

) (
1− λ2t6

)
,

a2 = i
(
1 + t2

) [
(K1 −K2)

(
1− λ2t6

)
cos 2χ− 2

(
1− λ2t8

)2
− 2t2

(
1 + λ4t12 − λ2t4

(
1 + t4

))
cos2 2χ

]
,

a3 = 4t4
(
1− λ2t4

) (
1− λ2t6 − λt2

(
1− t2

)
e4iα

)
cos2 2χ

−
(
1 + t2

)2 (
1− λ2t8

) (
1− λ2t6 + λt2

(
1− t2

)
e4iα

)
,

a4 = i
(
1− t2

)2 (
1− λ2t8

) (
1− λ2t6 − λt2

(
1− t2

)
e4iα

)
cos 2χ ,

(4.10)

and the complex one-form Σ is given by

Σ = i sinχσ1 + cosχσ2 . (4.11)

The R-R five-form is most compactly presented in terms of a four-form that only has legs

along the Minkowski directions

F5 = − 1

g4gs
(1 + ?10) d

[(
1− t2

) (
1− λ2t8

)
t4 (1− λ2t6)1/3

dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
. (4.12)

The rank of the gauge group in the dual field theory, N , can be identified with the conserved

D3-brane “Page charge” [34]. This can be readily computed using the expressions above

and one finds

N =
1

(2π`s)4

∫
S5

(
F5 +

1

2
(C2 ∧H3 −B2 ∧ dC2)

)
=

4

g4gs`4sπ
. (4.13)

We note also that the length scale of AdS5 is given by L = 2/g and it is the same as the

radius of the round S5 in the UV.

As expected from the five-dimensional GPPZ solution and from the dual N = 1∗

theory, the ten-dimensional background above preserves the SO(3) symmetry associated

with the left-invariant forms σi. Furthermore we find that the solution is invariant under

a discrete symmetry that involves both the SL(2,R) symmetry group of type IIB super-

gravity as well as a shift in the coordinate α.15 Specifically, we find that the S-duality

transformation τ → −1/(g2
sτ) combined with the shift α→ α+π/2 leaves all supergravity

fields invariant. This invariance is clear for the metric and five-form since they are SL(2,R)

singlets and only depend on α through functions that are π/2 periodic. The two-forms are

interchanged under S-duality

B2 → −gsC2 , C2 → g−1
s B2 , (4.14)

but combined with the shift of alpha, both forms are mapped to themselves. The same

conclusion holds for the axion-dilaton τ . As explained in [22] this discrete symmetry gets

enhanced to a U(1) symmetry for λ = 0. Finally, we note that for |λ| → ∞ the symmetry

of the background above is enhanced to SU(3) × U(1), see [22] for an explicit discussion.

Since this value of λ lies outside the range |λ| < 1 allowed by the Gubser criterion we will

not discuss it further.
15This symmetry is directly related to the discrete symmetry used to truncate the eight-scalar model

in [7] to the four-scalar model discussed in section 3
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4.1 The singularity for |λ| < 1

We have already noted that the family of five-dimensional solutions described in section 3 is

singular as t approaches 1. The solutions are nevertheless physical when |λ| ≤ 1 as we will

argue. In this section we focus on the case where λ is strictly smaller than one. As shown

below, in this case the singularity can be attributed to the presence of explicit smeared

branes in the geometry. A similar conclusion was reached previously by Pilch and Warner

in [7], however it was based on a partial uplift of the GPPZ solution in which only the

metric and the axio-dilaton were given. We make this analysis more rigorous by studying

the full set of type IIB supergravity fields.

In the ten-dimensional solution the singularity as t → 1 is only present at a specific

locus on the five-sphere, in particular for |λ| < 1 the singularity is located at the point

(t, χ) = (1, 0).16 The result is the following metric

ds2
10 ≈

8

g2√gs
H−1/4

[(
1− λ2

)1/3
ds2

1,3 + k(α)
(
dχ2 + χ2dψ2

)]
+

1

2g2√gs
H3/4

[
4

k(α)

(
dα2 + dρ2 + ρ2dΩ2

2

)]
,

(4.15)

where ρ = 1− t, and thus ρ→ 0, ds2
1,3 is the metric on R1,3, and dΩ2

2 is the metric on the

unit-radius round 2-sphere. We have also defined the functions

H =
2k(α)

ρ
, k(α) ≡ 1− λ2

1 + 2λ cos 4α+ λ2
. (4.16)

Notice that we have parametrized the SO(3) spanned by ξ1,2,3 in (4.2) by the angle ψ and

the coordinates on S2. The metric is singular along the entire circle parametrized by the α

coordinate. The metric in (4.15) bears many similarities to the metric of a set of coincident

five-branes in flat space [35]

ds2
10 = h−1/4ds2

6 + h3/4ds2
4, where h = 1 +

T

r2
, (4.17)

where ds2
6 denotes the brane world-volume, ds2

4 denotes the space transverse to the branes

and the coordinate r denotes the distance from the stack of branes. In the harmonic

function h the parameter T is related to the tension of the five-brane.

The metric in (4.15) differs from the one in (4.17) in several important ways. First,

since we are already in the “near-horizon” limit we do not see the 1 in the harmonic function

as in (4.17). Second, we notice that the five-branes in (4.15) appear to be smeared since the

degree of singularity of the harmonic function, H, is less than that of h. Indeed, the four-

dimensional space transverse to the five-branes in (4.15) takes the form of a warped cylinder

and at every point on the circle parametrized by α there sits a five-brane. The cylinder

is warped by the π/2-periodic function k(α) in (4.16). This function also appears in as a

prefactor in front of the the space spanned by (χ, ψ) in the six-dimensional world-volume of

the five-branes. This space is a part of a two-dimensional compact submanifold of S5 into

16See appendix B for a discussion of what precisely is meant by an expansion around this point.

– 18 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
5

0 π

2

1

α

k(α)

λ = −1/4

λ = 0

λ = 1/4

Figure 2. The function k(α) for three different values of λ. The function is π/2 periodic and

should be extended to cover the entire range 0 ≤ α ≤ 2π. As |λ| approaches 1 the function gets

concentrated around the peaks at α = 0 + nπ/2 for λ → −1 and α = π/4 + nπ/2 for λ → 1,

where n ∈ Z.

which the five-branes polarize. The function k(α) therefore has a natural interpretation as

the polarization radius of the five-branes. However its appearance in the harmonic function

H also suggests that it plays the role of the tension of the five-brane. The function k(α)

plays an important role in the holographic interpretation of the geometry and we note here

that the integral of it is independent of λ,∫
k(α)dα = 2π . (4.18)

In figure 2 we plot k(α) for various values of λ. The rest of the type IIB supergravity fields

are compatible with the interpretation of the singularity as a smeared stack of five-branes.

The axion and dilaton take the form

eΦ ≈ gsH1/2 cos2 α, C0 ≈ −
tanα

gs
. (4.19)

These can be combined into the complex type IIB axio-dilaton

τ ≡ C0 + ie−Φ ≈ 1

gs

H1/2 sinα+ i cosα

H1/2 cosα− i sinα
. (4.20)

We have chosen to write the expression for τ as a compact SL(2,R) rotation by an angle

α of the value of τ at α = 0. This structure repeats itself for the two-forms[
B2

C2

]
≈

[
cosα gs sinα

−g−1
s sinα cosα

][
0

4
gsg2 volS2

]
. (4.21)

Finally the five-form flux takes the near-singularity form

F5 ≈
2(1− λ2)2/3

g4gs
(1 + ?10)dρ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (4.22)

The metric in (4.15) has the structure of a smeared distribution of five-branes along the

coordinate α. We can see this more explicitly by computing the five-brane charge density
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along the α-circle. For the NS5-brane charge we integrate the near-singularity expression

for dB2 between two points on the circle and divide by the length of an infinitesimal

circle-arc. The result is

p(α) =
1

(2π`s)2
lim
ε→0

1

ε

∫ α+ε

ᾱ=α
dB2(ᾱ) =

√
4gsN

π
cosα , (4.23)

where we have written the final answer in terms of the field theory quantities using (4.8)

and (4.13). A similar computation for the D5-brane charge leads to

q(α) = −

√
4N

πgs
sinα . (4.24)

We note that these charges are so-called “Page” charges and therefore should be quan-

tized [34]. This may appear puzzling since the angle α is a continuous angular coordinate.

We believe that this puzzling behavior is an artefact of the large N limit. It is natural to

speculate that 1/N effects will lead to desmearing of the five-branes and this will ultimately

resolve the charge quantization puzzle. A similar effect in a different context was discussed

in [36]. Finally we can also compute the D3-brane charge density along the α circle and

we find that it is constant

QD3(α) =
N

2π
. (4.25)

To summarize, we have found that the naked singularity for |λ| < 1 is due to a smeared

line distribution of (p, q)-five-branes that carry D3-brane charge. Note that the total five-

brane charge vanishes ∫
p(α) dα =

∫
q(α) dα = 0 , (4.26)

This is fully compatible with the solution far away from the naked singularity which ap-

proaches AdS5 × S5 at asymptotic infinity. The magnitude of the localized five-brane

charge is constant along the ring-like singularity the tension of the five-branes is not and

is controlled by the function k(α) in (4.16). This is due to finite binding energy between

the five-branes which is due to the non-trivial axion and dilaton to which the branes are

sensitive [35, 37]. The presence of the D3-brane charge near the singularity is entirely

compatible with the dielectric brane effect of Myers [17]. The five-branes carry D3-brane

charge since they are a result of the polarization of the D3-branes in the presence of the

2-form fluxes in (4.21).

4.2 Probe strings and line operators

To collect more evidence in favor of the above interpretation of the naked singularity in

terms of polarized five-branes, we can study it with probe strings. From the perspective

of the dual gauge theory, these strings are dual to line operators, and play the role of

the order parameters for deconfinement originally discussed in [29], and re-emphasized for

holographic field theories in [38]. Thus a careful study of probe strings can reveal how to

classify the field theory vacuum dual to our solution in terms of the vacua discussed in

section 2. A similar approach was ventured in [5] on their five-dimensional background,
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but as pointed out in [7], the five-dimensional approach may be misleading as it neglects

the possibility for probe strings to couple to type IIB supergravity fluxes and/or develop a

non-trivial profile in the S5 directions.

We first review some standard facts about probe strings in a holographic context.

Vacuum expectation values of line operators can be computed in AdS/CFT by inserting

probe strings into the geometry and computing their (regularized) on-shell action [39–41].

These strings “hang” from the boundary into the bulk geometry. The boundary conditions

of the string are determined by the type of line operator of interest. Probe strings in type

IIB string theory come in two flavors, both of which play a role in our discussion. First, we

have the fundamental string which is charged with respect to the Kalb-Ramond field B2.

Second, we have a D1-brane which is charged under C2. A bound state of m fundamental

strings and n D1-branes is referred to as (m,n)-string and is charged with respect to a linear

combination of B2 and C2. The fundamental string is dual to a Wilson line operator whereas

the D-string is dual to a ’t Hooft line operator, both in the fundamental representation of

the gauge group. An (m,n)-string is dual to a line operator which can be thought of as

a product of Wilson and ’t Hooft line operators. The probe string has a certain position

on the five-sphere and so the dual line operator transforms non-trivially under the SO(6)

R-symmetry of the UV N = 4 SYM theory. As pointed out in [39], this coupling to the

R-symmetry arises because line operators in N = 4 SYM involve, in addition to the usual

gauge field holonomy, a second term built from the scalar fields. For example, a Wilson

line is given by

W [C, θ] = Tr Pexp

∫
C

i
(
A− θIXI

)
ds, (4.27)

where C specifies the contour of integration and θI are six additional functions which

describe the the path of this contour through R-symmetry space (effectively, on the internal

S5). A similar coupling to the scalars XI appears in the ’t Hooft line operators. For

particular choices of θI and C, these operators may preserve a subset of the supercharges

in N = 4 SYM theory, see for example [42]. However, for the N = 1∗ SYM theory of

interest here, all line operators break supersymmetry.

The vev of the line operator in (4.27) encodes information about the vacuum structure

of the gauge theory. This is somewhat analogous to the way in which the quark-anti-

quark potential is sensitive to confinement. In N = 1∗ SYM there are no matter fields

in the fundamental representation, but one can mimic the notion of “quark-anti-quark

potential” by studying a rectangular loop operator. In particular, we choose a closed

rectangular contour that extends along the time direction, x0, with length L0 and along

one of the spatial directions with length Lqq̄. We take L0 � Lqq̄ such that the line operator

resembles two disconnected line operators associated to a “quark” and an “anti-quark” with

separation Lqq̄, see figure 3 for an illustration. We emphasize that this fictitious “quark-

anti-quark” pair is only a tool to visualize our setup. In the limit L0 � Lqq̄ the vev of the

Wilson line takes the form

〈W [C]〉 ∝ e−Vqq̄(Lqq̄)L0 , (4.28)

where Vqq̄ can be thought of as the quark-antiquark potential. The behavior of this potential
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x0

Figure 3. A quark-antiquark pair at a distance Lqq̄ from each other.

for sufficiently large Lqq̄ encodes properties of the gauge theory vacuum. If the potential

grows linearly, Vqq̄ ∼ Lqq̄, the Wilson loop vev displays an area law which indicates con-

finement. If the potential approaches a constant, Vqq̄ ∼ const, the quarks are screened.

Our goal is to compute the potential Vqq̄ using probe strings in the explicit solu-

tion (4.4)–(4.12). This is done by fixing the contour of the probe string on the boundary of

AdS5 as in figure 3 and finding a configuration in the bulk which minimizes the string ac-

tion. The potential Vqq̄ is then extracted from the regularized on-shell action of this probe

string. We emphasize that in the calculation below we use the full type IIB supergravity

solution in (4.4)–(4.12) and not the near-singularity background discussed in section 4.1.

The action for a probe (m,n)-string takes the form

S(m,n) = − 1

2π`2s

∫ [
d2σ

√
(n2e−Φ + eΦ(m− nC0)2)|P [gMN ] | − P [mB2 + nC2]

]
, (4.29)

where P [· · · ] denotes the pullback of the ten-dimensional field onto the string world-volume.

Notice that the tension of the (m,n)-string is not just the sum of the tensions of m funda-

mental strings and n D1-strings. This is similar to the case of (p, q) five-branes discussed

above where the binding energy contributes non-trivially.

Motivated by the discussion above we embed the string worldsheet in the ten-

dimensional geometry by identifying the world-sheet time coordinate σ0 with the four-

dimensional boundary time coordinates x0 and assume that the embedding of the string

does not depend on the time-coordinate. This implements the static configuration of the

“quarks” discussed above and leads to a dramatic simplification. Since, the 2-forms in (4.9)

have no legs along the four-dimensional space-time on the boundary, their pull-back nec-

essarily vanishes. We are therefore left to compute the determinant of the pullback of the

metric which reads

16
(
K1K2 −K2

3

)1/2
gsg4T 4 (1− λ2T 6)1/3

(
Ẋ2 +

Ṫ 2

(1− T 2) (1− λ2T 6)2/3
+
T 2
√

1− λ2T 6

K1K2 −K2
3

GmnΘ̇mΘ̇n

)
. (4.30)

Here T (σ) and Θm (σ) withm = 1, . . . , 5 are functions of the spatial world-sheet coordinate,

σ = σ1, which encode how the string is embedded along the radial coordinate of AdS5 and
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the five angles of the S5. We have fixed the embedding of the string along two of the spatial

directions along the AdS5 boundary by setting x2 = x3 = 0. Finally, the function X (σ)

encodes the string embedding along the x1 direction in the AdS5 boundary. We use a dot

to denote the derivative with respect to σ.

Since the metric Gmn in (4.30) is positive definite we can conclude that one way of

extremizing the string action is to take the angles Θm to be constants as a function of

σ. Note however that extremizing the string action does not guarantee that the resulting

solution provides the minimum on-shell action. Indeed, we show below that strings that

have non-constant angles on the Θm can sometimes have lower energy than those with

constant angles. For (m,n)-strings with constant angles Θm it is simple to minimize the

action and find the following four distinct solutions

χ = 0 , α ∈ {0, 1, 2, 3} π/4 , and n = mgs sin2(2α) . (4.31)

Here we have used the discrete symmetry discussed above (4.14) to relate all other solutions

to these four. Note that this symmetry acts non-trivially on the probe string itself since it

involves an S-duality transformation in type IIB string theory. For λ = 0 we naively find

that α is completely unrestricted and there appear to be more solutions. However, since

exactly for λ = 0 the discrete symmetry is enhanced to a continuous U(1) symmetry, all

the solutions are in fact equivalent to those in (4.31). For all value of the angles in (4.31)

the dimensionless string action takes the form

s ≡ − 2π`2sg
2gs

L0

√
m2g2

s + n2
S(m,n) =

∫
dσ ζ(T )

[
Ẋ2 +

4Ṫ 2

(1− T 2) (1− λ2T 6)1/3

]1/2

, (4.32)

where ζ(T ) is a non-trivial function of the scalar T which takes a different form depending

on the choice of angle in (4.31). Since the action is entirely independent of time, we have

performed the integral over the x0 direction resulting in the explicit factor of L0.17 In

the subsequent discussion we focus on the two solutions, α = 0, π/2 corresponding to

fundamental, i.e. (1, 0), strings sitting at the two different positions on the five-sphere.

These two solutions show qualitatively different behavior. The other two solutions, α =

π/4, 3π/4, correspond to (1, 1) strings and display similar behavior to the first two. We

can parametrize the two fundamental string solutions in terms of the constant value of α

which leads to the following expression for the function ζ

ζ2 =
(1 + λT 4)

(
(1 + T 2)(1− λT 4) + 2T 2(1− λT 2) cos 2α

)
T 4(1− λ2T 6)1/3

. (4.33)

We have arrived at a simple classical mechanics problem in one dimension with two variables

X(σ) and T (σ).18 Let L be the Lagrangian of this one-dimensional problem, given by

s =
∫
L dσ in (4.32). The momenta conjugate to the variables X and T are

p = ζ2 Ẋ

L
, PT =

4ζ2

(1− T 2) (1− λ2T 6)1/3

Ṫ

L
. (4.34)

17It is perhaps instructive to think of s as an action density.
18The role of time is played by the spatial coordinate σ on the string world sheet.
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Note that since the Lagrangian is independent of X its associated momentum p is con-

served and can be used to label the solutions. Furthermore, due to the reparametrization

invariance of the Lagrangian, the Hamiltonian vanishes

H = pẊ + PT Ṫ − L = 0 . (4.35)

It proves useful to parametrize the solutions of this one-dimensional problem in terms of

the action integral itself, i.e. use a “proper time” parametrization such that the action is

ds = L dσ. This reduces the Hamiltonian constraint to a simple effective potential problem

with zero total energy

1

2

(
dT

ds

)2

+ Veff = 0 , with Veff =
(1− T 2)(1− λ2T 6)1/3(p2 − ζ2)

8ζ4
. (4.36)

For each value of the parameter p we want to find a solution to the classical mechanics

problem. In particular we are interested in solutions which have a turning point where

the potential energy vanishes and the velocity can switch sign. Such solutions describe

a string profile with the two ends of the string “anchored” to the AdS5 boundary which

extends into the bulk. The turning point is found for some T = t0 when p2 = ζ2(t0) and

its location represents how deep in the bulk the string extends. It is more convenient to

label the solutions not by the conserved momentum p but rather by the coordinate of the

turning point t0.

The quantities of physical relevance for our purposes are the renormalized on-shell

action in (4.32) and the boundary separation between the two “quarks” Lqq̄. Using (4.36)

one finds the following expressions for these quantities

sren(t0) = lim
ε→0

[∫ t0

ε

dT√
−2Veff

− 2

ε

]
, Lqq̄(t0) = 2ζ(t0)

∫ t0

0

dT

ζ2
√
−2Veff

. (4.37)

Notice that we have multiplied these expressions by 2 since the full world-sheet is symmetric

around the turning point t0. Note also that the naive on-shell action in (4.32) diverges

near the AdS5 boundary, t = ε → 0. To remedy this we included in (4.37) the standard

holographic counterterm to regularize the on-shell string action [39–41]. This counterterm

ensures that we obtain a finite expression for the on-shell action as we take the limit

ε→ 0. The integral for Lqq̄ does not require regularization. The integrals in (4.37) can be

performed numerically and we discuss the results below.

As we emphasized above the calculation for the four different solutions in (4.31) can

be treated simultaneously, however it turns out that the results are qualitatively different

and thus we discuss them separately. For a fundamental string, i.e. (m,n) = (1, 0), at

α = 0 we find that for large enough separation length of the quark-anti-quark pair the

on-shell action grows linearly, as is shown in figure 4. The linear behavior in figure 4 can

be understood analytically by studying a string worldsheet formed by three straight lines.19

A straight line that extends from the UV AdS5 region to the singularity at t = 1. This is

19We emphasize that this string profile solves the equations of motion but is never energetically favored.

We use it here only as an approximation which captures the linear behavior in figure 4.
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Figure 4. The renormalized on-shell action for the fundamental string at α = 0, as a function of

Lqq̄. The different lines correspond to different values of λ, namely λ = (0, 0.5, 0.7, 0.9), from top

to bottom.

described by (4.36) with p = 0. This worldsheet contributes nothing to Lqq̄ in (4.37) but it

contributes a fixed λ-dependent value to the on-shell action in (4.37). The second straight

line segment is the string worldsheet that stretches along the singularity at t = 1. This

leads to T = 1 and thus ζ = 4(1 − λ2)2/3. Finally, the third piece of the worldsheet is a

copy of the first one. We therefore find the following expression for the on-shell action of

this three-piece string as a function of Lqq̄

s = (1− λ2)1/3Lqq̄ + lim
ε→0

(∫ 1

ε

2ζdT√
(1− T 2)(1− λ2T 6)1/3

− 2

ε

)
. (4.38)

The coefficient of Lqq̄ in (4.38) provides an excellent fit to the slope of the linear regime

of the numerical on-shell action in figure 4. This slope is simply given by the tension

of a straight fundamental string that forms a bound state with the polarized NS5-branes

sitting at t = 1. Using the field theory expectations discussed around (4.28) it might be

tempting to interpret this linear behavior as a sign of a confining vacuum with the tension

of the flux-tube given by the tension of fundamental string in the presence of the polarized

NS5-brane. However, as we discuss below this interpretation is problematic.

Now let us consider the other class of string solutions with α = π/2. We again have a

fundamental string, but according to (4.23)–(4.24), it is located at a value of α associated

with polarized D5-branes. This changes the nature of the available string solutions. Sim-

ilarly to the string at α = 0 we have a numerical solution with a turning point at t0 < 1

for which one can compute the integrals in (4.37). However there is also another class of

solutions composed of three straight segments just like the one described above (4.38), see

figure 6. Contrary to the case with α = 0 this three-segment string may become energet-

ically favored for some value of Lqq̄. To decide which one of the two available solutions is

dominant one has to compute the on-shell action of the string for each of them and choose

the one with a lower value of the action. The on-shell action for the three-segment string
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Figure 5. The renormalized on-shell action for the fundamental string at α = π/2 as a function

of Lqq̄. The different lines correspond to λ = (0, 0.9) from bottom to up. For both values of λ we

show the two solutions discussed in the text above, the dominant and subdominant solutions are

plotted with a solid and a dashed line, respectively.

solution can be computed analytically and is given by

sren = −2(1− λ2)2/3 +
2λ

3
2F1

(
1

3
,
1

2
,
3

2
, λ2

)
− 6λ2

5
2F1

(
1

3
,
5

6
,

11

6
, λ2

)
. (4.39)

Notice that this on-shell action is independent of Lqq̄. This is because the tension of the

bound state between the fundamental string and the polarized D5-brane vanishes and only

the two straight string segments connecting the UV AdS5 to the naked singularity in the

IR contribute to the action. For small values of Lqq̄ the three-segment string solution is

subdominant with respect to the numerical solution with a t0 < 1 turning point. There

is however a critical value of Lqq̄ beyond which the three-segment string solution becomes

dominant. This behavior is illustrated in figure 5. Comparing this behavior to the discus-

sion around (4.28) we can conclude that the dual gauge theory is in a vacuum which exhibits

screening. This leads to the interpretation that the on-shell action for the three-segment

string in (4.39) is equal to the “quark-anti-quark” binding energy in the dual gauge theory.

The analysis of the α = 0 and α = π/2 solutions above leads to seemingly contradicting

conclusions about the nature of the vacuum in the dual gauge theory, i.e. the α = 0 solutions

indicate confining while the strings with α = π/2 lead to a screening behavior. To clarify

this note that for the fundamental string at α = 0 the energy grows linearly with Lqq̄
whereas for α = π/2 the energy reaches a maximum and stays constant no matter how

much we increase Lqq̄. This suggests that for large enough Lqq̄ it is energetically favorable

for the fundamental string placed at α = 0 to develop a profile along the α coordinate as it

drops into the bulk such that near the singularity at t = 1 one has α = π/2. Indeed we have

constructed examples of such solutions numerically but it is challenging to find a complete

classification since one has to solve partial differential equations. Given the existence of

these more general string configurations it is natural to expect that for any value of α

near the AdS5 boundary and for large enough quark separation, Lqq̄, the dominant string
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Figure 6. A sample of (1, 0) string profiles with different values of Lqq̄ at α = π/2.

solution will have α varying as a function of t such that near the singularity at t = 1 one

finds α = π/2. This then leads to the fundamental string binding with the polarized D5-

brane at α = π/2 exhibiting the screening behavior illustrated in figure 5. This behavior

is not restricted to fundamental strings but rather holds for all probe (m,n)-strings. For

large enough separation, the (m,n)-string has a profile along the α-angle such that for

t = 1 the value of the angle is tanα = −gsm/n. This then leads to a bound state with

a polarized (n,−m) five-brane and a vanishing effective string tension. In the dual gauge

theory this amounts to a screening behavior in the vacuum.

4.3 The singularity for |λ| = 1

The type IIB supergravity solution has a naked singularity at t = 1 which is physically

acceptable, according to the criteria in [23] and [24] for all values in the range −1 ≤ λ ≤ 1.

We have argued above how this singularity can be interpreted in terms of explicit polarized

5-brane sources when |λ| < 1. The solutions with |λ| = 1, however, need a separate

treatment which we present here.

Fixing λ = 1 and analyzing the background in (4.4)–(4.12) one finds a naked singularity

at t→ 1.20 To be more explicit it is convenient to define

w1 = cos 2χ cos 2α, w2 = cos 2χ sin 2α ,

V =− 4
(
w2

1 + 4
(
w2

2 − 1
))
, W = −

2
(
w2

1 + 2w2
2

)√
w2

1 + w2
2

.
(4.40)

The ten-dimensional metric in the limit t→ 1 then takes the form

ds2
10 ≈

V 1/4

g2√gs
√

6(1− t)

[
(10− 6t) dt2 + 481/3 (1− t)4/3 ds2

4 +
6(1 + t)

V
dw2

2

+
24 (1− t)2

V

(
(4−W ) sin2 χσ2

1 + (4 +W ) cos2 χσ2
2 +

1

2
sin 4χ sin 4ασ1σ2

)
+

16 (1− t)2

V
(3w1 (2 sin 2α dχ+ w1σ3) + 4 sin 2χ (2dα+ sin 2χσ3))σ3

]
.

(4.41)

20One can treat the λ = −1 in a very similar way.
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This form of the metric already suggests that any interpretation of the singularity as sourced

by branes is difficult. The reason is that the whole five-sphere is singular for t→ 1. We are

not aware of any brane distribution compatible with the symmetries in the problem that

may lead to such a drastic singularity.

One may be worried that this conclusion is due to an inappropriate choice of coordi-

nates. To this end it is also useful to study the behavior of the background fluxes. The

dilaton and axion near the singularity are given by

eΦ ≈2gs (2 + cos 2χ cos 2α)√
V

, C0 ≈ −
2 cos 2χ sin 2α

gs (2 + cos 2χ cos 2α)
. (4.42)

It is clear that the axion and dilaton are regular for all points on the five-sphere except at

χ = 0 , α = π/4 + nπ/2 , for n ∈ Z . (4.43)

This is incompatible with any brane interpretation except for a possible D1-brane located

at the locus in (4.43). However, D1-branes also source the R-R two form which can be

read off from the following expression in the t→ 1 limit:

B2 + igsC2 ≈
4e−iα

g2V

[
4i sin 2χ

((
4− 3 cos 2χ+

(w1 + iw2)2

cos 2χ

)
Σ + 8i sinχσ1

)
∧ dα

+iV Σ ∧ σ3+
(

12iw1 sin 2αΣ−
(

4e4iα+2 (w1+iw2)2+9−12 cos 4χ
)

Σ
)
∧dχ

]
,

(4.44)

where Σ is defined in (4.11). The behavior of C2 above at the locus (4.43) is incompatible

with a D1-brane. Therefore we conclude that there is no candidate brane interpretation of

the singularity at λ = 1. To complete our analysis of the fluxes we note that the five-form

flux in (4.12) does not diverge in the limit t → 1. Note that the function V in (4.40) has

additional singularities at the locus (4.43). This in turn leads to a more singular behavior

of the metric (4.41). This behavior is compatible with the point-like singularities exhibited

by the metric in (4.15) due to the delta-function singularities of the function k(α) in (4.16).

Some additional evidence for the peculiar nature of the naked singularity for |λ| = 1

can be found by studying D3-brane probes in the full type IIB supergravity background

in (4.4)–(4.12). The probe action for a D3-brane is

SD3 = − 2π

(2π`s)4

∫ [
d4σ

√
|P [gMN ]|+ P [C4]

]
, (4.45)

where σ0,1,2,3 are coordinates on the D3-brane world-volume and P [. . .] indicate a pullback

of the metric or the 4-form RR field. We choose the world-volume of the probe D3-brane to

coincide with the four-directions, x0,1,2,3, that span the boundary of AdS5. The embedding

of the brane in the radial direction and the angles of S5 is then specified by the functions

T (σ) and Θm(σ) for m = 1, . . . , 5. For static brane configurations one has to put all

spacetime derivatives of the scalar functions T (σ) and Θm(σ) to zero. The results is the

following effective potential for these scalar functions

VD3 =
2π
(
(K1K2 −K2

3 )1/2 − (1− T 2)(1− λ2T 8)
)

gs(2π`sg)4T 4(1− λ2T 6)1/3
. (4.46)
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In this expression, with a slight abuse of notation, we have used the functions K1,2,3 in (4.4)

with T,Θ1,Θ2 in place of t, α, χ. Note that this effective potential is compatible with the

SO(3) invariance of the background in (4.4)–(4.12).

The potential in (4.46) can be extremized with respect to the scalars T,Θ1,Θ2 only

for λ = ±1. In addition we find that the extremum is located at t = 1 and the locus

in (4.43).21 Thus we conclude that a static probe D3-brane minimizes its energy on this

locus. Evaluating the full D3-brane probe action on this locus we find that it vanishes

precisely. This implies that probe D3-branes become tensionless at the naked singularity for

λ = ±1. We interpret this as extra evidence that for |λ| = 1 the supergravity approximation

breaks down near the naked singularity and one cannot interpret it in terms of explicit

brane sources.

It is worth pointing out that our analysis is similar to the calculations in [43, 44]

where supergravity solutions dual to non-conformal N = 2 SYM theories were studied

with peculiar naked singularities that cannot be attributed to branes. While our gauge

theory setup has only N = 1 supersymmetry it might be possible to leverage the enhançon

mechanism of [43, 44], which is associated with tensionless branes, to understand the naked

singularity with |λ| = 1.

5 Discussion

After this detailed analysis of the type IIB uplift of the GPPZ solutions constructed in [21,

22] it is worthwhile to discuss the interpretation of our results and their relation to the

physics in the dual gauge theory. To this end it is important to emphasize that the

supergravity solutions at hand have an SO(3) × Z2 symmetry. The SO(3) invariance is a

simple manifestation of the SO(3) flavor symmetry in the N = 1∗ theory with three equal

masses and arises from the following breaking of the SU(4) R-symmetry of N = 4 SYM

SU(4)→ SU(3)×U(1)r → SO(3) . (5.1)

The Z2 invariance is more subtle. To understand it recall that the protected operators in

N = 4 SYM in the planar limit enjoy an extra U(1)S symmetry [45]. This U(1)S is the

compact subgroup of the SL(2,R) duality group of planar N = 4 SYM. The Z2 group

under which our solutions are invariant is a subgroup of U(1)Y = diag(U(1)r ×U(1)S). To

identify candidate supersymmetric vacua of the N = 1∗ theory dual to our supergravity

solutions we have to focus on vacua which are invariant under this Z2 action. It is rather

unusual to impose an invariance under a subgroup of S-duality on a vacuum of a gauge

theory and perhaps this feature, imposed on us by supergravity, should be attributed to

the large N limit in the gauge theory. Interestingly, there is a massive vacuum of N = 1

which is invariant under the Z2 action. It exists whenever N = D2 for some integer D

and was discussed around (2.10). It may be tempting to speculate that for some value

of λ the GPPZ solution is dual to this massive vacuum. This interpretation is however

problematic. On one hand using (2.12) we find that the chiral condensate in the selfdual

21For λ = −1 the locus in (4.43) is slighlty modified to α = nπ/2 for n ∈ Z.
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vacuum (2.10) is non-zero for general choices of the function A(τ,N). For vanishing A(τ,N)

the IR superpotential as well as the gaugino condensate itself vanishes. On the other hand

the analysis in section 3.3 shows that the supergravity solutions in the four-scalar model

yield zero value for the chiral condensate and gaugino condensate proportional to λ. We

have arrived at this apparent contradiction by using the IR superpotential in (2.11) and

the Gubser criterion on the supergravity side [23].

We believe that the arguments above point to the fact that the GPPZ solutions with

−1 < λ < 1 are simply not dual to massive vacua of the N = 1∗ theory. The near-

singularity analysis for these values of λ clearly indicate the presence of polarized five-branes

in the geometry and one can attribute the singularity to the smearing of the five-branes

along the ring parametrized by the coordinate α. From this perspective, the singularity we

observe in the GPPZ solution is no more unphysical than the singularities of the N = 4

Coulomb branch solutions in [28]. We are therefore led to the conclusion that the GPPZ

solutions with −1 < λ < 1 are dual to a set of Coulomb vacua of N = 1∗ invariant under

the Z2 action discussed above. This is not in contradiction with any of the field theory

results of [6, 10–12]. There are additional arguments in favour of our conclusion. First we

note that in [6], it was argued that a massive vacuum of N = 1∗ leads to a single stack of

(p, q) five-branes, whereas Coulomb vacua feature multiple stacks at different values of the

AdS radial coordinate. The arguments of [6] are based on the map between the classical

F-term equations in the gauge theory and the Myers polarization equations for D3-branes

polarizing to five-branes when immersed in flux backgrounds. In the gauge theory, the

massive vacua are characterized by the fact that the sum in (2.6) contains only one term.

In the polarization picture of Myers this corresponds exactly to the case where the D3-

branes polarize into a single stack. As soon as the sum in (2.6) contains more than one

term, the unbroken gauge group contains at least one unbroken U(1) and the IR physics is

dominated by the dynamics of free photons. For the GPPZ backround with −1 < λ < 1, we

do not see a single stack of five-branes. On the contrary we find a continuous distribution of

them. In fact the function k(α) in (4.16) controls the tension of five-branes as a function of

the angle α and can perhaps be given the interpretation of the dkd which appears in (2.6).

At large N the equation (2.6) takes the form∫ ∞
0

x kx dx = 1 , (5.2)

where x is the continuous analog of d in (2.6). The condition (4.18) satisfied by the

function k(α) is indeed very reminiscent of (5.2) when x ∼ tanα. This mapping of x to α

is supported by the locking of the (p, q) charges of the fivebranes to the coordinate α in our

geometry. At α = π/2, which should correspond to a very large SU(2) representation, we

have pure D5-branes which, according to [6], are dual to the Higgs vacuum. On the other

hand at α = 0 we expect the trivial representation of SU(2) and we find pure NS5-branes

in the geometry, in line with the arguments of [6]. By this argument the vacuum described

by a GPPZ solution with −1 < λ < 1 corresponds to a vacuum of the theory labelled by kd
which is almost “continuous” as a function of the dimension of the SU(2) representation d.

Certainly the sum in (2.6) contains more than one term in such a vacuum which is the case
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for any Coulomb vacuum. Finally, we emphasize that the behaviour of the probe string

solutions we studied in detail also supports this conclusion. As explained in section 4.2,

in a massive vacuum some probe (m,n) string would have an on-shell action that grows

linearly with the quark separation Lqq̄. We do not find such a behavior precisely due to

the continuous distribution of (p, q) five-branes in the IR.

The singularity of the GPPZ solutions with |λ| = 1 is more severe and does not seem

to admit an interpretation in terms of explicit D-brane sources. The most direct evidence

of this is that, as discussed in section 4.3, probe D3-branes become tensionless near the

singularity. Given this, one might conclude that the supergravity solutions with |λ| = 1

are unphysical and thus there is no vacuum of the planar N = 1∗ theory with vanishing

chiral condensate and a value for the gaugino bilinear vev as in (3.14). We believe that

this conclusion is erroneous. In the context of holography a natural way to excise a naked

singularity of the type encountered here is to introduce an IR cutoff for the dual gauge

theory. Putting the field theory at finite temperature is a natural physical choice. Indeed,

this was studied for the N = 1∗ theory in [46], see also [47] for recent work. While this

is certainly one way to remedy the naked singularity of the GPPZ solutions, the lack of

supersymmetry complicates the analysis of this set-up significantly. Fortunately placing the

N = 1∗ theory on S4 provides an alternative IR regulator compatible with supersymmetry.

This setup was studied in detail in [25] where supergravity backgrounds dual to N = 1∗

on S4 were found as solutions of the four-scalar model in section 3. The solutions of [25]

are constructed for a fixed radius, R, of the S4 and are completely smooth. The regularity

condition in the IR of the geometry translates into a precise relation between the gaugino

condensate and the mass parameter for every value of R. In appendix C we show that in

the limit of large R, the regular solutions of [25] approach the λ = 1 GPPZ solution. Since

the supergravity solutions with an S4 boundary are always regular, even at arbitrarily large

R, we conclude that the value λ = 1 corresponds to a physical vacuum of the gauge theory.

It is useful to employ an analogy with the N = 2∗ SYM theory. The holographic dual of

N = 2∗ on S4 is constructed in [48] and we have checked explicitly that in the large R
limit this solution asymptotes to the solution in [20] with γ = 0. The significance of this is

that the supergravity solutions in [20] are dual to N = 2∗ on flat space and γ is the direct

analog of the parameter λ in N = 1∗. Moreover, the Gubser criterion for acceptable naked

singularities restricts the range of γ to be γ ≤ 0. It was shown in [43] that probe D3-branes

in the N = 2∗ solutions of [20] become tensionless precisely at γ = 0 which is again similar

to what we find here for the λ = 1 solution. The fact that the λ = 1 vacuum of N = 1∗ is

preferred by the S4 IR regulator suggests that it is one of the massive vacua of the theory.

This conjecture is also compatible with the fact that for λ→ 1 the function k(α) is peaked

at four points on the α-circle. Thus we speculate that probe strings show a qualitatively

different behaviour in the |λ| = 1 vacua. Now an arbitrary probe string would be unable

to move along the α coordinate and find a bound state with a five-brane with zero tension.

This, combined with the connection between (5.2) and (2.6), suggests that the λ→ 1 has

a few or even only one term in the sum and is thus massive. The analysis above strongly

suggests that the value λ = 1 leads to a physical vacuum of the planar N = 1∗ theory. We

believe that the same conclusion holds for λ = −1 but have less evidence to support this
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claim since there are no S4 supergravity solutions which lead to this value of lambda in the

large R limit. To shed more light on these questions it is very important to understand

the vacua of N = 1∗ corresponding to λ = ±1 using field theory methods.

Excising a naked singularity by introducing an explicit IR cutoff may not be the only

mechanism to find regular supergravity solutions with |λ| = 1. It is natural to wonder

whether string theory provides some other mechanism to repair the singular GPPZ solu-

tions above. The prototypical example in this context is the type IIB supergravity solution

of Klebanov and Strassler [1], which provides an explicit resolution of the Klebanov-Tseytlin

solution [49] through a geometric transition. Looking for such regular solutions in the con-

text of N = 1∗ should be done directly in type IIB supergravity. Due to the small isometry

group, the supergravity BPS equations reduce to a system of nonlinear partial differen-

tial equations in three variables. Finding explicit solutions of this system of equations is

a daunting task. Moreover, there is no clear evidence, either from field theory or from

supergravity, that regular supergravity solutions should exist. It will certainly be very

interesting to settle the question about the existence of regular supergravity solutions dual

to some vacua of the N = 1∗ theory.

Our analysis has shed new light on the holographic description of the N = 1∗ SYM

theory with equal mass parameters. One important simplifying assumption which allowed

us to make progress is that we studied configurations invariant under the Z2 group dis-

cussed around equation (5.1). It is possible to relax this assumption and study a more

general holographic setup with only SO(3) invariance. To this end one should employ the

eight-scalar SO(3)-invariant truncation of five-dimensional supergravity studied in [7, 50].

This model may allow for new supersymmetric domain wall solutions with non-vanishing

condensates for the scalar bilinear operators in the 20′ of SU(4). It will be very interesting

to construct such solutions explicitly and uplift them to IIB supergravity using the ap-

proach outlined in [21, 22]. Moreover this eight-scalar model may allow for more general

solutions with an S4 boundary which may be relevant to the λ = −1 GPPZ background in

the large R limit.
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A BPS equations for the four-scalar model

The BPS equations of the four-scalar model with flat slicing can be written down compactly

as in (3.4). However, for the analysis in section 3.3 it is more convenient to use the scalars

fields (α,ϕ, φ, φ4) as defined in (3.7). In addition we use the metric function A(r) in (3.3)

as a new radial variable so that the five-dimensional metric takes the form

ds2
5 =

8

g2

cos (3φ− φ4) cos3 (φ+ φ4)

cos 4φ+ cosh 4α
dA2 + e2Ads2

4 . (A.1)

The BPS equations for the four scalar fields can then be written as

d (α− ϕ)

dA
= − sinh 4α

cos 4φ+ cosh 4α
cos2 (φ+ φ4) ,

d (3α+ ϕ)

dA
= − 3 sinh 4α

cos 4φ+ cosh 4α
cos2 (3φ− φ4) ,

d (φ+ φ4)

dA
=

2 sin (3φ− φ4)− sin (5φ+ φ4)− 3 cosh 4α sin (φ+ φ4)

cos 4φ+ cosh 4α
cos (φ+ φ4) ,

d (3φ− φ4)

dA
= 3

sin (φ+ φ4)− cosh 4α sin (3φ− φ4)

cos 4φ+ cosh 4α
cos (3φ− φ4) .

(A.2)

Note that the five-dimensional dilaton, ϕ, does not appear on the right hand side of these

equations. Therefore once a solution for the scalars α, φ and φ4 is found the solution for ϕ

can be found by quadratures.

As discussed in section 3 for the GPPZ solution one finds α = ϕ = 0 and only the scalars

φ and φ4 are nontrivial. Here we provide some details on solutions of the equations (A.2)

with nontrivial α. As discussed in in section 3.3 this scalar is dual to a protected scalar

bilinear operator in the N = 1∗ theory.

Before we discuss general solutions of the equations in (A.2) it is worth pointing out

that there is a simple analytic solution of (A.2) with φ = φ4 = ϕ = 0. The BPS equation

for α is then easily integrated to find

dα

dA
= − tanh 4α ⇒ α =

1

4
arcsinh

(
c1 e−4A

)
, (A.3)

where c1 is a real integration constant. The five-dimensional metric reads

ds2
5 =

8

g2

1

1 +
√

1 + c2
1e−8A

dA2 + e2Ads2
4 . (A.4)

This solution exhibits a naked singularity, however one finds that the five-dimensional

scalar potential in (3.2) evaluated on the solution is

P = −3g2

16

(
3 +

√
1 + c2

1e−8A

)
. (A.5)

This function is bounded above for all values of c1 and therefore is acceptable according to

the Gubser criterion in [23]. This simple solution is one of the “Coulomb branch solutions”

described in [28]. It correspond to a supersymmetric vacuum of N = 4 SYM in which a

particular operator in the 20′ acquires a vacuum expectation value.
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The general BPS equations in (A.2) do no admit regular solutions. This necessitates

a careful study of the singular solutions. For similar BPS holographic RG flows it was

argued in [23] that the IR behavior of non-compact scalar fields should be such that they

asymptote to a fixed direction in the scalar field space. Assuming that this behavior is

indeed realized we can proceed and treat the equations in (A.2) in the neighborhood of

the IR singularity.22 Since the scalars φ and φ4 are compact and periodic they should

approach a constant value in order to realized the IR behavior discussed in [23]. The scalar

α is non-compact and is not a priori restricted in the IR.

When the IR value of α is not vanishing one finds from (A.2) that the constant values

of the scalars φ and φ4 should obey

cos
(
φ(IR) + φ

(IR)
4

)
= 0 , and cos

(
3φ(IR) − φ(IR)

4

)
= 0 , (A.6)

which means that φ(IR) + φ
(IR)
4 = ±π/2 = 3φ(IR) − φ(IR)

4 . Since the equations in (A.2) are

invariant under a simultaneous shift of π/2 in both φ and φ4 we can focus on the cases

where φ(IR) = φ
(IR)
4 −π/2 = 0 (case I) and φ(IR) = φ

(IR)
4 = π/4 (case II). To see whether the

potential is bounded from above one has to expand the scalars to second order in the IR

case I


α = α(IR) − tanh 2α(IR) a

2 + 3b2

24
e6A + O

(
e12A

)
,

φ+ φ4 =
π

2
+ ae3A +O

(
e9A
)
,

3φ− φ4 = −π
2

+ be3A +O
(
e9A
)
,

case II


α = α(IR) − coth 2α(IR) a

2 + 3b2

24
e6A + O

(
e12A

)
,

φ+ φ4 =
π

2
+ ae3A +O

(
e9A
)
,

3φ− φ4 =
π

2
+ be3A +O

(
e9A
)
,

(A.7)

where a, b and α(IR) are independent constants.

To understand whether a given naked singularity in the IR is acceptable or not we

once again employ the Gubser criterion. The acceptable singularities have an on-shell

scalar potential that is bounded above. Evaluating the scalar potential for the 4-scalar

model using the IR expansions for the two cases in (A.7) we find

P(IR)
I ≈− 3g2 cosh2 2α(IR)

8a3b
e−12A + g2a− 3b+ 2a cosh 4α(IR)

16a2b
e−6A ,

P(IR)
II ≈ 3g2 sinh2 2α(IR)

8a3b
e−12A − g2 b

2 − 5a2 + 12ab+ 2
(
b2 + 5a2

)
cosh 4α(IR)

32a3b
e−6A .

(A.8)

Since the functaion e−A diverges in the IR we find that in case I the potential is bounded

above when sign(a) = sign(b). In case II the condition is sign(a) = −sign(b). However,

22We have confirmed through extensive numerical checks of the full non-line equations in (A.2) that this

assumption is indeed justified.
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whenever these criteria are met we find that the full non-linear solution of the equations

in (A.2) is singular in the UV, i.e. for large eA, and does not reach the asymptotically AdS5

region. These singular UV solutions are depicted in the upper area of figure 1. We thus

conclude that there are no physically acceptable singular solutions of the BPS equations

in (A.2) which have non-vanishing α, φ, and φ4.

When the scalar α vanishes we find that the only solutions to the BPS equations (A.2)

are the GPPZ solutions in section 3.2 parametrized by the integration constant λ.

B Method of near-singularity limits

When discussing a “near-singularity limit” in a complicated geometry such as the uplifted

GPPZ solution, it is important to clarify what one means. A first concern is that in

a background of many dimensions, a singularity may look differently depending on the

direction in which it is approached; however, a more fundamental issue is what one means

by the words “near-singularity limit” in the first place, as there are multiple different ways

in which one might want to understand the structure of a singularity. In this work, we

are interested foremost in ten-dimensional brane physics, so the notion of “near-singularity

limit” we use is meant to examine what the full 10-dimensional geometry looks like as

the singularity is approached.23 Such a limit contains enough data to discover the brane

content of the singularity itself via, e.g., the Gauss law.

It is instructive to think of the metric as a 10 × 10 matrix in some (not necessarily

orthonormal) basis va, thus the line element is written

ds2 = gabv
avb . (B.1)

The metric tensor gab and the basis va are both functions of some coordinates xµ, and

one is interested in their behavior as x → x0, which we can organize schematically in

terms of some “radial” coordinate r ≡ |x − x0| (note that one should think of “x0” as

being a subspace of coordinate space which is not necessarily a single point; likewise, the

singularity in the geometry may not be a single point but rather have some extension).

Then one should imagine expanding quantities as a series in powers of r, which may contain

negative powers (for simplicity, we assume that the coordinates can be chosen such that

only integer powers appear).

Here one has some choices to make about how to organize such a series. As a 10 × 10

matrix, the metric tensor gab has certain properties (namely, it is symmetric and invertible,

and has (1, 9) signature), and in order to discuss a ten-dimensional near-singularity limit,

we must retain these properties. The only basis-independent information in gab are its

eigenvalues, so we must construct a limit in such a way as to track the behavior of each

eigenvalue independently as r → 0.

23Other possible methods might include, for example, constructing a sort of “pullback metric” onto the

singularity, which throws away those directions of spacetime which do not blow up as the singularity is

approached.
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Any symmetric matrix can be diagonalized by an SO(n) rotation, so we can al-

ways write

gab = (RΛR>)ab , (B.2)

where R ∈ SO(10) (or SO(1, 9); the distinction will not matter here), and Λ is a diagonal

matrix of eigenvalues. Since the eigenvalues of R are always unitary, the singular behavior

of gab is now entirely contained in Λ. It is convenient to define a new basis ṽa ≡ (Rv)a, in

which the line element is now diagonal:

ds2 = Λabṽ
aṽb =

∑
a

Λaa(ṽ
a)2 . (B.3)

For further convenience, we could also take R ∈ SL(10), which makes it somewhat easier

to deal with basis-vector expressions like
(
σ3 +P (t, α, χ)dα+Q(t, α, χ)dχ

)
, which contain

linear combinations of other basis vectors.

Next one simply takes the lowest-order expansion in r of each of the eigenvalues in Λ,

combined with the lowest-order expansion of the rotation matrix R. Since R is unitary,

its lowest-order expansion is always finite, of order r0. Λ becomes a diagonal matrix of

expressions with different powers of r:

Λ =

r
n0f0(x‖)

. . .

rn9f9(x‖) ,

 , (B.4)

where x‖ are the coordinates parallel to the singularity (i.e. transverse to r). Although each

eigenvalue in Λ may have a different order in r, they are each oriented along a different

direction in spacetime (given by the orthogonal vectors ṽa), and thus do not “mix” in a

way that would allow the lower powers of r to wash out the higher ones.24 This method

of separately keeping the lowest order eigenvalues thus gives a basis-independent way of

determining the local 10-dimensional geometry in the vicinity of the singularity, and in

particular allows one to extract expressions which resemble D-brane metrics of the type

ds2 = H−1/4ds2
6 +H3/4ds2

4 , (B.5)

where the “harmonic function” H appears with different powers in front of different parts

of the metric. Thus it is appropriate for obtaining the 10-dimensional physics of the

singularity. We note also that this is precisely the type of near-singularity limit considered

elsewhere in the literature, such as in [51, 52].

In order to do further calculations with such a limit, one must take care to be consistent.

First, since all quantities appear only to lowest order in r, there is no notion of curvature

as that requires two derivatives. In order to discuss the limits of the p-form potentials and

field strengths, it is helpful to work in the orthonormal basis

ea ≡
√

Λaa ṽ
a, no sum over a . (B.6)

24While this description may sound contrived at first, we point out that the result is exactly what one

would get if one took a numerical matrix and chose to truncate each of its entries to its first n significant

digits.
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One can then consistently write sums of different ea together, and their wedge products,

and determine the lowest-order term in such a sum, as it is precisely the term with the

lowest power of r out front. Taking care with the error terms representing the next order

of r, one should find that all equations of motion and relations such as Fp+1 = dCp are

formally consistent, although many will simply vanish identically.

This method was used to obtain the near-singularity expressions given in section 4.

The axion-dilaton matrix, since it is a symmetric matrix, can be dealt with in the same way.

C The large-radius limit of N = 1∗ on S4

In this appendix we show how the large radius limit of the solutions obtained in [25] reduce

to a Euclidean version of the GPPZ solution with λ = 1. In [25], it was shown that

to construct supersymmetric Euclidean domain wall solutions with S4 slices requires all

four scalars discussed in section 3 to be turned on. Two complications arise when trying

to find such spherical domain wall solutions of five-dimensional supergravity. First, the

Lorentzian supergravity model must be analytically continued to Euclidean signature. In

practice this means that the scalars z1,2 and their complex conjugates z̄1,2 must be treated

as independent scalar fields. We replace all conjugate scalars z̄i with the symbol z̃i to

emphasize this distinction. Second, the BPS equations for the metric and scalar fields of

the supergravity theory have to be modified. To be more explicit we adopt the following

metric for a spherical domain wall solution

ds2
5 = dr2 +R2e2AdΩ2

4 , (C.1)

where dΩ2
4 denotes the round metric on S4 with unit radius. Notice that we have introduced

an explicit parameter R which can be formally thought of as the radius of the S4. This

parameter was omitted in the discussion of [25] since it can be rescaled away by redefining

the metric function A. Nevertheless, we find it instructive to keep it explicit in order to

explore the large radius limit of S4 more carefully.

The BPS equations for the model in section 3 with metric (C.1) are

(A′)2 = R−2e−2A +
4

9
eKWW̃ , (C.2)

(A′ + s1R−1e−A)(zi)′ = −2

3
eKWKi̃D̃W̃ , (C.3)

(A′ − s1R−1e−A)(z̃ ı̃)′ = −2

3
eKW̃Kı̃jDjW . (C.4)

Here prime denotes a derivative with respect to r and the parameter s1 = ±1 reflects a

choice of a conformal Killing spinor on S4. The superpotential and Kähler potential are

the same as in section 3 but now with z̄i replaced by z̃i. The conjugate superpotential W
has similarly been replaced by W̃. It is easy to demonstrate that all equations of motion

are satisfied as a result of these BPS equations for either choice of s1. The value in keeping

the parameter R explicit is that the BPS equations with flat slicing, i.e. domain walls

with metric (C.1) with R4 instead of S4, can be obtained directly from the equations

in (C.2)–(C.4) by taking the limit R →∞.
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A simple solution of the equations in (C.2)–(C.4) is AdS5 (or rather H5) given by

setting z1,2 = z̃1,2 = 0 and A = log( 4
gR sinh(gr/4)). We can expand the BPS equations

around this AdS vacuum and find a perturbative solution with non-trivial scalars in the

UV, i.e. in the large r limit. To this end we use the change of variables introduced in (3.7)

combined with a similar transformation for z̃1,2

z̃1 = tanh
1

2
(3α+ ϕ+ 3iφ− iφ4) ,

z̃2 = tanh
1

2
(α− ϕ+ iφ+ iφ4) .

(C.5)

Note that in general the scalars α, ϕ, φ and φ4 should be treated as complex scalar fields

in Euclidean signature. In terms of these variables the leading order UV expansion takes

the form

φ = m̂ε1/2 +O(ε3/2 log ε) ,

φ4 = wε3/2 +O(ε log ε)2 ,

α =

(
v +

s1m̂i log ε

gR

)
ε+O(ε log ε)2 ,

ϕ = ϕ0 +O(ε log ε)2 ,

A = −1

2
log ε−

(
m̂2

2
− 1

g2R2

)
ε+O(ε log ε)2 .

(C.6)

Notice that our expansion parameters are not the same as the ones in [25]. More precisely

wBEKOP = −iw , µBEKOP = im̂ , sBEKOP = tanh(ϕ0/2) . (C.7)

In [25] it was shown that there are solutions of the BPS equations (C.2)–(C.4) for which the

metric in (C.1) caps off smoothly at some value r = r∗, i.e. e2A approaches (r− r∗)2. This

IR regularity condition for the spherical domain wall solution implies a relation between the

UV parameters w and v and the mass parameter m̂ in (C.6). In particular, the numerical

results of [25] strongly suggest the relation

w = 2m̂3 . (C.8)

This relation has been derived recently by a perturbative method in [53] and we have

furthermore verified through extensive numerical checks that the relation in (C.8) is not

dependent on the radius parameter R. On the other hand the relation between v and m̂ is

sensitive to the value of R in such a way that for large R one finds v ∼ 1/gR. We therefore

conclude that in the large R limit, in which the sphere is approximately R4, the regularity

of the supergravity domain wall solution fixes w = 2m̂3. Using the relation in (3.11) we

find that this is equivalent to

λ = 1 . (C.9)

This strongly suggest that the λ = 1 GPPZ solution and its ten-dimensional uplift can be

regularized by using S4 as a “supersymmetric IR cutoff”.
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D Coordinates on S5

To make the SO(3) isometry of the uplifted GPPZ solution manifest one has to choose

appropriate coordinates on S5. Our choice of coordinates differs from the one used made

in [7] and [21]. Here we provide an explicit map between the two sets of coordinates. The

coordinates used in [7, 21] are denoted with a tilde, while the ones used in this paper as

well as [22] are without a tilde.

Following [7] in appendix C of [21] an explicit choice for the coordinates on the unit

radius S5 was made by embedding it in R6 with flat coordinates

ỹ = (ũ1, ũ2, ũ3, ṽ1, ṽ2, ṽ3) , (D.1)

which obey ũ.ũ + ṽ.ṽ = 1. Solutions of this equation can be parametrized by a generic

SO(3) rotation matrix R̃ and two additional angles (θ, φ) such that

ũ = R̃α̃1,α̃2,α̃3 ũ0, ṽ = R̃α̃1,α̃2,α̃3 ṽ0 , (D.2)

where α̃i are the Euler angles parametrizing the SO(3) rotation and

ũ0 =
(

0, 0, cos θ̃
)
, ṽ0 =

(
0, sin θ̃ sin φ̃, sin θ̃ cos φ̃

)
. (D.3)

Choosing the SO(3) matrix to be

R̃α̃1,α̃2,α̃3 = e−α̃3g̃1eα̃2g̃2e−α̃1g̃1 (D.4)

where [g̃i]jk = −εijk are the generators of SO(3), and ε123 = 1 we find that the metric on

the round S5 of unit radius becomes

ds̃2
S5 = dθ̃2 + cos2 θ̃

(
σ̃2

1 + σ̃2
3

)
+ sin2 θ̃

(
sin φ̃ σ̃2 − cos φ̃ σ̃1

)2
+ sin2 θ̃

(
dφ̃+ σ̃3

)2
. (D.5)

This is the metric on the round S5 used in [7] and [21]. In particular the SO(3) left-invariant

1-forms take the form

σ̃1 = cosα1dα2 + sinα1 sinα2dα3 ,

σ̃2 = sinα1dα2 − cosα1 sinα2dα3 ,

σ̃3 =dα1 + cosα2 dα3 .

(D.6)

In this paper, as well as in [22], a similar but different choice of coordinates is made.

The embedding of S5 in R6 is given by

u = Rξ1,ξ2,ξ3u0 , v = Rξ1,ξ2,ξ3v0 , (D.7)

where

u0 = (0, cosχ cosα, sinχ sinα) , v0 = (0, cosχ sinα,− sinχ cosα) . (D.8)

The angles ξ1,2,3 are Euler angles of SO(3) and lead to the left-invariant 1-forms σi defined

in (4.2). The metric on the round S5 of unit radius in this coordinate system is given

in (4.1).
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To relate the two sets of coordinates presented above one has to identify (ũ0, ṽ0) with

(u0, v0) to find the following relation

cos 2θ̃ = cos 2α cos 2χ , cos φ̃ sin 2θ̃ = cos 2χ sin 2α . (D.9)

Comparing (ũ, ṽ) with (u, v) one can also relate the the one-forms in (4.2) and (D.6)

as follows

σ̃1 = −
√

2√
1 + cos 2α cos 2χ

(sinα sinχσ1 + cosα cosχσ2) ,

σ̃2 = −
√

2√
1 + cos 2α cos 2χ

(sinα sinχσ2 − cosα cosχσ1) ,

σ̃3 = σ3 +
sin 2α dχ+ sin 2χ dα

1 + cos 2α cos 2χ
.

(D.10)

This provides the complete map between the coordinates used in [7] and [21] and the ones

in this work (as well as [22]).

Open Access. This article is distributed under the terms of the Creative Commons
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References

[1] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].
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