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Abstract

This paper presents a general approach to inflation models with an arbitrary

number of inflation points. Using the convex theory of discrete mixture

models it achieves some general results including closed form expressions for

the estimates of the inflation weights and separability of the likelihood.

Keywords: Likelihood separation, mixture modelling, several inflation

points

1. Introduction

Inflation modelling for count data is most developed for zero-inflation

modelling. An introduction, over- and review can be found in Young et al.

[10]. One of the most widely used is a zero-inflated Poisson (ZIP) distri-

bution, which was introduced by Lambert [5]. However, inflation modelling

need not be restricted to zero-inflation. Recently, in the setting of marginal

capture-recapture modelling, one-inflation has attracted considerable atten-

tion. A review on one-inflation modelling (with zero-truncation) is given by

Böhning and Friedl [4]. However, work that has focus on more than one

inflation point is rare. In some other situations, not only zeros but also

another inflated count (k > 0) happened concurrently, which is known as
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zero and k-inflation; this resulted in the development of a new model. For

example, Aurora et al. (2021) used a zero and k-inflated Conway-Maxwell-

Poisson distribution to model the data. When a large number of zeros and

ones occur simultaneously, which is called zero-one inflation. An exception

is Junnumtuam et al. [9] who looks at zero-one-inflation in context of the

Covid-19 pandemic. Furthermore, in continuous datasets, only one of the

extremes, such as zero or one, may exist; thus, Ospina and Ferrari (2012)

investigated a broad class of zero-or-one inflated beta regression models.

This work extends these approaches in a more general way.

• We allow a general number of inflation points.

• We find a general and closed form solution for the maximum likelihood

estimates of the inflation weights. Hence there is no need to use any

algorithmic approach for solving the score equations.

• We show that the fitted values agree with the empirical frequencies.

• We show that the likelihood can be separated into two parts: one

part depends only on the inflation weights and does not involved the

parametric density; a second part consists of the parametric model

in the form of a truncated density which is truncated by all inflation

points.

The inflation and the truncation model. Suppose there are m+1 integer

points x0, x1, . . . , xm ∈ {0, 1, 2, . . .} receiving respective weights α0, α1, ..., αm

where αj ≥ 0 for j = 0, 1 . . . ,m and
∑

j αj ≤ 1. We assume that there is a

general base distribution px = P (X = x) where x = 0, 1, 2, ... and that this

distribution is potentially inflated at the points x0, x1, . . . , xm which we call

the inflation points carrying the inflation weights α0, α1, ..., αm. The base

2



distribution might depend on some unknown parameter θ, but we will not

consider this for the time being and concentrate on the inflation part. Given

this setting count data will arise from the probability mass function of some

count variable X ′ given by (1):

P (X ′ = x) =


αj + ᾱpxj ; if x = xj ∈ {x0, x1, . . . , xm}

ᾱpx; otherwise,

, (1)

where ᾱ = 1−
∑m

j=0 αj . Alternatively, we can say that the vector (α0, α1, ..., αm, ᾱ)T

is in the probability simplex S = {(α0, α1, ..., αm+1)
T |αj ≥ 0 for j =

0, 1, . . . ,m, (m + 1) and
∑m+1

j=0 αj = 1}. The case most frequently con-

sidered is where m = 0 and x0 = 0 leading to zero-inflation models. More

recently, interest developed in the case m = 0 and x0 = 1 corresponding to

one-inflation models. We will further down consider a case where m = 1

and x0 = 0 and x1 = 1, the zero-one-inflation model.

We will also need the probability mass function of the count variable X∗

which occurs if X is truncated by the inflation points {x0, x1, . . . , xm}. This

is given in (2):

P (X∗ = x) =
px

1−
∑m

j=0 pxj

; if x ̸∈ {x0, x1, . . . , xm}. (2)

We will see in section 5 that both models are strongly related.

Data and likelihood. Suppose in the sample of size N , n different

counts have been observed and let f0, f1, ..., fm be the frequencies of the

m+ 1 inflation points x0, x1, . . . , xm and fm+1, ..., fn the frequencies of the

n − m non-inflated observation counts. The likelihood function L is given

by

L =
m∏
j=0

(αj + ᾱpxj )
fj

n∏
j=m+1

(ᾱpxj )
fj , (3)
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from where the log-likelihood function of follows as

logL =
m∑
j=0

fj log(αj + ᾱpxj ) +N0 log ᾱ+ c. (4)

The constant c in (4) does not depend on (α0, α1, ..., αm, ᾱ)T and N0 =∑n
j=m+1 fj is the size of the sub-sample of the non-inflation counts. So,

N1 = N − N0 =
∑m

j=0 fj is the size of the sub-sample of the inflation

counts. Differentiation of logL with respect to αj and ᾱ provides

∂ logL

∂αj
=

fj
αj + ᾱpxj

for j = 0, 1, ...,m (5)

and

∂ logL

∂ᾱ
=

N0

ᾱ
+

m∑
j=0

fjpxj

αj + ᾱpxj

. (6)

Note that the gradient, the vector of partial derivatives given in (5) and (6),

is positive and defined as long as (α0, α1, ..., αm, ᾱ)T is an interior point of

the probability simplex S. Also, a direct argument using the concavity of

the log-function shows that the log-likelihood is a concave function of the

parameter vector (α0, α1, ..., αm, ᾱ)T . We build on this important fact in

the next section. Also, for simplicity, from now on we write pj for pxj .

2. Estimation and separation of likelihoods

Maximum likelihood estimation. As the inflation parameters model the

inflation points we expect that the fitted values correspond to the relative

frequencies. In other words, we assume that

α̂j + ˆ̄αpj =
fj
N

, for j = 0, 1, ...,m (7)
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where α̂j and ˆ̄α are the maximum likelihood estimators for parameters αj

and ᾱ for j = 0, . . . ,m. Now, summing up the m + 1 equations in (7) we

achieve

m∑
j=0

α̂j + ˆ̄α
m∑
j=0

pj =
N1

N
. (8)

Using that
∑m

j=0 α̂j = 1− ˆ̄α we arrive at

1− ˆ̄α+ ˆ̄α

m∑
j=0

pj =
N1

N

ˆ̄α =
1−N1/N

1−
∑m

j=0 pj
.

(9)

This in turn delivers closed form solutions for the parameter estimates of

the inflation weights as given in (10):

α̂j =
fj
N

− ˆ̄αpj . (10)

We have derived intuitive estimates for the parameter (α0, α1, ..., αm, ᾱ)T ,

but now need to show that these are indeed the maximum likelihood esti-

mators.

Theorem 2.1 (MLE). The estimators given in (9) and (10) are maximum

likelihood estimators given they are all positive.

Proof: According to the theorem for concave functionals on the probabil-

ity simplex (see the appendix) we have to show that the partial derivatives

at (α̂0, α̂1, ..., α̂m, ˆ̄α)T are identical. We start by plugging in the estimates

in the partial derivatives (5) and (6) and yield that

∂ logL

∂αj
=

fj
fj
N − ˆ̄αpj + ˆ̄αpj

= N, for j = 0, 1, ...,m (11)
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and

∂ logL

∂ᾱ
=

N0

ˆ̄α
+

m∑
j=0

fjpj

α̂j + ˆ̄αpj
=

N0

1−N1/N
1−

∑m
j=0 pj

+
m∑
j=0

fjpj
fj
N − ˆ̄αpj + ˆ̄αpj

=
N0 −N0

∑m
j=0 pj

1−N1/N
+N

m∑
j=0

pj =
N0(1−

∑m
j=0 pj)

N0/N
+N

m∑
j=0

pj

= N(1−
m∑
j=0

pj +
m∑
j=0

pj) = N (12)

Hence all partial derivatives agree which ends the proof.

The following theorem states that the fitted values agree with the em-

pirical relative frequencies at the inflation points.

Theorem 2.2 (fitted values). Let (α̂0, α̂1, ..., α̂m, ˆ̄α)T > 0 be the maximum

likelihood estimators provided in (9) and (10) . Then

α̂j + ˆ̄αpj =
fj
N

, for j = 0, . . . ,m.

We omit the proof as it is obvious.

Separation of likelihoods. The total sample log-likelihood function can

be expressed as

logL =
m∑
j=0

fj log(αj + ᾱpj) +N0 log(ᾱ) +
n∑

j=m+1

fj log pj . (13)

Then we plug-in α̂j and ˆ̄α by using

α̂j + ˆ̄αpj =
fj
N

.
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We see that the total log-likelihood function can be written as

logL =
m∑
j=0

fj log fj −N1 logN +N0 log

(
1−N1/N

1−
∑m

j=0 pj

)
+

n∑
j=m+1

fj log pj

=
m∑
j=0

fj log fj −N1 logN +N0 log

(
1− N1

N

)
+

n∑
j=m+1

fj log

(
pj

1−
∑m

j=0 pj

)

=

m∑
j=0

fj log

(
fj
N

)
+N0 log

(
N0

N

)
+

n∑
j=m+1

fj log

(
pj

1−
∑m

j=0 pj

)
.

(14)

Hence, we have a partition of the total log-likelihood function into two parts

as follows:

logL =
m∑
j=0

fj log

(
fj
N

)
+N0 log

(
N0

N

)
+

n∑
j=m+1

fj log

(
pj

1−
∑m

j=0 pj

)

= logL1 + logL0,

(15)

where

logL1 =
m∑
j=0

fj log

(
fj
N

)
+N0 log

(
N0

N

)
(16)

and

logL0 =

n∑
j=m+1

fj log

(
pj

1−
∑m

j=0 pj

)
. (17)

Thus, the total sample log-likelihood function can be written as a sum of

two independent log-likelihoods: logL = logL1 + logL0, where L1 and L0

are given in (16) and (17), respectively. Note that logL1 arises from the

inflation part but no longer involves neither inflation parameters nor any

potential parameters arising from the base distribution. The second part

logL0 involves only the base distribution but no inflation parameters – it

is inflation parameter independent. Note also that it is a truncated log-

likelihood, truncated for the m+ 1 inflation points. This result contains as
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a special case the result for one inflation point provided in Böhning and van

der Heijden [3].

The consequences of this separability have impact as it allows the focus

of fitting to be placed on the base distribution.

Uncertainty assessment. So far we have discussed estimation of parame-

ters using parts of the mixture maximum likelihood theory. When it comes

to uncertainty assessment, we suggest using the nonparametric bootstrap.

This can be accomplished as follows. From the observed data of size N ,

we sample with replacement a bootstrap sample of size the same size N .

All inflation points are truncated and the truncated likelihood of the base

distribution is maximized. Then the inflation weights are determined by (9)

and (10). This is repeated B times, where B is typically large. From the

bootstrap distribution of estimates we can determine standard errors and

confidence intervals, for the latter preferable percentile confidence intervals.

3. A case study

We now apply these ideas to count data representing the number of

deaths per day due to COVID-19 during 24 February 2020 and 31 Decem-

ber 2020 in Luxembourg, which are reported here in Table 1 (Data source:

European Centre for Disease Prevention and Control (ECDC); https:

//shorturl.at/bdMaE). In Table 2 we see the log-likelihood and BIC

Table 1: The number x of COVID-19 daily new deaths in Luxembourg in 2020.

x 0 1 2 3 4 5 6 7 8 9 10 11

fx 167 47 17 20 15 9 13 15 4 3 1 1
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for the various inflation point models, starting from no inflation and then

adding inflation points 1, 2 and 3. There is strong evidence for 0-1-inflation.

Table 3 shows the associated inflation weights. For the 0-1 inflation model

we find a large inflation weight for count 0 and a moderate inflation weight

for count 1. For the 0-1-2- and 0-1-2-3-inflation models the inflation weights

for 2 or 2-3, respectively, are rather small. We have also looked at other

Table 2: Some inflation models and their log-likelihoods with associated Bayesian Infor-

mation Criterion (BIC) for logL; considered baseline models are the Poisson, the negative-

binomial and the Poisson-Lindley distribution

BIC

inflation points logL logL1 logL0 Poisson NB Poisson-Lindley

none -725.09 0 -725.09 1455.92 1058.25 1117.79

0 -545.88 -215.49 -330.39 1103.24 1055.55 1048.86

0, 1 -511.97 -306.83 -205.14 1041.17 1044.31 1049.72

0, 1, 2 -510.42 -352.04 -158.38 1043.81 1049.24 1051.43

0, 1, 2, 3 -508.79 -397.31 -111.48 1046.30 1052.04 1056.18

no parametric baseline distribution

0, . . . , n -504.87 -504.87 1072.92

Table 3: Inflation weight estimates for various inflation models with a Poisson distribution

as baseline; λ̂ is the estimated Poisson parameter

inflation points α̂0 α̂1 α̂2 α̂3 λ̂

0 0.5190 - - - 3.39

0, 1 0.5314 0.1335 - - 4.47

0, 1, 2 0.5326 0.1380 0.0246 - 4.74

0, 1, 2, 3 0.5335 0.1427 0.0341 0.0293 5.12
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Table 4: Uncertainty assessment of parameters in the zero-one inflated Poisson model

parameters estimate s.e. 95% percentile CI

α0 0.5314 0.0278 0.4778 – 0.5860

α1 0.1335 0.0205 0.0942 – 0.1747

λ 4.47 0.2564 3.9707 – 4.9687

baseline distributions such as the negative-binomial or the Poisson-Lindley

distribution, but none provided a better fit as Table 2 shows. Note that

the BIC-values can be compared vertically (across different number of in-

flation points) and horizontally (across different baseline distributions.) We

have also included as a further benchmark the situation that every data

point becomes an inflation point, in other words, the empirical, relative fre-

quencies. See the last row in Table 2. It shows that the zero-one-inflated

Poisson model performs by far better than the latter. Uncertainty assess-

ment for the best-fitting model, the zero-one-inflated Poisson, has also been

performed using the nonparametric bootstrap as outlined in the previous

section with bootstrap replication size of B = 10, 000.. Table 4 shows the

results. The associated R-code is available in the supplement. Summing

up, the analysis shows that a Poisson model with zero- and one-inflation is

the most suitable model.

The question arises if inflation, including the number of inflation points,

can be diagnosed in an easy way. One way to approach this question would

be by analysis of residuals. In Figure 1 we show the Pearson residuals for

the data set at hand. The standard residuals (fj − f̂j)/
√

f̂j are typically

not very useful in detecting inflation as they are dominated by the large

number of observations. Only if we start to consider residuals where the
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Figure 1: Residual diagnostics based on Pearson residuals for the Poisson baseline distri-

bution; ”plus” represents the standard residual, ”cross” is leaving out zeros and ”circle”

is leaving out zeros and ones.

fit has been achieved without zeros or without zeros and ones (jackknifing),

inflation becomes apparent. However, this analysis will also depend on the

baseline distribution (for example, for the data set used here, in the case

of a Poisson-Lindley baseline, the zero-inflated model is best), and it seems

most appropriate to include this choice in the analysis as we have done using

the information criteria approach above.

4. Discussion

We have presented a general theory of inflation models which bridges

between fully non-parametric and fully parametric models. In fact, if the

number of inflation points m+1 is equal to the number of different observed

counts n, we obtain the empirical distribution function as Theorem 2.2 says.
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If there are no inflation points, then inference is based solely on the para-

metric part. The choice of m ∈ {0, 1, 2, . . . , n} offers considerably flexibility.

The results presented here reduce the computational burden considerably

as there are cloased form solutions for the inflation weights available. Fur-

thermore, inflation models connect to robust statistics. Any added inflation

point removes this point from the inference in the non-inflated data part as

(15) implies. Of course, on the parametric part a diversity of models is pos-

sible and we have mentioned here only a few, as our focus is on the generic

results, which are independent of any baseline distribution. Clearly, it is

possible to allow more models of semi-parametric nature for the baseline

distribution, although it seems reasonable to stay with simple parametric

models for the baseline distribution. Mixture models have been around for

some time but it has been the fundamental work of Lindsay [6] who put

discrete mixture models into the context of convex theory. This note adds

a further piece into that elegant theory.

5. Appendix: An optimality result for concave functionals on the

probability simplex

Let ϕ(α) be a concave and differentiable functional defined on the prob-

ability simplex S = {α = (α0, α1, ..., αm)T |αj ≥ 0 for j = 0, 1, . . . ,m and∑m
j=0 αj = 1}.

Theorem 5.1 (General equivalence theorem for mixtures of Lindsay[6]).

Let α̂ ∈ S and α̂ > 0. Then the following conditions are equivalent:

1.

ϕ(α̂) ≥ ϕ(α), for all α ∈ S
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2.
∂ϕ

∂αj
(α̂) = ∇ϕ(α̂)T α̂, for j = 0, . . . ,m

3. There is a constant c ̸= 0 such that

∂ϕ

∂αj
(α̂) = c, for j = 0, . . . ,m.

Here ∇ϕ(α) denotes the gradient, the vector of partial derivatives at α.
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