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1 Introduction and outlook

Charting the terra incognita of consistent AdS4 vacua is a challenging but important task
for the explorers of the string theory landscape. A valuable collection of such explicit vacua
arises from consistent truncations of 10d or 11d supergravity to four-dimensional gauged
supergravity. Our goal in this paper is to describe one such corner of the landscape of AdS4
vacua in massive IIA supergravity [1].

In our search for AdS4 vacua, we explore a 4d N = 8 supergravity theory with a specific
dyonic ISO(7) gauging [2, 3]. This theory arises as a consistent truncation of massive type
IIA supergravity on S6 and, in particular, there are explicit uplift formulae that allow to
map every 4d solution to a solution in the 10d theory [4]. A notable feature of the 4d
gauged supergravity is the non-trivial potential for the 70 scalar fields in the theory. The
question of finding interesting AdS4 vacua then translates into finding critical points of
this potential. Unfortunately, due to its algebraic complexity, it is hard to compute the
potential in closed analytic form.

In this paper, we employ two different methods that have been developed to search
for critical points in this context. The first one, proposed by Warner in [5], amounts to
imposing invariance under a suitable subgroup of the symmetry group of the supergravity
theory. This results in a consistent truncation to a theory with a smaller number of scalar
fields in which the scalar potential can be computed and extremized analytically. The
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second approach is a full numerical search for the critical points of the scalar potential as
a function of all scalar fields. The latter approach has been used in a series of papers to
explore the scalar potentials of 3d and 4d maximal gauged supergravity [6–10] and led to
the application of machine learning techniques based on Google’s TensorFlow platform [11]
to the 70-scalar potential of the 4d N = 8 de Wit-Nicolai SO(8) gauged supergravity
theory [12] in [13] (see, also [14]).1

Our approach is effectively a mixture of the two methods.2 We first identify a suitable
Z2 × Z2 symmetry subgroup and use it to truncate the full 4d N = 8 supergravity to
the invariant sector which is 4d N = 2 gauged supergravity with 3 vector multiplets and
4 hypermultiplets. This model has 22 real scalar fields and the supergravity potential
can be computed analytically by employing the so-called “solvable parametrization” based
on the Iwasawa decomposition of the scalar coset manifold. Unfortunately, the closed
form analytic expression for the potential, which we compute explicitly, is quite unwieldy
and finding its critical points analytically is still prohibitively difficult. Hence we turn
to numerical routines based on Mathematica to perform a systematic search for critical
points. This results in 219 distinct AdS4 vacua that we find. We have made extensive
crosschecks of our results against an ongoing comprehensive search for AdS4 vacua based
on Google’s TensorFlow of the full supergravity potential in (2.14) [19].

There is also a smaller consistent truncation of the dyonically ISO(7) gauged super-
gravity obtained by imposing an additional Z2 symmetry, which was considered previously
in [20, 24]. It consists of 4d N = 1 supergravity coupled to 7 chiral multiplets. The 14-
scalar potential in this truncation can also be studied explicitly and we find that it has 65
of the 219 critical points of the 22-scalar model. Most of these 65 points have been found
previously. As summarized in [20], 60 AdS4 vacua have already been found in previous
studies of the 14-scalar model and its sub-truncations, see also [21–24]. The net result of
our full search is therefore the identification of 159 new critical points of the dyonically
gauged ISO(7) supergravity theory.

There are 7 supersymmetric critical points in the full list of 219 points. One of these
supersymmetric points is new. In addition, there are 9 non-supersymmetric AdS4 solutions,
2 of which are new, for which all 70 scalars of the 4d N = 8 supergravity have masses above
the BF bound [25] and thus are perturbatively stable within the 4d N = 8 theory. We
present the spectra of mass fluctuations for all bosonic and fermionic 4d N = 8 supergravity
fields around each of these 16 perturbatively stable solutions. For the 7 supersymmetric
critical points we organize these spectra into supersymmetric multiplets and map them to
the spectrum of operators in the dual 3d SCFT. The new supersymmetric solution is of
special interest. It preserves N = 1 supersymmetry and does not exhibit any continuous
symmetry. Uplifting this solution to massive IIA supergravity using the formulae in [4]
will provide a very rare example of a fully explicit stable AdS4 solution of string theory

1The same techniques were also used in [15, 16] to find AdS5 vacua in the 5d N = 8 SO(6) gauged
supergravity.

2There is also a third method used to search for AdS4 vacua in gauged supergravity which is based on
the embedding tensor formalism, see [17, 18] and references thereof. We do not use this method in the
present work.
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which does not have any continuous internal symmetry.3 Using holography, this implies
that there is a new 3d N = 1 SCFTs arising on the worldvolume of D2-branes, which has
no conserved flavor currents and only a discrete global symmetry.

Our results suggest several directions for further study some of which we would like to
mention briefly now before moving on to the technical part of this paper.

It is now clear that the full scalar potential of the 4d N = 8 dyonic ISO(7) supergravity
with all 70 scalars should have a very large number of critical points corresponding to a
plethora of AdS4 solutions of the theory. Compiling a catalog of these points and their
properties will be helpful to better understand the structure of the theory. We plan to
report further results in this direction in [19].

The 7 supersymmetric AdS4 solutions that we have identified are necessarily non-
perturbatively stable, see [27]. Analyzing the full stability of the 9 non-supersymmetric
BF stable solutions that are now known is more subtle. It was shown in [20] that 7
of these solutions, the ones that belong to the 14-scalar model, do not suffer from the
Brane-Jet instability discussed in [28]. Similar analysis should be carried out for the 2
new BF stable non-supersymmetric critical points. Even more interesting is to understand
the perturbative stability of these points within the massive IIA supergravity using recent
methods for computing the Kaluza-Klein mass spectra developed in [29, 30]. Indeed, as
shown very recently in [31], one of the previously found non-supersymmetric critical points
with a G2 symmetry appears to be stable. It would be interesting to understand what
happens with the 2 new non-supersymmetric BF stable points we find here. In view of
the AdS Swampland Conjecture [32], one might expect some non-perturbative mechanism
triggering an instability that is yet to be found.

Our results should also have implications for the physics of 3d SCFTs arising from D2-
branes in massive IIA string theory. The 3d N = 8 SYM theory on the worldvolume of the
branes is modified by the presence of a Chern-Simons term induced by the Romans mass.
In addition, one can have superpotential mass terms in this theory, which corresponds
to turning on background fluxes and metric deformations in the type IIA string theory.
Understanding the ensuing RG flows and the low-energy phase diagram of this class of 3d
QFTs is in general a complicated problem even when some supersymmetry is preserved.
Holography is an indispensable tool to understand this physics. The existence of the 7
supersymmetric AdS4 solutions discussed above suggests that there is a rich web of IR
SCFTs connected by RG flows. Some of these RG flows were studied in [22] and the
dual CFTs for two of the supersymmetric critical points preserving N = 2 and N = 3
supersymmetry were identified in [21] and [24], respectively. However, to understand the
physics of the 3d N = 1 SCFTs dual to the 5 other supersymmetric critical points is far
more challenging. This will certainly be the case for the 3d N = 1 SCFT dual to the new
AdS4 vacuum that we identify in this paper. Using the spectrum of operators with low
conformal dimensions we compute here, together with the Z2×Z2 global symmetry, should

3The only other explicit example we are aware of is the AdS4 N = 1 J-fold solution found recently
in [26]. To ensure no isometry in the internal space one needs to choose an appropriate Kähler-Einstein
manifold for the IIB solution in [26].
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facilitate the study of this problem, perhaps by employing the techniques of the N = 1
superconformal bootstrap [33–35].

Finally, we should emphasize that the results of this search exhibit the familiar predica-
ment known from the previous searches (see, e.g., [13, 14, 16]) that most of the critical
points in the maximal gauged supergravity theories arising from string and M-theory are
non-supersymmetric and BF unstable. As discussed in [36], such instabilities of AdS vacua
signal a loss of conformal invariance in the dual QFT. Given that all these unstable AdS
solutions arise from string theory and appear to belong to rich webs of interconnected RG
flows, it is certainly desirable to understand better their physics and the implications for
the dual QFT.

The paper is organized as follows. We continue our discussion in section 2 with a short
summary of the salient features of the dyonic ISO(7) gauged supergravity and describe
our choice of parametrization of the scalar manifold, delegating some of the details to
appendix A. In section 3 we present the result of the numerical search for AdS4 solution
in this model. In section 4 we identify the 16 critical points in our list for which all 70
scalar masses obey the BF bound. We also present the mass spectra of the new N =
1 AdS4 solution and the corresponding spectrum of operators in the dual 3d SCFT. In
appendix B we present the mass spectra of the 6 other supersymmetric vacua we find in
this model and show how to organize the operator dimensions in the dual SCFTs into
superconformal multiplets. The mass spectra for the 9 non-supersymmetric BF stable
solutions are presented in appendix C.

2 Dyonic ISO(7) gauged supergravity

In this section we give a brief overview of the dyonic ISO(7) gauged supergravity in four
dimensions. We focus on the structure of the scalar potential in this model. Further details
of the full gauged supergravity theory are given in [3] using the embedding tensor formalism
of [37, 38]. As shown in [4, 21], this 4d gauged supergravity arises as a consistent truncation
of massive type IIA supergravity [1] on S6 .

The 70 scalar fields of N = 8 supergravity in four dimensions parametrize the coset
manifold E7(7)/(SU(8)/Z2). To obtain the scalar potential in the theory we need to calcu-
late the vielbein V on the coset that depends on the 70 scalar fields. We start by construct-
ing the 133 basis elements of e7(7) written as 56× 56 matrices. We use the real sl(8) basis
for e7(7) (see for example [39]) where the infinitesimal transformation acts on a pair of 28-
dimensional vectors written as antisymmetric tensors x[AB] and x[AB] with A,B = 1, · · · , 8.
These tensors can be combined into a single 56-vector xM = (x[AB], x

[AB])

δx[AB] = ΛACx[CB] + ΛBCx[AC] + ΣABCDx
[CD] ,

δx[AB] = −ΛCAx[CB] − ΛCBx[AC] + ΣABCDx[CD] .
(2.1)

Here ΛAB is a traceless sl(8) matrix, ΣABCD is totally antisymmetric, and ΣABCD is its
dual

ΣABCD = 1
4!ε

ABCDEFGHΣEFGH . (2.2)
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The transformation parameters in (2.1) have been split into (ΛAB,ΣABCD) according to
the branching rule 133 = 63 ⊕ 70 of the adjoint representation of E7(7) under SL(8,R).
This can be used to write a general element of e7(7) as

XM
N =

2Λ [C
[A δ

D]
B] Σ[AB][CD]

Σ[AB][CD] −2Λ [A
[C δ

B]
D]

 . (2.3)

One then finds the following result for the e7(7) Killing form

Tr (X1 · X2) = 12Tr (Λ1 · Λ2) + 2Σ1ABCDΣABCD
2 . (2.4)

In particular, this shows that the 70 non-compact generators are obtained by selecting Λ
symmetric and ΣABCD self-dual. The 63 remaining generators are obtained by specifying
Λ antisymmetric and ΣABCD anti-self-dual form the su(8) subalgebra of e7(7).

We will work in a basis of generator for e7(7) obtained by choosing a suitable basis for
ΛAB and ΣABCD, namely

t B
A : ΛCD = 1√

2
δBC δ

D
A , Σ = 0 ,

tABCD : ΣEFGH = 1
2
√

2
εABCDEFGH , Λ = 0 ,

(2.5)

where the normalization coefficients have been chosen for convenience. Notice that the
diagonal tAB generators do not correspond to traceless Λ. Indeed we have eight tAA which
should always be combined in such a way so that the trace is removed. We will come back
to this below.

2.1 Solvable parametrization

After defining a basis for the generators E7(7) we are ready to discuss the parametrization
of the scalar manifold. We employ the so-called solvable parametrization [40, 41], in which
the scalar vielbein is given by

V = exp (ϕnhn) · exp
( ∑
α∈∆+

θαeα

)
, (2.6)

where hi are the generators of a noncompact Cartan subalgebra and eα are generators of a
nilpotent subalgebra corresponding to positive root generators. This parametrization has
several advantages; firstly the exponents are relatively simple to compute, and secondly
the truncation with respect to discrete symmetries discussed below is straightforward.

To proceed we select a noncompact Cartan subalgebra defined by a combination of
diagonal generators in sl(8,R). We need to combine them appropriately to obtain a proper
traceless sl(8,R) matrix as discussed above. This results in seven Cartan generators given
by

hn = 1√
n(n+ 1)

( n∑
i=1

t ii − n t n+1
n+1

)
, n = 1, . . . 7 . (2.7)
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The corresponding positive and negative root generators, eα and fα, respectively, are given
in table 4 in appendix A. They obey the following identities

[hn, eα] = αneα , [hn, fα] = −αnfα . (2.8)

We parametrize the positive roots, α = (α1, α2, . . . , α7) ∈ ∆+, in terms of their coordinates
in the simple root basis,

[n1n2n3n4n5n6n7] ←→ α =
7∑
i=1

niα(i) , (2.9)

where the simple roots, α(i), are given explicitly by

α(1) =
(√

2, 0, 0, 0, 0, 0, 0
)
, α(2) =

(
− 1√

2
,

√
3
2 , 0, 0, 0, 0, 0

)
,

α(3) =
(

0,−
√

2
3 ,

2√
3
, 0, 0, 0, 0

)
, α(4) =

(
0, 0,−

√
3

2 ,

√
5

2 , 0, 0, 0
)
,

α(5) =
(

0, 0, 0,− 2√
5
,

√
6
5 , 0, 0

)
, α(6) =

(
0, 0, 0, 0,−

√
5
6 ,
√

7
6 , 0

)
,

α(7) =
(

0, 0, 0,− 2√
5
,−
√

8
15 ,−

√
8
21 ,−

√
2
7

)
. (2.10)

The normalization above are chosen such that

Tr hmhn = 12 δmn , Tr eαeβ = Tr fαfβ = 0 , Tr eαfβ = 6 δαβ . (2.11)

2.2 The scalar potential

With the coset parametrization at hand we move on to some of the relevant details of the
supergravity theory. We are interested in searching for AdS4 vacua and thus we need to
study the critical points of the scalar potential V . To this end we focus on the scalar part
of the supergravity Lagrangian which reads

L =
√
−g

(
R+ 1

96DµMMNDµMMN − V
)
, (2.12)

where
M = V · VT , MMRMRN = δMN , (2.13)

and Dµ is the gauge covariant derivative. The scalar potential is given by [3, 38]

V = g2

672M
MPX R

MN X S
PQ

(
MNQMRS + 7δNS δ

Q
R

)
, (2.14)

where g is the gauge coupling constant. For the ISO(7) gauging of the N = 8 theory the
tensor X can be obtained from the embedding tensor specifying the gauging and is given
by [3]

X[AB][CD]
[EF ] = −X[AB]

[EF ]
[CD] = −8δ[E

[AθB][Cδ
F ]
D] ,

X [AB]
[CD]

[EF ] = −X [AB][EF ]
[CD] = −8δ[A

[Cξ
B][Eδ

F ]
D] ,

(2.15)
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where
θ = diag(1, 1, 1, 1, 1, 1, 1, 0) , ξ = diag(0, 0, 0, 0, 0, 0, 0, c) . (2.16)

The parameter c characterizes the type of ISO(7) gauging. It was shown in [2] that there
are two inequivalent gaugings. For c = 0 the gauging is purely electric and one recovers
the ISO(7) gauged supergravity theory constructed by Hull in [42]. This 4d N = 8 theory
arises as a consistent truncation of the type IIA supergravity with vanishing Romans mass
on S6. For c 6= 0 the seven translations inside ISO(7) are dyonically gauged with a coupling
constant m = gc. As discussed in [2] for all values of c 6= 0 the theory is equivalent and
can be obtained by a consistent truncation of the massive IIA supergravity on S6 [4, 21].4
From now on we work in conventions where we set c = 1 and also set the parameter g = 1
which in turn fixes the AdS4 length scale.

2.3 Discrete symmetries and truncations

Since the full scalar potential is difficult to compute as a function of the 70 scalar fields, we
focus on truncations using three Z2 ⊂ SL(8,R) symmetries that act on an eight-dimensional
vector as follows [24]:

S1 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1, x2, x3,−x4,−x5,−x6,−x7, x8) ,
S2 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2,−x3, x4, x5,−x6,−x7, x8) ,
S3 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2, x3,−x4, x5,−x6, x7,−x8) .

(2.17)

One can impose invariance under these Z2 symmetries in order to construct consistent
truncations of the 4d N = 8 gauged supergravity. Three inequivalent truncation may be
obtained by keeping fields invariant under one, two, or all three actions. We now proceed
to discuss three different truncations obtained in this way.

Keeping the supergravity fields that are invariant under one of the three discrete sym-
metries in (2.17), say S1, results in an N = 4 supergravity theory, see [23, 43]. The
invariant fields include the metric as well as 38 real scalars that parametrize the manifold

SO(6, 6)
SO(6)× SO(6) ×

SL(2,R)
U(1) . (2.18)

In addition, one finds 12 invariant vector fields that transform in the adjoint of SO(4) ×
ISO(3). The invariant fermions comprise of 4 gravitini and 28 gaugini. These fields can
indeed be organized into an N = 4 gravity multiplet and 6 vector multiplets to form a full
N = 4 supergravity theory, see for instance [44]. Unfortunately it is prohibitively hard to
compute explicitly the potential in this truncation analytically.

A more tractable truncation can be obtained by imposing invariance with respect to
two of the three Z2 actions (2.17), say S1 and S2. The invariant fields consist of the metric
together with 22 real scalar fields parametrizing the manifold

SO(4, 4)
SO(4)× SO(4) ×

[
SL(2,R)
U(1)

]3

. (2.19)

4The parameter m is proportional to the Romans mass in the massive IIA supergravity.
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In addition one also finds that O(1, 1) × SO(2)3 gauge fields, 2 gravitini and 14 gaugini
are left invariant. These fields can be organized into a full 4d N = 2 supergravity theory
consisting of the N = 2 gravity multiplet coupled to 3 vector multiplets and 4 hypermulti-
plets. We were able to find an analytic expression for the scalar potential in this model and
in the next section we perform a systematic search and find 219 critical points. Since the
generators S1 and S2 generate the discrete group Z2×Z2 (which is isomorphic to the Klein
four-group), all 219 critical points of this truncation exhibit at least Z2 × Z2 symmetry.

Yet another consistent truncation can be found by imposing invariance with respect
to all three discrete symmetries in (2.17). The result is a theory with 14 real scalar fields
parametrizing the manifold [

SL(2,R)
U(1)

]7

. (2.20)

The truncation also includes the metric, one gravitino, and seven gaugini. This can be
formulated as an N = 1 supergravity coupled to 7 chiral multiplets and the potential of this
model can be computed analytically in terms of a simple superpotential. This truncation
was previously studied in [20, 24] where 60 critical points were found. Our search has
identified 5 new critical points in this truncation all of which are non-supersymmetric and
perturbatively unstable. A very similar truncation in the SO(8) gauged supergravity was
identified and studied in [14] and it was shown to contain 48 critical points.

In table 4 we indicate all root generators that are left invariant in the three truncations
summarized above. The seven Cartan generators in (2.7) are all invariant under S1, S2,
and S3.

3 Numerical search for AdS4 vacua

We now focus on studying the critical points of the potential in the 22-scalar model (2.19).
The potential for this model can be computed analytically with the help of Mathematica
using the solvable parametrization described in section 2.1. The explicit expression for the
potential is unwieldy and will not be presented here. It can be found in the supplementary
material PotentialAndCriticalPoints.txt. A notable feature of the potential is that
it is a function of only 21 of the 22 real scalars in (2.19). This is due to an unbroken
noncompact symmetry of the potential in this truncation.

To find the critical points of this potential we resort to numerical techniques. We
have employed numerical Mathematica code which uses the explicit analytic form of the
potential and its derivatives in combination with the built-in FindRoot[·] routine. After
extensive automated searches using this code we have identified 219 distinct critical points.5

To present our results, we use the notation Pnnnnnnn to label a critical point for which
the potential evaluates to the numerical value V = −nn.nnnnn . . . . Note that these labels
are not constructed from rounded values of the potential, but rather from the truncated
ones. The full list of 219 critical points of the 22 scalar model can be found in table 1. We

5A comprehensive TensorFlow search for AdS4 vacua, together with their mass spectra, of the full
supergravity potential in (2.14) will be presented in [19].
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have also performed a systematic numerical search for critical points of the 14-scalar model
in (2.20). We have identified 65 critical points which are identified with a ∗ in table 1. We
note that the 14-scalar model, and some of its smaller sub-truncations, have been studied
before in the literature and as summarized in [20] 60 critical points have been identified.
Our list of 65 critical points of the 14-scalar model contains all these 60 critical points.

Some comments are in order. There are two vacua in the full list, both of them previ-
ously identified, that have exactly the same value of the potential V = −216/3/31/2 but are
distinct physical solutions. The critical point P232773041 has N = 3 supersymmetry and
SO(3)×SO(3) invariance while P232773042 is non-supersymmetric and has G2 invariance.
A pair of new AdS4 solutions also deserves special attention. The critical point P355983405
preserves N = 1 supersymmetry and no continuous global symmetry. The critical point
P355983403 is non-supersymmetric, but BF stable, and also does not have a continuous
global symmetry. While the first 8 digits in the value of V for these two critical points are
identical, we have checked with high precision that they are not the same critical point.
The potential for P355983405 can be computed in a closed algebraic form and is given by
V = −222/3 × 77/6/(3× 55/3), while we have not been able to find a similar expression for
P355983403.

For the 219 critical points in table 1 we have calculated the mass spectra of all bosonic
and fermionic fields of the 4d N = 8 supergravity theory. We find that 16 of these AdS4
solutions do not exhibit BF instabilities. We discuss these critical points in more detail in
the next section.

4 New BF stable AdS4 vacua

From the list of 16 BF stable critical points we find that only 3 are new. The other
13 perturbatively stable AdS4 solutions lie in the 14-scalar model and have already been
given in [20]. Two of the new stable solutions, P355983403 and P23715872, are non-
supersymmetric while P355983405 has N = 1 supersymmetry. In table 2 we summarize
the 16 stable solutions together with the continuous global symmetry and supersymmetry
they preserve. We also provide references to the original literature where the 13 known
solutions have been discussed.

In appendix B we present the full 4d N = 8 supergravity mass spectra of the 6 previ-
ously known supersymmetric points in table 2. In addition we translate this data into infor-
mation about operator dimension in the dual SCFTs and organize the operators into super-
conformal multiplets.6 In appendix C we similarly give the full four-dimensional mass spec-
tra for all 9 non-supersymmetric in table 2 points including the 2 new points P355983403
and P23715872. In the supplementary material PotentialAndCriticalPoints.txt we
give the mass spectrum for all 219 critical points. We now focus on discussing in more
detail the new N = 1 AdS4 critical point P355983405.

6Part of this information was either missing from the previous literature or can be found scattered in
different references so we found it useful to collect it in one place.
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P19614907∗ P19987059∗ P20784609∗ P21381569∗ P21867393∗ P23277304∗1 P23277304∗2 P23322349∗

P23413628∗ P23456052∗ P23456098∗ P23456778∗ P23458779∗ P23512689∗ P23715872 P23795609∗

P23922493 P23924535 P23952870∗ P24096811∗ P24149894 P24149896∗ P24318391∗ P24402661

P24533178∗ P24691009∗ P24692967∗ P24701527 P25111949∗ P25693378∗ P25697101∗ P25921891

P25947132∗ P26884247 P27101435∗ P27102980 P27133412 P27136806∗ P27141718 P27162703

P27311529 P27360665 P27418225∗ P27450050 P27609962∗ P27938983 P27966612 P28050399∗

P28124657 P28197845∗ P28210030 P28486631∗ P28981494 P29178187 P29218859 P29353962∗

P29695104 P29773063 P29781636 P29782487∗ P29984782 P30083578 P30116288 P30241973∗

P30249480 P30291641 P30324163∗ P30380484 P30381567 P30384816 P30417814∗ P30434903∗

P30436799 P30680917 P30700546 P30861770 P30867190 P30880584∗ P31016284 P31040481∗

P31195012∗ P31283092 P31334051∗ P31364826 P31696817 P31754742 P31769077 P31815423

P31871366 P31873079 P32083785 P32186031 P32219540∗ P32253565 P32254273 P32390058

P32416513 P32628020 P32634842 P32784544 P32816897∗ P32859039 P32874514 P32919810

P32919845 P33042513∗ P33076426 P33093136 P33180785∗ P33181501∗ P33184214∗ P33599474∗

P34064075 P34215811 P34478026 P34757437∗ P34768017∗ P34778237 P34796796∗ P35001597∗

P35076002 P35596894 P35598271 P355983403 P355983405 P35610181∗ P35610224∗ P35610235∗

P35651026 P35698097 P35919737 P35990424 P36054725 P36055521∗ P36067554 P36072686∗

P36092714 P36100336 P36144034 P36228968 P36234552 P36329784 P36944902 P37258768

P38153176 P38539173∗ P38606422 P38724006 P38724625∗ P38769482 P38824768 P38858068

P39197231 P39648336 P39744741 P39761278∗ P39765598 P39794481 P40592093 P40600932∗

P40763269 P41049034 P41318714 P41432947 P41710023 P41965792 P41991457 P42230669∗

P42232971 P42595364 P43225067 P43479441 P43610159 P44397048 P44625246 P44629770

P44636365 P44662466 P47020437 P47058875 P47578177 P48095682 P48096325 P48141929

P48619344 P49599127 P49797271 P50309909 P52385281 P52557082 P53423001 P53547629∗

P54934580 P55416647 P56156622 P58641723 P58768917 P59496572 P59571914 P59603188

P60664200 P61221291 P61898524∗ P62135276 P62783730 P63130245 P63227985 P63266652

P63955920 P64764264 P65136976 P65632203 P65991426 P66058194 P71032966 P71983709

P76604976 P85310001 P85678094

Table 1. All 219 critical points of the 22-scalar model. The 65 critical points marked with ∗ are
also critical points of the 14-scalar model.

4.1 Supergravity mass spectra for P355983405

The newN = 1 AdS4 solution P355983405 has the following algebraic value of the potential

V = −222/3 × 77/6

3× 55/3 . (4.1)

We arrived at this algebraic expression by comparing it to the numerical value determined
by our numerical codes with an accuracy of more than 300 digits. The constant values of
the scalars fields which specify the location of the critical point on the scalar manifold can
be found in the supplementary material PotentialAndCriticalPoints.txt. It should be
noted that in the solvable parametrization of the scalar coset described above the location
of the critical point is determined by 17 non-trivial values for the 22 scalar fields in (2.19).
To determine some of the properties of this critical point it is instructive to calculate the
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Point SUSY Cont. symmetry V Reference
P19987059 N = 1 G2 −228/3×31/2

55/2 [45–47]
P20784609 N = 2 SU(3)×U(1) −22 × 33/2 [21]
P232773041 N = 3 SO(3)× SO(3) −216/3

31/2 [48]
P23795609 N = 1 SU(3) −28×33/2

55/2 [3]
P25697101 N = 1 U(1) −25.697101 [24]
P355983405 N = 1 ∅ −222/3×77/6

3×55/3 Here
P35610235 N = 1 U(1) −35.610235 [24]
P232773042 N = 0 G2 −216/3

31/2 [46, 47, 49]
P23413628 N = 0 SU(3) −23.413628 [3]
P23456052 N = 0 SO(3)×U(1) −23.456053 [23]
P23456098 N = 0 SO(3) −23.456098 [23]
P23456778 N = 0 SU(3) −23.456779 [3]
P23458779 N = 0 SO(3)×U(1) −23.458780 [23]
P23512689 N = 0 SO(3)× SO(3) −23.512690 [3]
P23715872 N = 0 U(1) −23.715872 Here
P355983403 N = 0 ∅ −35.5983403 Here

Table 2. All known BF stable AdS4 solutions in the 22-scalar truncation (2.19) including the new
solutions P355983403, P355983405, and P23715872.

masses for the linearized perturbation of bosonic and fermionic fields in the 4d N = 8
supergravity theory. To this end we have used the mass formulae summarized in [48] and
computed the mass spectra numerically to a high degree of accuracy. For clarity, below
we present only the first 7 digits for each mass. We use the subscripts ψ, A, χ, and φ

to denote the 8 gravitini, 28 spin-1 fields, 56 spin-1/2 fields, and the 70 scalars in the 4d
N = 8 supergravity, respectively. To indicate the degeneracy, n, of each of the modes we
use a subscript ×n next to the numerical value of the mass. We then find the following
values for the dimensionless squared masses m2L2 for the P355983405 critical point7

m2
ψL

2 : 5.02803×1 , 4.89758×1 , 3.25582×1 , 3.14936×1 , 2.75003×1 ,

2.57143×1 , 2.41918×1 , 1×1 ,

m2
AL

2 : 7.27036×1 , 7.19910×1 , 7.11063×1 , 6.95606×1 , 6.35686×1 ,

5.97573×1 , 5.78845×1 , 5.67796×1 , 5.21669×1 , 5.06021×1 ,

4.92400×1 , 4.73855×1 , 4.40835×1 , 4.27033×1 , 4.17500×1 ,

3.97455×1 , 2.78570×1 , 2.68453×1 , 1.45143×1 , 1.37472×1 ,

1.09171×1 , 0.967861×1 , 0.863807×1 , 0.672028×1 , 0.668804×1 ,

0.394356×1 , 0.367529×1 , 0.00325020×1 ,

7We use conventions in which the AdS4 length scale, L, is related to the potential as V = −6/L2.
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m2
χL

2 : 20.1121×1 , 19.5903×1 , 13.0233×1 , 12.5974×1 , 11.0001×1 ,

10.4284×1 , 10.2857×1 , 10.1405×1 , 9.87480×1 , 9.67671×1 ,

9.42724×1 , 9.42510×1 , 8.97087×1 , 8.74578×1 , 8.74207×1 ,

8.61270×1 , 8.05479×1 , 7.62328×1 , 7.47206×1 , 7.36171×1 ,

7.01399×1 , 6.89643×1 , 5.02803×1 , 4.96980×1 , 4.89758×1 ,

4.77165×1 , 4.28648×1 , 4.24572×1 , 4.22499×1 , 4.00432×1 ,

3.98059×1 , 3.83113×1 , 3.74322×1 , 3.37860×1 , 3.25582×1 ,

3.14936×1 , 3.00505×1 , 2.75003×1 , 2.64422×1 , 2.57143×1 ,

2.41918×1 , 2.13225×1 , 2.12735×1 , 1.69707×1 , 1.65336×1 ,

1.00649×1 , 0.866994×1 , 0.283967×1 , 0.275774×1 , 0.274515×1 ,

0.211805×1 , 0.210261×1 , 0.139918×1 , 0.0916383×1 , 0.0816989×1 ,

0.0000105000×1 ,

m2
φL

2 : 11.0172×1 , 10.4951×1 , 9.69877×1 , 8.38431×1 , 8.07495×1 ,

7.66239×1 , 5.19910×1 , 4.95606×1 , 4.73238×1 , 4.35686×1 ,

4.35507×1 , 4.30623×1 , 4.28046×1 , 4.00540×1 , 3.97573×1 ,

3.78845×1 , 3.78537×1 , 3.67796×1 , 3.21669×1 , 2.86225×1 ,

2.73855×1 , 2.64846×1 , 2.36560×1 , 2.27033×1 , 0.185203×1 ,

0.169510×1 , 0.00324116×1 , 0×28 , − 0.201881×1 , − 1.18315×1 ,

− 1.19908×1 , − 1.20154×1 , − 1.32797×1 , − 1.33120×1 , − 1.48603×1 ,

− 1.60564×1 , − 1.63247×1 , − 1.99675×1 , − 2.06413×1 , − 2.23414×1 ,

− 2.24892×1 , − 2.24937×1 , − 2.24943×1 ,

From the gravitino mass spectrum we read of that there is one spin-3/2 mode of mass
m2
ψL

2 = 1 corresponding to the preserved N = 1 supersymmetry. The critical point is
invariant under the Z2 × Z2 symmetry used to specify the truncation in (2.19). There is
no continuous symmetry since there are no massless spin-1 modes in the spectrum. This
implies that the ISO(7) gauge symmetry of the 4d N = 8 supergravity is completely broken.
This is further supported by the fact that there are 28 massless Goldstone scalars.

4.2 3d N = 1 CFT spectrum for P355983405

The P355983405 AdS4 solution can be consistently embedded in type IIA string theory
and thus should have a well-defined 3d N = 1 SCFT as a holographic dual. This should
be a strongly coupled CFT with no continuous global symmetry and a minimal amount of
supersymmetry, which makes it hard to study with conventional QFT techniques. There-
fore it is valuable to use the AdS/CFT dictionary and the mass spectra computed above to
calculate the spectrum of low-dimensional operators in this theory. The formulae relating
supergravity masses to conformal dimensions for operators of different spin are summarized
in table 3. The spectrum of operator dimensions can then be organized into multiplets of
the 3d N = 1 superconformal algebra.
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Spin Dimension
0 ∆ = 3

2 ±
√

9
4 +m2L2

1
2 ∆ = 3

2 + |mL|
1 ∆ = 3

2 ±
√

1
4 +m2L2

3
2 ∆ = 3

2 + |mL|

Table 3. Conformal dimensions of CFT operators dual to supergravity fields of spin, s, and mass,
m.

Before we present the results of this calculation we comment on some general features.8
Some of the modes in the full spectrum of quadratic fluctuations do not correspond to CFT
operators since they are “eaten” by the usual (super-)Higgs mechanism. In particular, if
the ISO(7) gauge symmetry of the 4d N = 8 supergravity is broken to a subgroup g in
a given AdS4 vacuum, then the number of massless spin-0 modes that combine with the
massive vectors is 28 − dim g. Similarly, for each massive gravitino with mass m2

ψL
2 > 1

a spin-1/2 fermion with mass m2
χ = 4m2

ψ is eaten. For the solution P355983405 there
is no continuous symmetry left and thus 28 massless scalars and seven massive spin-1/2
fermions are taken by the Higgs mechanism. Only after removing these Goldstone modes
from the mass spectrum one should apply the formulae in table 3 to determine the SCFT
operator spectrum. Furthermore, when computing the dimensions of operators dual to spin-
1 and spin-0 modes we must be careful to choose the appropriate signs in the formulae in
table 3 such that the unitarity bound is obeyed. For some of the scalar modes two possible
dimensions are compatible with the unitarity bound and one has a choice of alternate
quantization, see [50]. This choice is unambiguously fixed by organizing the operator
spectrum into N = 1 CFT multiplets.

There are two types of long and one type of short 3d N = 1 superconformal multiplets
we encounter. They will be denoted as follows9

Short[s > 0] =
{
|s+ 1, s〉, |s+ 3

2 , s+ 1
2〉
}
,

Long[∆, 0] =
{
|∆, 0〉, |∆ + 1

2 ,
1
2〉, |∆ + 1, 0〉

}
,

Long[∆, s > 0] =
{
|∆, s〉, |∆ + 1

2 , s+ 1
2〉, |∆ + 1

2 , s−
1
2〉, |∆ + 1, s〉

}
,

(4.2)

where we use |∆, s〉 to denote a CFT operator with conformal dimension ∆ and spin s.
Note that the long multiplets are constrained by the unitarity bound ∆ > s + 1. All 3d
SCFTs contain a single short multiplet consisting of the energy-momentum tensor and the

8For the 6 other supersymmetric critical points in table 2 the SCFT operator spectra and their organi-
zation into superconformal multiplets is presented in appendix B.

9These multiplets are denoted as A1, L′, and L in [51], respectively. The multiplets A′2 and B1 in [51]
correspond to a free N = 1 chiral field and the identity operator, respectively, and will not play a role here.
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supercurrent

Short
[3

2

]
. (4.3)

The remaining superconformal multiplets can be determined algorithmically by organizing
the operator dimensions according to (4.2). Carrying out this procedure, we arrive at the
following list

Long [3.24233, 1] , Long [3.21305, 1] , Long [2.80439, 1] ,
Long [2.77464, 1] , Long [2.65832, 1] , Long [2.60357, 1] ,

Long [2.55537, 1] , Long
[
3.72930, 1

2

]
, Long

[
3.68441, 1

2

]
,

Long
[
3.57038, 1

2

]
, Long

[
3.49514, 1

2

]
, Long

[
3.45733, 1

2

]
,

Long
[
3.43474, 1

2

]
, Long

[
3.33810, 1

2

]
, Long

[
3.23351, 1

2

]
,

Long
[
3.12611, 1

2

]
, Long

[
1.96022, 1

2

]
, Long

[
1.95854, 1

2

]
,

Long
[
1.80272, 1

2

]
, Long

[
1.78583, 1

2

]
, Long

[
1.50324, 1

2

]
,

Long [4.14242, 0] , Long [4.07003, 0] , Long [3.95670, 0] ,
Long [3.76103, 0] , Long [3.71325, 0] , Long [3.64839, 0] ,
Long [3.06051, 0] , Long [3.05548, 0] , Long [3.00108, 0] ,
Long [1.93113, 0] , Long [1.53289, 0] , Long [1.52514, 0] ,
Long [1.52394, 0] , Long [1.37406, 0] .

(4.4)

Notice that all of these multiplets are long, and therefore unprotected, which is compatible
with the expected behavior of a minimally supersymmetric SCFT with no continuous global
symmetry.
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A Root generators of E7(7)

α ∈ ∆+ eα fα S1 S1S2 S1S2S3

[1000000] t1
2 t2

1 ∗
[0100000] t2

3 t3
2 ∗ ∗

[0010000] t3
4 t4

3

[0001000] t4
5 t5

4 ∗ ∗
[0000100] t5

6 t6
5 ∗

[0000010] t6
7 t7

6 ∗ ∗
[0000001] t5678 t1234

[1100000] t1
3 t3

1 ∗
[0110000] t2

4 t4
2

[0011000] t3
5 t5

3

[0001100] t4
6 t6

4 ∗
[0000110] t5

7 t7
5 ∗

[0001001] t4678 t1235

[1110000] t1
4 t4

1

[0111000] t2
5 t5

2

[0011100] t3
6 t6

3

[0001110] t4
7 t7

4 ∗
[0001101] t4578 t1236

[0011001] t3678 t1245 ∗

[1111000] t1
5 t5

1

[0111100] t2
6 t6

2

[0011110] t3
7 t7

3

[0001111] t4568 t1237

[0011101] t3578 t1246 ∗ ∗
[0111001] t2678 t1345 ∗

[1111100] t1
6 t6

1

[0111110] t2
7 t7

2

[0011111] t3568 t1247 ∗ ∗ ∗
[0012101] t3478 t1256 ∗ ∗ ∗
[0111101] t2578 t1346 ∗ ∗ ∗
[1111001] t1678 t2345 ∗ ∗ ∗

[1111110] t1
7 t7

1

[0012111] t3468 t1257 ∗ ∗
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α ∈ ∆+ eα fα S1 S1S2 S1S2S3

[0111111] t2568 t1347 ∗ ∗
[0112101] t2478 t1356 ∗ ∗
[1111101] t1578 t2346 ∗

[0012211] t3458 t1267 ∗
[0112111] t2468 t1357 ∗ ∗ ∗
[0122101] t2378 t1456

[1112101] t1478 t2356 ∗
[1111111] t1568 t2347 ∗

[0112211] t2458 t1367 ∗
[1122101] t1378 t2456

[0122111] t2368 t1457

[1112111] t1468 t2357 ∗

[1222101] t1278 t3456

[1122111] t1368 t2457

[1112211] t1458 t2367 ∗ ∗ ∗
[0122211] t2358 t1467

[1222111] t1268 t3457

[1122211] t1358 t2467

[0123211] t2348 t1567

[0123212] t8
1 t1

8 ∗ ∗
[1222211] t1258 t3467

[1123211] t1348 t2567

[1123212] t8
2 t2

8 ∗
[1223211] t1248 t3567

[1223212] t8
3 t3

8 ∗
[1233211] t1238 t4567 ∗ ∗ ∗

[1233212] t8
4 t4

8

[1234212] t8
5 t5

8

[1234312] t8
6 t6

8

[1234322] t8
7 t7

8

Table 4. Positive and negative root generators of E7(7) with respect to the Cartan subalgebra (2.7).
In the last three columns we indicate with a ∗ which root generators are invariant under the discrete
symmetry actions S1, S1S2, and S1S2S3.
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B The spectra of supersymmetric AdS4 vacua

Here we present the spectra of masses around the 6 supersymmetric AdS4 vacua in table 2
and arrange them in superconformal multiplets. The spectrum of the new N = 1 vacuum
P355983405 is given in section 4.

P19987059. This is an N = 1 vacuum with

V = −228/3 × 31/2

55/2 , (B.1)

and G2 continuous symmetry first discovered in [45] in massive type IIA supergravity. It
was later rediscovered in four-dimensional supergravity in [46, 47] where the bosonic spec-
trum in four dimensions was determined. The complete four-dimensional mass spectrum is

m2
ψL

2 :
(3

2

)
×7

, 1×1

m2
AL

2 :
(

3
2 +

√
3
2

)
×7

,

(
3
2 −

√
3
2

)
×7

, 0×14 ,

m2
χL

2 : 6×8 ,

(3
2

)
×7

,

(1
6

)
×27

, 0×14 ,

m2
φL

2 : (4 +
√

6)×1 , (4−
√

6)×1, 0×14 ,

(
−11

6 +
√

1
6

)
×27

,

(
−11

6 −
√

1
6

)
×27

.

We can translate this into conformal dimensions for the dual 3d CFT operators and
organize them in superconformal multiplets as described in section 4. This results in 2 short

Short
[3

2

]
×1

, Short
[1

2

]
×14

, (B.2)

and 3 long multiplets

Long
[
1 +

√
3
2 , 1

]
×7
, Long

[
1 +
√

6, 0
]
×1
, Long

[
1 +

√
1
6 , 0

]
×27

. (B.3)

P20784609. This is an N = 2 vacuum with

V = −22 × 33/2 , (B.4)

and SU(3) × U(1) continuous symmetry. The solution was first studied in [21] and the
four-dimensional bosonic spectrum was computed in [3]. The complete four-dimensional
mass spectrum including also fermionic fluctuations is

m2
ψL

2 :
(16

9

)
×6

, 1×2

m2
AL

2 : 4×1 ,

(28
9

)
×6

,

(4
9

)
×12

, 0×9 ,

m2
χL

2 :
(64

9

)
×6

,

(
9
2 +

√
17
4

)
×2

,

(
9
2 −

√
17
4

)
×2

,

(16
9

)
×12

,

(1
9

)
×18

, 0×16 ,

m2
φL

2 : (3 +
√

17)×1 , 2×3, 0×19 , (3−
√

17)×1 ,

(
−14

9

)
×18

, (−2)×16 ,

(
−20

9

)
×12

.
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To map this supergravity mass spectrum to 3d N = 2 superconformal multiplets we use
the results and notation in [51]. The SCFT at hand has the following spectrum of low
lying operators10

• The N = 2 energy-momentum tensor multiplet A1Ā1[2](0)
2

|2, 1〉 , |52 ,
3
2〉 × 2 , |3, 2〉 . (B.5)

• 8 A2Ā2[0](0)
1 conserved current multiplets corresponding to the SU(3) flavor symmetry

|1, 0〉 , |32 ,
1
2〉 × 2 , |2, 1〉 , |2, 0〉 . (B.6)

• 6 LĀ[1] 11
6
semi-short multiplets

|11
6 ,

1
2〉 , |73 , 1〉 × 2 , |73 , 0〉 , |17

6 ,
1
2〉 × 2 , |17

6 ,
3
2〉 , |10

3 , 1〉 . (B.7)

• 12 LB̄[0] 4
3
semi-short multiplets

|43 , 0〉 , |11
6 ,

1
2〉 , |73 , 0〉 . (B.8)

• 1 long LL̄[0] 1
2 +
√

17
2

multiplet

|12 +
√

17
2 , 0〉 , |1 +

√
17
2 ,

1
2〉 × 2 , |32 +

√
17
2 , 0〉 × 3 ,

|32 +
√

17
2 , 1〉 , |2 +

√
17
2 ,

1
2〉 × 2 , |52 +

√
17
2 , 0〉 .

(B.9)

The full KK spectrum of massive IIA supergravity for this AdS4 vacuum was recently
computed in [52] using the techniques developed in [29, 30].

P232773041. This is an N = 3 vacuum with

V = −216/3

31/2 , (B.10)

and SU(2)× SU(2) continuous symmetry. The solution was first studied in [48] where the
four-dimensional spectrum was computed. We repeat it here

m2
ψL

2 : 3×1 ,

(9
4

)
×4

, 1×3

m2
AL

2 : (3 +
√

3)×3 ,

(15
4

)
×4

, (3−
√

3)×3 ,

(3
4

)
×12

, 0×6 ,

m2
χL

2 : 12×1 , 9×4 , (4 + 2
√

3)×3 , 3×8 ,

(9
4

)
×12

, (4− 2
√

3)×3 ,

(1
4

)
×12

, 0×13 ,

m2
φL

2 : (3 + 3
√

3)×1 , (1 +
√

3)×6, 0×22 , (1−
√

3)×6 ,(
−5

4

)
×12

, (−2)×18 , (3− 3
√

3)×1 ,

(
−9

4

)
×4

.

10We use the notation |∆, s〉 to denote individual operators in a given multiplet.
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To map the supergravity mass spectrum to 3d N = 3 superconformal multiplets we use
the results and notation in [51]. The SCFT at hand has the following low-lying spectrum

• The N = 3 EM tensor multiplet A1[1](0)
3
2

|32 ,
1
2〉 , |2, 1〉 × 3 , |52 ,

3
2〉 × 3 , |3, 2〉 . (B.11)

• 3 B1[0](2)
1 current multiplets corresponding to the SO(3) flavor symmetry

|1, 0〉 × 3 , |32 ,
1
2〉 × 4 , |2, 1〉 , |2, 0〉 × 3 . (B.12)

• 2 A2[0](1)
3
2

semi-short multiplets

|32 , 0〉 × 2 , |2, 1
2〉 × 6 , |52 , 1〉 × 6 , |52 , 0〉 × 6 ,

|3, 3
2〉 × 2 , |3, 1

2〉 × 6 , |72 , 1〉 × 2 .
(B.13)

• 1 long L[0](0)√
3 multiplet with the following content

|
√

3,0〉 , |12 +
√

3, 12〉×3 , |1+
√

3,0〉×6 |1+
√

3,1〉×3 , |32 +
√

3, 12〉×8 ,

|32 +
√

3, 32〉 , |2+
√

3,0〉×6 , |2+
√

3,1〉×3 , |52 +
√

3, 12〉×3 , |3+
√

3,0〉×1 .
(B.14)

The full KK spectrum of massive IIA supergravity for this AdS4 vacuum was recently
computed in [52] using the techniques developed in [29, 30].

P23795609. This is an N = 1 vacuum with

V = −28 × 33/2

55/2 , (B.15)

and SU(3) continuous symmetry. The solution was first studied in [3] where the four-
dimensional bosonic spectrum was computed. The complete four-dimensional mass spec-
trum including also fermionic fluctuations is

m2
ψL

2 : 4×1 ,

(16
9

)
×6

, 1×1

m2
AL

2 : 6×1 ,

(28
9

)
×6

,

(25
9

)
×6

, 2×1 ,

(4
9

)
×6

, 0×8 ,

m2
χL

2 : 16×1 ,

(64
9

)
×6

, 6×2 ,

(
59
18 +

√
109
6

)
×6

, 4×1 ,

(16
9

)
×6

,(
59
18 −

√
109
6

)
×6

, 1×8 ,

(4
9

)
×12

, 0×8 ,

m2
φL

2 : (4 +
√

6)×2 , (4−
√

6)×2,

(7
9

)
×6

, 0×28 ,

(
−8

9

)
×12

, (−2)×8 ,

(
−20

9

)
×12

.
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The spectrum of low-dimension operators in the dual 3d N = 1 CFT can be organized into
the following short

Short
[3

2

]
×1

, Short
[1

2

]
×8

, (B.16)

and long multiplets

Long[3, 1]×1 , Long
[7

3 , 1
]
×6

, Long
[
1 +

√
109
36 ,

1
2

]
×6
,

Long
[
1 +
√

6, 0
]
×2
, Long[2, 0]×8 , Long

[5
3 , 0

]
×12

.

(B.17)

P25697101. This is an N = 1 vacuum with

V ≈ −25.697101 , (B.18)

and U(1) continuous symmetry. The solution was first studied in [24] and the four-
dimensional bosonic spectrum was computed in [20]. The complete four-dimensional mass
spectrum including also fermionic fluctuations is

m2
ψL

2 : 4.02416×1 , 2.94452×1 , 2.78901×1 , 2.16471×2 , 1.61937×2 , 1×1 ,

m2
AL

2 : 6.03020×1 , 5.71869×2 , 4.74884×2 , 4.66048×1 , 4.45905×1 ,

3.63601×2 , 2.89191×2 , 2.01813×1 , 1.91361×2 , 1.22856×1 ,

1.11898×1 , 0.710738×1 , 0.693418×2 , 0.615608×1 , 0.359215×1 ,

0.346824×2 , 0.250555×2 , 0.177244×2 , 0×1 ,

m2
χL

2 : 16.0967×1 , 11.7781×1 , 11.1561×1 , 8.66178×2 , 8.65886×2 ,

7.48465×2 , 7.43727×1 , 7.38170×2 , 6.47747×2 , 4.17826×1 ,

4.02416×1 , 3.88453×2 , 3.77560×2 , 3.22624×1 , 3.01303×2 ,

2.94452×1 , 2.78901×1 , 2.19091×1 , 2.16471×2 , 2.04599×1 ,

1.63974×1 , 1.61937×2 , 1.54207×1 , 1.45805×2 , 1.33088×2 ,

0.942689×2 , 0.230565×1 , 0.185227×1 , 0.158783×2 , 0.0850812×1 ,

0.0786929×1 , 0.0430559×2 , 0.0335791×1 , 0.0236049×2 , 0.0149976×2 ,

0.0123450×1 , 0.00175250×2 , 0×1 ,

m2
φL

2 : 8.16441×1 , 8.09862×2 , 4.22234×1 , 3.71869×2 , 3.02242×1 ,

2.74884×2 , 2.71014×1 , 2.66477×2 , 0.783875×1 , 0.134180×1 ,

0×27 , − 0.0863888×2 , − 0.569930×1 , − 1.28926×1 , − 1.38439×1 ,

− 1.44274×2 , − 1.62323×1 , − 1.64078×1 , − 1.69973×1 , − 1.74944×2 ,

− 1.78317×1 , − 1.82276×2 , − 1.86254×2 , − 1.87655×1 , − 1.95638×2 ,

− 2.04011×2 , − 2.09876×1 , − 2.10747×2 , − 2.14967×1 , − 2.20661×1 ,

− 2.23969×2 ,

The spectrum of low-dimension operators in the dual 3d N = 1 CFT can be organized into
the following short

Short
[3

2

]
×1

, Short
[1

2

]
×1

, (B.19)
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and long multiplets

Long[3.00603, 1]×1 , Long[2.71596, 1]×1 , Long[2.67003, 1]×1 ,

Long[2.47130, 1]×2 , Long[2.27254, 1]×2 , Long
[
3.44309, 1

2

]
×2

,

Long
[
3.23581, 1

2

]
×2

, Long
[
2.47092, 1

2

]
×2

, Long
[
1.98017, 1

2

]
×1

,

Long
[
1.93038, 1

2

]
×1

, Long
[
1.78052, 1

2

]
×1

, Long
[
1.70750, 1

2

]
×2

,

Long
[
1.65364, 1

2

]
×2

, Long[3.72714, 0]×1 , Long[3.71693, 0]×2 ,

Long[3.04408, 0]×1 , Long[2.79617, 0]×1 , Long[2.24180, 0]×1 ,

Long[1.39848, 0]×2 , Long[1.29169, 0]×1 , Long[1.18325, 0]×1 ,

Long[1.12246, 0]×2 , Long[1.11111, 0]×1 , Long[1.04186, 0]×2 .

(B.20)

P35610235. This is an N = 1 vacuum with

V ≈ −35.610235 , (B.21)

and U(1) continuous symmetry. The solution was first studied in [24] and the four-
dimensional bosonic spectrum was computed in [20]. The complete four-dimensional mass
spectrum including also fermionic fluctuations is

m2
ψL

2 : 4.96968×1 , 4.73233×1 , 3.20491×2 , 2.80058×1 , 2.55832×2 , 1×1 ,

m2
AL

2 : 7.19896×1 , 6.90772×1 , 6.76499×1 , 6.24465×1 , 6.05457×2 ,

5.93897×2 , 5.61325×1 , 4.99513×2 , 4.71417×2 , 4.47408×1 ,

4.15780×2 , 2.74040×1 , 2.55694×1 , 1.41468×2 , 1.12709×1 ,

0.958848×2 , 0.654210×2 , 0.384736×2 , 0×1 ,

m2
χL

2 : 19.8787×1 , 18.9293×1 , 12.8196×2 , 11.2023×1 , 10.2333×2 ,

9.91358×1 , 9.73539×1 , 9.29311×1 , 9.12144×1 , 9.06547×2 ,

8.92674×2 , 8.83658×1 , 8.53466×1 , 7.56477×2 , 7.44222×2 ,

6.93688×1 , 4.96968×1 , 4.73233×1 , 4.61641×1 , 4.19619×1 ,

4.09060×2 , 4.04368×2 , 4.02032×1 , 3.95121×2 , 3.69183×1 ,

3.20491×2 , 2.98613×2 , 2.80058×1 , 2.55832×2 , 2.10511×2 ,

1.68144×2 , 1.07685×2 , 0.310663×1 , 0.281223×2 , 0.203311×2 ,

0.157113×1 , 0.0880327×2 , 0×1 ,

m2
φL

2 : 10.8555×1 , 10.1416×1 , 9.80922×1 , 8.31518×2 , 7.57067×1 ,

4.76499×1 , 4.61523×1 , 4.24465×1 , 4.11312×2 , 4.10127×1 ,

4.05457×2 , 4.02540×1 , 3.93897×2 , 3.86395×1 , 3.61325×1 ,

2.81436×2 , 2.71417×2 , 2.30308×1 , 0.114560×2 , 0.0680744×2 ,
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0.0152488×1 , 0×27 , − 1.13197×1 , − 1.18847×2 , − 1.34579×2 ,

− 1.44651×1 , − 1.61526×2 , − 1.96087×2 , − 2.23926×1 , − 2.24671×1 ,

− 2.24908×2 ,

The spectrum of low-dimension operators in the dual 3d N = 1 CFT can be organized
into the following short

Short
[3

2

]
×1

, Short
[1

2

]
×1

, (B.22)

and long multiplets

Long[3.22928, 1]×1 , Long[3.17539, 1]×1 , Long[2.79023, 1]×2 ,

Long[2.67349, 1]×1 , Long[2.59948, 1]×2 , Long
[
3.64858, 1

2

]
×1

,

Long
[
3.54846, 1

2

]
×1

, Long
[
3.51089, 1

2

]
×2

, Long
[
3.48776, 1

2

]
×2

,

Long
[
3.42141, 1

2

]
×1

, Long
[
3.22804, 1

2

]
×2

, Long
[
1.95090, 1

2

]
×2

,

Long
[
1.79670, 1

2

]
×2

, Long[4.12016, 0]×1 , Long[4.02017, 0]×1 ,

Long[3.97264, 0]×1 , Long[3.75041, 0]×2 , Long[3.63380, 0]×1 ,

Long[3.02252, 0]×2 , Long[3.00507, 0]×1 , Long[2.03771, 0]×2 ,

Long[1.55737, 0]×1 , Long[1.53030, 0]×2 , Long[1.39637, 0]×1 .

(B.23)

C The spectra of BF stable non-supersymmetric AdS4 vacua

Here we present the spectra of masses for all fields in the 4d gauged supergravity theory
around each of the 9 non-supersymmetric but BF stable AdS4 solutions listed in table 2.
We do not explicitly list the massless spin-2 mode present in each one of these vacua. We
remind the reader that the BF bound for scalars fields in AdS4 is m2L2 ≥ −9

4 .

P232773042.

m2
ψL

2 : 9
2×1

,
3
2×7

,

m2
AL

2 : 3×14 , 0×14 ,

m2
χL

2 : 18×1 , 6×7 ,
9
2×7

,
3
2×14

,
1
2×27

,

m2
φL

2 : 6×2 , 0×14 , − 1×54 ,
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P23413628.

m2
ψL

2 : 4.47622×1 , 1.58653×6 , 1.25039×1 ,

m2
AL

2 : 4.37314×1 , 3.19992×6 , 2.79117×6 , 2.49049×1 , 0.110741×6 , 0×8 ,

m2
χL

2 : 17.9049×1 , 6.34611×6 , 5.71339×1 , 5.00155×1 , 4.54552×6 ,

2.18869×6 , 1.41227×1 , 1.25322×8 , 0.590312×12 , 0.562809×6 ,

0.177942×8 ,

m2
φL

2 : 6.22958×1 , 5.90489×1 , 1.12990×1 , 0×20 , − 0.308840×8 ,

− 0.954193×12 , − 1.08192×6 , − 1.26438×1 , − 1.39571×8 , − 1.58174×12 ,

P23456052.

m2
ψL

2 : 4.34233×1 , 1.71978×4 , 1.32170×2 , 1.28551×1 ,

m2
AL

2 : 4.29451×1 , 3.62600×2 , 3.31200×4 , 2.66757×2 , 2.39744×4 ,

2.29373×1 , 0.125393×4 , 0.0883439×2 , 0.0526758×4 , 0×4 ,

m2
χL

2 : 17.3693×1 , 6.87911×4 , 5.57377×1 , 5.42827×2 , 5.28681×2 ,

5.14204×1 , 4.10476×4 , 2.05956×2 , 1.93584×4 , 1.58453×4 ,

1.57432×1 , 1.42881×1 , 1.08509×2 , 0.817300×3 , 0.763508×2 ,

0.636613×4 , 0.361814×4 , 0.339602×6 , 0.249058×3 , 0.237591×4 ,

0.173874×1 ,

m2
φL

2 : 6.29251×1 , 5.78023×1 , 1.14647×1 , 0×24 , − 0.0277198×2 ,

− 0.145118×1 , − 0.825771×4 , − 0.920226×2 , − 0.987543×1 , − 1.13572×4 ,

− 1.16949×3 , − 1.26471×6 , − 1.36606×2 , − 1.38584×4 , − 1.56985×3 ,

− 1.58248×1 , − 1.62006×6 , − 1.71379×4 ,

P23456098.

m2
ψL

2 : 4.34248×1 , 1.72262×4 , 1.32252×1 , 1.30762×1 , 1.28725×1 ,

m2
AL

2 : 4.26513×1 , 3.70813×1 , 3.59326×1 , 3.31546×4 , 2.67942×1 ,

2.63558×1 , 2.39041×4 , 2.30724×1 , 0.123236×4 , 0.0948198×1 ,

0.0753444×1 , 0.0562524×4 , 0.00171607×1 , 0×3 ,

m2
χL

2 : 17.3699×1 , 6.89048×4 , 5.56531×1 , 5.47446×1 , 5.41899×1 ,

5.29008×1 , 5.23049×1 , 5.14900×1 , 4.09224×4 , 2.10385×1 ,

1.99973×1 , 1.93008×4 , 1.59837×4 , 1.59825×1 , 1.41838×1 ,

1.10589×1 , 1.08716×1 , 0.809770×3 , 0.798969×1 , 0.751003×1 ,

0.638581×4 , 0.356887×4 , 0.348094×3 , 0.317619×3 , 0.254423×3 ,

0.239296×4 , 0.171334×1 ,

m2
φL

2 : 6.29845×1 , 5.77263×1 , 1.14238×1 , 0.0395421×1 , 0×25 ,

−0.214610×1 , −0.834473×4 , −0.874352×1 , −0.960622×1 , −0.977451×1 ,
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−1.13165×4 , −1.20232×3 , −1.27193×3 , −1.28289×3 , −1.34552×1 ,

−1.35168×1 , −1.37196×4 , −1.56255×3 , −1.57899×3 , −1.58451×1 ,

−1.64152×3 , −1.71663×4 ,

P23456778.

m2
ψL

2 : 4.35284×1 , 1.59271×6 , 1.27532×1 ,

m2
AL

2 : 4.67676×1 , 3.18378×6 , 2.71517×6 , 2.13568×1 , 0.150049×6 , 0×8 ,

m2
χL

2 : 17.4114×1 , 6.37083×6 , 5.68294×1 , 5.10127×1 , 4.63416×6 ,

2.06315×6 , 1.57957×1 , 1.21768×8 , 0.566626×12 , 0.509940×6 ,

0.191836×8 ,

m2
φL

2 : 6.21445×1 , 5.92510×1 , 1.14480×1 , 0×20 , − 0.158522×8 ,

− 0.859766×12 , − 1.06147×6 , − 1.28435×1 , − 1.62283×8 , − 1.70679×12 ,

P23458779.

m2
ψL

2 : 4.35028×1 , 1.65919×4 , 1.45670×2 , 1.27671×1 ,

m2
AL

2 : 4.59692×1 , 3.26745×2 , 3.24580×4 , 2.82061×2 , 2.55925×4 ,

2.16737×1 , 0.147874×4 , 0.132118×2 , 0.0115978×4 , 0×4 ,

m2
χL

2 : 17.4011×1 , 6.63676×4 , 5.82678×2 , 5.65794×1 , 5.10682×1 ,

5.07034×2 , 4.37936×4 , 2.09910×2 , 2.03236×4 , 1.54604×1 ,

1.43198×1 , 1.36513×4 , 0.997243×3 , 0.796384×2 , 0.614906×2 ,

0.604950×4 , 0.458648×6 , 0.452034×4 , 0.202040×4 , 0.200635×3 ,

0.193346×1 ,

m2
φL

2 : 6.22349×1 , 5.89550×1 , 1.16111×1 , 0.0852111×1 , 0×24 ,

− 0.480612×2 , − 0.627003×3 , − 0.804699×4 , − 0.935656×2 , − 1.04651×6 ,

− 1.12566×4 , − 1.22285×1 , − 1.55930×4 , − 1.58649×1 , − 1.59719×2 ,

− 1.63609×3 , − 1.69541×4 , − 1.70677×6 ,

P23512689.

m2
ψL

2 : 4.11184×1 , 1.87329×4 , 1.15576×3 ,

m2
AL

2 : 4.15307×3 , 3.45088×4 , 2.28714×3 , 1.94511×4 , 0.191140×8 , 0×6 ,

m2
χL

2 : 16.4474×1 , 7.49316×4 , 5.99779×3 , 4.62306×3 , 3.65501×4 ,

1.76841×8 , 1.67139×5 , 1.35101×3 , 0.736915×4 , 0.456425×3 ,

0.234629×8 , 0.178226×9 , 0.0434607×1 ,

m2
φL

2 : 6.72740×1 , 5.28662×1 , 0.629766×5 , 0.584358×1 , 0×22 ,

− 0.729624×4 , − 0.982712×5 , − 1.17591×8 , − 1.58552×1 , − 1.58816×9 ,

− 1.75110×9 , − 1.96422×4 ,
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P23715872.

m2
ψL

2 : 4.05937×1 , 1.97687×2 , 1.82407×1 , 1.81894×1 , 1.37617×2 ,

1.06398×1 ,

m2
AL

2 : 5.48592×1 , 3.72565×2 , 3.37821×2 , 3.31705×1 , 3.21520×1 ,

2.87561×1 , 2.71437×2 , 2.33181×1 , 1.91237×2 , 1.70402×1 ,

0.473109×1 , 0.451036×2 , 0.417981×1 , 0.159393×2 , 0.0756985×2 ,

0.0671494×2 , 0.0190147×1 , 0.0135513×2 , 0×1 ,

m2
χL

2 : 16.2375×1 , 7.90749×2 , 7.29628×1 , 7.27574×1 , 6.18256×1 ,

5.89581×2 , 5.50467×2 , 5.49317×1 , 4.78789×1 , 4.25592×1 ,

3.87092×2 , 3.00895×1 , 2.47563×2 , 2.03969×1 , 1.89184×2 ,

1.82134×1 , 1.71997×1 , 1.64628×2 , 1.29125×2 , 1.21935×2 ,

1.20274×1 , 0.983986×2 , 0.938584×2 , 0.893911×1 , 0.587593×2 ,

0.562868×1 , 0.439865×1 , 0.371783×1 , 0.346838×2 , 0.303637×1 ,

0.294338×1 , 0.262899×2 , 0.236847×2 , 0.0339378×2 , 0.0286117×2 ,

0.0205378×1 , 0.0192755×2 , 0.0114180×1 ,

m2
φL

2 : 6.67265×1 , 5.70582×1 , 1.71484×2 , 1.67033×1 , 1.37757×1 ,

0.666216×1 , 0×27 , − 0.0891377×2 , − 0.547035×1 , − 0.833421×2 ,

− 0.907516×1 , − 0.915646×1 , − 1.14803×1 , − 1.17006×2 , − 1.29452×1 ,

− 1.30728×1 , − 1.35666×2 , − 1.39437×2 , − 1.64003×2 , − 1.70815×2 ,

− 1.74308×1 , − 1.87815×2 , − 1.96526×1 , − 1.96573×2 , − 2.06671×1 ,

− 2.06900×2 , − 2.06965×1 , − 2.09083×1 , − 2.09758×2 , − 2.13338×2 ,

− 2.18141×1 ,

P355983403.

m2
ψL

2 : 5.03505×1 , 4.90092×1 , 3.25015×1 , 3.14370×1 , 2.75155×1 ,

2.57142×1 , 2.41902×1 , 1.00004×1 ,

m2
AL

2 : 7.25938×1 , 7.20263×1 , 7.10141×1 , 6.95967×1 , 6.35969×1 ,

5.98220×1 , 5.78977×1 , 5.68272×1 , 5.22257×1 , 5.06055×1 ,

4.92408×1 , 4.73720×1 , 4.40682×1 , 4.27011×1 , 4.17636×1 ,

3.97613×1 , 2.79003×1 , 2.68509×1 , 1.44360×1 , 1.36673×1 ,

1.09360×1 , 0.968181×1 , 0.863857×1 , 0.673824×1 , 0.670555×1 ,

0.394090×1 , 0.367021×1 , 0.00324705×1 ,

m2
χL

2 : 20.1402×1 , 19.6037×1 , 13.0006×1 , 12.5748×1 , 11.0062×1 ,

10.4291×1 , 10.2857×1 , 10.1418×1 , 9.87119×1 , 9.67608×1 ,

9.42621×1 , 9.41722×1 , 8.96914×1 , 8.74559×1 , 8.74471×1 ,

8.60848×1 , 8.05204×1 , 7.63541×1 , 7.46906×1 , 7.37218×1 ,
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7.00906×1 , 6.89305×1 , 5.00512×1 , 4.97228×1 , 4.87874×1 ,

4.77513×1 , 4.28864×1 , 4.25789×1 , 4.23611×1 , 4.00016×1 ,

3.98591×1 , 3.83188×1 , 3.74524×1 , 3.38312×1 , 3.25582×1 ,

3.14876×1 , 3.00171×1 , 2.74757×1 , 2.64195×1 , 2.57394×1 ,

2.42190×1 , 2.13557×1 , 2.13069×1 , 1.69644×1 , 1.65198×1 ,

1.00783×1 , 0.867934×1 , 0.286209×1 , 0.276690×1 , 0.275490×1 ,

0.216605×1 , 0.214997×1 , 0.138143×1 , 0.0910165×1 , 0.0803230×1 ,

0.0000126900×1 ,

m2
φL

2 : 11.0147×1 , 10.4898×1 , 9.70105×1 , 8.39197×1 , 8.08150×1 ,

7.65928×1 , 5.19712×1 , 4.95637×1 , 4.72816×1 , 4.35072×1 ,

4.34468×1 , 4.31247×1 , 4.28617×1 , 4.00337×1 , 3.96357×1 ,

3.79000×1 , 3.78372×1 , 3.65945×1 , 3.20239×1 , 2.87878×1 ,

2.72982×1 , 2.66281×1 , 2.35844×1 , 2.25944×1 , 0.203476×1 ,

0.186242×1 , 0×28 , − 0.00336031×1 , − 0.201939×1 , − 1.18509×1 ,

− 1.19989×1 , − 1.20241×1 , − 1.31722×1 , − 1.32040×1 , − 1.48307×1 ,

− 1.60717×1 , − 1.63632×1 , − 1.99407×1 , − 2.06215×1 , − 2.24013×1 ,

− 2.24248×1 , − 2.24659×1 , − 2.24727×1 ,
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