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A B S T R A C T

Multi-objective Bayesian optimization (MOBO) has shown to be a promising tool for reaction development.
However, noise is usually inevitable in experimental and chemical processes, and finding reliable solutions
is challenging when the noise is unknown or significant. In this study, we focus on finding a set of optimal
reaction conditions using multi-objective Euclidian expected quantile improvement (MO-E-EQI) under noisy
settings. First, the performance of MO-E-EQI is evaluated by comparing with some recent MOBO algorithms
in silico with linear and log-linear heteroscedastic noise structures and different magnitudes. It is noticed that
high noise can degrade the performance of MOBO algorithms. MO-E-EQI shows robust performance in terms
of hypervolume-based metric, coverage metric and number of solutions on the Pareto front. Finally, MO-E-EQI
is implemented in a real case to optimize an esterification reaction to achieve the maximum space-time-yield
and the minimal E-factor. The algorithm identifies a clear trade-off between the two objectives.
1. Introduction

Multi-objective Bayesian optimization (MOBO) is a powerful tool
applied in multiple stages of chemical reaction development. This
includes, for example, the discovery of multi-functional molecules (J.C.
and Coley, 2023), identifying the best reaction conditions to achieve
high yield with good selectivity (Wang et al., 2021), and processes
design where improving the yield while considering the throughput or
environmental impacts at the same time (Braconi, 2023; Slattery et al.,
2024). In the presence of multiple objectives that need to be optimized
simultaneously, MOBO can find a set of solutions that represent a
trade-off among the objectives, known as the Pareto front.

The process of MOBO starts by sampling a small number of initial
data points to construct a surrogate model for each objective, which is
often a Gaussian process (GP) model. The posterior of the GP provides
information for an acquisition function to decide the next point to
evaluate by balancing where the uncertainty of the surrogate model
is large (exploration) and where the current model prediction is good
(exploitation). New data is then collected, and the GP model is updated
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iteratively until the optimal solutions are found or the computational
budget is depleted. However, one thing that cannot be neglected in
reality is that the data is not always perfect and is likely to be corrupted
by sometimes very high noise.

This is an issue that cannot be ignored and might degrade the
performance of algorithms (Daulton et al., 2021, 2022; Letham et al.,
2019). Noise can come from many sources in chemical processes, such
as uncontrollable environmental variables when generating experimen-
tal data and measurement errors. Noise is also a noticeable issue for
automated experimental platforms (Aldeghi et al., 2021). For example,
there might be imprecision of operations by robots, or handling volatile
solvents, and transferring unstable reagents which are easy to decom-
pose. Noise is common for large-scale manufacturing and may come
from fluctuations in raw chemicals or variations in process conditions
(Wang and Ierapetritou, 2018).

Bayesian optimization under uncertainty is an active research area,
which is being widely studied in computer simulations subject to
numerical noise (Baker et al., 2022; Wang et al., 2023), compared to
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noise-free settings, the noisy objective functions 𝑦𝑖(𝒙) can be repre-
ented by

𝑦𝑖(𝒙) = 𝑓𝑖(𝒙) + 𝜀𝑖, (1)

where 𝑓𝑖(𝒙) are the true objective functions for 𝑖 = 1,… , 𝑛, 𝒙 are a
et of control variables and 𝜀𝑖 is additive noise which is often assumed
o be Gaussian 𝜀𝑖 ∼  (0, 𝜎2𝑖 ) (Wentzell and Brown, 2000). When 𝜎𝑖 is

a constant, the noise is called homoscedastic and when 𝜎𝑖(𝒙) varies at
different 𝒙 the noise is called heteroscedastic.

For single-objective optimization, new acquisition functions have
been proposed to address noisy settings. The most widely used ex-
ected improvement (EI) acquisition function has been extended to
oisy conditions, for example, expected quantile improvement (EQI)
Picheny et al., 2013) and augmented expected improvement (AEI)

(William, 1982). Other acquisition functions that can intrinsically han-
dle noise are information-based acquisition functions like predictive
entropy search (PES) (Hernández-Lobato et al., 2014) or Thompson
sampling (TS) (Kandasamy et al., 2018). Some other acquisition func-
ions are risk-averse (Makarova et al., 2021) or based on knowledge

gradient (Daulton et al., 2023).
In terms of MOBO with noisy observations, there are several chal-

enges. Firstly, evaluating the performances of MOBO algorithms is
ot always straightforward under noisy conditions, compared to single
bjective optimization. Some popular performance metrics such as
ypervolume can be misguided by the noisy points on the current
areto front and hence suggest a wrong direction for optimization
Branke, 2023). While there are MOBO algorithms that can handle
oise (Daulton et al., 2022; Bradford et al., 2018; Daulton et al.,

2020;Semochkina et al., 2024), there is much less discussion on per-
formance metrics when comparing different algorithms. Secondly, most
pproaches have been tested assuming homoscedastic noise, meaning
hat the variance of the noise does not depend on 𝒙. In practice for
hemical experiments, however, the noise is usually heterogeneous. To
he best of our knowledge, the performance of these MOBO algorithms
nder heteroscedastic noise has not yet been compared. Lastly, so far,
ost studies on noisy MOBO focus on synthetic benchmark problems

nd practical case studies are rare, which limits the validation of these
lgorithms under realistic conditions and hinders their adoption in
ndustry.

In this work, we focus on the multi-objective reaction optimization
problem under noisy conditions. A recent algorithm – Euclidian ex-
pected quantile improvement (MO-E-EQI; Semochkina et al., 2024) –
as been adopted to deal with heteroscedastic noise and subsequently
ssessed under different noise structures and magnitudes. We compare
O-E-EQI to several recent MOBO algorithms that can also handle

oise via different performance metrics. Additionally, MO-E-EQI is
pplied to a real-life reaction optimization problem. Our study con-
ributes to the advancement of noisy MOBO methods that are robust,
fficient, and applicable to a wide range of practical problems in
eaction development.

2. Materials and methods

Two reaction systems were considered in this study: an in silico
reaction simulator for algorithm comparison under noisy conditions,
and a real-world reaction system where MO-E-EQI was implemented to
guide the search for the optimal conditions.

2.1. In silico reaction simulator setup

A reaction simulator was implemented for the in silico study to eval-
uate algorithm performances. It was created based on an experimental
study of a nucleophilic aromatic substitution (SNAr) reaction from the
literature (Hone et al., 2017): 2,4-difluoronitrobenzene 1 reacting with
yrrolidine 2 to generate the desired product ortho-substituted 3, para-
ubstituted 4 and bis-adduct 5 as side products (Fig. 1). The reaction
2 
Table 1
Control variables and variable ranges of the in silico study. The reaction scheme is
shown in Fig. 1.

Variable Unit Range

Molar equivalent of 2:1 [–] 1.0–5.0
Residence time [min] 0.5–2.0
InitialL concentration of 2,4-difluoronitrobenzene (1) [mol/min] 0.1–0.5
Temperature [℃] 30–120

was conducted in a continuous flow reactor where concentrations of 1,
2, 4 and 5 at the end of the reactor were measured using an online

PLC.
The reaction system can be described by a reactor model with plug

flow assumption and reaction kinetics,
𝑑 𝑐1
𝑑 𝜏 = −𝑟1 − 𝑟2
𝑑 𝑐2
𝑑 𝜏 = −𝑟1 − 𝑟2 − 𝑟3 − 𝑟4
𝑑 𝑐3
𝑑 𝜏 = 𝑟1 − 𝑟3
𝑑 𝑐4
𝑑 𝜏 = 𝑟2 − 𝑟4
𝑑 𝑐5
𝑑 𝜏 = 𝑟3 + 𝑟4,

(2)

where 𝑟1-𝑟4 are reaction rates, 𝜏 is the time that species spent along
the flow reactor and 𝑐1-𝑐5 are concentrations for each chemical species
at different locations in the reaction tube. This system is also a widely
used benchmark for multi-objective reaction optimization (Tu et al.,
2022; Vel et al., 2024; Felton et al., 2021).

The optimization problem was set up based on the information in
the original paper. There were four control variables for this reaction:
residence time, equivalent, temperature and initial concentration, and
heir ranges are listed in Table 1. In the original paper (Hone et al.,

2017), the way to adjust the residence time and molar equivalent is
by change the flow rates of 1 and 2, correspondingly. Two objectives
were set for this reaction, to consider the reaction outcome as well
as the environmental impact simultaneously: maximizing the space–
time-yield (STY) and minimizing the E-factor (Sheldon et al., 2022),
alculated as

STY =
𝑐product

𝜏
E-factor =

𝑚waste
𝑚product

,
(3)

where 𝑐product is desired concentration of the product 3 at reactor outlet
(unit: 𝑔 ⋅ 𝐿−1); 𝑚product is total mass of product (unit: 𝑔); 𝑚waste is total
mass of waste (total reagents mass − product mass, unit: 𝑔).

2.2. Experimental setup

To implement the algorithm for a real-life reaction optimization
problem, an esterification reaction was selected as a model reaction,

hich is one of the most essential reactions in chemical and pharmaceu-
tical industries. This reaction was chosen due to its wide applicability,
including the synthesis of various esters for use in drug formulation
and industrial applications (Gaefke et al., 2006). Furthermore, imple-
menting this reaction in a continuous flow setup allows for enhanced
reaction control and efficient heat and mass transfer. The selected reac-
tion scheme is shown in Fig. 2, where 1,4-benzenedimethanol (6) reacts

ith acetic anhydride (7) to form the desired 4-hydroxymethylbenzyl
acetate (8) and undesired 1,4-bis(acetoxymethyl)benzene (9).

Experimental setup and reaction conditions are shown in Fig. 3. A
solution of 1,4-benzenedimethanol (6) (0.20 M) and Et3N (0.20 M) in
MeCN and a solution of DMAP (0.10 M) in MeCN were injected into
a PTFE T-shape mixer (inner diameter: 0.5 mm) using syringe pumps.
The resultant mixture was passed through the reaction tube (volume:
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Fig. 1. SNAr reaction of 2,4-difluoronitrobenzene (1) with pyrrolidine (2) for in silico study.
Fig. 2. Esterification reaction of 1,4-benzenedimethanol (6) with acetic anhydride (7) for experimental study.
Fig. 3. Experimental setup with the esterification reaction.
0.50 mL, Vapourtec R-Series Tubing Kit). The resultant mixture and
a solution of acetic anhydride (7) (0.20 M) and biphenyl (0.0020 M)
in MeCN were injected into the second PTFE T-shape mixer (inner
diameter: 0.5 mm). The resultant mixture was passed through reaction
tube 2 (volume: 4.0 mL, Vapourtec R-Series Tubing Kit). Reaction
tubes 1 and 2 and two T-shape mixers were immersed in a water
bath with a temperature control. Syringe pumps in the system were
from TriContinent and controlled by lab automation software Flab.
The resultant mixture was added into saturated NH4Cl solution and
CH3OH at room temperature to quench the reaction. Yields of the
desired product 4-hydroxymethylbenzyl acetate (8) were determined
by HPLC-UV analysis. More details can be found in Appendix A.

Four reaction variables were identified that are important for this
reaction and were selected, also shown in Fig. 3. Namely, molar equiv-
alent of 1,4-benzenedimethanol (6):acetic anhydride (7), DMAP (cata-
lyst) loading, flow rate of acetic anhydride (7) and temperature. Table 2
summarized the range of each variable. The flow rate of 7 was set to
3 
be Z mL/min, ranging from 0.50 mL/min to 2.00 mL/min. The molar
equivalent of 6:7 was changed by adjusting the flow rates X in a range
of 10.00–0.50 mL/min; catalyst loading was changed by adjusting the
flow rates Y in a range of 0.05–2.00 mL/min. The reaction tube 1 and
2 was kept in a water bath with a temperature of W ◦ C. The same
objective functions as in silico study - maximizing space–time-yield and
minimizing E-factor, were chosen as the objectives for optimizing this
reaction.

3. Theory

A multi-objective optimization problem often has competing goals.
Assuming the goal of simultaneous minimization (without loss of gen-
erality), such a problem can be described as:

min 𝑓𝑖(𝒙) for 𝑖 = 1,… , 𝑛 (4)
subject to: lb𝑘 ≤ 𝑥𝑘 ≤ ub𝑘 for 𝑘 = 1,… , 𝑣,
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Table 2
Control variables and variable ranges of the experimental study. The reaction scheme
is shown in Fig. 2.

Variable Unit Range

Molar equivalent of 6 : 7 [-] 1.0–5.0
Catalyst DMAP loading [mol%] 5–50
Flow rate Z [ml/min] 0.50–2.00
Temperature W [℃] 25–65

where 𝑓𝑖 are the 𝑛 black-box objective functions, 𝒙 = (𝑥1,… , 𝑥𝑣)𝖳 repre-
sent the 𝑣 input variables, and lb𝑘 and ub𝑘 are bounds on the input 𝑥𝑘.
Of course, more complex equality or inequality constraints on the input
space could be of interest. However, as described and implemented in
this paper, the algorithm does not incorporate native input constraint
handling. Constraints on the outputs are less straightforward. Although
not implemented in this paper, the MO-E-EQI can deal with constraints
on the objectives, Semochkina et al., 2024 incorporated upper bound
constraints and that methodology could be adapted to address other
types of constraints. We focus on multi-objective optimization on a
Pareto front (Fonseca and Fleming, 1995), a collection of optimal solu-
tions for each 𝑓𝑖 such that no single objective can be improved without
making at least one of the remaining objectives worse (Giagkiozis and
Fleming, 2014).

For simplicity, we suppress the indexing across the multiple objec-
tive functions. We will focus on maximizing objective 1 and minimizing
objective 2 in the remainder of the paper referred to as 𝑓1 and 𝑓2
respectively.

3.1. Euclidian distance based expected quantile improvement

To handle noisy observations, we adopted a recent approach intro-
duced by Semochkina et al. (2024) using the Multi-objective Euclidean
Expected Quantile Improvement (MO-E-EQI) criterion to guide our
optimization. As with many MOBO methods, this method includes: (i)
establishing an initial belief (prior) about the system’s behaviour, build-
ing a sampling plan, calculating the responses at those points and fitting
a GP model to this data in line with those prior beliefs; (ii) strategically
selecting new input points 𝒙 for system’s evaluation based on a criterion
that maximizes acquisition function; (iii) incorporating the obtained re-
sults into the existing belief, leading to a more accurate understanding
of the system’s optimum and its corresponding input value.

Fig. 4 illustrates an example of this process. Based on the eight noisy
data points (circles) that have been already observed, a GP model was
fitted with the noisy observations 𝑦(𝒙). The next point for evaluation is
then selected based on the distribution of an unobserved point 𝑌 (𝒙)
at a new location 𝒙, characterized by the GP’s mean and variance.
The algorithm can decide whether to go somewhere near the current
best model mean (exploitation), or somewhere with large uncertainty
(exploration), and gradually move towards the optimum.

The initial belief about the function is represented by a Gaussian
process (Rasmussen and Williams, 2006).

𝑓 (𝒙) ∼ GP
{

𝜇(𝒙), 𝜅(𝒙,𝒙′)} ,

a stochastic process defined via a mean function 𝜇(⋅) and covariance
function 𝜅(𝒙,𝒙′). For any finite set of input vectors 𝒙1,… ,𝒙𝑆 , arranged
in a design matrix 𝑋𝑆 =

(

𝒙1,… ,𝒙𝑆
)T a collection of random variables

from this process follow a multivariate normal distribution
⎛

⎜

⎜

⎝

𝑓 (𝒙1)
⋮

𝑓 (𝒙𝑆 )

⎞

⎟

⎟

⎠

∼ 𝑁
(

𝝁(𝑋𝑆 ), 𝐾(𝑋𝑆 )
)

,

with mean vector 𝝁(𝑋𝑆 ) having 𝑗th entry 𝜇(𝒙𝑗 ) and covariance matrix
𝐾(𝑋𝑆 ) having 𝑗 𝑘-th entry 𝜅(𝒙𝑗 ,𝒙𝑘) (𝑗 , 𝑘 = 1,… , 𝑆).

The posterior for 𝑓 (𝒙), conditional on noisy data 𝒚𝑆 =
[

𝑦(𝒙1),… , 𝑦(𝒙𝑆 )]𝖳 is also a GP:
𝑆 { ′ }
𝑓 (𝒙) ∣ 𝒚 ∼ GP 𝑚(𝒙), 𝑠(𝒙,𝒙 ) , (5)

4 
Fig. 4. Illustration of fitting a GP model with noisy observations. Based on the eight
noisy observations (circles), a GP model 𝑦(𝒙) is fitted. The next point for evaluation
is selected based on the distribution of an unobserved point 𝑌 (𝒙) at a new location 𝒙,
characterized by the GP’s mean and variance. The algorithm can decide whether to go
somewhere near the current best model mean (exploitation), or somewhere with large
uncertainty (exploration), and gradually moves towards the optimum.

with updated mean 𝑚(𝒙) and covariance 𝑠(𝒙,𝒙′) functions (Semochkina
et al., 2024).

The fundamental idea behind the expected quantile improvement
(EQI) acquisition function is ’tunable precision’ where a particular ob-
servation’s precision can be adjusted using more computational budget.
In a physical system, noise can come from various sources, including
environmental variables that are outside of our control and measure-
ment errors. In this paper for in silico experiments, noise was added to
the model predictions to imitate noise in a physical system. Mathemat-
ically, tunable precision can be implemented by taking a sample mean
of 𝑁 independent Monte Carlo drawings:

𝑦̄𝑁 (𝒙) = 1
𝑁

𝑁
∑

𝑟=1
𝑦𝑟(𝒙) = 1

𝑁

𝑁
∑

𝑟=1

[

𝑓 (𝒙) + 𝜀𝑟
]

= 𝑓 (𝒙) + 1
𝑁

𝑁
∑

𝑟=1
𝜀𝑟, (6)

where 𝜀𝑟 ∼  (0, 𝜎2). The estimate of the variance 𝜎2 can be calculated
as

𝜎̂2𝑁 (𝒙) = 1
𝑁 − 1

𝑁
∑

𝑟=1

[

𝑦𝑟(𝒙) − 𝑦̂𝑁 (𝒙)
]2 (7)

and an estimated variance of a Monte Carlo sample mean 𝑦̄𝑁 (𝒙) is
𝜎̂2𝑁 (𝒙)∕𝑁 .

Single-objective EQI to address noisy data was introduced by
Picheny et al. (2013) defined as

EQI
[

𝒙𝑆+1, 𝜎2(𝒙𝑆+1)] = E𝑄𝑆+1

[

(

𝑞𝑆 (𝒙⋆) −𝑄𝑆+1(𝒙𝑆+1)
)+] , (8)

where (𝑧)+ = max(0, 𝑧), 𝑞𝑆 (𝒙) = 𝑚(𝒙) +𝛷−1(𝛽)𝑠(𝒙) is the 𝛽-quantile from
the current GP posterior (see, for example, Rasmussen and Williams
(2006) equation 7 for the details on the posterior distribution of a
GP) with 𝛽 ∈ [0.5, 1), 𝒙⋆ = ar gmin𝒙∈𝑋𝑆

𝑞𝑆 (𝒙) and 𝑄𝑆+1(𝒙𝑆+1) is the
corresponding 𝛽-quantile when one additional observation 𝑦(𝒙𝑆+1) is
added to the data set. This was later extended to the multi-objective
case by Semochkina et al. (2024) and the equivalent equation for
MO-E-EQI could be found in Equation (2.10) of that paper.

The variance of the next observation is represented here by the
variance 𝜎2(𝒙𝑆+1). This should constitute the expected variance at the
new input 𝒙𝑆+1 if the simulator is run or the experiment is conducted. It
was shown by Picheny et al. (2013) that 𝑄𝑆+1(𝒙𝑆+1) follows a different
Gaussian distribution. The posterior mean and variance are

𝑚𝑄𝑆+1

(

𝒙𝑆+1, 𝜎2(𝒙𝑆+1)) = 𝑚(𝒙𝑆+1) +𝛷−1(𝛽)

√

𝜎2(𝒙𝑆+1) × 𝑠2(𝒙𝑆+1)
, (9)
𝑠2(𝒙𝑆+1) + 𝜎2(𝒙𝑆+1)
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Fig. 5. Improvements possible from a single point in the Pareto set (Keane, 2006). (a). Aggressive setting: a Pareto set of five non-dominated points (blue crosses) for a problem
with two objectives. The solid line is the Pareto front. The shaded area shows where new points would augment the Pareto front, while the hatched area is where new points
would dominate and replace the existing set of non-dominated points. (b). Non-aggressive setting: the integration area is extended to include the parts where new solutions could
be added to the current Pareto set without replacing any of the current points.
and

𝑠2𝑄𝑆+1

(

𝒙𝑆+1, 𝜎2(𝒙𝑆+1)) =
[

𝑠2(𝒙𝑆+1)
]2

𝑠2(𝒙𝑆+1) + 𝜎2(𝒙𝑆+1)
, (10)

where 𝑚(𝒙𝑆+1), 𝑠2(𝒙𝑆+1) are the GP’s mean and variance respectively
and 𝜎(𝑥) is the observational noise from (1). In reality an estimate from
(7) is used as a proxy for existing observations and an estimate based on
the current GP fit is calculated for future observations. This is discussed
in detail in Section 4.1.1.

The choice of 𝛽 tunes the level of reliability wanted on the final
result, setting 𝛽 = 0.5 means that the algorithm will compare design
points based on the GP model’s mean only in (9) and uncertainty from
(10). With a higher 𝛽, EQI penalizes designs with high uncertainty and
becomes more conservative. It should be noticed that, to calculate EQI
using (8), future noise 𝜎2(𝒙𝑆+1) is required at any 𝒙𝑆+1 as 𝜎2(𝒙𝑆+1) also
influence the performance of EQI.

To quantify the improvement of EQI for two objectives, two criteria
of MO-E-EQI are illustrated in Fig. 5 by plotting a Pareto front set
against two objectives. The horizontal and vertical solid lines represent
the Pareto front. The expected improvement is calculated by using
the probability of improvement (area of hatched area) and Euclidian
distance between the centroid of the area and each member in the
Pareto set (Keane, 2006). This means that for each new potential input,
𝒙𝑆+1, the expected improvement is calculated as the expectation of the
distance between the quantile of the closest Pareto front point and the
quantile of the potential improved point with respect to the current
joint probability distribution of the response associated with that input
point (from the corresponding GPs’ distributions). The exact expression
and derivation can be found in Equation (2.10) of the Semochkina
et al. (2024) paper. This expectation is a double integral, the limits of
which are dictated by the area of interest as demonstrated by Fig. 5.
If a new point falls into the hatched area, it will dominate and replace
at least one current member in the Pareto set, whereas if it is placed
in the shaded hatched area, it will augment current Pareto solutions.
Therefore, by changing the area of integration, MO-E-EQI can change
between an aggressive setting by adding fewer points on the Pareto
front, or a non-aggressive setting by adding more in-between points.
MO-E-EQI is calculated for each point on a comprehensive grid and
the point that maximizes the MO-E-EQI objective function is selected
as the one to be sequentially added to the design. Appendix B describes
detailed steps of the algorithm.
5 
3.2. Related noisy MOBO algorithms

The performance of MO-E-EQI was benchmarked with some state-
of-the-art noisy MOBO methods which will be introduced briefly here.

qNParEGO (Noisy Pareto Efficient Global Optimization (Daulton
et al., 2020; Letham et al., 2019)) is a batch variant of ParEGO
(Knowles, 2006) suitable for noisy settings. qNParEGO converts a multi-
objective problem into a single-objective problem by applying a ran-
dom scalarization of the objectives. By choosing a different weight
vector for scalarization at each iteration of the search, an approximate
Pareto front can be built up gradually.

qNEHVI (Noisy Expected Hypervolume Improvement
(Daulton et al., 2023)) is based on the expected hypervolume improve-
ment criterion for noisy settings.

TSEMO (Thompson Sampling Efficient Multiobjective Optimization
(Bradford et al., 2018)) is based on the Thompson sampling heuristic
that samples from each GP using spectral sampling. This leads to in-
dividual functions from which an approximate Pareto set can be found
using the NSGA-II algorithm. The next evaluation point is then selected
from the Pareto set based on the largest hypervolume improvement.

3.3. Implementation details

3.3.1. Initial design
We start MOBO with some initial sample points set by a space-

filling strategy. These initial points help to map the entire design space
and provide initial information on the design space. In the follow-
ing investigations, 20 initial sampling points were generated using
Maximum Projection design, MaxPro (Ba and Joseph, 2018), which
is one type of Latin hypercube design that maximizes space-filling
properties on projections with respect to all possible subsets of factors.
Different numbers of initial sample points and sampling strategies were
compared in Appendix C.

3.3.2. Noise settings
Measurements of chemical experiment outcomes may differ even

when the experiment is repeated under the same conditions. This means
that the recorded measurements will spread around some mean value
or the true response. It is common to represent noisy measurements
as having a normal distribution with a certain mean and a standard
deviation, where the mean represents the true response. The more
replicated experiments and their response measurements there are, the
better one can capture the true distribution of the response and the
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Table 3
Heteroscedastic noise settings for the in silico case
study with linear and loglinear noise structures.

Noise structure 𝛼 𝛽

Linear-1 0.01 –
Linear-2 0.05 –
Linear-3 0.10 –
Linear-4 0.20 –
Loglinear-1 0.85 −1.70
Loglinear-2 1.20 −1.30

spread of the noisy measurements around the true response. This is
ften modelled as additive Gaussian noise 𝜀 ∼ 𝑁(0, 𝜎2), where 𝜎 is the

standard deviation. If the noise appears to be non-Gaussian in practice,
further adjustments need to be considered (Picheny et al., 2022).

More often, chemical measurements are heteroscedastic and the
tandard deviation of the Gaussian noise changes at different conditions
,

𝜀 ∼  (0, 𝜎2(𝒙)).

To evaluate the performances of algorithms under heteroscedastic
noise, we implemented two types of noise structures with different
magnitudes for the in silico study.

Linear noise structure is the most commonly assumed in literature
Jalali et al., 2017; Wang and Ierapetritou, 2017) where a linear

relationship is set between the standard deviation of noise and the
function value. Four noise magnitudes were chosen 𝛼 = 0.01, 0.05, 0.10
and 0.20 for comparison.

𝜎(𝒙) = 𝛼 ⋅ 𝑓 (𝒙). (11)

In addition, to mimic the noise structure close to chemical mea-
surements, we adopted Horwitz’s rule from analytical chemistry, which
suggests a linear relationship between the log standard deviation of
noise and the log value of the function value (Huang et al., 2006)

log10[𝜎(𝒙)] = 𝛼 ⋅ log10[𝑓 (𝒙)] + 𝛽 . (12)

Two noise magnitudes of loglinear noise were chosen here. Loglinear-1
with 𝛼 = 0.85 and 𝛽 = −1.70 follows an empirical setting suggested
y Albert and Horwitz (1997) and Loglinear-2 with 𝛼 = 1.20 and
= −1.30 was chosen to be a larger noise magnitude. Parameters of

oise settings can be found in Table 3, an illustration of different noise
tructures and magnitudes can be found in Appendix D.

3.3.3. Performance metrics
To compare the performances of MOBO algorithms, several metrics

have been proposed in literature to evaluate how close the solutions are
o the Pareto front and how evenly the solutions are distributed along
he frontier, as shown in Figs. 6(a) and 6(b). In addition, the number

of solutions on the Pareto front is also important because it provides
more choices to decision-makers. In this study, MOBO algorithms were
evaluated using hypervolume-based metric, coverage metric and the
number of Pareto optimal solutions for comparisons.

The hypervolume-based (HV) metric is widely recognized as a unary
alue which is able to measure the closeness of the solutions to the op-
imal set (Zitzler and Thiele, 1999). The hypervolume metric calculates

the volume of the objective space covered by members of an obtained
Pareto set 𝑃 bounded by a reference point 𝑅 (see Fig. 6(c)):

HV =
𝑁
⋃

𝑝=1
𝑣𝑝, 𝑝 ∈ 𝑃 , (13)

where 𝑣𝑝 is the area of each of the rectangles the space is broken into
by the reference point and the Pareto front points.

The coverage metric was proposed by Lewis et al. (2009) to quantify
how well a set of Pareto front solutions covers the objective space.
It divides the objective space into several radial sectors originating
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from the reference point 𝑅(𝑟1, 𝑟2). The value of the coverage metric is
alculated as the ratio of these sectors with at least one Pareto front
olution to the total number of sectors, defined as:

𝛹 = 1
𝑁

𝑁
∑

𝑛=1
𝛹𝑛, (14)

where 𝑁 is the number of sectors and

𝛹𝑛 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑝𝑖 ∈ 𝑃 and 𝛼𝑖−1 ≤ t an
[

|𝑟1−𝑓1(𝑥)|
|𝑟2−𝑓2(𝑥)|

]

≤ 𝛼𝑖
0, otherwise.

(15)

Here 𝑃 is the Pareto optimal solutions and 𝛼𝑖 is the radial angles of
the sections. Both objectives need to be scaled to [0,1] to calculate this
metric. As an example in Fig. 6(d), the solution space is divided into six
ections and four contain at least one Pareto front solution. Therefore

the coverage metric is calculated to be 66.7%. In the following algo-
rithm comparison, the same number of nine sections were used for all
algorithms.

3.3.4. Implementation details
In this study, all benchmaking was performed on a laptop equipped

ith an Apple M1 chip, 16 GB of RAM. The code for implementing
the algorithms can be found online at: https://github.com/sustainable-
processes/MO-E-EQI.

Implementation of MO-E-EQI was in R (R Core Team, 2022). Se-
uential design maximizing MO-E-EQI was implemented in the R pack-

age MOEEQI (Semochkina, 2024a) and DiceOptim (Picheny and
Ginsbourger, 2014). To incorporate noisy observations into our algo-
rithm, GPs were fitted using the km function in the DiceKriging
(Roustant et al., 2021) package providing the noise.var argument,
specifying the corresponding variance for each observational point. A
Python version of MO-E-EQI is currently being developed and will be
rovided on the Github repository.

For algorithm comparison, qNEHVI, qNParEGO were implemented
in Python using Botorch (Balandat et al., 2020) and TSEMO was imple-

ent through Summit (Felton et al., 2021). Gaussian process models
were trained using HeteroskedasticSingleTaskGP in Botorch.
An interactive app was designed using R Shiny (Semochkina, 2024b) for
algorithm performance comparison, see Appendix E. This interactive
app visualizes the performance of various algorithms used in the in
silico example across different noise levels and algorithm modifications.
By plotting combinations of algorithm results, the tool allows users to
interactively explore the relationship between inputs and outputs in the
objective space. This is particularly valuable for practitioners as the
input space is often neglected when plotting optimization results.

4. Results and discussion

4.1. In silico algorithms comparison under noise

MO-E-EQI is first compared with other MOBO algorithms under
oisy conditions; namely, qNParEGO, qNEHVI, TSEMO. The sequential
atin hypercube sampling strategy (named LHS Space Filling) was also
ncluded for comparison as a baseline. For the following compari-
on, the algorithms started with 20 initial sampling points with two
bjectives to maximize STY and to minimize E-factor.

The GPs work best when covariates are normalized to the unit
cube and outcomes are standardized (i.e. zero mean, unit variance). To
achieve that, prior to fitting a GP, all inputs were scaled to [0, 1] and all
the outputs from the training data were standardized, using the sample
mean and sample variance. Those samples’ means and variances were
subsequently used to standardize all model outputs in the sequential
part of the algorithm.

https://github.com/sustainable-processes/MO-E-EQI
https://github.com/sustainable-processes/MO-E-EQI
https://github.com/sustainable-processes/MO-E-EQI


J. Zhang et al. Computers and Chemical Engineering 194 (2025) 108983 
Fig. 6. Pareto front solutions of multi-objective optimization and evaluation metrics. (a). Pareto front solutions with a uniform spread; (b). Pareto front solutions with a poor
spread; (c). Illustration of the hypervolume metric; (d). Illustration of the coverage metric.
4.1.1. Hypervolume distance comparison
Under a significant level of noise, it is not uncommon that a single

model run could significantly overestimate the true Pareto front. The
most popular metric in the literature (Riquelme et al., 2015) – hyper-
volume (HV) – is inadequate to estimate how well the identified Pareto
front is compared to the true Pareto front. With that in mind, we cal-
culate the volume of the difference between the Pareto front identified
by an algorithm and the true Pareto front. This takes into account both
under- and over-estimation and combines these into one metric based
on HV. A drawback of taking the difference between the true HV and
the one identified by the algorithm under high noise is that where both
under- and over-estimation are present, they could potentially cancel
each other out and not provide a true picture of how far the identified
Pareto front is from the true one (see Fig. 7(b) for details).

We use the R package sf (Pebesma et al., 2023) to create complex
polygons, using a reference point and the set of points on the Pareto
fronts, take the difference between those polygons, take the union of
under- and over-estimating polygons and calculate the volume of the
resulting polygon as our measure. To construct the HV distance for this
example, a reference point of (STY = 13, E-factor = 4) was used.

One of the major drawbacks of noisy observations is that a single
observation is unreliable as an estimate of the truth. The qNEHVI
algorithm deals with that by integrating out the uncertainty of the GP
model when calculating the expected HV improvement. However, if the
ultimate goal is to identify the Pareto front correctly, a single observa-
tion may not be sufficient. We compared the performance of qNEHVI,
7 
qNParEGO, TSEMO, LHS Space Filling and a single-run-based MO-E-
EQI algorithm. Even though all five algorithms were implemented for
a single run only, unlike qNEHVI, qNParEGO and TSEMO, MO-E-EQI
allows repeated observations. This means that an algorithm can choose
to return to an existing input location and request the model to be run
again. In that case, the model observations will be combined into one
observation (Semochkina et al., 2024). Additionally, we compared the
performance of algorithms based on multiple model runs. This means
that for every input, the simulator is run multiple times and the sample
mean is adopted as an ‘observation’ when a GP is fitted. That also
means that, if the algorithm desires to repeat an observation (i.e. run
the simulator at the same input again), the simulator will again be run
multiple times and the sample mean will be calculated as the secondary
observation. The two observations will then be combined according
to Semochkina et al. (2024) Equation (2.8).

A crucial factor in the performance of these algorithms is accurate
noise estimation. Since they rely on noisy observations, understand-
ing the noise level and structure is essential. Noise can be estimated
during experiments through repeated measurements or obtained from
external sources, such as expert knowledge. If repeated experiments are
infeasible, prior noise estimates are necessary. However, these algo-
rithms cannot be applied effectively if no noise estimation or related
information is available.

The important feature of the MO-E-EQI algorithm is the estimation
of the future noise incorporated in the expected improvement calcula-
tion. This requires us to predict the level of noise at an unobserved
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Fig. 7. Hypervolume distance between the identified Pareto front and true Pareto front. This consists of multiple complex polygons. (a). Illustration of reference point and under-,
over-estimation of Pareto front. (b). An example of comparing algorithms using hypervolume distance.
input location. We remind our reader that a direct linear/loglinear
relationship between the noise standard deviation and the expected
value of the response was assumed. Under that assumption, the future
noise on each step of the algorithm was calculated using the current
fitted GPs’ means as a guide for our mean response and the noise was
calculated based on the relationship with a specific noise magnitude.
This means replacing 𝑓 (𝒙) with 𝑚(𝒙) in Eqs. (11) and (12).

Another feature of the MO-E-EQI algorithm is the quantile level
𝛽 ∈ [0.5, 1). We ran the algorithm with 𝛽 = (0.6, 0.7, 0.8, 0.9). The results
for all values of 𝛽 can be found in Appendix F, and for this case, the
choice of 𝛽 was not a major factor in the algorithm’s performance
compared to the differences with other algorithms’ performances. Here
we present the comparison of the algorithm for 𝛽 = 0.7. The resulting
HV distance for all five algorithms and MO-E-EQI with 𝛽 = 0.7 are
presented in Fig. 8.

It shows that MO-E-EQI, qNEHVI, qNParEGO, TSEMO show sig-
nificant efficiency than simple sequential strategy LHS Space Filling.
MO-E-EQI finds the optimal solutions quickly followed by qNEHVI,
while qNParEGO and TSEMO show relatively slower HV distance de-
crease. Comparing between single- and multiple-runs, MO-E-EQI works
better with multiple model runs. When increasing the noise level from
0.01 to 0.20, all algorithms show worse performance. It is noticeable
for a high noise setting, that the HV distance for the qNEHVI algorithm
drops and then starts growing again after about 10 iterations. This is
potentially due to the overestimation of the true Pareto front. In that
case, when a new input is suggested and the noisy observation over-
estimates the true response, the Pareto front identified by the algorithm
can start moving further away from the true Pareto front.

Results of loglinear noise structure can be found in Fig. 9. In general,
the trend of algorithms’ performance was found to be similar to the
linear case. It is interesting to notice for high noise level Loglinear-
2 with MO-E-EQI single-run, surprisingly qNParEGO shows better HV
distance performance than any other algorithms.

We further investigated this by plotting all 20 repeated runs of
qNParEGO and MO-E-EQI, see Fig. 10. It is notable that the solutions
of qNParEGO tend to aggregate at the bottom right corner (Fig. 10(a)),
while MO-E-EQI suggests more diverse results for both objectives
(Fig. 10(b)). Algorithms based on Euclidean expected improvement can
effectively target under-sampled areas. This space-filling characteristic
can be beneficial in optimization (Wagner et al., 2010), as it ensures a
more comprehensive exploration of the solution space.

The MO-E-EQI may not always be the best-performing method in
terms of HV distance metric, particularly in cases with high noise
and single runs. As mentioned before, all the methods presented in
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this paper rely on some understanding of noise: either estimated or
provided from other sources. Single-run settings are less realistic in
terms of accurate noise gauging for an unknown system. The value of
repeated observations is widely perceived (Gilmour and Trinca, 2012).
In fact, the framework used to fit GPs for qNEHVI and qNParEGO
methods acknowledges the important role the replications play in
estimating noise (Binois et al., 2018). Without accurate noise estimates,
prior assumptions become critical. This can lead to MO-E-EQI under-
performing compared to other methods with strong assumptions on
the noise. If those assumptions are accurate, such approaches can
outperform single-run estimation. However, incorrect variance models
can undermine robustness. Multiple-run approaches with estimated
variance are generally more robust.

Due to the properties of the current reaction simulator, the true
Pareto front is quite perpendicular. This indicates that improving one
objective does not strongly influence the other, which also have been
noticed from the literature (Vel et al., 2024). This means that if there
are points occupied at the right bottom corner (at maximum STY) and
closed to the true Pareto front, HV distance will decrease quickly. Even
though MO-E-EQI adds more points for the other objective, this does
not show a significant decrease of HV distance as qNParEGO does.
Therefore, although HV can describe how close the solutions are to
the real Pareto front, it cannot describe how spread the solutions are.
As a summary, for real applications, it should be noticed that when
the noise level is high, multiple observations are necessary for MO-E-
EQI to have a good estimation of the noise level. As the structure of
the Pareto front cannot be known a priori, the algorithms need to be
evaluated from different perspectives and this will be further explained
in the following sections.

4.1.2. Coverage comparison
To evaluate how solutions spread on the objective space, we

adopted the radial coverage metric (Lewis et al., 2009). This metric
specifically describes how well the solutions cover the whole range of
the objective space.

Results are shown in Fig. 11. MO-E-EQI shows a better cover-
age (around 50% of the Pareto front) than other algorithms for both
linear and loglinear noise structures with various noise magnitudes.
qNParEGO shows the worst performance in terms of coverage as the so-
lutions tend to aggregate into the right-bottom corner. When comparing
qNParEGO and MO-E-EQI with Loglinear-1 noise, the coverage metric
was 0.3 for qNParEGO and 0.6 for MO-E-EQI. It is also notable that
there is no clear trend of how noise structure and magnitude affect the
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Fig. 8. Comparison of hypervolume distances between MO-E-EQI, qNEHVI, qNParEGO, TSEMO and LHS Space Filling under linear noise. Solid lines represent the average
hypervolume distances over 20 repeated simulations with shading giving 95% confidence intervals.
coverage, for MO-E-EQI, the coverage dropped by 10% from Linear-1
to Linear 4 and 22% from Loglinear-1 to Loglinear-2.

One thing to note is that this coverage metric only describes how
distributed the solutions are, no matter how close they are to the Pareto
front. LHS Space Filling strategy shows quite high scores of coverage
metric, although its performance of hypervolume distance is very poor
from Fig. 9. This demonstrates that the evaluation of noisy MOBO
algorithms cannot just depend on a single aspect.

4.1.3. Number of Pareto optimal solutions comparison
As part of this study, the numbers of Pareto front solutions are

compared. This is a piece of useful information for real applications
as it will provide chemists/engineers with more choices of solutions.
Three settings of the MO-E-EQI were considered here, both aggressive
(Fig. 5(a)) and non-aggressive (Fig. 5(b)) criteria with 20 and 40
sequential optimization steps:

(1) MO-E-EQI-1: total 20 optimization steps, 20 aggressive steps;
(2) MO-E-EQI-2: total 20 optimization steps, 10 aggressive steps

followed by 10 non-aggressive steps;
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(3) MO-E-EQI-3: total 40 optimization steps, 20 aggressive steps
followed by 20 non-aggressive steps.

Fig. 12 compares the numbers of solutions on the Pareto front for
different algorithms and noise settings. On average, qNEHVI and MO-
E-EQI-2 give more solutions on the Pareto front for 20 optimization
steps. Fewer solutions were observed when the noise level was raised
(for cases of Linear-4 and Loglinear-2). By using a mix of aggressive and
non-aggressive criteria of MO-E-EQI, augmenting the current Pareto
front is encouraged by the algorithm, therefore, an increased number of
solutions for MO-E-EQI-2 were found compared to MO-E-EQI-1. In addi-
tion, running the MO-E-EQI longer with 40 steps lead to an improved
number of Pareto front solutions in general. For relatively low noise
MO-E-EQI-3 found more solutions on the Pareto front (average 16, 12,
10, 16 for noise Linear 1–3 and Loglinear-1, respectively), comparing
to MO-E-EQI-2 (average 9, 8, 7, 8 for noise Linear 1–3 and Loglinear-1,
respectively). When the noise level is high for Linear-4 and Loglinear-
2, the number of solutions did not show obvious improvement when
increasing the optimization steps.
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Fig. 9. Comparison of hypervolume distances between MO-E-EQI, qNEHVI, qNParEGO, TSEMO and LHS Space Filling under loglinear noise. Solid lines represent the average
hypervolume distances over 20 repeated simulations with 95% confidence interval.
Fig. 10. Results of 20 repeated runs for qNParEGO and MO-E-EQI with Loglinear-2 noise structure. (a). Results of qNParEGO; (b). Results of MO-E-EQI. For both figures, the
optimization started with 20 initial points and optimized for another 20 steps; the blue points are the dominated solutions from all 20 repeated runs and the green points are 20
Pareto front solutions all plotted at once.
In practice, experts can decide on the proportion of aggressive and
non-aggressive criteria to get different numbers of optimal solutions
given the overall budget, depending on the problem-specific goals.

4.2. Experimental case study

For the real-world application, MO-E-EQI was implemented to guide
the optimization of an esterification reaction. Four variables, flow rate,
catalyst (DMAP) loading, equivalent and temperature were adjusted
to maximum STY while minimize E-factor simultaneously. Initial 20
sampling points were generated by MaxPro and experimental data with
three samples was collected for each condition. Based on these data,
GPs were trained and optimization was sequentially continued for a
further 40 steps with 𝛽 = 0.6. The non-aggressive method was used for
the MO-E-EQI criterion.
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Fig. 13(a)–(c) shows reaction optimization results, also in Appendix
G. As shown in Fig. 13(a), the MO-E-EQI identified Pareto front effi-
ciently and showed a very clear trade-off between STY and E-factor.
The Pareto front consisted of 20 solutions, with STY ranging from 2.66
g/(𝐿⋅min) to 195.04 g/(𝐿⋅min) while the E-factor ranged from 2.89
to 8.47. All the data on this Pareto front highlighted compromised
solutions between STY and E-factor, which means that STY cannot be
improved without worsening E-factor and vice versa.

Fig. 13(b) presents optimization trajectories for two objective func-
tions. When the algorithm started, the first sequential 10 steps were
more exploratory and favoured large STY solutions. Then it became
more exploitative by adding more points around the region near the
minimum E-factor. It should be noted that although we set the exper-
iment budget to be 60, optimization results were not improved since
step 53, which indicated that the optimization had already stalled.
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Fig. 11. Comparison of coverage metric between MO-E-EQI, qNEHVI, qNParEGO, TSEMO and LHS Space Filling over different noise structures and magnitudes. Results are the
average values of coverage metric over 20 repeated runs (MO-E-EQI with multiple model runs and 𝛽 = 0.6).
Fig. 12. Number of solutions on Pareto front with different algorithms and noise settings. Results are the average number over 20 repeated runs (MO-E-EQI with multiple model
runs and 𝛽 = 0.6).
The impact of four reaction variables was visualized in a three-
dimensional plot for three main influencing factors (equivalent, flow
rate and DMAP loading), as shown in Fig. 13(c). The sizes and colours
of the data points represent STY and E-factor respectively, and tempera-
ture is represented using the linewidth of the points. At low equivalents,
the E-factor was always low but STY was also low. When increasing the
equivalent from moderate to high, more desired product was produced
but at the same time more waste was generated, which resulted in
a decrease of the E-factor but favoured STY. Large DMAP loading
accelerated the reaction and increased STY but generated more waste.
The influence of temperature mainly changed the reaction rate but was
not that obvious. In addition, it can be noticed that data points were
quite sparse in the high equivalent from 4 to 5 compared to the low
equivalent from 1 to 3, where the algorithm was more explorative in
the high equivalent region.

5. Conclusions

Multi-objective Bayesian optimization (MOBO) has been shown to
be a useful tool for reaction development. In this study, we focus on
finding the optimal reaction conditions under heteroscedastic noise
using multi-objective Euclidian expected quantile improvement (MO-E-
EQI). The algorithm was first compared with some recent noisy MOBO
algorithms in an in silico study with multiple noise structures and mag-
nitudes. Then MO-E-EQI was further implemented to guide experiments
in a real case and a clear Pareto front was identified successfully.
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The in silico study shows that noise does make a difference and
affects the algorithm performances. High noise degrades the perfor-
mance of all algorithms involved in the study. However, no significant
difference was observed for different noise structures with linear and
loglinear cases. For MOBO under noise, it is shown that metrics to
evaluate algorithm performances can be problematic. Overall, MO-E-
EQI shows robust performances in terms of HV distance and solution
coverage compared to other algorithms. The selection of aggressive and
non-aggressive criteria of MO-E-EQI can tune the number of solutions
on the Pareto front based on the need.

In the experimental case study, an esterification reaction was se-
lected with four continuous variables: equivalent, temperature, flow
rate and catalyst loading. Two objective functions were set as space–
time-yield and E-factor. MO-E-EQI was able to find the Pareto front
efficiently and identified a clear trade-off between the two objectives.
A set of Pareto front solutions generated with STY ranging from 2.66
g/(𝐿⋅min) to 195.04 g/(𝐿⋅min) while the E-factor ranged from 2.89 to
8.47, which left researchers to decide which condition to choose for
further development. Notably, MO-E-EQI shows efficient performances
under noise, however, this may be at a cost of increasing the number of
experimental measurements by repetitions. It is therefore more suitable
for automated experimental platforms or large-scale manufacturing
where cheap sensor data is available.

For real-life applications of MOBO, sometimes the complexity of the
problem and the noise levels are hard to estimate a priori. Most of the
time, noise structures are more complicated than simplified Gaussian
noise that is assumed in most studies and different assumptions on noise
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Fig. 13. Optimization results of a real-world esterification reaction. (a). Pareto front solutions; (b). Iterations of two objectives; (c). Three-dimensional optimization results versus
variables.
structures need to be further considered. In addition, designing perfor-
mance metrics for MOBO under noise is challenging but meaningful to
ensure algorithm performances for robust applications.
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