Mass transport in a moist planetary climate model
Mass transport in a moist planetary climate model
Planetary climate models (PCMs) are developed to explore planetary climates other than that of the Earth. Therefore, the methods implemented need to be suitable for a large diversity of conditions. Every planet with a significant atmosphere has condensible cycles (e.g. the hydrological cycle), which can play an essential role in the planet’s appearance and environment. We must accurately represent a condensible cycle in our planet simulations to build a powerful planetary climate predictor. OASIS is a 3D PCM capable of self-consistently representing the main physical processes that drive a planet’s environment. In this work, we improve the representation of mass transport in OASIS, which is the first step towards a complete and flexible implementation of a condensible cycle. We implement an upwind-biased scheme on a piece-wise linear approximation with a flux limiter to solve the mass transport equation. We first benchmark the new scheme on a 2D problem that confirms the superior properties of the new method over the central finite-volume method in terms of performance, accuracy, and shape-preserving mass distribution. Due to the new scheme’s less dispersive nature, we do not have to apply any unphysical diffusion to maintain the model stable. OASIS includes the new improved solver in the total mass and the tracer (e.g. clouds and individual gas chemical species) transport. We couple the new formulation with physical schemes and validate the new code on two 3D simulations of an ocean Earth-like planet and an ocean tidally locked planet. The new OASIS simulations are robust and do not show any known problems from the dynamics-physics coupling. We show that the two simulations capture the main characteristics of ocean planet atmospheres and are easy to set up. We propose these two simulations as the first standard benchmark tests for models built to explore moist planetary environments.
Mendonça, J.M.
cb29fe08-eb94-4fad-8eba-eac1c5de491b
3 March 2022
Mendonça, J.M.
cb29fe08-eb94-4fad-8eba-eac1c5de491b
Abstract
Planetary climate models (PCMs) are developed to explore planetary climates other than that of the Earth. Therefore, the methods implemented need to be suitable for a large diversity of conditions. Every planet with a significant atmosphere has condensible cycles (e.g. the hydrological cycle), which can play an essential role in the planet’s appearance and environment. We must accurately represent a condensible cycle in our planet simulations to build a powerful planetary climate predictor. OASIS is a 3D PCM capable of self-consistently representing the main physical processes that drive a planet’s environment. In this work, we improve the representation of mass transport in OASIS, which is the first step towards a complete and flexible implementation of a condensible cycle. We implement an upwind-biased scheme on a piece-wise linear approximation with a flux limiter to solve the mass transport equation. We first benchmark the new scheme on a 2D problem that confirms the superior properties of the new method over the central finite-volume method in terms of performance, accuracy, and shape-preserving mass distribution. Due to the new scheme’s less dispersive nature, we do not have to apply any unphysical diffusion to maintain the model stable. OASIS includes the new improved solver in the total mass and the tracer (e.g. clouds and individual gas chemical species) transport. We couple the new formulation with physical schemes and validate the new code on two 3D simulations of an ocean Earth-like planet and an ocean tidally locked planet. The new OASIS simulations are robust and do not show any known problems from the dynamics-physics coupling. We show that the two simulations capture the main characteristics of ocean planet atmospheres and are easy to set up. We propose these two simulations as the first standard benchmark tests for models built to explore moist planetary environments.
Text
2110.03719v2
- Accepted Manuscript
More information
Accepted/In Press date: 6 October 2021
Published date: 3 March 2022
Identifiers
Local EPrints ID: 497506
URI: http://eprints.soton.ac.uk/id/eprint/497506
ISSN: 0004-6361
PURE UUID: 313952ae-569a-4a4a-b733-c5434fda3a00
Catalogue record
Date deposited: 24 Jan 2025 17:32
Last modified: 25 Jan 2025 03:20
Export record
Altmetrics
Contributors
Author:
J.M. Mendonça
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics