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Abstract

Multiferroic materials can host a plethora of intriguing phenomena due to the presence of multiple
ferroic properties that break both spatial inversion symmetry and time reversal symmetry at an ob-
servable scale. Hexagonal manganite multiferroics are of particular interest as the properties of their
symmetry-lowering phase transition can be described by a Mexican-hat-like potential energy surface.
The early universe is proposed to have undergone a symmetry-lowering phase transition that is de-
scribed by a similar Mexican-hat-like potential that gives rise to the formation of one-dimensional
topologically protected defects known as cosmic strings. According to the Kibble-Zurek mechanism,
hexagonal manganite multiferroics can host the crystallographic equivalent of cosmic strings and can
therefore serve as a testing ground for exploration of concepts in cosmology. To date, however, direct
imaging of 1D topological defects in a condensed matter material system has not been achieved. Here
we report on robust three-dimensional imaging of topologically protected strings in a single hexag-
onal manganite nanocrystal, enabled by advances in experimental techniques. Our findings reveal
multiferroic strings with a preferred phase vortex winding direction and average separation of ~93
nm.

1 Introduction

1.1 Universe in a Nanocrystal (Kibble-Zurek Mechanism)

Multiferroic materials are single-phase materials where two or more ferroic properties including fer-
romagnetism, ferroelectricity, ferroelasticity or ferrotoroidicity co-exist.'™> Hexagonal manganites (h-
RMnQOs3), where R € {Y, Dy, Er, (or a small rare-earth ion)}, are multiferroic materials where ferroelectric
ordering arises due to tilting of MnOs bipyramids and buckling of R3* ions along the c-axis direction,
i.e. improper geometric ferroelectricity (Fig. 1a). Tilting occurs collectively either toward or away from
a central R3* ion positioned at either of three distinct lattice sites (o, 8 or 4) leading to six symmetry-
equivalent trimerisation states (Fig. 1b). The potential energy surface that describes the ferroelectric
phase transition therefore has a Mexican-hat-like topology (Fig. 1c) where the radial distance from the
central peak represents the magnitude of MnOj bipyramid tilting and the six equivalent minima in the
Zs-symmetry brim represent the symmetry-equivalent trimerisation ground states. This potential has
similar symmetry to the ‘¢* potential that describes the formation of the Higgs boson®® as well as
one-dimensional topological defects such as the cosmic strings, proposed to have formed in the early
universe.” As a result, hexagonal manganites can host the crystallographic equivalent of cosmic strings
in the form of topologically protected vortex strings at the intersection of ferroelectric domains (Fig. 1d).
When coupled with the Zurek mechanism, which is used to estimate the defect number density (n) as a
function of the rate of quenching across the ferroelectric phase transition, the Kibble-Zurek mechanism
(KZM) is able to describe a phase transition in any system with the required symmetry properties.” "
The KZM is therefore generally applicable in such cases and determines the defect number density, n
as:
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(1)

n

1 o (D—d)v/(1+2v)
(%)
where &g is the zero-temperature correlation length, 7o = &y/cis the zero-temperature time, cis the speed
at which information is transferred in the system, 7, is the quench time, D, d are the dimensions of the
space and defect respectively and v, z are critical exponents that are determined by the universality
class of the system."' =% For a particular material and universality class, scaling of the defect number
density n is therefore determined solely by the quenching rate. Varying the rate of cooling through a
ferroelectric phase transition becomes equivalent to varying the rate of early universe expansion.' ="'/
To date, however, non-destructive three-dimensional imaging of 1D topological defects in materials has
proven challenging.

1.2 Bragg CDI Synopsis

Bragg coherent diffraction imaging (BCDI) is a particularly powerful tool for the study of multiferroics at
the nanoscale as it is able to reveal the ferroelectric domain structure in three dimensions.'®~“Y BCDI is
performed by illuminating a nanoscale crystal in the Bragg reflection geometry with a spatially coherent
X-ray source, so that the coherence length exceeds the dimensions of the nanocrystal. The resulting
scattered light from the nanocrystal interferes in the far-field, producing a three-dimensional reciprocal-
space diffraction pattern.”'~** The diffracted intensity is measured using a photon counting area detector
which is optimally positioned to resolve the finest fringes of the diffraction pattern. The third dimension
of the diffraction pattern is obtained by rotating the crystal through the Bragg condition while maintaining
a largely fixed incident angle (a rocking-curve measurement).

Iterative phase reconstruction methods are then used to recover the complex three-dimensional elec-
tron density and phase information present within the x-rays that is acquired when coherently scattered
from the nanocrystal.””“> The displacement of ions throughout the bulk is directly related to the recov-
ered phase and can be used to obtain strain information according to the relation ¢ = Q - u, where u
is the atomic displacement from the equilibrium lattice position.”*“¢ Diffraction patterns from multiple
Bragg reflections of a single nanocrystal are combined to recover the full displacement field and its spatial
derivative which is the strain tensor field.””*/

1.3 Summary of Manuscript

Here we utilise BCDI to directly image in three-dimensions topologically protected strings in a single
hexagonal manganite nanocrystal.

2 Results

2.1 Multiple Bragg Peak Experiment

Nanocrystals of hexagonal dysprosium manganite (h-DyMnQOs) were prepared from bulk melt-grown
h-DyMnQOj3 as described in the Methods section.”®“” Laboratory based x-ray diffraction experiments
were used to verify the correct hexagonal crystallographic phase was obtained with lattice parameters
a=b=6.18Aandc = 11.4A."" The ferroelectric domain structure in h-DyMnOjs is formed upon cooling
the high symmetry paraelectric phase (P63/mmc) through the critical temperature (T) of ~ 1200 K to
the lower symmetry ferroelectric phase (P63cm). In this case, quenching was performed at a cooling rate
of ~1000 K per second.

BCDI experiments were performed in air on beamline 116 of the Diamond Light Source synchrotron
facility using 9 keV x-rays and a quad Merlin detector”! where each pixel measured 55 um x 55 pum. The
sample-to-detector distance during measurements was fixed at 1.31 meters. The full beam x-ray flux
at the sample was 3 x 1013 photons s™1. Samples containing mono-dispersed h-DyMnOs nanocrystals
were mounted at the eucentric point of the 6-axis kappa diffractometer. The beam size was reduced
down to 50 x 50 um? using front-end slits. A single specular Bragg reflection corresponding to the
G (110) reciprocal lattice plane from a single h-DyMnOg nanocrystal was located and its three-dimensional
diffraction pattern recorded. Additionally, the (111) Bragg reflection from the same nanocrystal was
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found by first rotating the experimental geometry (Q-vector) through the cone of all possible points
where Q - Q(110) = Gi11) - G(110)- Subsequently, the (112) Bragg reflection from the same nanocrystal
was found by defining an orientation matrix using the location of the previous two reflections. Each
diffraction speckle pattern was subsequently coordinate transformed into Cartesian coordinates and
sampled onto a regular grid in preparation for concurrent phase retrieval.

2.2 BCDI Concurrent Phase Retrieval

Phase reconstruction of the real-space electron density and displacement field u(r) was performed con-
currently”” 7> °7=%% using the Interactive Phase Retrieval Suite” for all three Bragg reflections of a single
nanocrystal. Concurrent phase retrieval was previously shown to provide stronger convergence and
high reproducibility than independent phase retrieval due to inherent redundancy in the concurrent
approach.”” Phase reconstruction consisted of repeated cycles of 5000 iterations of Fienup’s Hybrid
Input-Output (HIO) algorithm with a masked diffraction pattern followed by 100 iterations of the Error
Reduction (ER) algorithm.”® In each case, a support (solvent) was employed that was created using a
manual version of the shrink-wrap method.”’-"/ Phase retrieval attempts were repeated at least three
times with a revised shrink-wrapped support from the previous attempt until no appreciable changes

were observed in the support morphology between reconstruction attempts.

2.3 BCDI of Ferroelectric Phase Vortices

Figure 2 shows the reconstructed real-space electron density map of the single h-DyMnQOg nanocrystal
for each of the three Bragg reflections. In addition, the phase information at the corresponding loca-
tion is mapped onto the surface. Considerable variation in the phase information across the surface is
observed in each reflection with the (111) reflection clearly showing striped phase patterns across the
surface. Each reconstruction shows consistency in the morphology of the nanocrystals confirming good
agreement in the reconstruction process. The morphology is shown at a 95% isosurface with nominal
dimensions of 1.22 um in width and 2.07 um in height. Real-space electron density maps without phase
information mapped onto the surface are shown in the Supplementary Materials. The resolution for each
reconstruction was estimated using the Phase Retrieval Transfer Function (PRTF)*® and was determined
to be 35.2 nm, 46.7 nm and 20.8 nm for the (110), (111) and (112) Bragg reflections respectively (Fig.
Sé6 of Supplementary Material).

Figure 3 shows slices through the reconstructed electron density map of the (111) reflection normal
to the x-axis (a), y-axis (b) and z-axis (c) respectively. Slices are shown at five 100 nm intervals for
each orientation. Equivalent plots for the (110) and (112) reflections are found in the Supplementary
Material. Stripe domain structure (a) and a number of ferroelectric vortex patterns (b and ¢) are visible
throughout the nanocrystal volume, primarily in the (111) reflection phase information. Vortex cores
appear with a preferred winding direction for the phase information that surrounds the defect, in the
plane of view. In Fig. 3(b) this corresponds to a positive increase in phase for anti-clockwise winding
direction. From the observation of vortex cores with a preferred winding direction, we can infer that
the topologically protected strings within the nanocrystal are not winding back to one another as this
would produce vortex cores with opposite winding direction - which are not observed. Vortex cores are
nominally separated by 93 nm (see Fig. 5g), with separations up to 120 nm observed, as shown. Phase
paths connecting pairs of vortex cores are also observed, most clearly in Fig. 3(c).

Figure 4 shows the strain tensor information € which is the spatial derivative of the displacement
field, defined as e = (1/2){Vu + (Vu)”}. Cross-sections through each of the six independent strain
tensor components normal to the x-axis direction are shown in each column where each slice is taken at
locations shown in Fig. 3. Cross-sections normal to the y-axis direction and z-axis direction are shown
in the supplementary material. Strain information with patches of tensile and compressive strain are
visible in all components except the ¢,, component which is largely strain free in contrast. A likely cause
of this effect relates to the uniformity of displacements along the c-axis direction, for which there is a
significant component in the z-axis direction. Crucially surface effects such as oxygen depletion, which
would appear as strain layers near to the surface, are not observed in the strain tensor information
suggesting that h-DyMnOgs nanocrystals were synthesised with sufficiently high phase purity for such
effects not to be visible at the resolution of this measurement.
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2.4 Topologically Protected Strings

Figure 5 shows topologically protected strings defined as the path for each vortex core in the phase
map information for the (111) reflection electron density map of Fig. 3. The (111) reflection was chosen
as the strings were more clearly observed in the phase information when compared to phase informa-
tion in the (110) and (112) reflection density maps. The accompanying Supplementary Video shows a
three-dimensional animation of the topologically protected strings to facilitate with visualisation. Slices
through the reconstructed h-DyMnOj3 nanocrystal phase information maps are shown in Fig. 5a and Fig.
5d along with the coincidence points of the strings with phase vortex cores. Strings pass through the
h-DyMnQO3 nanocrystal unperturbed by the surface and in some places appear to fold back on them-
selves to form loops. In order to determine the density of topologically protected strings within the
nanocrystal we defined the Path Distribution Function (PthDF), g(r), which describes the distribution
of minimum distances between pairs of strings within the nanocrystal volume. This is analogous to the
Pair Distribution Function (PDF)”"~*! with the exception that it operates on one-dimensional paths as
opposed to zero-dimensional points. The PthDF is defined as:

o= / at pi(t) 8(si(t) — 1) | 2a)

i g
si5(t) = min {&; (¢, ¢) |t e RA~;(t') e N}, (2b)
&ij(t, ") = [lv;(t) —v; ()]l (2¢)

where ,(t) are the coordinates of a point on the multiferroic string trajectory with index i and
density p;(t), while N are the set of all points within the nanocrystal volume. Figure 5g shows the
resulting PthDF for multiferroic strings in the (111) phase map. It shows a clear preference for strings
to separate by ~93 nm. The corresponding area density of strings, (n), is estimated from the preferred
string separation and found to agree with those previously reported for the same cooling rate in bulk
samples.'>“*? From this we can infer that there are likely no fundamental changes in domain structure
between our nanoscale structure and bulk samples.

3 Discussion

Earlier studies aimed at revealing three-dimensional domains, domain walls, and multiferroic strings have
employed destructive means such as sequential Focussed lon Beam (FIB) cutting of cross-sections of bulk
multiferroic materials. Subsequent imaging of these slices was performed using either Scanning Elec-
tron Microscopy (SEM), piezoresponse force microscopy (PFM) or conductive atomic force microscopy
(cAFM). The resulting images were used to successfully reveal domain and domain wall contrast.t %%
SEM, PFM and cAFM measurements however were unable to reveal the winding direction of the vortex
structure, which is readily observed when using Bragg CDI. While the robust nature of topologically pro-
tected structure lends itself to destructive mapping and imaging techniques, such measurements have
the disadvantage of lacking repeatability. Bragg CDI however offers non-destructive imaging where
measurements can be repeated on the same sample provided the dimensions of the material are below
the coherence volume of the coherent x-ray probe.”* When this isn’t the case, alternative and more
challenging approaches such as Bragg ptychography can in principle provide equivalent information.*”
Hexagonal manganite multiferroics often contain dense elements such as dysprosium that can produce
dynamical scattering effects. While in principle this may influence the BCDI phase reconstruction pro-
cess, dynamical scattering effects are often found to be less significant than refraction and absorption
effects and therefore generally do not warrant further consideration.**=*¢

Bragg CDI also provides strain information and has revealed in this study that strings, which are lines
of the paraelectric phase trapped in the ferroelectric structure, induce tensile and compressive strain of
up to 0.1 along commensurate paths, with magnitude exceeding that of strain within the broader domain
regions. Future BCDI studies on multiferroic strings where the effect of strain is studied dynamically,
via progressive deformation,”” could provide further insight into the role of strain in the formation of
multiferroic strings.

In summary, we have demonstrated three-dimensional imaging of predicted one-dimensional topo-
logically protected strings in a single nanocrystal of multiferroic hexagonal manganite h-DyMnOs. The

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185



density of the strings matches that inferred from surface measurements of bulk samples prepared at
similar quenching rates. In addition, phase map information reveals that phase vortex structures, whose
core locations define the path of each string, appear with a preferred winding direction and separation.

Our findings indicate the promise of lens-less imaging techniques such as Bragg CDI for the study
of three-dimensional structure and properties of topologically protected defects in materials. Possible
other areas of application include monopoles, strings and textures in liquid crystals, dislocations in metals
and polar skyrmions in ferroelectrics. We hope that the results presented here inspire further work in
these directions.

4 Methods

4.1 Synthesis and Quenching of DyMnO; Nanocrystals

Bulk DyMnQOg usually crystallises into a perovskite structure. However, when the composition

1 1
5 Dy20O3 + 5 MnsO3 = DyMnOj

is melted and crystallised under argon, some oxygen is released resulting in an oxygen-deficient compo-
sition DyMnOs_g (1 >> § > 0) which adopts a hexagonal YMnOs type structure.”®“” This structure is
denoted as h-DyMnOs.

Bulk melt-grown h-DyMnOg single crystals were mechanically ground in to a fine nanocrystalline
powder and transferred to a ceramic boat for annealing. The annealing was carried out under vacuum at
1000 degrees Celsius for 10 minutes. After the annealing period was complete, in-vacuum manipulation
was used to swiftly translate the ceramic boat into the room temperature portion of the vacuum furnace
thus inducing rapid quenching, at ~1000 K/s, of the annealed nanocrystals. The h-DyMnOg3 nanocrystal
powder was subsequently dispersed in isopropanol and sonicated for 15 minutes to ensure uniform
dispersion. Following sedimentation of the heavier nanocrystals, the supernatant solution from the upper
layer was carefully pipetted and drop-casted on to a cleaned Silicon (100) substrate to form a thin layer
of mono-dispersed h-DyMnQO3 nanocrystals.
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Figure 1: a, Illustration of the crystal structure of h-DyMnQOg in the paraelectric phase, shown with
4x1 unit cells. A single unit cell is highlighted by the shaded green region. b, Crystal structure of the
centrosymmetric paraelectric phase of h-DyMnQOs projected normal to the c-axis. Arrows indicate the
resulting displacement of oxygen ions due to tilting of MnOj5 polyhedra during the trimerisation transition
into the low temperature ferroelectric phase. Tilting occurs collectively either toward (+) or away (-)
from one of the central dysprosium ions («, 8 or ~) leading to six symmetry-equivalent trimerisation
states corresponding to the six equivalent minima of the Mexican-hat-like potential energy surface (c).
Each minimum in ¢ corresponds to the ferroelectric phase while the high symmetry paraelectric phase
is represented by the central peak. d, lllustration of three-dimensional topological domains forming a
vortex (front) - antivortex (back) pair connected by a topologically protected string.

is integral to the research and is made available to ensure transparency and reproducibility in scientific
research.
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Figure 2: Concurrent BCDI reconstruction of the morphology of a single h-DyMnQO3 nanocrystal showing
phase information mapped onto the surface of the crystals. Each of the 5 frames per row, from left to
right, differs by a rotation of 72 degrees normal to the vertical z-axis direction as defined in the image.
Multiple stripe phase patterns are visible predominantly in the (111) reflection of the nanocrystal.
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Figure 3: Slices through the (111) reflection of the reconstructed h-DyMnOg nanocrystal shown for
three orthogonal projections. The z, —y and —z unit vector points out of the image plane in the row
labelled a, b and ¢ respectively. Slices are taken at 2100 nm intervals directed normal to the image plane.
Numerous vortex structures are visible in the phase information and appear with a preferred winding
direction. Central image on row b labels two vortex cores separated by 120 nm.
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Figure 4: Strain tensor components of the reconstructed h-DyMnQO3 nanocrystal. Six independent com-
ponents of the strain tensor are shown in each column. Cross-sectional planes taken at the same loca-
tions shown in Fig. 3, are shown in each row. Axes have units of nanometers.
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Figure 5: Three-dimensional images of topologically protected strings defined as the path of each vortex
core for the (111) reflection throughout the reconstructed h-DyMnQOs nanocrystal . a, Slice through
the reconstructed h-DyMnO3 nanocrystal showing coincidence points of strings with vortex cores. b,
Strings shown with identical orientation as shown in (). ¢, Reoriented view of strings. d, Alternative view
of a slice through the reconstructed h-DyMnOs3 nanocrystal showing coincidence points of topological
strings with vortex cores. e, Strings shown with identical orientation as shown in (d). f, Reoriented
view of topological strings. g, Path Distribution Function (PthDF), g(r), which describes the distribution

of distances between pairs of strings, independent of orientation. Error bars are twice the standard
deviation.
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