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1 Introduction

Predictability is a core characteristic of physics: given a hyperbolic partial differential equation
and initial data, we expect to find a unique solution. In the initial value formulation of
General Relativity (GR), we prescribe initial data (satisfying the constraint equations) on
some partial Cauchy hypersurface Σ, where no pair of points is connected by a causal curve.
The evolution equations then uniquely determine (up to diffeomorphisms) the future evolution
of the system. The future causal region of the Cauchy hypersurface Σ is known as the maximal
future Cauchy development of Σ. For charged and/or rotating black holes its boundaries
include Cauchy horizons [3]. The Christodoulou formulation of Strong Cosmic Censorship
(SCC) states that, for generic smooth initial data, the maximal Cauchy development of initial
data in Σ is inextendible beyond the Cauchy horizons as a weak solution of the Einstein
equations (eventually coupled to matter fields) [4]. This is a reformulation of Penrose’s
original C0 formulation of SCC which conjectured that the solution should be inextendible as
a continuous solution of the Einstein equations [5] (and that is known to be false [6–10]). A
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failure of Christodoulou’s formulation of SCC implies a loss of predictability in GR (unless we
find a reformulation of SCC that holds), as events in the region beyond the Cauchy horizon
do not depend causally on only the initial data on Σ.

The familiar Reissner-Nordström (RN) and Kerr solutions of the Einstein equations (with
vanishing cosmological constant Λ) do respect Christodoulou’s formulation of SCC [11–13].
One can argue, as Penrose did when motivating his original C0 formulation of SCC, that the
mechanism that prevents a Cauchy horizon crossing is a blueshift effect of energy sourced
by the late-time tails of perturbations in the exterior of the event horizon of the black hole.
These late-time tails are perturbations that cross the event horizon at late times close to
the timelike infinity in a Penrose diagram, and they ultimately dictate the behaviour of
perturbations at the Cauchy horizon [14–18]. Christodoulou’s formulation of SCC states
that this blueshift mechanism (a.k.a. mass inflation when its backreaction is included [7, 18])
implies that observers cannot cross Cauchy horizons as weak solutions of the system — infinite
tidal forces prevent them from doing so. This also implies that curvature invariants diverge
at the would-be Cauchy horizon, i.e. the C2 formulation of SCC also holds.1 Indeed, this
is the case for asymptotically flat Kerr-Newman black holes (including Reissner-Nordström
and Kerr) even though the solutions turn out to be continuous across the Cauchy horizon.
In other words, Christodoulou’s formulation of SCC holds for Λ = 0 [11–13] even though
Penrose’s original C0 formulation of SCC does not [6–10].

However, the situation is different in asymptotically de Sitter (dS) spacetimes. When
Λ > 0, the blueshift effect competes with a redshift effect: perturbations in the exterior of
the black hole also have to climb the gravitational potential well sourced by the cosmological
constant (i.e. by the existence of a cosmological horizon). Therefore, perturbations may decay
too quickly to render the Cauchy horizons unstable and eventually evolve to a singularity that
enforces SCC. More concretely, it has been shown that the behaviour of perturbations at the
Cauchy horizon depends on the decay rate of perturbations along the event horizon [19, 20]
and for asymptotically de Sitter black holes it is established that perturbations decay
exponentially along the event horizon [21–26]. It follows that for linearized matter or
gravitational perturbations in de Sitter black holes, the outcome of the blueshift/redshift
competition depends on whether the ratio β between the spectral gap (i.e. the magnitude of
the imaginary part of the least damped quasinormal mode (QNM) of the black hole) and
the Cauchy horizon surface gravity is above or below a critical value [19]. By doing the
actual computation to find the outcome of this competition, it has been established that
Christodoulou’s formulation of SCC is violated in (near-extremal) Reissner-Nordström-de
Sitter (RNdS) [2, 27, 28], while it holds in Kerr-dS black holes [29].

This distinct result for the charged and rotating cases is perhaps surprising, as the causal
structures of RNdS and Kerr-dS are quite similar [3]. In fact, there is also solid evidence that
this difference is not unique to d = 4 and extends generically to higher dimensions [30, 31].
Nonetheless, when it comes to studying the perturbations, there is a crucial difference between

1For predictability it is not enough that the C2 formulation of SCC holds (here, ‘inextendible’ means
‘inextendible as a twice-differentiable solution’), because the tidal distortion felt by an observer crossing the
Cauchy horizon can remain finite (if Christodoulou’s formulation of SCC fails), so the divergence in the
curvature might not be strong enough to destroy a macroscopic observer [7].
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purely charged versus purely rotating spacetimes that can help understand the difference.
In Kerr-dS, SCC holds essentially due to high azimuthal m modes (which are necessarily
present in generic initial data) that ‘couple’ to the background rotation [29]. In RNdS, the
analogue of m can be taken to be the charge q of matter perturbations, e.g. a charged scalar
field that couples to the background electric potential. So, a sector of perturbations that
could eventually rescue SCC in RNdS, is the charged perturbation sector, especially if we
have large q. Such charged matter must be present in a universe where charged black holes
can be formed through gravitational collapse [28, 32–34]. However, unlike m, we have to
keep in mind that q is fixed by the theory. In the end of the day, although charge tends
to weaken the SCC violation, the fact is that there is always a neighbourhood of RNdS
extremality in which SCC is violated by perturbations arising from smooth initial data even
for arbitrarily but finite large q [28].2 For neutral field perturbations, i.e. with q = 0, the
violation of SCC is even worse in the sense that it starts happening for RNdS black holes
that are further away from extremality.

From an astrophysical point of view, we expect that environmental plasma quickly
neutralizes purely charged black holes, hence one could even question the physical relevance
of the RNdS SCC violation [28, 33, 34]. On the other hand, as charged matter is indeed
observed in our Universe, charged rotating black holes with small charge may still form
even if they are then short-lived. In particular, rapidly spinning weakly charged black holes
may endure [33, 35]. Rotating black holes in an external magnetic field necessarily produce
a non-zero electric field that attracts electric charge [36–38]: rotating black holes become
(weakly) charged rotating black holes.

When we view RNdS and Kerr-dS as particular sub-families of the Kerr-Newman-de
Sitter (KNdS) black hole, there should definitely be a boundary in the parameter space of
KNdS that marks a transition in the validity of SCC. Therefore, in this paper we scan the
parameter space of the KNdS solution, dialling the rotation and charge parameters to move
from the RNdS into the Kerr-dS sub-families, to accurately identify this boundary. This
problem was already partially addressed in [1] (see also [39]) but only for very specific values
of the parameter space (concretely, for fixed ΛM2 = 0.02 where M is the mass parameter of
KNdS). In particular, [1] considered a massless charged scalar field, a neutral conformally
coupled scalar and a Dirac field and found that SCC is violated near extremal KNdS black
holes in the very few families that were considered. Ref. [1] also identified the boundary line
in a (dimensionless) charge versus rotation phase diagram where SCC starts being violated
for a particular value of ΛM2 = 0.02.

Our study complements and extends the one of [1], in the sense that, for neutral massless
scalar fields, we will do a full scan of the 3-dimensional parameter space of KNdS and identify
the surface boundary where SCC starts being violated in the 3-dimensional phase diagram of
KNdS. It follows that the line boundary of [1] (for the particular value of ΛM2 = 0.02) is
then a particular curve sitting on our boundary surface. Our results agree with [1] for this

2For charged perturbations, even large q leads to SCC violation close enough to extremality. This was
missed in the analysis of [33, 34] because these references did not consider sufficiently near-extremal black
holes [28]. On the other hand, the conclusions of [32] do not hold perhaps because it is a WKB analysis that
does not account for the non-perturbative effects that are essential to conclude that SCC is still violated in
RNdS for charged initial data [28].
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particular curve.3 The main outcome of our analysis will be best summarized by figure 9
where we identify the boundary between solutions that violate and respect Christodoulou’s
formulation of SCC in the full 3-dimensional parameter space of KNdS. In particular, we
identify a ‘wide’ range of near-extremal weakly rotating KNdS black holes where generic
scalar field perturbations arising from smooth initial data have finite energy at the Cauchy
horizon even though they are not continuously differentiable there. This boundary is roughly
a ‘spherical-like’ region centred at the arbitrarily small extremal RNdS corner of the KNdS
parameter space.

Although we will not address reformulations of the problem that can rescue SCC in
RNdS, and thus for weakly rotating KNdS configurations (inside the above ‘spherical-like’
region) SCC is still violated, for completeness we briefly mention them here. We invite the
reader to see, for instance, the introduction and conclusions of [28] for a recent detailed
account of SCC studies and possible resolutions of its violation when this is the case.

A natural question to ask is whether non-linear corrections could end up saving
Christodoulou’s formulation of SCC for RNdS and weakly rotating KNdS. This is a non-
trivial question and the few existing non-linear studies (for RNdS) are inconclusive [41–43].
Additionally, our discussion assumes smooth initial data. However, one might also consider a
‘rough’ formulation of the SCC, which allows for non-smooth initial data: at least for RNdS,
it has been shown that the degree of regularity of the solutions at the Cauchy horizon is
generically lower than the one of the non-smooth initial data, and in this sense one can say
that this non-smooth version of SCC still holds [44]. The connection between the formulation
in [44] and previous studies [45–47] is discussed in [27].

For our study we only consider a classical discussion of SCC, but we might wonder if a
reformulation of SCC that includes quantum effects might end up enforcing predictability.
This was conjectured to be the case in [27, 48] and indeed such a quantum formulation of
SCC was indeed proven to hold for RNdS black holes in [49–51], even when Christodoulou’s
classical formulation of SCC is violated. In more detail, for any non-singular quantum state
within the domain of dependence of initial data, the (quantum) expectation value of the
energy-stress tensor diverges fast enough to render the Cauchy horizon unstable. When they
co-exist, this divergence is even stronger than the one caused by the blueshift instability
associated to the classical late-time behaviour of the black hole solution. Hence we also
expect that the perturbed spacetime does not admit Cauchy horizons. In principle, this result
extends to KNdS [49–51], implying that predictability in dS spacetimes is restored once we
include quantum effects in the late-time behaviour of black hole perturbations.4

3Recall that KNdS is described by four parameters that we can take to be the mass, charge, rotation
parameters and the cosmological radius. But the system has a scaling symmetry that implies that KNdS only
has 3 physical parameters, i.e. only adimensional ratios of three of them in units of the fourth are physical.
Ref. [1] measures the charge, rotation and cosmological radius in units of the mass. We will instead use a
‘spherical polar parametrization’ where the three adimensional parameters are off-extremality, off-Nariai and
off-RNdS (or off-Kerr-dS) measures. This polar parametrization (which is an extension of the one introduced
for Kerr-Newman in [40]) will prove very convenient to systematically scan the full 3-dimensional parameter
space of KNdS.

4As far as we are aware there is only one black hole where the quantum (and classical) linear reformulation
of SCC can be violated. This is for the asymptotically anti-de Sitter BTZ black hole (where the late-time
behaviour of perturbations is also ruled by QNMs). In this case, the classical and quantum linear formulations
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In this paper, we extend the SCC analysis of [1] to the full parameter space of KNdS
for a neutral massless scalar field, as stated above. The Klein-Gordon equation for a scalar
field is separable in the KNdS geometry [55], unlike the case of gravito-electromagnetic
perturbations. The scalar field is thus a good ‘simple’ proxy to discuss Christodoulou’s SCC
in KNdS given that the validity of SCC in RNdS and Kerr-dS happens independently of the
field perturbation spin (the details of the violation, e.g. the degree of differentiability when the
violation occurs and the boundary location in the parameter space can however depend on the
spin). For the sake of completeness, we allow for non-zero mass and charge when performing
some of our analytical analyses. But, to find our numerical results and when discussing their
implications for SCC, we will set the charge and mass of the scalar field to zero. In section 6
we will comment on how our findings for the neutral massless scalar field combined with
known results in the RNdS and Kerr-dS cases (and the specific cases of [1] for KNdS) can be
used to produce educated expectations for the discussion of SCC for other perturbations.

This manuscript is structured as follows. In section 2 we review the main properties of
KNdS black holes. We introduce a set of ‘spherical polar parameters’ which fully cover the
parameter space of KNdS and generalize the ‘polar parametrization’ for Kerr-Newman in [40].
These conveniently allow us to continuously follow the evolution of QNMs between RNdS
and Kerr-dS, while keeping the ratios between two of the horizons, i.e. the ‘off-extremality’
and ‘off-Nariai’ measures, fixed. Then, we set up the scalar QNM coupled eigenvalue problem
and its boundary conditions. Its solution gives the spectral gap, a fundamental quantity
needed to discuss Christodoulou’s formulation of SCC in KNdS.

In section 3, we provide analytical approximations (which are accurate only in certain
small regions of the KNdS parameter space) for the three distinct families of QNMs that
can be identified in KNdS: de Sitter (dS), Photon Sphere (PS) and Near-Horizon (NH)
modes (this is not a sharp classification due to the presence of eigenvalue repulsions that will
be discussed in section 4). As part of the NH mode analytic computation, we investigate
the near-horizon geometry of KNdS in subsection 3.3.1, obtaining an expression for the
corresponding 2-dimensional Breitenlöhner-Freedman (BF) bound. Coincidentally, we observe
that here, a violation of the BF bound corresponds to a qualitative change in the QNM
spectra, like in the Kerr-Newman case [40].

In section 4, we follow the evolution of different QNM families through slices of the KNdS
parameter space. This will allow us to compare our numerical results with the analytical
approximations and prior findings in the literature, apart from illustrating important features
and complexities of the QNM spectra. The QNM spectra of KNdS (much like in the Kerr-
Newman case [31, 40, 56, 57]) turns out to be plagued with the so-called eigenvalue repulsions
that effectively can trade dominance (damping) between the above three QNM families.
We discuss these since for SCC one must find the dominant (least damped) mode. These
eigenvalue repulsions are not discussed in [1]. They are not relevant for the final discussion
of the validity of SCC as long as we always identify the least damped mode for each point

of Christodoulou’s SCC are both violated [48, 49, 52]. However, in this case it is the non-linear quantum
reformulation of Christodoulou’s SCC (i.e. back-reaction of the linear quantum fields on the BTZ background)
that ultimately enforces predictability in BTZ [53, 54]. As a side note, perhaps this suggests that at non-linear
level even Christodoulou’s classical formulation of SCC can still be rescued, although non-linear studies to
establish this have been, so far, inconclusive [41–43].
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in the parameter space (as we believe is the case in [1]), but it can change the classification
attributed to each of the three aforementioned QNM families.

Section 5 contains the main results and conclusions relevant for the discussion of SCC
in KNdS. In particular, in figure 9 we present a plot of the boundary in KNdS parameter
space that signals the transition from violating SCC to enforcing it, up to linear neutral
massless scalar perturbations. We also discuss in some detail how our results for a neutral
massless scalar field, together with previous findings, can give educated expectations for other
perturbation sectors. In section 6 we present our final conclusions and discussions.

For completeness, we compare our analytical approximations to prior work in the literature
in appendices A.1–A.2. In appendix A.3, we discuss details of the specific case of vanishing
azimuthal and orbital quantum numbers (m = ℓ = 0), and we show that NH modes do
not enforce SCC at extremality if m = ℓ = 0. Finally, numerical convergence tests can
be found in appendix A.4.

2 Scalar perturbations of the Kerr-Newman-de Sitter black hole

2.1 The Kerr-Newman-de Sitter black hole

The Kerr-Newman-de Sitter (KNdS) black hole is a solution of the Einstein-Maxwell action
with a cosmological constant Λ > 0, i.e. a generalization of the Kerr-Newman solution to
asymptotically de Sitter (dS) spacetimes [58]. It is described by four dimensionful parameters:
the mass M , the rotation a and charge Q parameters and the de Sitter radius L =

√
3/Λ.

Considering the limits Q = 0, a = 0, Q = a = 0 and Q = a = M = 0 we obtain the Kerr-de
Sitter, Reissner-Nordström-de Sitter (RNdS), Schwarzschild-de Sitter (SdS) and de Sitter
(dS) spacetimes, respectively. Taking the asymptotically flat limit Λ → 0 (or L → ∞), we
recover the corresponding asymptotically flat spacetimes.

In Boyer-Lindquist coordinates {t, r, θ, ϕ} (time, radius, polar angle, azimuthal angle),
the metric can be expressed as [55, 58, 59]

ds2 =− ∆r

Ξ2Σ(dt−asin2 θdϕ)2+∆θ sin2 θ

Ξ2Σ
(
adt−(r2+a2)dϕ

)2
+Σ

(
dr2

∆r
+ dθ2

∆θ

)
(2.1)

with the Maxwell potential given by

A = −Q r

ΞΣ
(
dt − a sin2 θdϕ

)
, (2.2)

where we defined

∆r(r) = (r2 + a2)
(
1− r2

L2

)
− 2Mr + Q2, Ξ = 1 + a2

L2 ,

∆θ(θ) = 1 + a2

L2 cos2 θ, Σ(r, θ) = r2 + a2 cos2 θ.

(2.3)

We consider M ≥ 0 to avoid naked singularities, restrict to a ≥ 0 using the t − ϕ symmetry
of the metric, and fix Q ≥ 0 using the sign freedom in the definition of A. The positive real
roots of ∆r(r) define the Cauchy horizon CH at r = r−, the event horizon H at r = r+ and
the cosmological horizon Hc at r = rc, with r− ≤ r+ ≤ rc.
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I

II

H
+

r
=
r+

CH
+
L

r
=
r−

CH +
Rr

=
r−

H
+

cr
=
r
c

r
=
r c

r
=
r
+

r
=
r
+

Σ

Figure 1. Section of the Penrose diagram (common to RNdS, Kerr-dS and KNdS spacetimes) that is
relevant for the SCC discussion. The future event and future cosmological horizons are labelled by
H+ and H+

c and the blue lines represent the right and left future Cauchy horizons CH+
L,R respectively.

The QNMs in this spacetime blow up along the red edge and along the past cosmological horizon
(lower right black edge of region I) [29]. The green line represents an example of a Cauchy surface Σ.

Each of the horizons rj with j ∈ {−,+, c} is a Killing horizon, with the corresponding
horizon generator ξj , angular velocity Ωj = −gtϕ/gϕϕ

∣∣
rj

, surface gravity κj and electrostatic
potential Φj = −ξaAa

∣∣
rj

given by5 [60, 61]

ξj = ∂t +Ωj∂ϕ, where Ωj ≡ Ω(rj) with Ω(r) = a

r2 + a2 ,

κj = |∆′
r(rj)|

2Ξ (r2
j + a2)

, Φj ≡ Φ(rj) with Φ(r) = Q r

Ξ (r2 + a2) .
(2.4)

Here the prime stands for derivative with respect to the argument. Notice how we use
the shorthand notation Ωj ≡ Ω(rj) and Φj ≡ Φ(rj) when evaluating these potentials at
the horizons j ∈ {−,+, c}.

In figure 1 we depict the part of the causal structure of non-extremal KNdS that will be
relevant for our discussion. Region I describes the region between the event and cosmological
horizon with r+ < r < rc, also referred to as the black hole exterior. Region II corresponds
to the black hole interior, i.e. the region enclosed by the event and Cauchy horizons with
r− < r < r+. The solution (2.1)–(2.2) in Boyer-Lindquist coordinates is appropriate to
describe KNdS in the exterior region I, but is not regular at the future event horizon H+.

5As a result, the first law of thermodynamics for KNdS black holes reads T+dS+ + TcdSc = (Ω+ −Ωc)dJ+ +
(Φ+ − Φc)dQ+ where Sj is the horizon entropy, Tj = κj/(2π) is the temperature of the horizon rj , and Jj

and Qj are the Komar angular momentum and electric charge evaluated at the horizon rj [58]. Here, we have
used the fact that Jc = J+ and Qc = Q+.
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So, within region I, we define a tortoise coordinate r∗ by
dr∗
dr

= Ξ (r2 + a2)
∆r(r)

. (2.5)

We then define ingoing Eddington-Finkelstein (EF) coordinates (v, r, θ, ϕ′) as

dt = dv − dr∗, dϕ = dϕ′ − Ω(r)dr∗ , (2.6)

which allows us to analytically extend the KNdS solution from region I into region II. These
coordinates cover regions I and II of figure 1 and are smooth at the ‘left’ component CH+

L

of the Cauchy horizon. However, these are not regular at the ‘right’ component CH+
R. To

have a coordinate system that is regular at CH+
R, we define the outgoing EF coordinates

(u, r, θ, ϕ′′) via

dt = du + dr∗, dϕ = dϕ′′ +Ω(r)dr∗ . (2.7)

These outgoing EF coordinates also allow us to extend the KNdS solution across the future
cosmological horizon H+

c .

2.2 Spherical polar parametrisation of KNdS

Scanning the full parameter space of a black hole that is described by four dimensionful
parameters (M, Q, a, L) is not a trivial endeavour, so we should attempt to formulate a
tractable setup. Factorising ∆r(r) in terms of its roots (r−, r+, rc) we find

∆r(r) =
1

L2 (r − r−)(r − r+)(rc − r)(r + r− + r+ + rc). (2.8)

It follows that we can express the KNdS parameters (M, Q, a) in terms of the horizon radii
and the cosmological radius (r−, r+, rc, L) via

M = (rc + r−)(rc + r+)(r− + r+)
2L2 ,

Q2 = r2
c + r2

+ + rc(r− + r+) + r−(r− + r+)− L2 + rcr−r+(rc + r− + r+)
L2 ,

a2 = L2 − r2
c − r2

− − r2
+ − r−r+ − rc(r− + r+).

(2.9)

Note that the absence of naked singularities and the conditions 0 ≤ r− ≤ r+ ≤ rc impose
strict windows on these parameters that are not a priori intuitive. Fortunately, these four
parameters are not independent. This is because the system has a scaling symmetry6 that
allows us to use parameters such as M , L or rc as a unit of length. Consequently, KNdS
is effectively described by ‘only’ three dimensionless parameters. Common choices in the
literature are (ΛM2, Q/M, a/M), (M/L, Q/L, a/L) or (L/rc, r−/rc, r+/rc). Although we do
not need this information for our study, for completeness, we display the 3-dimensional
parameter space (M/L, Q/L, a/L) where regular KNdS black holes exist in figure 2.7

6This scaling symmetry is such that, under the transformation {t, r, ϕ, x} → {λt, λr, ϕ, x} and {rc, r+, r−} →
{λrc, λr+, λr−}, the metric is rescaled as g → λ2g and the Maxwell potential as A → λA, but since the
Christoffel symbols, Riemann and Ricci tensors are left invariant, the Einstein-Maxwell equations of motion
are left unchanged.

7For r−, r+ and rc to be real, the inequality∣∣∣54M2L4 +
(
a2 − L2) [a2 (a2 + 34L2)+ L2 (L2 + 36Q2)] ∣∣∣ ≤ [a2 (a2 − 14L2)+ L2(L2 − 12Q2)

]3/2
.

must be satisfied. In the RNdS limit a → 0, this reduces to the upper bound for M/L given in [62].
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Figure 2. Region of the dimensionless parameter space (M/L, a/L, Q/L) where regular KNdS black
holes exist (from two distinct viewpoints in the left/right plots to clearly capture all boundary surfaces).
The cyan ABC surface with a = 0 (or Θ = 0) describes regular RNdS black holes [62], the orange ABD

surface with Q = 0 (or Θ = π/2) describes Kerr-dS [63, 64], the green ACD surface describes extremal
KNdS (with r− = r+ i.e. R = 1) and the red BCD surface describes KNdS black holes in the Nariai
limit (with r+ = rc i.e. y+ = 1). The AB purple line describes Schwarzschild-dS black holes, the CD

thick black line describes extremal KNdS in the Nariai limit (i.e. with r− = r+ = rc or, equivalently,
with (R, y+) = (1, 1)). Point A = (0, 0, 0) describes the pure de Sitter solution, point B = ( 1

3
√

3 , 0, 0)
describes the Nariai Schwarzschild-dS black hole, point C = (

√
2

3
√

3 , 0, 1
2
√

3 ) describes extremal and
Nariai RNdS (i.e. with a = 0 and r− = r+ = rc), and point D = ( 4

3

√
26

√
3− 45, 2−

√
3, 0) describes

extremal Nariai Kerr-dS black holes (i.e. with Q = 0 and r− = r+ = rc).

Instead of employing one of the above parameterizations of KNdS, in our study we
use a simpler set of parameters. Motivated by the ‘polar parametrization’ of Kerr-Newman
introduced in [40], we find it very convenient to generalize it to a 3-dimensional parameter
space and introduce the following ‘spherical polar parametrization’ of KNdS:

y+ ≡ r+
rc

, R2 ≡ r−
r+

, tanΘ ≡ a

Q
. (2.10)

These spherical polar parameters cover the full parameter space of KNdS and have well defined
physical meaning and ranges. Namely, y+ ∈ [0, 1] denotes the off-Nariai measure, R ∈ [0, 1]
denotes the off-extremality measure, and Θ ∈ [0, π

2 ] measures the ratio of charge to angular
momentum. Hence, we can we go from the RNdS limit (a = 0 or Θ = 0) to the Kerr-dS
limit (Q = 0 or Θ = π/2) whilst keeping both the off-extremality and off-Nariai measures
fixed. Furthermore, the extremal limit (r− → r+ such that T− = T+ → 0) corresponds to
R → 1 whilst holding y+ and Θ fixed. Finally, the Nariai limit r+ → rc corresponds to
y+ → 1 while keeping R and Θ fixed.

Using (2.9) and (2.10), we can express the dimensionless black hole parameters M̂ ≡ M/rc,
â ≡ a/rc and Q̂ ≡ Q/rc in terms of the polar parameters (y+,R,Θ) as

M̂L̂2 = 1
2y+(1 + y+)(1 +R2)(1 + y+R2),

âL̂ = y+R
√
1 + y+(1 +R2) sinΘ,

Q̂L̂ = y+R
√
1 + y+(1 +R2) cosΘ ,

(2.11)
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where L̂ ≡ L/rc is itself given in terms of (y+,R,Θ) by

L̂2 = L̂0
2

1 +
√√√√1 + 4y+2R2(1 + y+ + y+R2) sin2 Θ

L̂2
0

 ,

L̂0 ≡ 1 + y+
(
1 +R2 + y+(1 +R2 +R4)

)
.

(2.12)

In these coordinates, the pure de Sitter limit corresponds to y+ → 0 and implies having L̂ → 1.
Finally, for use in later sections, we provide explicit expressions of Ω+ and Φ+ evaluated

at extremality, R = 1. These are

Ωext
+ = 1

rc

L̂ext
√
1 + 2y+ sinΘ

y+
(
L̂2

ext + (1 + 2y+) sin2 Θ
) , (2.13)

Φext
+ = L̂5

ext
√
1 + 2y+ cosΘ(

L̂2
ext + (1 + 2y+) sin2 Θ

) (
L̂4

ext + y2
+(1 + 2y+) sin2 Θ

) , (2.14)

where L̂ext is given by (2.12) with R = 1.

2.3 Setup of the problem

2.3.1 Klein-Gordon equation on KNdS

The study of linearized scalar field perturbations of the KNdS black hole simply reduces
to studying the Klein-Gordon equation for the scalar field on a fixed KNdS black hole
background. Although our numerical results and SCC conclusions will be presented only
for a neutral massless scalar field, for the sake of completeness and because it does not
compromise our presentation, we compute the analytical approximations of the QNMs for
massive charged scalar fields.

The Klein-Gordon equation for a scalar field Ψ with mass µ and charge q on a fixed
KNdS background is given by

(∇− iqA)2Ψ = µ2Ψ (2.15)

where ∇ is the covariant derivative with respect to the KNdS metric (2.1), and A is the
Maxwell potential given in (2.2). Since ∂t and ∂ϕ are Killing vector fields of KNdS, we
can perform a Fourier decomposition Ψ(t, r, x, ϕ) = e−iωt+imϕχ(r)S(x), which introduces
the frequency ω and azimuthal quantum number m of the scalar perturbation and, for
computational convenience, we use the new polar coordinate x = cos θ. As a result, the
Klein-Gordon PDE separates into a pair of radial and angular ODEs for χ(r) and S(x)
with separation constant λ:

d

dr

(
∆rχ′)+

 1
∆r

(
1 + a2

L2

)2

(r2 + a2)2 (ω − mΩ− q Φ)2 − r2µ2 − λ

χ = 0 , (2.16)

d

dx

(
(1− x2)∆xS′

)
−

a2
(
1 + a2

L2

)2 (1− x2)
∆x

(
ω − m

a(1− x2)

)2
+ a2x2µ2 − λ

S = 0 ,

(2.17)
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where ∆r is defined in (2.3), ∆x = 1 + a2x2/L2, and the rotational Ω(r) and electromagnetic
Φ(r) potentials are defined in (2.4). We can restrict our attention to m ≥ 0 (regularity of S

requires that m is an integer) as long as we study both signs of Re(ω). This is because of the
t−ϕ symmetry of KNdS, which tells us that if {ωm, λm} is a solution pair of QNM frequency
ω and angular separation constant λ for fixed m, then so will be {−ω∗

−m, λ∗
−m} [65, 66].

Equivalently, we can consider both signs of m and then only look for modes with Re(ωm) > 0.

2.3.2 Boundary conditions
To discuss the boundary conditions we need to impose at the poles of the sphere and at
the event and Cauchy horizons, we first need to understand the behaviour of our field
perturbations near these boundaries.

The radial equation has regular singular points at each of the horizon radii. Performing
a Frobenius expansion around the event horizon r = r+ yields two linearly independent
solutions, namely

χ ∼ (r − r+)
± i

2κ+
(ω−mΩ+−qΦ+)

. (2.18)

Similarly, there are two linearly independent solutions at the cosmological horizon r = rc,

χ ∼ (rc − r)±
i

2κc
(ω−mΩc−qΦc). (2.19)

QNM boundary conditions require that the radial field χ is regular in ingoing EF coordi-
nates (2.6) at the future event horizon H+ and regular in outgoing EF coordinates (2.7) at the
future cosmological horizon H+

c . In Boyer-Lindquist coordinates (2.1), these QNM boundary
conditions translate to the requirement that the radial wavefunction must behave as

χ(r) ∼

(r − r+)
− i

2κ+
(ω−mΩ+−qΦ+)

χ+(r) as r → r+ ,

(rc − r)−
i

2κc
(ω−mΩc−qΦc) χc(r) as r → rc .

(2.20)

Here, the functions χ+(r) and χc(r) are smooth and non-zero at r = r+ and r = rc,
respectively. On the other hand, performing a Frobenius expansion of the angular ODE (2.17)
around the poles x = ±1 yields the two independent solutions S ∼ (1− x2)±

|m|
2 . Regularity

then requires that we discard the solution with negative exponent.
After imposing these boundary conditions, equations (2.16) and (2.17) describe a coupled

eigenvalue problem for the QNM frequency ω and the angular separation constant λ. We
must solve this problem to determine the least damped frequency and consequently the
spectral gap. These will allow us to determine whether Christodoulou’s formulation of SCC
in KNdS is respected.

In our numerical search of QNMs, we can impose the QNM boundary conditions (2.20)
straightforwardly by redefining the radial and angular eigenfunctions as

χ ≡ (r − r+)
− i

2κ+
(ω−mΩ+−qΦ+)(rc − r)−

i
2κc

(ω−mΩc−qΦc)R(r) ,

S ≡ (1− x2)
|m|

2 Y (x) ,
(2.21)

and then searching for smooth eigenfunctions R(r) in r ∈ [r+, rc] and Y (x) in x ∈ [−1, 1].8
8For numerical computations we have also introduced a compact radial coordinate ρ = (r − r+)/(rc − r+),

such that ρ ∈ [0, 1] in the exterior region r ∈ [r+, rc].
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With these considerations we are now ready to solve the coupled pair of radial and
angular ODEs (2.16)–(2.17) subject to their boundary conditions, to find the coupled pair
of eigenvalues λ and ω. Numerically, we will find the QNMs using one of two methods.
The first makes use of the fact that this is an eigenvalue problem which can be solved
using Mathematica’s built-in routine Eigensystem. More details of this method and the
discretization scheme can be found in [67]. The second method uses the Newton-Raphson
root-finding algorithm to solve a eigenvalue problem, and is explained in [68]. The advantage
of the first method is that it gives many QNMs simultaneously. The second method computes
only a single mode at a time, and only when a seed is known that is sufficiently close to the
true answer. However, this method is much faster when the size of the numerical grid and
numerical precision increases, and can be used to push the numerics to extreme regions of
the parameter space. We will use mostly the latter but the former also proves useful in our
solution scanning of the RNdS case (where the angular equation is independent of ω).

In section 3 we also solve our eigenvalue problem analytically using perturbation methods.
These analytical analyses have strong limitations since they provide good approximations
only in narrow windows of the parameter space. But they will prove useful to: 1) test our
numerics, 2) provide good seeds for the Newton-Raphson method and 3) help identify from
first principles the distinct families of QNMs that are present in our system.

2.3.3 Criterion for the violation of Christodoulou’s SCC in KNdS

The behaviour of perturbations at the Cauchy horizon depends on the decay rate of per-
turbations along the event horizon [19]. For asymptotically de Sitter black holes it has
been established that perturbations decay exponentially along the event horizon [21–26]. It
follows that for de Sitter black holes, for linearized matter or gravitational perturbations,
the outcome of the blueshift/redshift competition depends on whether the ratio between the
spectral gap and the Cauchy horizon surface gravity is above or below a critical value [19],
where the spectral gap is defined as the magnitude of the imaginary part of the least damped
QNM of the black hole. More precisely, we define

β ≡ − Im(ω)
κ−

(2.22)

and then whether SCC does or does not hold depends on whether the minimum value of β,
across all QNMs, is above or below a critical value. For RNdS and Kerr-dS black holes, it
was shown that this critical value is β = 1/2, for perturbations of various spins [2, 19, 27, 29].
Since these two solutions are limiting solutions of KNdS, this suggests that the very same
critical value of β holds for scalar field perturbations in KNdS. It is however important to
explicitly verify this is indeed the case and we do so in this subsection.

Our aim is to carefully study the behaviour of the scalar QNMs at the ‘right’ component
CH+

R of the Cauchy horizon (see figure 1), which corresponds to r = r−.9 We must choose
our coordinates carefully. From our boundary condition analysis of section 2.3.2, QNMs are

9There is physical motivation to focus on CH+
R and not on CH+

L . If the black hole has been formed by
gravitational collapse, CH+

L could be partially or entirely blocked by the effective radius of the body, as it
happens to the event horizon in the Penrose diagram for the gravitational collapse of a spherically symmetric
star [3]. This will never happen to CH+

R.
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analytic functions of (t, r, x, ϕ) in region I with r+ < r < rc. To cross the event horizon,
we must use ingoing EF coordinates (2.6). Once we are in region II (i.e. in r− < r < r+),
the coordinate v is not smooth at CH+

R. Hence, we convert back into Boyer-Lindquist
coordinates (t, r, θ, ϕ) and then to outgoing EF coordinates (u, r, x, ϕ′′) as defined in (2.7).
After all the required coordinate changes, in (u, r, x, ϕ′′) coordinates the scalar field in region
II is described by

Ψ = e−iωueimϕ′′
S(x)χ̃(r), (2.23)

for some function χ̃(r). As in section 2.3.2, we perform a Frobenius analysis about the ‘right’
Cauchy horizon CH+

R to find the two independent behaviours

Ψ(1) = e−iωueimϕ′′
S(x)R(1)(r), (2.24)

Ψ(2) = e−iωueimϕ′′
S(x)(r − r−)i(ω−mΩ−−qΦ−)/κ−R(2)(r), (2.25)

with R(1),(2) denoting smooth non-vanishing functions at r = r−. For a general complex
frequency ω, notice that Ψ(2) is not smooth at r = r−. In addition to that, there is no
additional condition that forces either of the behaviours to vanish. Thus, as any scalar QNM
solution is given by a linear combination of these two behaviours near CH+

R, its regularity
will be dictated by Ψ(2).

From (2.24) one sees that Ψ(2) ∼ (r − r−)p, for p = i(ω − mΩ− − qΦ−)/κ−. Taking the
derivative, we have that ∂rΨ(2) ∼ (r − r−)p−1. This is locally square integrable if and only
if 2(β − 1) > −1, with β = Re(p). But both imΩ−/κ− and iqΦ−/κ− are purely imaginary.
Therefore, for the scalar QNM solution to be locally square integrable (i.e. a weak solution)
at the Cauchy horizon, we must have

β >
1
2 , (2.26)

as we wished to show.
If we can find a QNM with β ≤ 1/2 then the scalar field cannot be extended across the

Cauchy horizon as a weak solution and so Christodoulou’s formulation of SCC is respected.
One just needs one such QNM since generic initial data will contain it. On the other hand, if
for a particular KNdS solution all of its QNMs have β > 1/2 then SCC is violated, indicating
a breakdown of predictability. Since the behaviour of perturbations at the Cauchy horizon is
determined by the slowest decaying QNM, in this case, any scalar perturbation arising from
smooth initial data on Σ can be extended across CH+

R as a weak solution of the equation of
motion, so the Christodoulou’s SCC is violated for smooth initial data.

In the following sections, our aim is to scan the full 3-dimensional KNdS parameter
space and for each KNdS black hole determine its least damped QNM frequency, and thus
β. Comparing it with the critical value of 1/2 will determine whether SCC holds for such
a black hole.
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3 Families of quasinormal modes and their analytical approximations

The QNMs for RNdS and weakly charged KNdS can be grouped into three distinct families:
the de Sitter (dS) modes, the photon sphere (PS) modes and the near-horizon (NH) modes10 [1,
2, 27, 29, 31, 56, 57, 69–82]. The identification of each family can be established by solving the
QNM problem in specific regions (neighbourhood of ‘boundaries/corners’) of the parameter
space, where we can find analytic expressions for the QNM frequencies in some approximation.
We then try to follow this family as we change the parameters of the solution to extend their
classification to the full parameter space. Especially near-extremality and for large values of Θ,
this task is often less trivial due to a phenomenon known as eigenvalue repulsion [31, 40, 56, 57].
The classification is sometimes also harder for very small black holes, because dS mode curves
tend to split into two branches and then each branch can merge with a third branch.

In subsection 3.1, we provide the analytic expression for the dS modes, which correspond
to the QNMs found analytically in the dS spacetime boundary (y+ → 0,R → 0,Θ → 0) of
the KNdS parameter space [66]. In subsection 3.2, we analytically capture the PS modes
in the eikonal limit m = ℓ → ∞, a.k.a. the geometric optics approximation (where ℓ is the
wave quantum number that gives the number of nodes along the angular eigenfunction of
the problem), by studying the properties of unstable circular null geodesics in the KNdS
background (this is effectively a leading order WKB expansion in 1/m). Finally, the NH modes
can be found in the near-extremal limit R → 1 after a careful study of the Klein-Gordon
equation in the near-horizon geometry of KNdS, which we carry out in subsection 3.3.

Away from these ‘boundaries/corners’ of the parameter space, i.e. at an arbitrary point of
parameter space, the task of classifying a given QNM unambiguously as a dS, PS or NH mode
is far from trivial. It is particularly difficult for large R and large Θ, but not exclusively. As
we will see in later subsections, this is because the imaginary part of the three families QNM
can intersect, repulse and interact in non-trivial ways throughout the parameter space of
KNdS. This had been observed and well documented previously in asymptotically flat black
holes [31, 40, 56, 57] and in rotating de Sitter black holes [31] (where repulsions can also occur
with the dS family of modes). To classify the three families of QNMs, in practice we start
by doing it in the RNdS limit where the three families can be clearly distinguished [2, 29].
Then, as we move in the KNdS parameter space away from its RNdS limit we carefully follow
the evolution of each family while being extra cautious with the eigenvalue repulsions (or
even with branch splitting/merging) that can occur. Ultimately, for the SCC problem, this
classification is not fundamental as long as we always identify the least damped QNM for
each KNdS black hole, which is an easier task than the classification problem.

3.1 de Sitter modes

In the limit (M → 0, Q → 0, a → 0) or (y+ → 0,R → 0,Θ → 0), KNdS reduces to the pure
dS spacetime. Then, we can analytically solve (2.16) and impose outgoing conditions at the
cosmological horizon and regularity conditions at the origin, as pure dS does not have an

10A fourth family of modes known as the near-Nariai modes, associated to the Nariai limit r+ → rc, is
often brought up in the literature. Our numerical computations show that these turn out to be a subset of PS
modes, in agreement with [29]. Therefore, we do not consider them to be a separate family.
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event horizon. As a result, in d = 4 we obtain the two sets of dS mode frequencies [83]

ωdSrc = −i

ℓ + 2n + 3
2

1±
√
1− 4µ2

9

 , with n = 0, 1, . . . (3.1)

Here the non-negative integer ℓ is the orbital quantum number that effectively counts the
number of zeroes of the angular wavefunction and n is the radial overtone quantum number,
which counts the zeroes of the radial wavefunction (modes with µ = 0 and ℓ = n = 0 and
thus ωdS = 0 are pure gauge). Turning on the black hole parameters, we typically find that
for |m| = ℓ > 0 the dS frequencies depend weakly on the black hole parameters (while for
m = ℓ = 0 there is the potential for complicated interactions due to eigenvalue repulsions,
discussed later). More importantly for our SCC study, from our analyses we conclude that
dS family of QNMs is subdominant except for KNdS black holes with small y+. Hence, we
will mostly focus on the other two families of QNMs.

3.2 Photon sphere modes

In the eikonal limit |m| = ℓ → ∞, with m and ℓ the azimuthal and orbital quantum numbers,
there is a family of QNMs known as photon sphere (PS) modes. These can be obtained by
either performing a leading order WKB analysis of the QNM problem, or as we do here,
using the photon sphere correspondence. This correspondence has been carefully studied in
d = 4 both numerically and analytically [1, 2, 27, 84–87] and, at the leading WKB order,
it is independent of the spin of the perturbation.

The photon sphere correspondence relates the PS frequencies to the dynamics of unstable
circular null geodesics in the equatorial plane via

ωeik ≃ mΩK − i

(
n + 1

2

)
|λL| , n = 0, 1, 2, . . . (3.2)

where ΩK is the Kepler frequency of the geodesics, λL is the principal Lyapunov exponent
and n the overtone number. The principal Lyapunov exponent λL is the rate at which a
null geodesic congruence increases its cross-section under infinitesimal radial deformations.
The solutions to (3.2) come in pairs, constituted by a co-rotating mode with ΩK > 0 and a
counter-rotating mode with ΩK < 0. In the RNdS limit, the co-rotating and counter-rotating
PS modes have equal imaginary parts and their real parts only differ by a sign. However,
away from RNdS (Θ ̸= 0), the co-rotating PS modes dominate within the family, i.e. they
have a smaller |Im(ωeik)|. In this subsection we apply (3.2) to provide an analytic expression
for the PS modes in the large |m| = ℓ limit.

First, we find the circular null geodesics in the equatorial plane. The Lagrangian
describing geodesics in KNdS is given by L = −1

2gabẋ
aẋb, where x = (t, r, θ, ϕ) are geodesic

coordinates that depend on an affine parameter η and dots denote differentiation with respect
to η. Geodesics confined to the equatorial plane θ(η) = π/2 are described by the Lagrangian

L = −1
2

r2

∆r
ṙ2 +

∆r
(
ṫ − aϕ̇

)2 − (aṫ − (r2 + a2)ϕ̇
)2

2r2
(
1 + a2

L2

)2 (3.3)
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Since ∂t and ∂ϕ are Killing vectors, the conjugate momenta associated to the t and ϕ

directions are the conserved charges

E ≡ −πt, Lϕ ≡ πϕ. (3.4)

Substituting these into the equatorial Lagrangian (3.3), the equation of motion for null
equatorial geodesics (L = 0) takes the form of a one-dimensional radial motion in an effective
potential Veff(r, b):

ṙ(η)2 = Veff(r, b), Veff(r, b) ≡ E2

r4

(
1 + a2

L2

)2 [
(a(a − b) + r2)2 − (a − b)2∆r(r)

]
(3.5)

where we have defined the impact parameter b = Lϕ/E. The circular geodesics have orbit
radius r = rs and impact parameter b = bs such that

Veff(rs, bs) = 0, ∂r Veff(r, b)|r=rs,b=bs
= 0. (3.6)

Solving the first equation in (3.6) gives the two solutions

b±s = a + r2
s

a ±
√
∆r(rs)

. (3.7)

Inserting this into the second equation in (3.6) yields a condition for rs, given by

±4a
√
∆r(r±s ) = rs∆′

r(r±s )− 4∆r(r±s ), (3.8)

where r±s corresponds to the solution with b±s , respectively. Using that b = Lϕ/E and
equations (3.6)–(3.8), the two solutions for the Kepler angular velocity ΩK are

Ω±
K = ϕ̇

ṫ
= 1

b±s
, (3.9)

with Ω+
K and Ω−

K corresponding the co-rotating and counter-rotating modes, respectively.
Finally, substituting equations (3.6)–(3.9) into (3.2), the eikonal approximation |m| = ℓ → ∞
of the photon sphere modes is given by

ω±
eik = m

b±s
− i

(1
2 + n

) ∣∣a2 − ab±s + (r±s )2∣∣
L
(
1 + a2

L2

)
(r±s )2|b±s (a − b±s )|

×
√

L2[a2 − (b±s )2 + 6(r±s )2]+ (a − b±s )2[a2 + 6(r±s )2] .

(3.10)

where n = 0, 1, 2, . . . again denotes the overtone.
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We find that this eikonal frequency (derived using a first principles analysis that is
effectively the leading order contribution of a 1/m WKB analysis) provides a very good
approximation for the imaginary part of the frequency (relevant for the discussion of SCC)
even for values as small as m = ℓ = 10 and, in the Kerr-dS limit, that its accuracy keeps
increasing to excellent levels as m = ℓ grows up to 50 [29]. There is a phenomenological
analysis that provides an even better approximation for the real part (not relevant for SCC)
of the frequency [1]. In appendix A.1 we describe this distinction and also test the validity
of both approximations.

The eikonal approximation (3.10) is independent of the spin of the perturbation (higher
order WKB corrections do depend on the spin). Consequently, the approximation (3.10) is
also a good approximation to eikonal limit of linear gravito-electromagnetic perturbations. It
also turns out to describe well the eikonal limit of massive scalar field modes and [1] reports
it is even a good eikonal approximation for charged scalars if one does the replacement
mΩK → mΩK + qΦ(rs) in the real part of (3.2) (where rs is the radius of the scalar orbit).
These observations will be useful later when discussing our SCC results for massless scalars
and educated extrapolations for other perturbation sectors.

3.3 Near-horizon modes and the near-horizon geometry

Taking the near-extremal limit r− → r+ (i.e. R → 1), we can utilise analytical methods to
compute another family of QNMs known as the near-horizon (NH) modes. The frequencies ω

of these modes saturate the superradiant bound as we approach extremality: ω → mΩ++qΦ+
as r− → r+. Their nomenclature stems from the fact that wavefunctions are, near-extremality,
highly peaked near the event horizon r = r+. We confirmed this was the case in KNdS when
analysing the associated numerical wavefunctions. Although in the following sections we will
present numerical QNM results and discuss SCC only for neutral massless scalar fields, for
the sake of completeness, the analysis of this subsection will consider scalar fields with mass
µ and charge q that are not necessarily zero (this will be useful in the Conclusions).

In subsection 3.3.1, we study the near-horizon limit of near-extremal KNdS (NHEKNdS),
to set up the analytical computation of the NH modes. As we will cover, the associated
AdS2 Breitenlöhner-Freedman (BF) bound appears naturally in the expressions for the NH
frequencies and turns out to play a fundamental role in determining whether SCC is respected
or not. Furthermore, the BF bound also establishes a boundary between a region of the
parameter space where we can clearly distinguish the PS and NH families and another where
we cannot (due to eigenvalue repulsions), as it has been previously observed in rotating
black holes [31, 40].

In pure AdS2 (with radius LAdS), it is well-known that scalar field perturbations are
normalizable even if their squared mass ξ2 is negative, provided that it obeys the BF bound
ξ2L2

AdS ≥ −1/4 [88, 89]. Conversely, if ξ2 does not obey the BF bound, then the scalar field
on AdS2 is not stable. The near-horizon geometry of KNdS can be locally expressed as a
product of AdS2 times a compact space [90]. As a result, the near-horizon limit of (2.15)
reduces to the Klein-Gordon equation of a scalar field on pure AdS2 space (with a Maxwell
field) with effective mass µeff and effective charge qeff, which can give important information
about the system [90]. In particular, we apply this analysis to NHEKNdS.
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After having laid out the groundwork, we analytically capture the NH family of modes in
subsection 3.3.2 by performing a matched asymptotic expansion. To achieve so, we solve the
Klein-Gordon equation in the near-horizon region of near-extremal KNdS and then match
it with a vanishing far-region (since the wavefunctions are very peaked near the horizon
close to extremality). The validity of this poor-man matching asymptotic expansion will
be assessed via a comparison with the exact numerical data.

3.3.1 Near-horizon geometry

To find the near-horizon geometry, we start with the KNdS metric (2.1) at extremality
r− → r+. Then, we zoom into the event horizon by applying the following coordinate and
gauge transformations

r → r+ + ϵR̃, t → T

ϵ
, ϕ → ϕ̃ +Ωext

+
T

ϵ
, A → Ã − Φext

+
dT

ϵ
, (3.11)

and then taking the near-horizon limit ϵ → 0. Here Ωext
+ and Φext

+ are defined in (2.13)
and (2.14) respectively. To ease notation, we will often drop the subscript ‘ext’ when it is
clear that the expressions should be evaluated at extremality.

Notice that the gauge transformation of A is required to yield a finite Maxwell potential
in the near-horizon limit. Explicitly, substituting (3.11) in (2.1) and taking ϵ → 0 yields
the near-horizon geometry of extremal KNdS

ds2
NH = 2Σ+

∆′′
r (r+)

−
 ∆′′

r (r+)R̃ dT

2
(
1 + a2

L2

)
(a2 + r2

+)

2

+ dR̃2

R̃2

 (3.12)

+ Σ+
∆θ

dθ2 +
∆θ(a2 + r2

+)2 sin2 θ

Σ+
(
1 + a2

L2

)2

(
dϕ̃ + 2r+R̃Ω+

a2 + r2
+

dT

)2

, (3.13)

with the shifted gauge field

Ã = Q

Σ+
(
1 + a2

L2

) (r2
+ − a2 cos2 θ

a2 + r2
+

R̃ dT + ar+ sin2 θ dϕ̃

)
. (3.14)

Here Σ+ ≡ Σ(r+, θ), with Σ defined in (2.3). The (T, R̃) part of the near-horizon metric
is AdS2, with Ricci scalar

Ricc(2) = − 2
L2

AdS
, L2

AdS(θ) ≡
2Σ+

∆′′
r (r+)

. (3.15)

Note that the AdS2 length scale LAdS is θ-dependent. To simplify the near-horizon geome-
try (3.12), we pull out an overall factor of L2

AdS in front of the AdS2 component by rescaling
the radial coordinate R̃, and make the definitions

R̃ ≡
(a2 + r2

+)2

2ar+
Ω̃R, Ω̃ ≡ 4r+

∆′′
r (r+)

(
1 + a2

L2

)
Ω+. (3.16)
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These make the AdS2 structure of the near-horizon metric (3.12) manifest in (T, R, θ, ϕ̃)
coordinates:

ds2
NH = L2

AdS

(
−R2dT 2 + dR2

R2

)
+ Σ+

∆θ
dθ2 +

(a2 + r2
+)2 ∆θ sin2 θ

Σ+
(
1 + a2

L2

)2

(
dϕ̃ + Ω̃R dT

)2
,

Ã = QL2
AdS

Σ+
2

[(
r2

+ − a2 cos2 θ
)

R dT + 2ar2
+
Ω+

Ω̃
sin2 θdϕ̃

]
,

(3.17)

in agreement with [61, 91, 92]. This is a solution of the d = 4 Einstein-Maxwell equations with
Λ > 0. The geometry of the metric degenerates to precisely AdS2×S2 in the (extremal) RNdS
a → 0 limit. In the asymptotically flat limit L → ∞, this coincides with the near-horizon
extremal KN metric studied in [40]. Its isometry group SL(2,R)× U(1) has been carefully
studied in the context of the Kerr/CFT correspondence [93]. For other symmetries and
properties of NHEKNdS we refer the reader to [61, 91, 92].

To find the Klein-Gordon equation on the near-horizon geometry (3.17), we apply the
same coordinate transformations (3.11) and (3.16) to the radial and angular components
of the Klein-Gordon equation (2.16)–(2.17) on the full KNdS geometry.11 To eliminate
divergent terms when taking the near-horizon limit ϵ → 0, the frequency must approach the
superradiant frequency for a charged and rotating black hole

ω → mΩext
+ + qΦext

+ + ϵ ω̃, (3.18)

where again Ωext
+ and Φext

+ are given explicitly in (2.13) and (2.14). The resulting radial
equation on the near-horizon geometry is

d

dR

(
R2χ′(R)

)
−
{

(λ + r2
+µ2)L2

(rc − r+)(rc + 3r+)

−
[

ω̃

R
+ 2mΩ+r+(a2 + L2)

(rc − r+)(rc + 3r+)
+ q(1− 2aΩ+)QL2

(rc − r+)(rc + 3r+)

]2}
χ(R) = 0 (3.19)

While it is convenient to express the near-horizon radial equation in terms of L, the third
expression from (2.9) evaluated at extremality yields L2 = a2 + r2

c + 2rcr+ + 3r2
+, i.e. L is

not independent of rc, r+, a. Here, the separation constant λ is defined by the near-horizon
limit of the angular part of the Klein-Gordon equation (2.17), i.e.

d

dx

(
(1− x2)∆xS′(x)

)
−
[
a2x2µ2 − λ

+ a2
(
1 + a2

L2

)2 1− x2

∆x

(
mΩ+ + qΦ+ − m

a(1− x2)

)2
]
S(x) = 0.

(3.20)

In the asymptotically flat limit, (3.19) and (3.20) match with (A.3a) and (A.3b) in [40].12

To provide a physical interpretation for (3.19), we rewrite it as the Klein-Gordon equation
11Equivalently, one can compute the Klein-Gordon equation directly using the near-horizon solution (3.17).
12For an exact match, we need the redefinition λ → λ − (2r2

+ + a2)m2Ω2
+.
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for a massive charged scalar on pure AdS2(
∇̃ − iqeffAeff(R)

)2
Ψ =

(λ + r2
+µ2)L2

(rc − r+)(rc + 3r+)L2
AdS

Ψ, (3.21)

where ∇̃ is the covariant derivative on pure AdS2 with metric

ds2
AdS2 = L2

AdS

(
−R2dT 2 + dR2

R2

)
, (3.22)

and we have made the identifications

qeff ≡ qΦ+
(L2 + a2)(a2 − r2

+)
r+(rc − r+)(rc + 3r+)

− mΩ̃, Aeff(R) ≡ −RdT. (3.23)

We can observe that, after the near-horizon limit procedure, the scalar field acquires an
effective charge and effective mass, which are non-zero even in the case of µ = q = 0.
Hence (3.19) is the radial Klein-Gordon equation in the near-horizon background for a scalar
that has effective charge qeff and effective mass µeff (where we will identify the latter soon).

As we approach the boundary of the near-horizon geometry R → ∞, solutions of the
near-horizon radial equation (3.19) decay as χ ∼ R−∆± , where the 2-dimensional conformal
dimensions ∆± are given by

∆± = 1
2 ± 1

2

√
1 + 4µ2

effL2
AdS, (3.24)

µ2
effL2

AdS ≡
(λ + r2

+µ2)L2

(rc − r+)(rc + 3r+)
−
(

qΦ+
(L2 + a2)(a2 − r2

+)
r+(rc − r+)(rc + 3r+)

− mΩ̃
)2

. (3.25)

For these solutions to be normalisable, i.e. to have finite energy, they must not oscillate
at infinity. This requirement is satisfied by demanding that ∆± is real, giving the AdS2
BF bound of the near-horizon geometry

µ2
effL2

AdS ≥ −1
4 . (3.26)

Defining the constant

δ ≡

√√√√(a2 + L2)2 [qΦ+(r2
+ − a2) + 2mΩ+r2

+)
]2

r2
+(rc − r+)2(rc + 3r+)2 −

L2 (λ + r2
+µ2)

(rc − r+)(rc + 3r+)
− 1

4 , (3.27)

we have the important relation

1 + 4µ2
effL2

AdS = −4δ2 ⇔ δ2 = −1
2

√
1 + 4µ2

effL2
AdS. (3.28)

Thus the BF bound (3.26) is equivalent to the bound δ2 ≤ 0. In the asymptotically flat
limit, this δ matches the ones defined in [40, 71, 86].

In the coming subsection, we will see δ naturally appearing in the analytic expression
of the NH modes, hence establishing a connection between the NH modes and the near-
horizon BF bound. Recall that a violation of the BF bound should signal an instability of
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the NHEKNdS geometry, which does not necessarily imply an instability of the full KNdS
geometry.13 Nonetheless, a BF bound violation might signal a transition boundary of the
physical properties of the system. Indeed, as we exemplify in subsection 4.1, the analytic
properties of the QNM spectrum change near δ2 = 0, going from the δ2 < 0 region in
parameter space where we can clearly distinguish the PS and NH families, to the region
δ2 > 0 where both families are entangled and cannot be precisely distinguished apart.

3.3.2 Near-horizon modes and matched asymptotic expansion

The near-horizon (NH) QNMs can be found by performing a matched asymptotic expansion
(MAE). We divide the spacetime into two regions: one near the event horizon, and another
that is far away from it, all the way up to the cosmological horizon. In the near-region,
the Klein-Gordon equation simplifies and we can solve it explicitly, up to some integration
constants. For the far-region, we cannot solve the Klein-Gordon equation analytically (for
asymptotically flat RN, Kerr and KN this can be done but not for KNdS or even Kerr-dS).
To make some progress we must necessarily adopt a poor-man strategy where we start with
the fundamental assumption that, near extremality, the wavefunction is localized very close
to the event horizon (confirmed by an inspection of the exact numerical wavefunction) and
then simply take the far-region solution to be the trivially vanishing one (which also trivially
satisfies the boundary condition at the cosmological horizon).

The near and far-region solutions must agree in an overlap region and we use this to fix
the integration constants that were left free in the near-horizon region (after imposing the
boundary condition at the event horizon) and the frequency ω. This poor-man matching
yields an analytical expression for NH modes near-extremality. Although this analysis has
little control on the approximations made, it turns out that yields a very good approximation
(if not excellent) for the frequency of NH modes near-extremality when we compare it with
the exact numerical results. Ultimately, it is this fact that justifies performing it. The
matched asymptotic expansion technique has been used successfully to similar QNM problems
in [27, 40, 69, 71–73, 95].

To start the matching asymptotic expansion, we define an extremal parameter σ and
a radial parameter y by

σ ≡ 1− r−
r+

, y ≡ r

r+
− 1, (3.29)

such that σ → 0 at extremality (r− → r+), and y ∈ [0, rc/r+ − 1] in the exterior of the black
hole region. Supported by past QNM studies near-extremality (including for the RNdS and
Kerr-dS limits of KNdS), we now make the assumption that the frequency of the NH modes
approaches the superradiant bound at extremality, ω → mΩext

+ + qΦext
+ . Altogether, the

frequency of NH modes should have the following perturbative expansion around extremality

ω = mΩext
+ + qΦext

+ + σδω +O(σ2). (3.30)

Our mission is to find the off-extremality frequency correction δω. As in the previous
subsection, we drop the ‘ext’ superscript for notational simplicity. Define the near-region

13For an in-depth discussion in the case of the Kerr spacetime, we refer the reader to [90, 94].
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to be 0 ≤ y ≪ 1 and the far-region to be σ ≪ y ≤ rc/r+ − 1. Since we take the expansion
parameter to be σ ≪ 1, these two regions overlap in the matching region σ ≪ y ≪ 1.

To find the solution in the near-region 0 ≤ y ≪ 1, we have to be cautious doing the
perturbative expansion in σ ≪ 1 because it can be as small as the radial coordinate y.
This is closely related to the fact that the far-region (y ≫ σ) solution breaks down when
y/σ ∼ O(1). This suggests that, to proceed with the near-region analysis, we should work
with the new radial coordinate

z ≡ y

σ
, (3.31)

so that the near-region corresponds to z ≪ σ−1. This amounts to absorbing a power of σ

into our new radial coordinate z, a fundamental step to yield a good MAE result. In terms
of the original radial variable r, we have z = (r − r+)/(r+ − r−). Inserting (3.30) and (3.31)
into the radial Klein-Gordon equation (2.16), to leading order in σ it reduces to

d

dz

(
z(1 + z)χ′

near(z)
)
− χnear(z)

{
L2(λ + r2

+µ2)
(rc − r+)(rc + 3r+)

(3.32)

+ r+(a2 + L2)
z(1 + z)(rc − r+)(rc + 3r+)

[(
2mΩ+ + qΦ+

(
1− a2

r2
+

))
z +

(
1 + a2

r2
+

)
δω

]2}
= 0.

This turns out to be an hypergeometric ODE. To see this is indeed the case, we do the
field redefinition

χnear(z) = zA(1 + z)BF (−z) (3.33)

where
A = −i

(a2 + L2)(a2 + r2
+)

r+(rc − r+)(rc + 3r+)
δω,

B = i
(a2 + L2)(2mΩ+r2

+ − qΦ+(a2 − r2
+)− (r2

+ + a2)δω)
r+(rc − r+)(rc + 3r+)

,

(3.34)

and introduce the new radial variable z̄ = −z. Altogether, this turns (3.32) into the
hypergeometric differential equation

z̄(1− z̄)F ′′(z̄) +
[
c − (a+ + a− + 1)z̄

]
F ′(z̄)− a+a−F (z̄) = 0, (3.35)

with

a± = 1
2 ± iδ +

2i(a2 + L2)(a2 + r2
+)

r+(rc − r+)(rc + 3r+)

(
mr2

+
a2 + r2

+
Ω+ −

q(a2 − r2
+)

2(a2 + r2
+)

Φ+ − δω

)
, (3.36)

c = 1−
2i(a2 + L2)(a2 + r2

+)
r+(rc − r+)(rc + 3r+)

δω, (3.37)

and δ defined in (3.27). We can now work out the general solution to the near-region
equation (3.32). It is

χnear(z) = c1 z
1
2 (c−1)(1 + z)

1
2 (a−+a+−c)

2F1(a−, a+, c,−z)

+ c2 z−
1
2 (c−1)(1 + z)

1
2 (a−+a+−c)

2F1(a− − c + 1, a+ − c + 1, 2− c,−z), (3.38)
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where 2F1(α, β, γ, x) is the hypergeometric function [96] and c1, c2 are arbitrary constants.
Imposing the ingoing boundary condition from (2.20) at the event horizon z = 0 requires
setting c2 = 0, i.e.

χnear(z) = c1z
1
2 (c−1)(1 + z)

1
2 (a−+a+−c)

2F1(a−, a+, c,−z). (3.39)

The constant c1 as well as the frequency correction δω are at this point still not determined.
They are fixed matching the large z behaviour of the near-region solution (3.39), namely

χnear
∣∣
z≫1 ∼c1z−

1
2 + 1

2

√
1+4µ2

effL2
AdS

Γ(a− − a+)Γ(c)
Γ(c − a+)Γ(a−)

(
1− a+(1 + a+ − c)

(1− a− + a+)
1
z
+O(z−2)

)
+ c1z−

1
2−

1
2

√
1+4µ2

effL2
AdS

Γ(a+ − a−)Γ(c)
Γ(c − a−)Γ(a+)

(
1− a−(1 + a− − c)

(1 + a− − a+)
1
z
+O(z−2)

)
,

(3.40)
with the small y = σz behaviour of the far-region solution in the overlapping region σ ≪ y ≪ 1.
To get (3.40) we have used (3.36) and (3.28) to rewrite the exponents of z.

Formally, at this point, we should: 1) solve the radial Klein-Gordon equation (2.16) in the
far-region y ≫ σ to find χfar, 2) impose the outgoing QNM boundary condition (2.20) at the
cosmological horizon y = rc/r+ − 1, and finally 3) take the small radius expansion of χfar to
match it with (3.40) in the overlapping region σ ≪ y ≪ 1 to fix c1 and δω. Such a procedure
has been completed successfully in asymptotically-flat spacetimes, including in Kerr and
Kerr-Newman [29, 31, 40, 71]. However, in asymptotically de Sitter spacetimes the far-region
equation turns out to be much more difficult (if not impossible) to solve analytically. To make
some progress we must thus adopt a poor-man strategy where we make use of the fact that
we do have exact numerical results for the NH modes. An inspection of the numerical NH
wavefunctions shows that, near extremality, they are highly peaked near the event horizon and
exponentially decay to zero very quickly as we move away from the event horizon. Therefore,
for a leading approximation one sets χfar ∼ 0 and matches (3.40) with a vanishing far-region
solution. This is a very ‘rough’ matching but its validity will be approved a posteriori when
we compare the MAE frequency approximation with the exact numerical frequency.

Without further delays we perform the matching of (3.40) with a trivial far-region.
An inspection of the exponents of z in (3.40) indicates that we have to proceed differently
depending on whether 1 + 4µ2

effL2
AdS is positive or negative.

For 1 + 4µ2
effL2

AdS > 0, or equivalently δ2 < 0 as defined in (3.27), we match the near-
region wavefunction (3.40) with a vanishing far-region wavefunction (for the aforementioned
reasons). It follows that to have a finite solution in the limit z → ∞ the first term in (3.40)
must vanish. The gamma function has poles at negative integers, so we find that the first
term vanishes if we impose the condition a− = −n, where n ∈ N0 is a radial overtone. This
is effectively a condition to solve for δω that quantizes the frequency correction as

δω> ≃ r+
2(a2 + r2

+)

[
2mΩ+r+ − qΦ+

a2 − r2
+

r+
− (rc − r+)(rc + 3r+)

a2 + L2

(
i

(1
2 + n

)
+ δ

)]∣∣∣∣∣
ext

(3.41)

where δ is defined in (3.27). This expression can be written in terms of the dimensionless
polar parameters (y+,Θ) using the relations (2.11)–(2.12) evaluated at extremality. For fixed
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(y+,Θ), we can equivalently express the requirement 1 + 4µ2
effL2

AdS > 0 as

q̂−c ≤ q̂ ≤ q̂+
c (3.42)

where q̂ = q/rc and

q̂±c = −
2m

(
L̂4 + y2

+(1 + 2y+) sin2 Θ
)

y+L̂2
(
L̂2 − (1 + 2y+) sin2 Θ

) tanΘ

±
(1− y+)(1 + 3y+)

(
L̂2 + (1 + 2y+) sin2 Θ

)
2y+L̂

√
1 + 2y+

(
L̂2 − (1 + 2y+) sin2 Θ

)
cosΘ

√√√√1 +
4L̂2 (λ + µ̂2y2

+
)

(1− y+)(1 + 3y+)
, (3.43)

with µ̂ = µ/rc and L̂ = L/rc evaluated at extremality. As a check of our computation, in the
RNdS limit Θ → 0, this coincides with the expression provided in [28].

When 1 + 4µ2
effL2

AdS < 0, or equivalently δ2 > 0, both terms in (3.39) decay whilst also
exhibiting an oscillatory behaviour. Consequently, there is no longer the physical need to
impose the vanishing of either term, so we must demand a distinct z → ∞ behaviour. We
follow the steps of [28, 97, 98] and seek travelling waves that are purely outgoing with respect to
the phase velocity. This corresponds to waves that have a positive phase velocity with respect
to Re(ω). More concretely, for 1 + 4µ2

effL2
AdS < 0, the two oscillatory solutions at large r are:

Ψ±(r)
∣∣
r≫r+

∼ exp
(
±1
2 i
√
|1 + 4µ2

effL2
AdS| log

(
r

r+σ

)
± a±(c − a± − 1)

1 + a± − a∓

r+σ

r

)
, (3.44)

where the upper (lower) signs correspond to the first (second) term in (3.40). The r-dependent
phase velocity of these two travelling wave solutions are

v±ph(r) =
ω

k±(r)
, with k±(r) = −i

1
Ψ±

dΨ±
dr

. (3.45)

Using (3.44), this yields

v±ph(r) ∼ ± 2r Re(ω)√
|1 + 4µ2

effL2
AdS|

. (3.46)

Therefore, requiring outgoing travelling waves (vph(r) > 0) we must eliminate the second term
in (3.40) vanish. We achieve this by imposing a+ = −n for n ∈ N0, which gives the condition

δω< ≃ r+
2(a2 + r2

+)

[
2mΩ+r+ − qΦ+

a2 − r2
+

r+
− (rc − r+)(rc + 3r+)

a2 + L2

(
i

(1
2 + n

)
− δ

)]∣∣∣∣∣
ext

(3.47)

In summary, collecting both cases, the frequencies that emerge from the MAE analysis are:

ωMAE ≃ mΩext
+ + qΦext

+ + σ

δω> , for q̂ ∈ {q−c , q+
c } i.e. δ2 < 0

δω< , for q̂ /∈ {q−c , q+
c } i.e. δ2 > 0

+O(σ2), (3.48)

with δω> given in (3.41), δω< given in (3.47) and q̂±c defined in (3.43).
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Keeping in mind the regime of validity of the MAE result and associated approximations,
we can make some comments with regards to SCC. Using the fact the leading order expansion
of the surface gravity at the Cauchy horizon κ− (and also of κ+) is

κ− = r+(rc − r+)(rc + 3r+)
2(a2 + r2

+)(a2 + L2)
σ +O(σ2) (3.49)

we find that the prediction for β based on the matched asymptotic expansion ωMAE is simply

βMAE =


1
2 + n + Im δ +O(σ) for δ2 < 0
1
2 + n +O(σ) for δ2 > 0

. (3.50)

For the dominant overtone n = 0, when δ2 > 0 then βMAE exactly approaches the critical value
of 1/2. However, when δ2 < 0, βMAE goes above 1/2. This is the zeroth-order term for βMAE,
hence even if βMAE = 1/2 at extremality, it is possible that βMAE approaches 1/2 from above.

In section 4, we will use (3.48) to identify the NH family of QNMs in our numerical data.
In addition, we carefully verify the accuracy of this MAE approximation and compare it to
previous work in appendix A.2. Finally, in appendix A.3 we specialize to the case m = ℓ = 0
and q = µ = 0, and show how the corresponding NH modes do not enforce SCC at extremality.

4 A survey of the KNdS QNM spectrum and its features

In the previous section we identified, from first principles, the three families of modes that
we expect to be present in the QNM spectra of KNdS. The analytical studies of the previous
section are thus very useful but have significant limitations: they are only valid in narrow
windows (i.e. in a neighbourhood of ‘boundaries/corners’) of the parameter space and often
provide just very crude approximate values (unless proven otherwise) once we drive away
from the specific background about which we do the expansion. This is not enough because,
for the discussion of Christodoulou’s formulation of SCC, we need to identify accurately
the least damped QNM at each point of the parameter space of KNdS. Therefore, onwards
we use numerical methods to exactly solve the eigenvalue problem that identifies the QNM
frequencies (and coupled angular eigenvalues) of KNdS for the three families of QNM.

A priori, we could simply use Mathematica’s built-in routine Eigensystem to simultane-
ously find the tower of eigenfrequencies for each KNdS black hole and then pick the least
damped mode relevant for SCC. However, scanning the full parameter space using this
method would be a slow and computationally costly procedure. Alternatively, we can use
the analytical approximations of the previous section to identify the QNM of each of the 3
families on a ‘boundary/corner’ of the parameter space and use this as a seed to find the exact
numerical solution using a Newton-Raphson root-finding algorithm. Once we have this first
solution for each of the three QNM families, we can then use it to follow the evolution along
the KNdS parameter space of the frequencies of each QNM family, at relatively low cost. Typ-
ically, we will use the latter method although we sometimes also use the former to find initial
seeds for the latter (or as sanity checks to make sure we are not missing other modes). Before
presenting the SCC results in section 5, we must discuss key properties of the QNM spectra
that are fundamental to precisely identifying the least damped modes which govern SCC.
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Recall that to scan the full parameter space of KNdS in an efficient and systematic
way it is very convenient to use the ‘spherical polar parametrization’ {y+,R,Θ} of KNdS
introduced in (2.10). In this parametrization, y+ ∈ [0, 1] denotes the off-Nariai measure,
R ∈ [0, 1] denotes the off-extremality measure, and Θ ∈ [0, π

2 ] measures the ratio of charge
to angular momentum. With this parametrization, we can go from the RNdS limit (a = 0
or Θ = 0) to the Kerr-dS limit (Q = 0 or Θ = π/2) while keeping both the off-extremality
and off-Nariai measures fixed. Moreover, the extremal limit (r− → r+) corresponds to
R → 1 whilst holding y+ and Θ fixed and the Nariai limit (r+ → rc) corresponds to y+ → 1
while keeping R and Θ fixed. This perfect cubic parameter grid is easier to scan (while
keeping track of our ‘distance’ to relevant boundaries of the parameter space) than, e.g. the
{M/L, Q/L, a/L} grid displayed in figure 2.

Onwards, we restrict our attention to neutral (q = 0) and massless (µ = 0) scalar field
perturbations. With the aim of explaining the corresponding QNM spectrum of KNdS in
depth and to illustrate the analyses we performed ‘behind the scenes’, we comment on various
plots in which we keep y+ and R fixed and explore how the QNM families change as Θ varies.
In general, for a given ℓ (which counts the number of zeros of the angular eigenfunction), the
equatorial m = ℓ modes turn out to be the least damped modes (see e.g. [31, 99, 100]), and
we expect that the same is true in KNdS. Since the t−ϕ symmetry (discussed in section 2.3.1)
allows us to restrict considerations to m ≥ 0, we focus our discussion on the modes with
m = ℓ ≥ 0. It is important to retain this fact in future discussions. The qualitative features
of the m = ℓ > 0 QNM spectra are similar for different non-vanishing ℓ’s but they differ
from the m = ℓ = 0 case. Therefore, in subsection 4.1 we describe key properties of the
m = ℓ = 1 QNM spectra as a representative example of the m = ℓ > 0 class, while in
subsection 4.2 we discuss the m = ℓ = 0 case.

4.1 QNMs with m = ℓ ̸= 0 and eigenvalue repulsion

We first look at the QNMs with m = ℓ = 1. In particular, near extremality, where the
most interesting and relevant behaviours are. Key properties in this regime are illustrated
in figure 3 for fixed y+ = 0.5 and R = 0.99 (recall that extremality occurs at R = 1). In
both the RNdS limit (Θ = arctan(a/Q) = 0) and the Kerr-dS limit (Θ = π/2), we find
agreement with the QNM literature [2, 29]. In this and future figures, we use the following
convention: modes are designated as dS, NH or PS modes according to their classification
in the RNdS limit. As we increase the rotation Θ > 0, these modes may not always have a
unique classification. This has been discussed in great detail in Kerr-Newman [40, 56, 57] and
so we do not elaborate on it further here. Close to the (near-extremal) RNdS limit (Θ = 0),
the near-horizon (NH; blue diamonds) modes dominate the spectra. At the opposite Kerr-dS
limit (Θ = π/2), the dominant mode is the photon sphere (PS; orange disks) mode. Here and
henceforward, stating that a particular mode dominates the QNM spectra means that it is the
one with smallest |Im(ωrc)|. In figures 3 (and 4) we do not display the third family of QNMs,
namely the de Sitter (dS) family, because it is significantly more damped (i.e. it has much
lower Im(ωrc)) that the other two families in this region of KNdS black holes near extremality.

In figure 3, we also display the red line that looks very much horizontal (but it is
not, i.e. it changes slightly with Θ; see right panel). This curve describes the critical SCC
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Figure 3. Imaginary part of the frequency (in units of the cosmological horizon length rc) of the
n = 0 NH (blue diamonds), n = 1 NH (light blue diamonds) and n = 0 PS (orange disks) modes for
q = µ = 0 linear scalar perturbations with m = ℓ = 1 on KNdS with R = 0.99, y+ = 1/2 as a function
of Θ = arctan(a/Q). The n = 0 (n = 1) MAE approximation ωMAE of the NH modes is described by a
dot-dashed purple (light purple) curve. The n = 0 (n = 1) eikonal approximation ωeik of the PS modes
are given by a green (light green) dashed curve. The red curve is the critical curve Im(ωrc) = −βcκ−
with βc = 1/2 relevant for the SCC discussion, and the n = 0 PS curve is above it for Θ ≳ 0.87. The
thin vertical dark yellow line at Θ = Θc ∼ 0.73 describes the Θ where δ2 = 0, with δ2 < 0 for smaller
Θ values and δ2 > 0 for larger Θ. The right panel is a zoom of the left panel, in a range of Im(ωrc)
where we better see the orange PS mode (and green eikonal curve) crossing the red curve.

curve Im(ωrc) = −βcκ− with βc = 1/2 and κ− defined in (2.4). From the discussion of
subsection 2.3.3 it follows that modes above this red curve have β < 1/2 and thus they
enforce Christodoulou’s formulation of SCC. This is thus the case for fast rotating charged
black holes with sufficiently large Θ in figure 3. Indeed, we see that the least damped orange
disk PS curve is above this critical SCC red curve for Θ ≳ 0.87 (at y+ = 0.5,R = 0.99)
and all the way up to the Kerr-dS limit (Θ = π/2).

On the other hand, for smaller values, Θ ≲ 0.87, figure 3 shows that the least damped
mode (be it a PS or NH mode) is now below the critical SCC red curve. This means that
for black holes with Θ ≲ 0.87 (including RNdS with Θ = 0) and y+ = 0.5,R = 0.99, the
m = ℓ = 1 modes do not enforce SCC. To determine whether SCC is respected in that region
we need to confirm that there is no QNM with another value of {m, ℓ} which enforces SCC
(by having β ≤ 1

2). Furthermore, to discuss the validity of SCC in the full KNdS parameter
space we have to repeat these procedures for all values of y+ ∈ (0, 1], R ∈ (0, 1] and {m, ℓ}.
We postpone the discussion of the outcome of this survey till section 5.14

Information relevant to the discussion of interactions between NH and PS families of
modes and their classification can also be obtained from figure 3. In particular, such figure
allows us to compare our numerical results with the analytical eikonal (ω+

eik) and matched
asymptotic expansion (ωMAE) frequencies computed in sections 3.2 and 3.3 respectively, which
helps to identify their family class.

Recall that near extremality the NH modes are expected to be well described by the
MAE frequency (3.48) (in the present case with q = µ = 0): this is the purple dot-dashed line

14Of course to find whether the least damped modes have β below or above βc = 1/2 it can be more
convenient to simply plot β instead of Im(ωrc) for all the QNM families and see if the dominant one is below
or above the critical curve β = 1

2 .
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(n = 0 overtone) and light purple dot-dashed line (n = 1) in figure 3. On the other hand, the
eikonal frequency (3.10), which is expected to be valid only in the strict m = ℓ → ∞ limit, is
represented by the dark green (n = 0) and light green (n = 1) dashed lines. We conclude
that in the RNdS limit (Θ = 0), the MAE (purple dot-dashed line) and eikonal (green dashed
line) approximations are really accurate (even though the eikonal approximation should not
be valid for such low m = ℓ = 1!), and we can clearly identify the NH and PS modes based
on the MAE and eikonal approximations.

However, as Θ increases the NH and PS modes trade dominance (around Θ ∼ 0.52). At
the value Θ = Θc ∼ 0.73, which corresponds to δ2 = 0 as defined in (3.27), we can observe
that the (co-rotating) eikonal (ω+

eik) and MAE (ωMAE) approximations essentially merge in
the n = 0 overtone case (and for slightly higher Θ the n = 1 ω+

eik and n = 1 ωMAE curves
also merge). For Θ ≳ Θc the dominant n = 0 PS mode (orange disk) curve is essentially
on top of both the n = 0 eikonal and n = 0 MAE curves, while the n = 0 NH mode (blue
diamonds) is on top of the n = 1 eikonal and n = 1 MAE approximations. This illustrates
why we can precisely classify modes as PS and NH in the RNdS limit but not necessarily
away from it. Additionally, it provides an example of how the 2-dimensional BF bound
violation − pinpointed by δ2 = 0 − signals a change in the properties of the QNM spectra.
Strictly speaking, beyond the rough guide of Θc where the BF bound starts being violated,
we lose the distinction between the n = 0 PS and n = 0 NH families and the system is
effectively better described by a single PS-NH family with its two first overtones n = 0
and n = 1 displayed. We refrain ourselves from a more detailed description of this aspect
here: the reader interested on a very exhaustive discussion of these matters is invited to
read [40, 56, 57] which describe a similar system in the Kerr-Newman case (the quantitative
values are of course different for Λ = 0 but the properties are otherwise qualitatively similar)
and [31] for rotating dS black holes.

Moving on to figure 4, the series of plots in this figure illustrate another important
characteristic of the m = ℓ = 1, n = 0 QNM spectra of KNdS. Namely, we can observe
how the interaction between the PS and NH families can become even more involved as we
approach extremality further, R → 1. As it occurs in KN spacetime [40, 56, 57] and dS Myers-
Perry [31], we often observe the phenomenon of eigenvalue repulsion when scanning the QNM
spectra throughout the KNdS parameter space (typically when approaching extremality). In
figure 4, all plots describe KNdS black holes with y+ = 0.5. From the top to the bottom we
then increase the off-extremality parameter R. Concretely, the top row is for R = 0.994, the
middle row is for R = 0.995 and the bottom row is for R = 0.996. The plots on the right
column are simply a zoom-in of the left column plots in regions of interest.

For R = 0.994 (top row), the PS (orange disks) and NH (blue diamonds) families
‘intersect’15 near Θ ∼ 0.6, trading dominance for higher Θ values. The top right plot is a
zoom of the top left plot around the Θ ∼ 0.6 where the ‘intersection’ occurs. Increasing the
R value by a small amount to R = 0.995 (middle row), changes the ‘intersection’ into an

15Every single time we state that two QNM curves ‘intersect’, we mean that the imaginary part of their
frequencies, Im(ωrc), does intersect but, it is important to emphasize, the curves describing the real part of
the frequencies (not shown) do not intersect [31, 40, 56, 57]. To always keep this property in mind, we will
put quotation marks whenever we use the word intersect.
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Figure 4. Imaginary part of the frequency for q = µ = 0 linear scalar perturbations with m = ℓ = 1
on KNdS with y+ = 1/2 as a function of Θ = arctan(a/Q) for three different values of R (top to
bottom). Left column: constant R = 0.994 (top), R = 0.995 (middle) and R = 0.996 (bottom). Right
column: zoomed in plots near the ‘intersection’ or eigenvalue repulsion regions for constant R = 0.994
(top), R = 0.995 (middle) and R = 0.996 (bottom). The colour code is the same as in figure 3 but
this time we just display the n = 0 overtone modes.
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eigenvalue repulsion between the PS and NH modes. Instead of ‘crossing past’ each other,
now the PS and NH curve ‘repel’ each other around Θ ∼ 0.6 and no longer trade dominance
for higher Θ values. Finally, even closer to extremality, for R = 0.996 (bottom row) we can
see that the repulsion between the PS and NH n = 0 modes is not so sharp as before but,
again, the two families do not ‘intersect’ (like for the middle plot).

We emphasize again that although we have only discussed key aspects of m = ℓ = 1
modes (illustrating the challenges in finding them and in identifying the least damped mode,
a.k.a. spectral gap), the discussion in this subsection applies qualitatively for all m = ℓ > 0
modes. It is also in qualitative agreement with previous findings in Kerr-Newman or Kerr-dS
black holes [31, 40, 56, 57] which justifies not presenting an exhaustive list of plots. Also
note that the existence of eigenvalue repulsions are not reported in detail in the study [1]
of the QNM spectra of the KNdS family with constant ΛM2 (although a reference to their
existence seems to be mentioned in footnote 3 of [1]). Eigenvalue repulsions like the ones
illustrated in figure 4 are typically observed if one approaches extremality sufficiently close
and if Θ is larger than ∼ Θc.

We now comment on the special case of m = ℓ = 0 which is qualitatively different
from the m = ℓ > 0 case.

4.2 QNMs with m = ℓ = 0 and eigenvalue splitting

In this section we look at the m = ℓ = 0 sector of QNMs, as the spectrum presents a distinct
behaviour when compared to that of m = ℓ ̸= 0 (and they also have to be considered in the
SCC discussion of section 5). To start with, the m = ℓ = 0 spectrum is never dominated by
PS modes. Nevertheless, the m = ℓ = 0 QNM spectrum can also be very intricate although
for distinct reasons from the m = ℓ ̸= 0 case. This intricacy in the KNdS spectrum can be
understood to emerge from non-trivial features already present in the spectrum of m = ℓ = 0
RNdS black holes (Θ = 0). For this reason, we first look into the QNM spectrum of RNdS.
Some relevant features are visible in figure 5, which uses RNdS black holes with R = 0.95
to illustrate common properties to other elements of the RNdS family. We plot both the
imaginary (left column) and real (right column) part of the frequencies as a function of y+.
For the sake of clarity, we do not represent the purely imaginary modes (blue diamonds)
in the real part plots. The bottom plots are simply a zoom in of the top plot in a region
with non-trivial features. We plot two families of modes: the orange disks are the PS modes
(with complex frequencies)16 while the blue diamonds, in this figure only, represent purely
imaginary modes (i.e. with Re(ωrc) = 0) in RNdS (they acquire a real part when Θ > 0).
The intricate interactions within the QNM spectrum only allow us to specify the distinction
between NH and dS modes in some specific cases as discussed next.

In figure 5 we start by noticing that the two least damped modes for RNdS with y+ ≲ 0.71
are two blue diamond curves with purely imaginary frequencies. Both are well described by the
purple and light-purple dot-dashed curves given by the n = 0, 1 MAE approximation (3.48).
Hence we could be naively tempted to classify both of them as NH modes. This is indeed

16We have checked that this family is continuously connected to the m = ℓ = 1 PS family by performing
the (unphysical) marching in non-integer m from m = 0 till m = 1. Note that the eikonal approximation is
certainly not expected to hold for m = ℓ = 0.
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Figure 5. Imaginary (left panels) and real (right panels) parts of the frequency as a function of the
off-Nariai parameter y+ for (q = µ = 0) m = ℓ = 0 QNMs in RNdS (Θ = 0) with fixed off-extremality
parameter R = 0.95. The orange disks represent n = 0 PS modes with complex frequencies and we
also display the first two purely imaginary dominant modes with blue diamonds (since they have
Re(ωrc) = 0 we simply do not display them in the right panels for the sake of clarity). The purely
imaginary modes are initially closely followed by the MAE frequencies with n = 0 (purple dot-dashed
curve) and n = 1 (lighter dot-dashed lines). The second row gives zoom plots of the top panel in the
regions where interesting splittings and/or mergers happen. Here, the inset plots are further zooms
around the region y+ ∈ [0.87, 0.9].

the case for the n = 0 family (upper curve). However, if we take the n = 1 blue diamond
with y+ = 0.1 and R = 0.95 in figure 5 and march the R parameter down to R = 0.1, we
conclude that here this mode is undoubtedly a dS QNM (discussed in section 3.1). This fact
highlights the important remark above: given a QNM with m = ℓ = 0 in an arbitrary point
of the KNdS parameter space, we typically cannot claim whether it belongs to the NH, PS or
even the dS families. We will refrain from adding further discussions about intricate features
that are not relevant for the ultimate aim of finding the least damped mode.

Next, starting at y+ = 0.1 in the left panels of figure 5, we follow the orange disk
PS family (with n = 0) to larger values of y+. We see this is a single complex frequency
family of modes till y+ ∼ 0.71. But here an interesting phenomenon occurs: the n = 0
PS families splits into two purely imaginary frequency families of modes (see zoom in plot
around the splitting region in the left-bottom plot). Then, for y+ ≳ 0.71 the lower blue
diamond branch remains purely imaginary until y+ ≃ 0.925 (not shown, it has a splitting
at this value of y+), while the upper blue diamond branch merges, at y+ ∼ 0.735, with
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the purely imaginary blue curve followed closely by the n = 1 MAE curve (that is above it
for y+ ≲ 0.735). The merged blue diamond curves with purely imaginary frequencies then
continue for larger y+ (≳ 0.735) as a orange disk branch with complex frequency (which itself
splits then around y+ ∼ 0.88 into two families of purely imaginary modes as best seen in
the inset plot of the bottom-left panel; not shown, they both continue as purely imaginary
curves till at least y+ = 0.999). Notice that when a complex family splits into two purely
imaginary families or two purely imaginary families merge into a complex one, the number
of degrees of freedom of the system are conserved. For a detailed discussion of this type
of behaviour, we refer the reader to [31, 56, 57].

Given the intricate features already observed in the RNdS QNM spectra, it is with no
surprise that similar, but much enhanced, intricate features are observed when we move to
the KNdS black holes with Θ > 0. We navigated through these carefully having in mind
that our mission was to always capture the least damped QNM with m = ℓ = 0 for each
(y+,R,Θ) point in the parameter space of KNdS.

As illustrated above for Θ = 0, although the QNM spectra of KNdS in the m = ℓ = 0
sector can be very involved, it is also true that in many regions of the KNdS space it can
look relatively simple. This is the case for the y+ = 0.5,R = 0.95 KNdS displayed on the
left plot of figure 6. To obtain this plot and its colour code, we have continuously traced
back each of the modes to their corresponding family in RNdS (Θ = 0), as for y+ = 0.5 and
R = 0.95 there is no splitting or merging of the three dominant modes (of the type observed
in figure 5). Hence, the QNM classification is unambiguous in this particular case. On the
other hand, in the right plot of figure 6 which is still for KNdS with R = 0.95 but this time
with y+ = 0.9, we only display the dominant NH mode and the corresponding n = 0 MAE
approximation, as the subdominant QNM spectrum is quite complicated. That this is the
case can be understood looking again to the RNdS spectrum of figure 5 around y+ = 0.9:
before this y+, several mergers and splittings have already occurred.

In both cases of figure 6, despite being relatively far from extremality, we see that the
NH modes (blue diamonds) dominate the QNM spectra, i.e. they have the lowest |Im(ωrc)|
for any Θ. This is in sharp contrast with the m = ℓ = 1 case (cf. figure 3) where away
from extremality the PS mode becomes the dominant mode above a critical value of Θ. In
figure 6 we also display the red line that looks very much horizontal (but it changes slightly
with Θ). It describes the critical SCC curve Im(ωrc) = −βcκ− with βc = 1/2. From the
discussion of subsection 2.3.3 it follows that modes above this red curve have β < 1/2 and
thus they enforce SCC. The right plot of figure 6 with y+ = 0.9 provides an example where
the dominant NH mode enforces the SCC for all Θ values. Notice however, that in the left
plot of figure 6 with y+ = 0.5, even though the NH family dominates the spectrum, it no
longer enforces SCC. These examples highlight that NH modes are particularly important in
the special sector of m = ℓ = 0 perturbations. Moreover, they also illustrate that m = ℓ = 0
modes also have to be considered in the SCC discussion of section 5. In this context, in
appendix A.3 we perform an analytic study of the NH modes at the specific limit of extremal
(R = 1) KNdS with m = ℓ = 0, and we rule out the possibility of NH modes enforcing
SCC in this very precise slice.

After this survey of the properties of the m = ℓ = 0 QNMs of KNdS, without further delay
we can state the main conclusion of our analysis in this subsection. We did not find any mode
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Figure 6. Imaginary part of the frequency as a function of Θ = arctan(a/Q) for q = µ = 0 linear
scalar perturbations with m = ℓ = 0 on KNdS with R = 0.95, with two different values of y+: y+ = 0.5
(left plot) and y+ = 0.9 (right plot). Left plot: for y+ = 1/2, we show the n = 0 NH (blue diamonds),
n = 1 NH (lighter blue diamonds) and n = 0 PS (orange disks) modes. The n = 0 (n = 1) MAE
approximation ωMAE to the NH modes is given by a dot-dashed purple (lighter purple) curve. The red
curve is the critical curve Im(ωrc) = −βcκ− with βc = 1/2 relevant for the SCC discussion. Right
plot: for y+ = 0.9 and with the same colour coding, we show that the dominant (blue diamond) NH
mode enforces SCC for all Θ since its curve is above the critical red curve Im(ωrc) = − 1

2 κ− .

with m = ℓ = 0 crossing the β = 1/2 threshold at a point of 3-dimensional parameter space
closer to RNdS (i.e. with smaller dimensionless rotation for a given dimensionless charge)
than where the eikonal approximation for m = ℓ → ∞ will ultimately enforce SCC (see next
section 5). Therefore, after accounting for all sectors of perturbations and with the caveat of
considering only y+ ≥ 0.1, the eikonal approximation boundary with β = 1/2 that we will
present in the next section will turn out to be the one that signals the transition boundary
between regions in the KNdS parameter space that violate SCC (including near-extremal
RNdS) and regions that respect it (including Kerr-dS).

5 Strong Cosmic Censorship in KNdS

Recalling the discussion of section 2.3.3, if for a given KNdS black hole we can find a QNM
with β ≡ −Im(ω)/κ− < 1/2 then the scalar field we are probing cannot be extended across
the Cauchy horizon as a weak solution of the system and so Christodoulou’s formulation
of SCC is respected. We just needs one such QNM since generic initial data will contain
it. On the other hand, if for a particular KNdS solution all its QNMs have β > 1/2 then
Christodoulou’s formulation of SCC is violated.

In the previous two sections we have outlined the strategy and some challenges we
had to face to scan the full 3-dimensional KNdS parameter space to determine the least
damped QNM frequency (a.k.a. spectral gap) for each KNdS black hole, and thus compute
β ≡ −Im(ω)/κ−. In this section we present our conclusions and, for each KNdS black hole,
we compare β with the critical value of 1/2 to determine if Christodoulou’s formulation of
SCC does or does not hold for such a black hole.

Our general strategy to address the problem is the following. The eikonal, m = ℓ → ∞,
approximation (3.10) of the PS modes has βeik < 1/2 for a large portion of the parameter
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space of KNdS. In such cases, we can state that − if and only if we confirm this to be indeed a
good approximation − in these regions there is at least one QNM with β < 1/2 that enforces
Christodoulou’s formulation of SCC (since generic initial data will include m = ℓ ≫ 1 modes).
Actually, this is precisely the family of modes that enforces SCC in the whole parameter
space of the Kerr-dS limit of KNdS [29]. So this indeed seems to be our best starting point.
However, to make such a claim we first need to verify that the eikonal frequency (3.10) indeed
provides a good approximation for large m = ℓ modes. For this reason, we first verify that
the exact numerical PS modes with m = ℓ = 10 (the highest value we considered) agree
well with the eikonal approximation (3.10), ωeik, and also establish the region of the KNdS
parameter space where these numerical PS modes (and the eikonal approximation) enforce
SCC. Then, in regions of the parameter space where SCC is not enforced by the PS modes,
we need to check if there is some other family of QNMs with β < 1/2.

We scan the entire KNdS parameter space using the ‘spherical polar parametrization’
{y+,R,Θ} of KNdS introduced in (2.10). Recall that the range of these parameters is
y+ ∈ (0, 1], R ∈ (0, 1] and Θ ∈ [0, π

2 ]. We typically use a numerical grid of 100 points along
each axis to do our scans (with additional points near the extremal and Schwarzschild-dS
limits, or whenever necessary). A first outcome of our analysis is that, in general, the
numerical PS modes are in (very) good agreement with the eikonal approximation, even
for angular harmonic quantum numbers as low as m = ℓ = 10 (it becomes increasingly
harder to get numerical modes with higher m). We also find that the m = ℓ numerical data
approaches the eikonal frequencies, as it should, as m = ℓ increases. These two properties
are illustrated in figures 7 and 8.

In figure 7 we give the contour or density plots of β for m = ℓ = 10 PS modes that we
obtain numerically (onwards, let us call it βPS) as a function of Θ and R for three different
values of y+, namely y+ = 0.1 (top-left panel), y+ = 0.5 (top-right panel) and y+ = 0.9
(bottom panel). The darker (blue) regions describe small values of βPS while the lighter
(yellow) regions describe large βPS values. In the these plots, the red line (around the top
left corner) describes solutions where we have βPS = 1/2 (for m = ℓ = 10). On the other
hand, the dashed green line describes the eikonal βeik ≡ −Im(ωeik)/κ− = 1/2 curve with
ωeik given by (3.10). We see that the red m = ℓ = 10 critical curve is always below the
m = ℓ → ∞ dashed curve but they are quite close to each other (with the approximation
being typically better for larger y+ and smaller Θ and R). These series of plots in figure 7 for
y+ = 0.1, 0.5, 0.9 also show that the SCC conclusions can depend significantly on y+ ≡ r+/rc.
For example, in the near-Nariai limit y+ ∼ 1 the PS modes enforce SCC almost for all KNdS
independently of their R and Θ (bottom plot). For smaller y+ (top plots) one finds that
β > 1/2 in a relatively wide region ‘centred’ around (Θ = 0,R = 1). In particular, this means
that PS modes do not enforce Christodoulou’s formulation of SCC for extremal RNdS as is
well established [2] (neither for weakly rotating KNdS near-extremality).

Moving now to the left panel of figure 8, this plot complements the understanding
gathered in the previous figure. Indeed, this time we instead fix our attention on a KNdS
family with constant R = 0.95 (so near-extremality) and we provide the βPS contour plot for
m = ℓ = 10 PS modes as a function of Θ and y+. Again we identify the βPS = 1/2 boundary
red curve of m = ℓ = 10 modes (left and right panels) and we see that it approaches from the
right the eikonal βeik = 1/2 green-dashed boundary. In the left plot of figure 8 we further
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Figure 7. Contour plots of βPS for exact numerical m = ℓ = 10 PS modes as a function of
{R,Θ = arctan(a/Q)} for KNdS families with fixed y+ = 0.1 (top-left panel), y+ = 0.5 (top-right
panel) and y+ = 0.9 (bottom panel). In each plot, the critical curve with βPS = 1

2 is the red curve
(around the top left corner), and the dashed green line identifies the eikonal prediction βeik = 1

2 .

see that, to the right of the βPS = 1/2 red curve, one has βPS < 1/2 which means that SCC
holds for KNdS black holes in that region. This includes the Kerr-dS family (Θ = π/2), as is
well established [29], but also weakly (or moderately weakly) charged KNdS black holes.

As the reader can infer from an inspection of figure 8, it becomes significantly harder
to study modes for small y+ < 0.1. For this reason our scanning of the KNdS parameter
in these regions was sparser. Consequently, our conclusions are less solid in these regions
and thus we do not fill them in figure 8. Nevertheless, we have done a detailed analyses of
specific families of KNdS solutions in these regimes to be confident that we are not missing
relevant physics as we now discuss. For very small y+ (at least smaller than 0.1 to give a safe
upper bound) it is often the case that, for a given m = ℓ, de Sitter modes are the dominant
modes but only for very small Θ. As Θ grows, dS modes start interacting with NH and PS
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Figure 8. Left panel: density plot of βPS for PS modes with m = ℓ = 10 as a function of Θ and
y+ for a KNdS slice of constant R = 0.95, i.e. a near-extremal KNdS family. Right panel: critical
β = 1/2 curves at R = 0.95 for different values of m = ℓ. Left to right, we have the βeik = 1/2 critical
boundary in the eikonal approximation (green dashed line), followed by the numerical βPS = 1/2
curve for m = ℓ = 10 (red solid line), m = ℓ = 2 (magenta solid line), m = ℓ = 1 (brown solid line)
and finally the βNH = 1/2 curve for m = ℓ = 0 (blue solid line) modes. As we increase the value of
m = ℓ, we observe that the βPS = 1/2 boundary curve for m = ℓ modes increasingly converges to the
βeik = 1/2 curve of the eikonal approximation, which corresponds to m = ℓ → ∞.

modes, presenting splittings and mergers as illustrated in figure 5, so their distinction gets
blurred. Still, there are very small regions where they can dominate and simultaneously have
βdS < 1/2. We do not have enough data to include these detailed regions (necessarily with
y+ < 0.1) with the required level of accuracy in figure 8 (neither in the later plot of figure 9).

So far we have been focusing our attention on PS modes with m = ℓ = 10, as these values
provide a middle ground. Indeed, these are large enough so that we can gather evidence that
the eikonal m = ℓ → ∞ frequency is indeed a good approximation to the exact numerical
data, but at the same time they present sufficiently small m to allow for a numerically search
of the exact modes. What happens with m = ℓ ̸= 10? For some value of Θ high enough
(at fixed y+ and R) we find that it is always PS modes with sufficiently high m = ℓ that
end up enforcing the SCC. Thus, it is useful to identify the βPS = 1/2 boundary surface
for each m = ℓ QNM family. This can be seen in the right panel of figure 8 where, for a
near-extremal KNdS family with constant R = 0.95, we plot the βPS = 1/2 boundary curve
for m = ℓ = 1 (brown curve), m = ℓ = 2 (blue curve), and m = ℓ = 10 (red line already
displayed in the left panel). One has βPS > 1/2 to the left of each of these m = ℓ boundary
curves, which means that as we go through these boundary curves from the right one to
the left one (i.e. for increasingly higher m = ℓ) we see that we reduce the area (volume
if we also vary R) inside the shell, containing small extremal RNdS, where SCC can be
violated. The right panel of figure 8 provides further evidence for an important property: as
we increase m = ℓ from 1, · · · , 10 we see that the associated critical βPS = 1/2 boundaries
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approach monotonically the βeik = 1/2 boundary described by the green-dashed curve on
the left. Although we have not attempted to explicitly confirm that critical curves indeed
keep increasingly approaching the eikonal surface from the right for even larger m = ℓ, we
are confident they do so for an extra reason. This is because, for the particular Kerr-dS
family, this exercise was completed up to m = ℓ = 50 and confirms the above expectation [29].
This should extend to all other KNdS black holes.

This means that eikonal PS modes with very large m = ℓ are the ones that end up
enforcing SCC in the widest range of KNdS black holes (e.g. all the region to the right of the
black dashed curve in the right plot). The reader might question whether this statement might
not be in contradiction with the properties observed e.g. in figure 4 for m = ℓ = 1 modes
(the qualitative features are similar for other m = ℓ > 0 and, in particular, m = ℓ = 10).
Indeed for moderately large R (top panel of figure 4) the PS modes are the least damped
modes for sufficiently large Θ. In contrast, the situation changes drastically as we approach
further extremality, i.e. for larger R (middle and bottom plots in figure 4) due to eigenvalue
repulsions: the blue diamond NH modes now become the least damped modes relevant for
SCC. The key point here is that this is for a specific m = ℓ QNM family. But arbitrarily
large m = ℓ PS modes, i.e. in the eikonal limit m = ℓ → ∞, always have, for sufficiently large
Θ, the least damped frequency when compared with any frequency of finite m = ℓ modes
(be they PS or NH modes). This is clearly illustrated in the plots of figure 4 where we see
that the m = ℓ → ∞ green-dashed eikonal curve is indeed above the m = ℓ = 1 orange PS
and blue NH curves. This is true only for sufficiently large Θ; in particular, it is certainly
true for Θ’s larger than the one where the eikonal green-dashed curve crosses the critical red
curve with Im(ωrc) = −βκ− with β = 1/2 also displayed in figure 4. Black holes with Θ
larger than this special intersection point have βeik < 1/2 and thus preserve SCC. For KNdS
black holes with smaller Θ, i.e. to the left of this intersection point, the eikonal PS modes
are no longer necessarily the least damped modes. For a small window of intermediate Θ
the PS modes are still the dominant modes while for smaller Θ the NH modes become the
dominant modes. But in both cases, one has β > 1/2 and thus SCC is violated.

What remains is to establish that there are no other modes which could enforce SCC
when the eikonal PS modes do not do so. We are particularly interested in KNdS solutions
around small extremal RNdS as we know that extremal RNdS violates SCC when y+ is not
too large (i.e. not close to y+ = 1). We have already explained that within the PS family
of modes, the eikonal critical β = 1

2 boundary supersedes the ones of any finite m = ℓ > 0
PS QNM family so we do not have to worry with these. On the other hand, the de Sitter
(dS) QNM family of modes is typically very much more damped than the PS and NH modes,
except for very small y+ (at least smaller than 0.1 to give a safe upper bound) where it can
often dominate when Θ is very small. There is even a very small region where they dominate
and simultaneously have βdS < 1/2. However, since our scanning of the y+ < 0.1 region was
much less sparser, the accuracy of our results and thus conclusions are less solid in this region
and we do not fill it in figure 8. To complement this discussion, we invite the reader to see
figure 2 of [1] for a detailed analysis of a particular KNdS family with constant ΛM2 that
identifies the small region where dS modes can dominate and have β > 1/2 (although [1] is
for a particular massive scalar field, it illustrates the relevant features).

We are left with the NH modes. Above, we have already discussed that although these
modes can sometimes be less damped than PS modes for particular m = ℓ ̸= 0 modes, they
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Figure 9. Left panel: density plot of βPS for exact numerical PS modes with m = ℓ = 10 across the
three-dimensional KNdS parameter space {y+,R,Θ = arctan(a/Q)} in the critical region where βPS
crosses the critical value of 1/2 (red ‘spherical-like’ surface) for m = ℓ = 10. One has βPS > 1/2 in
the interior of this red surface. We display contour plots in the vertical plane with Θ = 0 (RNdS
black holes) and in the horizontal plane with R = 0.98 (very close to extremal KNdS). Right panel:
same parameter space region and critical red surface with βPS = 1/2 of m = ℓ = 10 as in the left
panel but this time we also display the critical eikonal (m = ℓ → ∞) green ‘spherical-like’ surface
with βeik = 1/2 (inside the red surface).

are always more damped than the eikonal m = ℓ → ∞ modes. Hence, we do not have to
worry with m = ℓ ̸= 0 NH modes. The only potentially dangerous modes that we have not yet
discussed are the m = ℓ = 0 modes. As found in section 4, the QNM spectra for m = ℓ = 0 is
qualitatively very distinct from the m = ℓ > 0 case since we found that, more often than not,
m = ℓ = 0 NH modes are less damped modes than m = ℓ = 0 PS and dS modes. Moreover,
for certain values of (y+,R) the NH modes can actually enforce SCC for all Θ, as shown for
y+ = 0.9 and R = 0.95 in the right plot of figure 6. As scanning the entire KNdS parameter
space for m = ℓ = 0 modes is computationally costly due to the splittings/mergers between
families of modes reported in section 4.2, we focused our attention on the dangerous region
near extremality, i.e. for R ≥ 0.90. Then, we found the dominant mode for each of the PS,
dS and NH families for y+ ∈ [0.1, 0.9] and Θ ∈ [0, π/2], by obtaining them first in RNdS limit
and then marching along Θ. Using the dominant eigenvalue at each point inside this slice, we
identified the critical β = 1/2 for the m = ℓ = 0 modes. For the particular case of R = 0.95,
this βNH = 1/2 boundary is the blue curve displayed in the right panel of figure 8, with
βNH < 1

2 above this curve. It is well to the right/top of the eikonal PS green dashed curve.
That is to say, the m = ℓ = 0 NH modes do not enforce SCC in any region which was not
already enforced by the eikonal PS modes. This is also the case for other values of R ≥ 0.9.

The discussions so far were illustrated for particular families of KNdS where we were fixing
either y+ or R to use reader-friendly 2-dimensional plots. But we can now extend the analysis
to the full 3-dimensional parameter space of KNdS in the ‘spherical polar parametrization’
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(Θ, y+,R). This is shown in figure 9. Recall that the off-extremality parameter R ∈ [0, 1] is
such that the horizontal plane with R = 1 in this figure describes extremal KNdS black holes,
y+ = r+/rc ∈ [0, 1] is the off-Nariai parameter, and Θ = arctan(a/Q) ∈ [0, π/2] runs along
KNdS from the RNdS family with Θ = 0 and the Kerr-dS family with Θ = π/2. The left
panel of figure 9 shows the βPS density plot for m = ℓ = 10 in the RNdS vertical plane with
Θ = 0 and in the horizontal plane describing near-extremal KNdS with R = 0.98.17 In each
of these two planes with the contours, we identify the red curves with βPS = 1/2 that are the
intersections of these two planes with the critical m = ℓ = 10 βPS = 1/2 red ‘spherical-like’
surface also shown. Outside this ‘spherical-like’ red surface one has βPS < 1/2 and thus SCC
certainly holds for such black holes (including in the Kerr-dS limit). In the right panel of
figure 9, we display the very same plot on the left but this time we remove all information
except the red spherical-like surface describing m = ℓ = 10, βPS = 1/2 modes and we add the
eikonal, m = ℓ → ∞, βeik = 1/2 green surface. The latter green surface is slightly to the left
of the former red surface (i.e. as m = ℓ grows, the associated βPS = 1/2 surface increasingly
approaches this eikonal βeik = 1/2 green surface), in agreement with the constant R slice
shown in the right panel of figure 8. From exercises like the ones described in the analysis
presented in previous paragraphs, we are confident that we have gathered strong numerical
evidence to state that the eikonal βeik = 1/2 green surface is ultimately the relevant surface
(strictly speaking for y+ ≥ 0.1) to discuss SCC in KNdS black holes and the identification
of this surface is the main outcome of our manuscript. Namely, outside this eikonal green
surface one has β < 1

2 and thus SCC holds for KNdS in that region (including Kerr-dS [29]),
while KNdS inside this eikonal surface have β > 1

2 and thus SCC may be violated (this
includes the case of near-extremal RNdS away from the Nariai y+ = 1 limit [27]).

6 Conclusions and discussions

Christodoulou’s formulation of Strong Cosmic Censorship (SCC) holds for Kerr-de Sitter
black holes but is violated by Reissner-Nordström-de Sitter black holes. There must then
be a boundary in the parameter space of Kerr-Newman-de Sitter (KNdS) black holes that
marks the transition between solutions that respect and violate SCC. For massless scalar field
perturbations, we did a detailed full scan of the 3-dimensional parameter space of KNdS and
identified this surface boundary. For r+/rc ≥ 0.1, this is given by the eikonal photon sphere
green surface in figure 9. This is roughly “a quarter of a spherical-like boundary” centred
around small extremal RNdS black holes and Christodoulou’s SCC is violated for KNdS
solutions inside it and is preserved for KNdS black holes outside it. Our study complements
and extends the one of [1] which identified the transition curve (lying in our boundary
surface) for a particular 2-parameter sub-family of Kerr-Newman-de Sitter black holes with
ΛM2 = 0.02. To complete our study of SCC in KNdS we necessarily had to perform a detailed
investigation of QNMs in KNdS. The QNM spectrum of KNdS has a very rich structure
with three main families (the photon sphere, near-horizon and de Sitter families) although it

17Our scanning of the R > 0.98 region was much sparser, and thus the accuracy of our results and conclusions
are less solid in this region and we do not fill it in figure 9; but we found strong evidence that the density plot
of the R = 0.98 plane extrapolates with the same features for higher R.
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is not often easy to identify unambiguously each of them due to eigenvalue repulsion and
splitting/merger phenomena that we also discussed with some detail.

In this paper we only considered scalar field perturbations. In our analytical discussions
of section 3 we included a mass µ and charge q for the scalar field but all our numerical results
reported in section 4 and in section 5 are only for µ = 0 and q = 0. We now comment on
how our numerical findings for the neutral massless scalar field and our analytical expressions
for modes with generic µ, q, combined with known past results in the RNdS and Kerr-dS
cases and the data for the particular KNdS family with constant ΛM2 in [1], can be used to
produce educated expectations for the discussion of SCC in KNdS for other perturbations.

Let us start with massive scalar perturbations. As mentioned in footnote 4, the behaviour
of perturbations at the Cauchy horizon in 3-dimensional anti-de Sitter black holes (namely,
the BTZ black hole) turns out to also be determined by the slowest decaying QNM (with their
exponential decay), very much like in de Sitter black holes. In particular, this means that
the least damped QNM (spectral gap) divided by the Cauchy horizon surface gravity is also
the relevant quantity to discuss SCC in BTZ [48]. Since [48] did a detailed discussion of SCC
for massive scalar fields in BTZ and their qualitative findings concerning the dependence on
the mass of the scalar field should extend to de Sitter, we borrow their relevant conclusions.
Combining them with our analytical MAE analysis of massive modes in KNdS we can produce
reasonable expectations. Ref. [48] found that scalar fields in BTZ can violate SCC and this
violation can be made arbitrarily worse by increasing the mass of the scalar field µ. In
the sense that massive scalar perturbations are extendible across the Cauchy horizon with
arbitrarily large degree of differentiability (i.e. as Ck with large k) if we are sufficiently close
to extremality and we increase µ to have β > k. Our matched asymptotic expansion (3.50)
for KNdS modes indeed displays such a mass-dependence: by increasing the mass µ we can
make δ2 (defined in (3.27)) arbitrarily negative, and therefore βMAE > k if we have sufficiently
large µ. We thus expect that this also occurs for massive scalar perturbations in KNdS away
from the near-extremal MAE regime we studied in section 3.3 but only an actual numerical
computation of the modes can confirm this is indeed the case. The expectation is that
the eikonal green surface with βeik = 1/2 in figure 9 also provides the transition boundary
relevant for the discussion of SCC in the massive sector. This is because: 1) this eikonal
transition surface, in the region near to extremal KNdS black holes, is also described by
the MAE analysis for m = ℓ ≫ 1 modes, and 2) [1] reports (for a particular scalar mass)
that the photon sphere frequencies of massive scalar QNMs, like the massless ones, also
approach the eikonal limit (recall that the latter uses null circular orbits so it could have
been irrelevant for massive fields).

Consider now charged scalar fields. For RNdS, it was shown that although charge tends
to weaken the SCC violation, the fact is that there is always a neighbourhood of RNdS
near extremality in which SCC is violated by perturbations arising from smooth initial data
even for arbitrarily large scalar field charge q [28]. This violation was missed in the analysis
of [33, 34] because these references did not consider sufficiently near-extremal black holes
where important wiggles around β = 1/2, so relevant for the final discussion, do appear [28].
These wiggles are also observed in the particular KNdS family with constant ΛM2 analysed
in [1]. Altogether, we expect that charged scalar fields in KNdS will behave very much
like in RNdS at least for very small rotation and most possibly beyond this (but only an
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actual computation can confirm this). Hence, charged scalar fields should not rescue SCC
for KNdS black holes: even when the charge of the field is large, there should always be a
tiny neighbourhood of extremality in which SCC is violated.

Finally, consider gravito-electromagnetic perturbations. In Kerr-dS, this sector of pertur-
bations, like the scalar field perturbations, also preserves Christodoulou’s SCC [29]. However,
in RNdS it was found that in this gravito-electromagnetic sector not only is the Christodoulou
formulation of SCC violated (like in the scalar field sector) but so is the C2 formulation of
SCC [27] (in contrast to the scalar field sector). Recall that a violation of the C2 formulation
of SCC is even more worrying than a violation of the Christodoulou formulation since it
implies that the solution can be extended across the Cauchy horizon as a twice differentiable
solution: tidal forces and curvature invariants are thus both finite at the Cauchy horizon. In
fact, the gravito-electromagnetic sector of perturbations in RNdS have an even more dramatic
violation of SCC. Indeed, there are solutions that can be extended beyond the Cauchy
horizon CH+

R as a solution of class Ck (the metric and Maxwell potential perturbations are
Ck), where k can be made arbitrarily large, for sufficiently near-extremal and large RNdS (in
units of the cosmological radius) [27]. This is because there are near-extremal RNdS black
holes with gravito-electromagnetic perturbations with β > k and arbitrarily large k. All these
features are expected to be present when we turn on a small rotation, i.e. for weakly rotating
KNdS black holes. The question, that only an exact computation could address, is how far
these features extend relative to the eikonal green surface in figure 9. On the other hand, the
eikonal approximation that describes the eikonal surface is the leading order contribution of
a WKB expansion in 1/m that is independent of the spin of the perturbations. That is to
say, it is the same for scalar field perturbations and for gravito-electromagnetic perturbations
and accurate (when compared with high m = ℓ numerical data) in both cases as explicitly
verified in the RNdS [27] and Kerr-dS [29] cases. Thus, it seems natural to expect that it
is also a good approximation for gravito-electromagnetic perturbations in KNdS. If this is
indeed the case, the eikonal βeik = 1/2 green boundary surface in figure 9 should also provide
the critical β = 1/2 boundary to discuss the validity of Christodoulou’s SCC in the context
of gravito-electromagnetic extendibility beyond the Cauchy horizon.

A Further details and comparisons with previous work

A.1 The eikonal approximation and comparison with [1]

To confirm the accuracy of our eikonal approximation for photon sphere modes with m = ℓ →
∞, we performed an in-depth study, throughout the parameter space of KNdS, of the analytic
approximation ωeik provided in (3.10). Additionally, we compared our eikonal approximation
for the PS modes with the one provided in [1].

Before diving into the numerical results, we take a detour to compare the explicit
expressions. In [1], the eikonal PS modes are analytically captured by the expression

ω±
[1] = E± − i

(
n + 1

2

)
|λL|, for n = 0, 1, 2 . . . (A.1)

where

E± = Lϕ

b±s
=

a ±
√
∆r(r±s )

(r±s )2 + a2 ± a
√
∆r(r±s )

Lϕ →
am ± sign(m)(ℓ + 1/2)

√
∆r(r±s )

(r±s )2 + a2 ± a
√
∆r(r±s )

. (A.2)
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Figure 10. Comparison at R = 0.5, y+ = 0.5, m = ℓ fixed and along Θ = arctan(a/Q) of the
dominant PS family frequencies (orange circles) against analytic approximations. We have the eikonal
approximation ωeik from (3.10) (green dashed line) and the analytical approximation of PS modes
(red dashed line) from [1]. Left column: imaginary part of the frequencies for m = ℓ = 10 (top) and
m = ℓ = 2 (bottom). Right column: real part of the frequencies for m = ℓ = 10 (top) and m = ℓ = 2
(bottom). These all correspond to q = µ = 0 linear scalar perturbations on KNdS.

A first observation is that the Lyapunov exponent from [1] coincides with ours in (3.10),
hence we use the same symbol |λL|. This imaginary part of the frequency is the only
contribution relevant for the discussion of SCC. In particular, this fact and the agreement of
the imaginary contribution of (3.10) and (A.1)–(A.2) of [1] means that our SCC conclusions
agree with those of [1] for the range of parameters where there is overlap.

Conversely, for the real parts of (3.10) and (A.1)–(A.2), one concludes that Re(ωeik) ̸=
Re(ω[1]). For a good reason. In (3.10), Re(ωeik) is obtained from a first principles derivation
detailed in section 3.2. On the other, hand Re(ω[1]) is obtained from the very same first
principles derivation followed by the phenomenological replacement/correction (A.2) designed
precisely to enhance the accuracy of the improved eikonal approximation (A.1)–(A.2). Here,
we do not lose the opportunity to further assert the accuracy of the improved (A.1)–(A.2) of [1].

First, let us briefly review the phenomenological reason that motivates the replacement
in (A.2). When using the photon sphere correspondence (see section 3.2), we map Lϕ → m,
as these agree in the eikonal approximation up to leading order. But this is just the leading
term of a formal WKB analysis for |m| = ℓ ≫ 1. To effectively account for the next-to-leading
order WKB correction (without computing it), [1] proposes the transformation (A.2) whereby
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Lϕ is mapped to m in the contribution where it does not multiply a, but it is mapped
to ±(ℓ + 1/2) in the term where it multiplies a. The motivation is to phenomenologically
match the mappings of Lϕ from [27] when Q = 0 and from [29, 101] when a = 0. The
computation of [101] (but not the one of [27]) includes higher order WKB corrections and
the latter amount to do the transformation (A.2) when a = 0. Consequently, the real parts
of (3.10) and (A.1)–(A.2) differ by

Re(ω±
[1] − ω±

eik) =
±
√
∆r(r±s )

2
(
(r±s )2 ± a

√
∆r(r±s ) + a2

) , (A.3)

which does not depend on m, only on the point of the KNdS parameter space we are
interested in.

Let us now explicitly quantify the improvement in the accuracy of Re(ω±
[1]) with respect

to Re(ω±
eik). This is done in figure 10 for a KNdS family with R = 0.5 and y+ = 0.5 ranging

from the RNdS limit (Θ = 0) till the Kerr-dS solution (Θ = π/2). We display the exact
numerical co-rotating (+) PS modes (orange disks) for m = ℓ = 10 (top panel) and for
m = ℓ = 2 (bottom). Of course, the 1/m WKB corrections should be significant in the
latter. In this figure, the left (right) panel plots the imaginary (real) part of the frequency.
Recall that Im(ω+

eik) = Im(ω+
[1]) and this is represented by the green dashed curve in the left

plots. On the other hand, Re(ω+
eik) (green dashed curve) differs from Re(ω+

[1]) (red dashed
curve) in the right plots. The plots speak for themselves. The eikonal approximation for
the imaginary part of the frequency (that we use heavily in our SCC discussion of section 5
and associated plots) is accurate for values as low as m = ℓ = 10 (top left plot) but is
remarkably good even for m = ℓ = 2 (bottom-left plot). On the other hand, by design,
Re(ω±

[1]) (dashed red curve) is a better approximation than Re(ω±
eik) (green dashed curve)

already for m = ℓ = 10 (top right plot) and even more so for m = ℓ = 2 (bottom-right plot).
The accuracy of both approximations improves as Θ → π/2. For reference, for m = ℓ = 10
both estimations yield an excellent result, with maximum relative errors of 0.02% for ω[1] and
of 4% for ωeik. These findings are in agreement with previous computations in the literature,
see e.g. [1, 2, 27–29, 31, 40] and references therein. Our computations also show that the
eikonal approximation for the imaginary part remains a good approximation for generic
values of R and y+. But, as figure 8 illustrates it worsens for smaller values of y+. Also note
that very near extremality, the eikonal approximation stops describing PS modes and starts
describing instead NH modes as illustrated in figure 4 and its discussion.

It would be interesting to do a WKB computation in 1/m that would give a first principles
derivation of the next-to-leading order WKB correction to the eikonal approximation along
the lines of those done in [40, 101] (see also [57]).

A.2 MAE analysis and comparison with [2]

In this section, we further discuss the accuracy of the MAE approximation ωMAE in (3.48)
and (3.41) derived in section 3.3.2. We are particularly interested on the RNdS case (and µ =
q = 0), and we compare our ωMAE with a similar analytical approximation ω[2] presented in [2].
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Consider RNdS black holes (Θ = 0, i.e. a = 0). Ref. [2] presented an analytical
approximation for the frequency of NH modes. It is given by [2]

ω[2] = −i(ℓ + n + 1)κ+. (A.4)

In figure 11 we display the imaginary part of the frequency for m = ℓ = 2 NH modes for
RNdS in the near-extremal region R ∈ [0.9, 0.99] for three different values of y+, namely for
y+ = 0.25 (top left plot), y+ = 0.5 (top right plot) and y+ = 0.75 (bottom plot). In all these
plots, the blue diamonds describe the numerical exact frequencies, the purple dot-dashed line
is given by ωMAE in (3.48) and (3.41) and the yellow line is ω[2] in (A.4). Figure 11 shows
that both our ωMAE and ω[2] get increasingly more accurate as R → 1. But, overall, ωMAE

is visibly a better approximation, in particular, off-extremality and also for large values of
y+. Nevertheless, the accuracy of ωMAE also improves as we decrease y+, with the better
approximation obtained for y+ = 0.25 (top plot).

As detailed in the discussion of figure 4, the MAE frequency ωMAE of (3.48) and (3.41)
remains an excellent approximation in KNdS, as long as we are sufficiently close to extremality.
So we do not discuss the accuracy of ωMAE further for KNdS. MAE approximations similar
to ours (or exactly the same as ours in appropriate limits) have also been discussed in
detail in [31, 40, 69, 71, 95].

A.3 NH modes for m = ℓ = 0 at extremality

In section 3.3.2 we used a matching asymptotic expansion to find an analytic approximation
for the near-horizon frequencies of KNdS black holes close to extremality. It is valid for
m = ℓ ≥ 0 modes. Recall that in order to compute ωMAE in (3.48) we first need to solve the
angular equation (2.17), evaluated at extremality, to find the separation constant λ. This is
straightforward to find numerically. However, in the case of m = ℓ = 0 we simply have λ = 0,
as we show analytically in this appendix. Furthermore, using this, we will derive a zeroth-
order approximation for βm=ℓ=0

MAE that is valid exactly at extremality (and only there). This
allows us to conclude that the dominant m = ℓ = 0 NH modes, if captured by the matching
asymptotic expansion, have βm=ℓ=0

MAE → 1 at extremality and so do not enforce SCC there.
Firstly, we analytically show that for massless scalar perturbations of extremal KNdS

black holes with m = ℓ = 0 we must have separation constant λ = 0, regardless of the value of
Θ (i.e. not only in the RNdS limit). Evaluating (2.17) at extremality and with m = 0 we obtain

(1− x2)(1 + αx2)S′′(x)− 2x
[
1 + α(2x2 − 1)

]
S′(x) + λS(x) = 0, (A.5)

where we defined α = a2/L2 for convenience and both a and L are evaluated at extremality.
In the RNdS limit α → 0, (A.5) becomes Legendre’s equation, with λ = ℓ(ℓ + 1) being
required by regularity. Setting ℓ = 0 ⇒ λ = 0, we find that S(x) = c a constant is the
unique solution regular at x = ±1. As we are free to rescale the eigenfunctions, we will set
S(x) = 1 for the solution to (A.5) in the RNdS limit.

We perturbatively solve (A.5) in powers of α with m = ℓ = 0. Our aim is to show that
λ = 0 to arbitrary order in α. We expand λ and S(x) as

λ =
∞∑

k=1
λkαk, S(x) = 1 +

∞∑
j=1

Sj(x)αj . (A.6)
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Figure 11. Imaginary part of the frequency of near-horizon (NH) modes for scalar field QNMs with
q = µ = 0 and m = ℓ = 2, n = 0 for near-extremal RNdS as a function of R ∈ [0.9, 0.99] for three
distinct RNdS families with fixed y+, namely y+ = 0.25 (top left), y+ = 0.5 (top right) and y+ = 0.75
(bottom). The numerical exact NH modes are represented by the blue diamonds, the n = 0 MAE
approximation ωMAE is described by the purple dot-dashed line and the near-horizon approximation
ω[2] of [2] by the yellow dot-dashed line.

In these expansions we have used that λ0 = ℓ(ℓ + 1) = 0 and S0(x) = 1. Additionally, the λk

are constants and we will impose regularity on Sj(x) at x = ±1. After defining S−1(x) = 0,
substitution of the ansatz (A.6) in (A.5) yields

∞∑
n=0

αn

[
n∑

l=0
λlSn−l − 2xS′

n(x) + (1− x2)S′′
n(x)−

− 2x(2x2 − 1)S′
n−1(x) + x2(1− x2)S′′

n−1(x)
]
= 0 (A.7)

We now employ strong induction to show that Sn(x) = 1 and λn = 0, for all n orders in
α. The base case is provided by the solution to Legendre’s equation with m = ℓ = 0 in the
RNdS limit. Now let p be a positive integer and suppose that Sp(x) = 1 and λp = 0 for all
p ∈ {1, 2, . . . , n − 1}. Our aim is to show that Sn = 1 and λn = 0. Looking at the coefficient
of αn in (A.7) and using our induction hypothesis, we obtain

O(αn) : λn − 2xS′
n(x) + (1− x2)S′′

n(x) = 0.
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Figure 12. Value of β for the dominant NH mode (blue diamonds) for R ∈ [0.95, 0.9999] for q = µ = 0
linear scalar perturbations with m = ℓ = 0 on KNdS with Θ = π/4 ∼ 0.79, y+ = 0.9. The n = 0
(n = 1) MAE approximation ωMAE to the NH modes is given by a dot-dashed purple curve. The red
(yellow) horizontal line indicates β = 1

2 (β = 1).

This is solved by

Sn(x) = c1 +
1
2(λn + c2) log |1− x|+ 1

2(λn − c2) log |1 + x|.

Imposing regularity at x = ±1 implies that c2 = λn = 0 and normalising the eigenfunction
Sn(x) to 1 yields c1 = 1. Hence, for m = ℓ = 0 at extremality, we have proven that λ = 0
regardless of the value of a/Q, i.e. independent of Θ.

We compute β for NH modes with m = ℓ = 0 exactly at extremality using our matching
asymptotic approximation. At extremality with m = ℓ = 0, using the definition of δ

from (3.27), we have that

βm=ℓ=0
MAE = 1 + n. (A.8)

This result is in good agreement with our exact numerical NH modes, and an example of this
is given in figure 12, where we plot the dominant NH mode (blue diamonds) with m = ℓ = 0
at a fixed Θ = π/4 ∼ 0.79 and y+ = 0.9, as we approach extremality R ∈ [0.95, 0.9999]. We
also display the MAE approximation (3.48) (which necessarily has separation constant λ = 0
as just shown) as a dot-dashed purple curve. The red (yellow) horizontal line indicates β = 1

2
(β = 1). Starting at the left-hand side of the plot, R ∼ 0.95, some of the NH modes have
βNH < 1

2 , in agreement with the blue line in the right plot of figure 8 which describes the
dominant m = ℓ = 0 modes with β = 1

2 (and also in agreement with the right plot of figure 6).
At the other end, towards the right hand side of figure 12, R ∼ 1, the NH mode rather rapidly
approaches β → 1, in agreement with (A.8). In RNdS, it has previously been shown that the
dominant m = ℓ = 0 NH modes approach β = 1 in the extremal limit [2]. Our result (A.8),
in conjunction with our numerical results, show that this feature of the m = ℓ = 0 NH modes
extends away from the RNdS limit, for all Θ even up to the Kerr-dS limit.

– 46 –



J
H
E
P
0
7
(
2
0
2
4
)
1
1
3

200 250 300 350 400 450 500 550
10-90

10-70

10-50

10-30

10-10

Figure 13. Numerical converge tests of β for KNdS at y+ = 0.9, R = 0.95, with m = ℓ = 10 and
distinct Θ values. These modes were converged for a fixed numerical precision of 100 digits and a
range of resolutions, starting at a minimum of 200 grid points and then linearly scaling up to a 600
grid points. The maximum values were used to compute the reference value βref.

A.4 Numerical convergence tests

All of our numerical results converge with an error less than or equal to 10−12. In figure 13,
we present the results of a numerical convergence test for KNdS with y+ = 0.9, R = 0.95
and m = ℓ = 10. To test convergence, we repeat the computation of the dominant PS mode
at each value of Θ at fixed precision of 100 digits and increasing grid resolution, following
a linear increase up to 600 grid points. The value of β at the maximum resolution defines
βref. When using pseudospectral collocation methods, we expect to observe exponential
convergence as the grid resolution increases [68]. Indeed, this is what we find in figure 13,
with the maximum error computed in these tests being |βref − β| ∼ 10−19, given by the first
point of the convergence test with Θ = π/2.
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