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This work explores the influence of the dynamics of the piano soundboard on string vibration and 

on the force acting between the vibrating string and the bridge. Four different soundboard 

representations of different complexity are considered: (i) a finite element model that considers the 

complete dynamic behavior of the soundboard at the connection point with the string within the 

frequency range of interest, (ii) a reduced modal model containing only five modes, (iii) a Kelvin-

Voigt system characterized by an equivalent stiffness and damping and (iv) a rigid soundboard 

represented by a simply supported boundary condition. The connection between the string and the 

soundboard is modelled by coupling a simply supported stiff string model with the different 

representations of the soundboard through a contact stiffness. As well as directly accounting for the 

string-soundboard coupling, this approach also includes the duplex scaling segment. The latter can 

be left to vibrate freely or muted with a continuous distribution of dampers. Although the simplest 

soundboard representation is not dissimilar from the other more complex models, the dynamics of 

the soundboard affect the decay time of the note, the force transmitted to it, and the vibration of the 

radiating surface of the soundboard.  
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I. INTRODUCTION 1 

The strings of musical instruments, including the piano, are generally coupled through a bridge to a 2 

soundboard, which radiates sound more efficiently. The vibration of the strings is affected by this 3 

coupling to some extent. The bridge and soundboard provide a quasi-rigid termination to the string 4 

at its speaking length, allowing it to vibrate at its fundamental frequency and associated harmonics. 5 

Although most of the vibration energy is reflected back into the string, parts are also transmitted 6 

into the soundboard and past the bridge into the duplex scaling segment of the string1. The 7 

connection with the soundboard can also produce the double polarization of the strings2, and can 8 

provide coupling between vertical and longitudinal directions. 9 

In the literature, the connection between the strings and the soundboard has been modelled either 10 

by studying the dynamics of two separate systems or, less frequently, by accounting for a full 11 

coupling between them. When the string and the soundboard are modelled as decoupled systems, 12 

the component of the string tension perpendicular to the soundboard serves as an input to the 13 

vibration of the soundboard3-6. In these cases, the length of the string corresponds to the distance 14 

between the agraffe and the bridge (the speaking length, i.e., neglecting the duplex scaling segment), 15 

and its ends are simply supported. String vibration excited by the hammer can then be studied with 16 

numerical approaches such as finite differences7-11. In a fully coupled approach, however, the 17 

dynamics of the soundboard at the bridge provides a non-rigid boundary for the string. In this case 18 

the total length of the string between the agraffe and the hitch pin is included. Models of this type 19 

are more complex but can better explain the effect of the soundboard on the string vibration and 20 

hence on the force transmitted to the soundboard. Fully coupled string-soundboard models for 21 

piano acoustics have been proposed by the authors12;13 and also exist for other instruments14-17. Finite 22 

difference approaches14 or modal models in the time domain15-17 have been successfully implemented 23 

to obtain the string vibration and contact forces of the coupled system. 24 
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Whether they are seen as part of a coupled system or as independent vibrating components, the 25 

strings and soundboard can be represented using different modelling techniques. For string 26 

vibration, the equation of a stiff string solved with Finite Differences is probably the most popular 27 

method in musical acoustics but Finite Elements (FE)5 or modal models have also been 28 

presented16;17. The dynamics of the soundboard at the bridge have been addressed in different ways, 29 

including a frequency-dependent boundary condition for string-only models18, or plate models such 30 

as thin plates4, Reissner-Mindlin plates5 (including shear deformations), linear filters19 or FE20-22.  31 

The soundboard itself was characterized experimentally at the bridge by Wogram23, using different 32 

modal analysis techniques. The coupled vibration of the string soundboard system was analyzed, and 33 

it was found that the decay of string tones was larger due to the reduced energy transfer caused by 34 

the mismatch in the impedance. Ege et al.24 characterized the soundboard both numerically and 35 

experimentally. Among other things the authors studied the nonlinear behavior of the soundboard 36 

which was quantified to be orders of magnitude smaller than the linear one. Their study also gives an 37 

insight into the damping of the soundboard. Values of damping ratio between 0.005 and 0.015 38 

were obtained. Similar values for the soundboard damping were obtained by Corradi et al.25. These 39 

authors measured the vibration of the soundboard at different manufacturing stages and noted that, 40 

at advanced manufacturing stages the soundboard presents damping ratios varying between 0.008 41 

and 0.03. In Squicciarini’s thesis21, the finished soundboard fitted into the piano exhibited even 42 

higher damping ratios ranging between 0.007 and 0.047. Suzuki26 obtained values of 0.032 for the 43 

first mode and between approximately 0.01 and 0.015 for higher modes, while Berthaut27 obtained 44 

smaller values of  0.003 − 0.0065. 45 

Trevisan et al.28 developed analytical soundboard models, in which the soundboard was modelled as 46 

a Love-Kirchhoff plate. One of the interesting conclusions reached by the authors is that geometric 47 

and manufacturing details of the soundboard can have an influence on the first natural frequencies 48 
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when compared with experimental results. Closely related to the present study, reduced soundboard 49 

modelling has been introduced by various authors, see for instance Boutillon & Ege29, and Corradi 50 

et al.25. In these studies, the frequency response of the soundboard is approximated in an average 51 

sense by combining the driving point impedances of an infinite beam and an infinite plate. These 52 

approaches were formulated directly in the frequency domain and cannot be directly adopted in a 53 

time-domain solution.  54 

The main aim of this work is to develop a model of a coupled system, in which a piano string and 55 

soundboard are connected at the bridge, and to evaluate the degree of complexity required to 56 

describe the dynamic behavior of the soundboard. For this purpose, different dynamic models of a 57 

soundboard, of increasing complexity, are coupled to a string in the direction perpendicular to the 58 

soundboard, as described in Section II. The authors have previously developed models using one of 59 

the simpler soundboard representations to study the dynamics of the coupled system in two12 and 60 

three13 directions. Differently from this, in the current work comparisons are made between 61 

different soundboard models which focus on the transverse direction perpendicular to the 62 

soundboard. To calculate the response of the coupled system, a time-domain model in a state-space 63 

formulation is implemented in Section III. This approach requires the structural damping of the 64 

string alone, for which an experimental setup is designed, and measurements are performed in 65 

Section IV to determine the damping of strings disconnected from the bridge. The implications of 66 

using the different soundboard representations are discussed in Section V, with conclusions given 67 

thereafter. The modelling approach considers only the transverse direction perpendicular to the 68 

soundboard, and no nonlinear phenomena are considered such as the generation of phantom 69 

partials due to the coupling between transverse and longitudinal directions on the strings19. Instead, 70 

the main novelty of this work lies in the exploration of the details needed to model the soundboard 71 

to account for the interaction with the string. Furthermore, the inclusion of a duplex scaling 72 
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segment in the model, which can be either be attenuated with a continuous distribution of dampers 73 

and springs or left free to vibrate (see below), is an aspect that, to the best of the authors' 74 

knowledge, has not been extensively addressed before. 75 

II. STRING AND SOUNDBOARD 76 

A string of length 𝐿𝐿 connected to a soundboard system is shown in Figure 1 together with the main 77 

variables adopted for the analysis. These are the displacements 𝑦𝑦 and forces 𝐹𝐹, at the hammer 78 

striking point 𝑒𝑒 from a distance 𝐿𝐿𝑒𝑒 from the agraffe termination, and at the connection points 79 

between the string 𝑠𝑠 and soundboard 𝑏𝑏. Only vibration perpendicular to the soundboard is 80 

considered; this direction will be referred to as vertical. The connection with the soundboard divides 81 

the string of total length 𝐿𝐿 into two parts, the speaking length 𝐿𝐿𝑠𝑠 and the remaining vibrating duplex 82 

scaling segment 𝐿𝐿𝑑𝑑 . With the aim of analyzing the effect of soundboard dynamics on the string 83 

vibration and transmitted force, three different representations of the soundboard are developed and 84 

compared in the following sections. These are also summarized schematically in Figure 1 and are a 85 

full modal FE model, a reduced modal model and a Kelvin-Voigt system. A contact stiffness 𝑘𝑘𝑐𝑐 is 86 

introduced to represent the normal contact stiffness associated with local deflection at the contact 87 

point. Although the contact stiffness could be accounted for implicitly by higher order modes in the 88 

modal summation of the soundboard mobilities presented in section II-B, it is not considered as the 89 

modal summations are truncated. In addition a simply supported end at the bridge location (i.e. rigid 90 

soundboard) is considered.  91 
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 92 

Figure 1. (color online) Schematic representation of a string coupled with different representations 93 

of the soundboard. These are a full FE model, a reduced modal model and an equivalent Kelvin-94 

Voigt system. 95 

A. Stiff string model 96 

A model is defined for the vertical motion of the string uncoupled from the soundboard and simply 97 

supported at its ends defined by the agraffe and hitch pin (see Figure 1). It is represented as a stiff 98 

string with an equation of motion given as30:  99 

 
𝜇𝜇
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= 𝑇𝑇0
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2

− 𝐸𝐸𝐸𝐸𝐾𝐾2 𝜕𝜕
4𝑦𝑦
𝜕𝜕𝑥𝑥4

 (1) 

where 𝑦𝑦 is the vertical motion of the string in a position 𝑥𝑥 across the string at a time 𝑡𝑡, 𝜇𝜇 is the mass 100 

per unit length, 𝑇𝑇0 is the tension, 𝐸𝐸 is the Young’s modulus, 𝑆𝑆 is the cross-sectional area and 𝐾𝐾 is 101 

the radius of gyration. For a pinned string with length 𝐿𝐿, the 𝑛𝑛-th mode shape at a position 𝑥𝑥 from 102 

the agraffe and the corresponding natural angular frequency are30 103 
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 𝜙𝜙𝑛𝑛(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛/𝐿𝐿) , 𝜔𝜔𝑛𝑛 = 𝑛𝑛2𝜋𝜋𝑓𝑓0(1 + 𝐵𝐵𝑛𝑛2)
1
2 (2) 

where 𝑓𝑓0 = (𝑇𝑇0/𝜇𝜇)
1
2/2𝐿𝐿 is the fundamental frequency of the string in the absence of bending 104 

stiffness, and the inharmonic coefficient 𝐵𝐵 = 𝜋𝜋2𝐸𝐸𝐸𝐸𝐾𝐾2/𝑇𝑇0𝐿𝐿2. Damping is omitted from Eq.(1) but 105 

this will be included in terms of damping ratios (see Section III) in the state-space formulation and 106 

also indirectly by coupling with the soundboard. 107 

In a coupled string-soundboard system the force at the bridge is calculated from the interaction 108 

between the two components as outlined below. In the absence of a soundboard model (i.e., simply 109 

supported string at the bridge) the input force can be written considering the vertical component of 110 

the tension and a third order derivative related to the bending stiffness, evaluated at the string 111 

termination 𝑥𝑥 = 𝐿𝐿𝑠𝑠 , as:  112 

 
𝐹𝐹𝑠𝑠𝑠𝑠 = −𝑇𝑇0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝐿𝐿𝑠𝑠

+ 𝐸𝐸𝐸𝐸𝐾𝐾2 𝜕𝜕
3𝑦𝑦
𝜕𝜕𝑥𝑥3

�
𝑥𝑥=𝐿𝐿𝑠𝑠

 (3) 

B. Soundboard Models 113 

The different soundboard models adopted in this work are introduced in this subsection. These are 114 

an FE model, a reduced modal soundboard the response of which is fitted to the FE model and a 115 

Kelvin-Voigt soundboard consisting of a spring-damper system. 116 

1. FE model 117 

The geometry of the soundboard adopted in this work is based on a grand piano that was made 118 

available to the authors. An FE model that can represent the complete soundboard dynamics has 119 

been developed in COMSOL Multiphysics®. The thickness of the soundboard varies between 7 and 120 

9 mm from the edge to the center; its edges are clamped, the bridges and the wooden stiffener 121 

beams - often referred to as ribs - are modelled as isotropic and the soundboard as orthotropic. The 122 
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assumption of isotropic ribs and bridges is justified from previous studies by one of the coauthors21, 123 

in which a design sensitivity analysis was performed. It was found that the most important 124 

parameter of the ribs is the Young’s modulus in their longitudinal direction, with their other 125 

directions being negligible. This matches the purposes of the ribs, which are to stiffen the 126 

soundboard in its weakest direction. The properties of the wood correspond to Sitka spruce and 127 

were obtained from literature21, but the stiffest direction of the Young’s modulus and the density 128 

have been modified to provide a better agreement with driving point mobility measurements. The 129 

direction convention used for the material properties is illustrated in Figure 2, along with the points 130 

at which the mobilities are obtained along the two bridges. Additionally, a point 𝑘𝑘 is identified in the 131 

middle of the soundboard that is used to compute the vibrational response as described in section 132 

IV, C. Regarding the mesh, approximately 49000 quadratic tetrahedral elements were used with a 133 

minimum size of 
𝜆𝜆𝑝𝑝𝑝𝑝
9

 in the ribs and the bridge and 𝜆𝜆𝑝𝑝𝑝𝑝/10 in the soundboard, with 𝜆𝜆𝑝𝑝𝑝𝑝 being the 134 

shortest wavelength of a simple Kirchhoff plate representing the soundboard. The ribs/bridge and 135 

soundboard are considered as elastic bodies which share common element nodes, corresponding to 136 

a perfect connection between the domains. The main parameters of the model are listed in Table 1. 137 

The first three modes calculated using the FE model are shown in Figure 3.  138 

 139 
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Figure 2. Overview of soundboard geometry, with locations of connection points for each note and 140 

response point 𝑘𝑘. Conventions used for directions of orthotropic properties of wood are also 141 

shown. 142 

Table 1: Parameters of FE soundboard model 143 

Description Value Units Description Value Units 

Soundboard width 1.39 m Poisson’s ratio, 𝜈𝜈12 0.37 − 

Soundboard length 1.66 m Poisson’s ratio, 𝜈𝜈13 0.47 − 

Young’s modulus, 𝐸𝐸1 17.1 GPa Poisson’s ratio, 𝜈𝜈23 0.43 − 

Young’s modulus, 𝐸𝐸2 1.04 GPa Shear modulus, 𝐺𝐺12 1.0 GPa 

Young’s modulus, 𝐸𝐸3 0.48 GPa Shear modulus, 𝐺𝐺13 0.96 GPa 

Thickness 
0.007

− 0.009 
m Shear modulus, 𝐺𝐺23 0.04 GPa 

Density 600 kg/m3    

 144 

 145 

Figure 3. (color online) First three modes of the soundboard calculated using FE. 146 

To calibrate the FE model, measurements of the mobility were performed. Impact testing was 147 

conducted using an impact hammer PCB model 086C03, sensitivity: (±15%) 2.25 mV/N, 148 
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measurement range: ±2224 N pk, hammer mass: 0.16 kg. The response was obtained using a 149 

miniature uniaxial accelerometer PCB model 352C23, sensitivity: (±15%) 1.0 mV/(m/s2). Both 150 

devices were connected to a Data Physics Quattro, a portable Data Acquisition System.  151 

A coherence above 0.9 was achieved for frequencies between 50 and 4000 Hz. Damping ratios of 152 

the first six modes were estimated from the measured mobilities, using the circle fitting procedure31. 153 

These are shown in Table 2. For higher frequencies, damping was chosen to represent the different 154 

behavior that the piano structure may have on the mobility response.  155 

Table 2: Measured damping ratios. 156 

Natural frequency, Hz Damping ratio 

75.0 0.04 

118.8 0.034 

145.3 0.019 

182.8 0.024 

242.2 0.025 

260.9 0.018 

To cover a frequency range between 50 and 4000 Hz, 800 modes of the soundboard are included in 157 

the modal summation. The measured driving point mobility at the bridge location of note D4 is 158 

compared with the results of the FE model in Figure 4. The FE model gives a similar trend and level 159 

of the mobility magnitude and phase and can be considered as a realistic representation of a piano 160 

soundboard. It is therefore used in this work as a reference result for the other simplified 161 

representations of the soundboard dynamics. 162 
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 163 

Figure 4 (color online). Left: Location of measurement, the impact point is circled in red. Right: 164 

Point mobilities of the soundboard at the bridge location corresponding to note D4. (b) Magnitude, 165 

(c) phase. 166 

2. Reduced modal soundboard 167 

A simpler model of the soundboard is developed using an equivalent modal system. Five modes are 168 

considered sufficient to represent the main low frequency resonances as well as the high frequency 169 

trends. The modal parameters of this equivalent system are determined by fitting the mobility to that 170 

from the FE model such that the first four modes capture the first four resonances while the fifth 171 

mode is more highly damped to represent the average level of the soundboard mobility at higher 172 

frequencies. Although it would be possible to extract the modal parameters directly from the FE 173 

model to yield correct natural frequencies and mode shapes, this would not produce the highly 174 

damped mode at higher frequencies that represents the overall trend of the mobility in this region. A 175 
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modal fitting approach is therefore applied by adopting the non-linear least squares curve fitting 176 

routine in MATLAB to refine the modal parameters of the reduced model and hence minimize the 177 

error between the FE mobility and the modal summation based on the five modes. The mass 178 

normalized mode shapes, damping ratios and natural frequencies are then obtained. The soundboard 179 

mobilities obtained at the bridge positions corresponding to notes A1, D4 and D5 are shown in 180 

Figure 5, together with those from the full FE model and the simplified approach discussed below. 181 

The reduced modal model can replicate both the dynamic behavior of the main modes and the 182 

average flat response at higher frequency. This can represent the mobilities quite well. However, at 183 

higher frequencies the reduced modal model can only represent the average behavior of the 184 

mobility. Alternative methods have been adopted in the literature25;29;32 based on the mean value 185 

method proposed by Skudrzyk33, although these can approximate the dynamic response of a 186 

complex structure in the frequency domain they cannot be directly used in time domain whereas the 187 

reduced modal model adopted in this study is well suited to provide a direct structural coupling 188 

between the string and the soundboard.  189 

 190 
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 191 

 192 

Figure 5. Soundboard mobilities obtained using different models at different locations. (a) 193 

Magnitude, (b) phase. 194 

3. Kelvin-Voigt model for the soundboard 195 

Since the soundboard is significantly stiffer than the strings34, it may be sufficient to use a model that 196 

represents the generic trends and average values of the soundboard mobility without including the 197 

full modal characteristics. The local dynamic behavior of the soundboard is therefore modelled 198 

using a spring and a damper connected in parallel, which are tuned to fit to the mobility of the FE 199 

model. The stiffness is obtained from the low frequency asymptote where the model is stiffness-200 

controlled. The spring constant 𝑘𝑘 is hence obtained by considering the reference FE mobility 𝑌𝑌𝐹𝐹𝐹𝐹 201 

evaluated at a frequency 𝜔𝜔1 that needs to be 10 times smaller than the first natural frequency of the 202 
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soundboard. In this case 𝑘𝑘 = |𝑗𝑗𝜔𝜔1/𝑌𝑌𝐹𝐹𝐹𝐹(𝜔𝜔1)|. The damper coefficient is obtained through the 203 

logarithmic average of the mobility at frequencies above 2500 Hz. The soundboard mobility 204 

obtained using this Kelvin-Voigt (K-V) approach is also shown in Figure 5. The spring-damper 205 

system can approximate the main trends but does not replicate the modal behavior.  206 

To connect the K-V soundboard model to the string via the contact stiffness, a small mass is added 207 

at the interface to avoid numerical problems in the time-domain calculation. This mass should be 208 

small enough to ensure that the added mode is outside the frequency range of interest, since the 209 

trend of the mobility is chosen to be determined by the spring and damper only in this case. 210 

4. Input force to the soundboard 211 

The connection between the string and the soundboard is modelled by means of a contact stiffness 212 

which represents the local stiffness behavior at the contact point15;16. This method of connecting 213 

dynamic components of a system is also used in other areas research, such as railway noise and 214 

vibration research35. In the present case, the force is proportional to the relative displacement 215 

between string and soundboard as 216 

  𝐹𝐹𝑏𝑏 = 𝑘𝑘𝑐𝑐(𝑦𝑦𝑠𝑠 − 𝑦𝑦𝑏𝑏) (4) 

where 𝑦𝑦𝑠𝑠 and 𝑦𝑦𝑏𝑏 are the displacement of the string and soundboard at the bridge which can be 217 

obtained using the output state-space matrix 𝐂𝐂 defined in section III-C, and 𝑘𝑘𝑐𝑐 represents the 218 

stiffness of the contact zone. An expression for the contact stiffness 𝑘𝑘𝑐𝑐 is derived starting from 219 

Hertzian contact theory 36. For contact between cylindrical bodies, the normal load per unit length 𝑃𝑃 220 

acting over a contact patch of width 𝑎𝑎 can be written as36 221 

 
𝑃𝑃 =

𝜋𝜋𝐸𝐸∗𝑎𝑎2

4𝑅𝑅
 

(5) 
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where 𝑅𝑅 is the equivalent radius of curvature for the two surfaces. For a cylinder in contact with a 222 

flat surface, representing the case of a string in contact with the bridge’s surface, this is equivalent to 223 

the radius of the string alone. The equivalent Young’s modulus 𝐸𝐸∗ is given by: 224 

 𝐸𝐸∗ =
𝐸𝐸𝑠𝑠𝐸𝐸𝑤𝑤

𝐸𝐸𝑠𝑠(1 − 𝜈𝜈𝑤𝑤2 ) + 𝐸𝐸𝑤𝑤(1 − 𝜈𝜈𝑠𝑠2) (6) 

where 𝐸𝐸𝑠𝑠, 𝜈𝜈𝑠𝑠 and 𝐸𝐸𝑤𝑤, 𝜈𝜈𝑤𝑤 are the Young’s moduli and Poisson’s ratios of the steel string and the 225 

wooden bridge, the latter corresponding to 𝐸𝐸3 in Table 1. Such an approximation considers the 226 

rigidity of the material in the direction normal to the surface. 227 

Using a contact width 𝑎𝑎 ≈ √𝑅𝑅𝑅𝑅, where 𝑑𝑑 is the indentation and multiplying Eq.(5) by the length of 228 

the contact surface 𝐿𝐿𝑐𝑐 gives the contact force as also derived by Popov37: 229 

 𝐹𝐹𝑐𝑐 =
𝜋𝜋𝜋𝜋𝑐𝑐𝐸𝐸∗

4
𝑑𝑑 

(7) 

from which the contact stiffness (𝐹𝐹𝑐𝑐/𝑑𝑑) is: 230 

 𝑘𝑘𝑐𝑐 =
𝜋𝜋𝐿𝐿𝑐𝑐𝐸𝐸∗

4
 

(8) 

where 𝐿𝐿𝑐𝑐 is the length of the contact zone. The value of 𝑘𝑘𝑐𝑐 is in the order of 𝐿𝐿𝑐𝑐𝐸𝐸𝑤𝑤 and for a small 231 

contact length 𝐿𝐿𝑐𝑐 ≈ 0.01 m is evaluated as 4.8 × 106 N/m.  232 

The mobility of the soundboard obtained from the FE model at D4 is compared with that of the 233 

corresponding string (full length 𝐿𝐿) and contact stiffness in Figure 6. The soundboard mobility is on 234 

average five-to-six orders of magnitude smaller than that of the string at its resonances. The low 235 

structural damping of the string gives pronounced peaks and dips, unlike in the soundboard where 236 

the damping of the material is much higher. Consequently, at some antiresonances of the string, its 237 
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mobility is comparable or even lower than the soundboard and contact mobilities. The contact 238 

spring mobility exceeds that of the soundboard for frequencies above about 600 Hz. Results for the 239 

other notes exhibit similar trends, however for the A1 the spring mobility from 300 Hz exceeds that 240 

of the corresponding soundboard. 241 

242 

 243 
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 244 

Figure 6. Mobility of the soundboard (FE model) 𝑌𝑌𝑏𝑏, the string 𝑌𝑌𝑠𝑠 and contact stiffness 𝑌𝑌𝑐𝑐 for A1, 245 

D4 and D5. 246 

III. TIME-DOMAIN MODEL 247 

This section describes the state-space formulation adopted to represent and solve the dynamics of 248 

the coupled system in the time domain. The model adopted for excitation by the hammer is 249 

described first and this is followed by the state-space formulation of the coupled string-soundboard-250 

hammer system. A brief discussion on the numerical scheme used for this study is given at the end 251 

of the section. 252 

A. Hammer excitation 253 

Since Ghosh in 1932 38, different authors have modelled and showed experimentally that the 254 

hammer felt compression force is nonlinear and can be represented as a power law 7 39 40 given by: 255 

 𝐹𝐹𝑒𝑒 = 𝐾𝐾𝐻𝐻𝜉𝜉𝑝𝑝, (9) 

while the equation of motion of the hammer can be written as: 256 

 𝐹𝐹𝑒𝑒 = −𝑚𝑚𝐻𝐻𝑦̈𝑦𝐻𝐻. (10) 
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The parameters 𝐾𝐾𝐻𝐻, 𝑚𝑚𝐻𝐻 and 𝑝𝑝 correspond to the nonlinear stiffness, mass and power law 257 

coefficients obtained experimentally for piano hammers41. The term 𝑦̈𝑦𝐻𝐻 is the hammer acceleration 258 

while 𝜉𝜉 is the compression of the hammer which can be expressed as:  259 

 𝜉𝜉 = �𝑦𝑦𝐻𝐻 − 𝑦𝑦𝑒𝑒     if 𝑦𝑦𝐻𝐻 > 𝑦𝑦𝑒𝑒
0               otherwise

 (11) 

where 𝑦𝑦𝐻𝐻 and 𝑦𝑦𝑒𝑒 are the displacement of the hammer and the string at the excitation point, 260 

respectively.  261 

Other approaches have been developed for the hammer-string interaction which can include, for 262 

example, the effects of hysteresis42. However, as the main focus of this analysis is the string-263 

soundboard interaction, the simple power law formulation is adopted. 264 

B. String coupled with soundboard 265 

When the string is connected with any soundboard representation, the equations of motion of the 266 

system in state-space form can be expressed as43 267 

 𝐱̇𝐱 =  𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁 + 𝐁𝐁2𝐅𝐅𝑏𝑏 (12) 

On the left-hand side of Eq.(12) the state vector 𝐱𝐱 contains the modal velocities 𝐪̇𝐪 and modal 268 

displacements 𝐪𝐪 of the string and the soundboard, the velocity 𝑦̇𝑦𝐻𝐻 and displacement of the hammer 269 

𝑦𝑦𝐻𝐻, and can be written as 𝐱𝐱 = (𝐪̇𝐪, 𝐪̇𝐪𝑏𝑏 ,𝐪𝐪,𝐪𝐪𝑏𝑏 , 𝑦̇𝑦𝐻𝐻,𝑦𝑦𝐻𝐻)𝑇𝑇. This approach helps to produce a single state-270 

space formulation that can be used for all the models that include the connection with a 271 

soundboard. For the reduced soundboard, there are 4 modal coordinates, and for the FE 272 

soundboard, 800. For the simplest soundboard representation, the K-V model with small added 273 

mass, only one modal coordinate is considered. The state-space matrix 𝐀𝐀 can be defined as: 274 
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 𝐀𝐀

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−diag(2𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛) − 𝐂𝐂𝑑𝑑 𝟎𝟎 −diag(𝜔𝜔𝑛𝑛2) −𝐊𝐊𝑑𝑑 𝟎𝟎 | 𝟎𝟎 𝟎𝟎

𝟎𝟎 −diag�2𝜁𝜁𝑛𝑛𝑏𝑏𝜔𝜔𝑛𝑛𝑏𝑏� 𝟎𝟎 −diag�𝜔𝜔𝑛𝑛𝑏𝑏
2 � | 𝟎𝟎 𝟎𝟎

𝐈𝐈𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 | 𝟎𝟎 𝟎𝟎
𝟎𝟎𝑛𝑛𝑏𝑏×𝑛𝑛𝑏𝑏 𝐈𝐈𝑛𝑛𝑏𝑏×𝑛𝑛𝑏𝑏 𝟎𝟎𝑛𝑛𝑏𝑏×𝑛𝑛𝑏𝑏 𝟎𝟎𝑛𝑛𝑏𝑏×𝑛𝑛𝑏𝑏 | 𝟎𝟎 𝟎𝟎
− − − − − − −
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 | 0 0
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 | 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
(13) 

For the different soundboard models, matrix 𝐀𝐀 contains information about the damping ratio and 275 

natural frequencies of each string and soundboard mode within the correspondent modal damping 276 

and stiffness matrices. The damping ratio 𝜁𝜁𝑛𝑛 should be that of the string disconnected from the 277 

soundboard; this is characterized below in section IV. To attenuate the vibration occurring in the 278 

damped segment of the string, a method consisting in coupling several dashpots has been used 279 

previously by Jiolat et al.44. In the present work, a distributed damper and spring is used to modify 280 

the modal damping and stiffness matrix respectively, embedded in the state-space matrix 𝐀𝐀 in 281 

Eq.(12). They take the form:  282 

 
𝐂𝐂𝑑𝑑 = � 𝑐𝑐𝑑𝑑𝛟𝛟𝑛𝑛(𝑥𝑥)𝛟𝛟𝑛𝑛

𝑇𝑇(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐿𝐿𝑠𝑠+𝐿𝐿𝑑𝑑

𝐿𝐿𝑠𝑠
 (14) 

 
𝐊𝐊𝑑𝑑 = � 𝑘𝑘𝑑𝑑𝛟𝛟𝑛𝑛(𝑥𝑥)𝛟𝛟𝑛𝑛

𝑇𝑇(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐿𝐿𝑠𝑠+𝐿𝐿𝑑𝑑

𝐿𝐿𝑠𝑠
  

where 𝐿𝐿𝑑𝑑 is the length of the duplex scaling segment, 𝑐𝑐𝑑𝑑 and 𝑘𝑘𝑑𝑑 are the damping and stiffness 283 

coefficients that are defined (see below section V, E) to represent the strip of felt that usually mutes 284 

the duplex scaling segment in the mid-low register. The row vector 𝛟𝛟𝑛𝑛(𝑥𝑥) corresponds to the mode 285 

shape function evaluated across 𝐿𝐿𝑑𝑑 . 286 

The matrix 𝐁𝐁 in Eq.(12) can be written as: 287 
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𝐁𝐁 =

⎣
⎢
⎢
⎢
⎡ 𝛟𝛟𝑒𝑒

𝑇𝑇

𝟎𝟎
−

−1/𝑚𝑚𝐻𝐻
0 ⎦

⎥
⎥
⎥
⎤
 (15) 

Matrix 𝐁𝐁 is a column vector containing string mode shapes at the excitation point 𝑒𝑒, 𝛟𝛟𝑒𝑒
𝑇𝑇 as well as 288 

the inverse of the hammer mass. It is used to transform the force due to the hammer 𝐹𝐹𝑒𝑒 into modal 289 

forces. The external force vector 𝐮𝐮 is simply composed of 𝐹𝐹𝑒𝑒. The remaining modal force term 𝐁𝐁2𝐅𝐅𝑏𝑏 290 

is: 291 

 

𝐁𝐁𝟐𝟐𝐅𝐅𝐛𝐛 =

⎣
⎢
⎢
⎢
⎢
⎡𝛟𝛟𝑠𝑠

𝑇𝑇 𝟎𝟎
𝟎𝟎 𝛟𝛟𝑏𝑏

𝑇𝑇

𝟎𝟎 𝟎𝟎
− −
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

�−𝐹𝐹𝑏𝑏𝐹𝐹𝑏𝑏
� (16) 

which introduces the modal contact force between the string and the soundboard. This term couples 292 

the soundboard and the string at their connection point using the string mode shapes 𝛟𝛟𝑠𝑠, and the 293 

soundboard mode shapes 𝛟𝛟𝑏𝑏 at the connection point 𝑏𝑏. 294 

The physical displacements and velocities of the different parts of the system are calculated as 295 

 𝐲𝐲 =  𝐂𝐂𝐂𝐂 (17) 

where the matrix 𝐂𝐂 has the function of converting the modal coordinates to physical coordinates, 296 

and the output 𝐲𝐲 contains the physical velocities and displacements of the string, the soundboard at 297 

the connection point and hammer; these are required to calculate the forces in Eq.(4) and Eq.(9) at 298 

each time step of the integration. Expanding, this equation takes the form: 299 
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⎣
⎢
⎢
⎢
⎢
⎡
𝑦̇𝑦𝑠𝑠
𝑦̇𝑦𝑏𝑏
𝑦𝑦𝑠𝑠
𝑦𝑦𝑏𝑏
𝑦̇𝑦𝐻𝐻
𝑦𝑦𝐻𝐻⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝛟𝛟𝑠𝑠 𝟎𝟎 𝟎𝟎 𝟎𝟎 0 0
𝟎𝟎 𝛟𝛟𝑏𝑏 𝟎𝟎 𝟎𝟎 0 0
𝟎𝟎
𝟎𝟎
0
0

𝟎𝟎
𝟎𝟎
0
0

𝛟𝛟𝑠𝑠
𝟎𝟎
0
0

𝟎𝟎 0 0
𝛟𝛟𝑏𝑏
0
0

0
1
0

0
0
1⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝐪̇𝐪
𝐪̇𝐪𝑏𝑏
𝐪𝐪
𝐪𝐪𝑏𝑏
𝑦̇𝑦𝐻𝐻
𝑦𝑦𝐻𝐻⎦
⎥
⎥
⎥
⎥
⎤

 (18) 

The mode shapes 𝛟𝛟 are obtained at the excitation point and at the connection point to obtain the 300 

relevant physical quantities. Evaluating the mode shapes at different positions and modifying 𝐂𝐂 301 

accordingly can give the vibration response of the string at any arbitrary position. 302 

C. Simply supported string 303 

In the case where the connection between the string and the soundboard is not included in the 304 

model, the string is considered as simply supported at its ends, with a total length equal to its 305 

speaking length 𝐿𝐿𝑠𝑠. Eq.(12) becomes:  306 

 𝐱̇𝐱 =  𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁 (19) 

where now the state space vector includes only the modal coordinates of the string and the physical 307 

velocities and displacements of the hammer 𝐱𝐱 = (𝐪̇𝐪,𝐪𝐪, 𝑦̇𝑦𝐻𝐻,𝑦𝑦𝐻𝐻)𝑇𝑇. The state-space matrix 𝐀𝐀 is now 308 

reduced to include only the modal damping and modal stiffness matrix of the string:  309 

 

𝐀𝐀 =

⎣
⎢
⎢
⎢
⎡−diag(2𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛) −diag(𝜔𝜔𝑛𝑛2) | 𝟎𝟎 𝟎𝟎

𝐈𝐈𝑛𝑛×𝑛𝑛 𝟎𝟎𝑛𝑛×𝑛𝑛 | 𝟎𝟎 𝟎𝟎
− − − − −
𝟎𝟎 𝟎𝟎 | 0 0
𝟎𝟎 𝟎𝟎 | 1 0⎦

⎥
⎥
⎥
⎤

 (20) 

The modal forcing term 𝐁𝐁𝐁𝐁 remains unaltered.  310 
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D. Numerical integration 311 

Numerical time integration is performed to obtain the time-dependent output vector from the state-312 

space model, containing the velocities and displacements of the coupled system at the connection 313 

point. The time resolution of the response 𝑑𝑑𝑑𝑑 is defined as 𝑑𝑑𝑑𝑑 = 1/𝑓𝑓𝑠𝑠 in terms of a required sample 314 

frequency 𝑓𝑓𝑠𝑠. This, in turn, is defined in terms of the maximum natural frequency analyzed and set 315 

to 𝑓𝑓𝑠𝑠 = 10𝑓𝑓max, where 𝑓𝑓max is the highest natural frequency considered for the string. The initial 316 

conditions of the state-space vector 𝐱𝐱 are: 317 

 𝐪̇𝐪, 𝐪̇𝐪𝑏𝑏 ,𝐪𝐪,𝐪𝐪𝑏𝑏 = 𝟎𝟎 
𝑦̇𝑦𝐻𝐻 = 2.5 m/s,𝑦𝑦𝐻𝐻 = 0.05 m 

(21) 

where initial conditions for the modal coordinates are applicable for both string and soundboard. 318 

The numerical time integration of the input state-space equation for the different cases, i.e., in 319 

Eq.(12) or Eq.(19), is performed in MATLAB using ode45, which is based on the fourth-order 320 

Runge-Kutta method.  321 

IV. DAMPING OF A PIANO STRING 322 

Although most of the string parameters are available in the literature, the model developed in this 323 

work requires the structural damping of the string disconnected from the bridge and tensioned 324 

between the agraffe and the hitch pin. This is generally not available and was therefore measured 325 

experimentally. To uncouple the string from the soundboard, two example strings were lifted using a 326 

metal cylinder placed near the hitch pin and fitted between the string and the cast-iron frame, as 327 

shown in Figure 7. The string was therefore lifted by 2-3 mm to avoid contact with the bridge. 328 

Measurements were also performed with the string coupled to the soundboard for comparison.  329 
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 330 

Figure 7. (color online) Cylinder used to lift string to decouple it from the soundboard. 331 

Free vibration of the string was excited by means of a piano hammer and the vibration decay was 332 

analyzed to evaluate the damping. The transverse velocity response at a point close to the hammer 333 

striking position was recorded using a Laser Doppler Velocimeter.  334 

Prior the calculation of the energy decay, the velocities where filtered in frequency bands of 335 

bandwidth Δ𝑓𝑓 = 𝑓𝑓0, where 𝑓𝑓0 is the fundamental frequency; the bands were centered at the partials 336 

of the recorded tone. The energy decay in each band was calculated using the Schroeder integral as45: 337 

 
𝐸𝐸(𝑡𝑡) = � 𝑣𝑣𝑓𝑓2(𝜏𝜏)𝑑𝑑𝑑𝑑

∞

𝑡𝑡
 (22) 

where 𝑣𝑣𝑓𝑓 represents the filtered measured velocity of the string in the direction perpendicular to the 338 

soundboard. Negligible double polarization was observed with this setup, whereas in the case of the 339 

string coupled to the soundboard, the energy associated with the decay will be influenced by the 340 

different polarizations of the string. The reverberation time 𝑇𝑇60 can be calculated by fitting a straight 341 

line to a manually chosen range of the energy decay curve in decibels to obtain the slope. Then the 342 

damping ratio 𝜁𝜁 corresponding to a frequency band with central frequency 𝑓𝑓𝑐𝑐 was found from46:  343 

 𝜁𝜁 =
1.1

T60𝑓𝑓𝑐𝑐
 (23) 
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Estimated values 𝜁𝜁 for two uncoupled strings, a C2 (copper-wound) and F4 (steel) string, are shown 344 

as diamonds in Figure 8 and Figure 9. The estimated damping for the case where the strings are 345 

connected with the soundboard are also shown (circles). In the uncoupled strings, the results for F4 346 

are more disperse than for C2, due to limitations of the measurement technique used to try to avoid 347 

the hammer hitting other unison strings, which in reality are not independent strings: they consist in 348 

a single string that is chorded through the hitch pin of the piano, as shown in the photo of the piano 349 

string configuration in Figure 10. 350 

Thus, hitting other strings will result in undesired vibration in the measured string segment. These 351 

string segments were therefore lifted, which produced a change in tension, causing variable string 352 

frequencies. However, the resultant damping ratios did not vary significantly.  353 

The measured damping ratios are compared for reference with  the viscous damping model (SVM) 354 

as proposed by Chabassier5;47;48 and used also more recently by Tan49. There is generally a good 355 

agreement between the measured values and the SVM, which is here implemented using the values 356 

available in the literature for this note and not by curve fitting it with this set of measurements. 357 

Although the results are slightly frequency dependent a constant value for 𝜁𝜁 of all the modes could 358 

be also used as a reasonable approximation for the decoupled string. This was set to 5 × 10−5 for 359 

the copper-wound string and to 7.5 × 10−5 for the steel string (continuous lines in Figure 8 and 360 

Figure 9). In comparison to the structural damping of the string alone, the damping ratios of the 361 

string coupled to the soundboard are higher at low frequency by about a factor of 5-10 while they 362 

tend towards the damping ratios of the string alone at higher frequencies. It is to be expected that 363 

the model of the coupled string (see below) would be able to replicate this effect. 364 
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 365 

Figure 8. (color online) Estimated damping ratios 𝜁𝜁 for C2 string. Circles (red) string coupled to the 366 

soundboard. Diamonds (black) decoupled string. 367 

 368 

Figure 9. (color online) Estimated damping ratios 𝜁𝜁 for F4 string. Circles (red) string coupled to the 369 

soundboard. Diamonds (black) decoupled string. 370 
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 371 

Figure 10. (color online) Piano string configuration in the middle-register of the piano. 372 

V. TIME-DOMAIN MODEL RESULTS 373 

Results from the time-domain model are shown here to illustrate the various physical phenomena 374 

occurring in the piano string vibration. The hammer-string contact force is shown as well as the 375 

subsequent string vibration at different locations. The interaction force between string and 376 

soundboard is also described, including the vibration response at a point on the soundboard. 377 

Comparisons are made using the different models described in section II-B and the simply 378 

supported string (II-C) used as a reference to emphasize the presence of additional damping added 379 

by the connection with the soundboard. Following this a minimal model is introduced, composed of 380 

a simply supported string with the damping adjusted to include that introduced by the connection 381 

with the soundboard. Finally, the influence of including a distributed damping and stiffness along 382 

the duplex scaling segment of a string is shown. 383 

Three different notes across the piano range are considered for the analysis: A1, D4, and D5. For 384 

the different strings analyzed, the soundboard dynamics is that of the corresponding connection 385 

point. The parameters used for the strings are summarized in Table 3. Some of these were obtained 386 

from measurements on the available piano while others were obtained from literature, as indicated.  387 
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Table 3: String and hammer parameters 388 

Description Variable Units A1 D4 D5 

Speaking length 𝐿𝐿𝑠𝑠 m 1.3 0.59 0.308 

Agraffe segment 𝐿𝐿𝑒𝑒 m 1.56 × 10−1 7.1 × 10−2 3.4 × 10−3 

Duplex length 𝐿𝐿𝑑𝑑 m 0.11 0.15 0.05 

Tension 𝑇𝑇 N 1821 637 1420 

Young’s 

modulus41 
𝐸𝐸 GPa 200 200 200 

Density of string 

steel core50 
𝜌𝜌𝑐𝑐 kg/m3 7860 7860 7860 

Density of 

copper winding51 
𝜌𝜌𝑤𝑤 kg/m3 8960 − − 

Diameter of steel 

string core 
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 m 1 × 10−3 1 × 10−3 1 × 10−3 

Diameter of 

copper winding 
𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 m 1.5 × 10−3 − − 

Fundamental 

frequency of 

string 

𝑓𝑓0 Hz 55 294 584 

Piano hammer 

mass48;52 
𝑚𝑚𝐻𝐻 kg 10.4 × 10−3 8.6 × 10−3 7.8 × 10−3 
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Piano hammer 

stiffness 

coefficient48;52 

𝐾𝐾𝐻𝐻 N/mp 2.15 × 108 7.45 × 109 3.23 × 1010 

Piano hammer 

nonlinear 

coefficient48;52 

𝑝𝑝 − 2.28 2.41 2.58 

In Table 3, the steel core of the string and its copper winding, noted with the subscripts 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 389 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 respectively, are used to obtain the corrected physical properties of the copper-wound 390 

string, in this case A1, as in Conklin53. The agraffe segment corresponds to the distance from the 391 

agraffe termination of the string to the point at which the hammer strikes. It is calculated using the 392 

relative striking position 𝛼𝛼 given in Chaigne and Askenfelt41, 𝐿𝐿𝑒𝑒 = 𝛼𝛼 × 𝐿𝐿𝑠𝑠, where 𝛼𝛼 can take the 393 

values 0.12 for A1 and D4 , and 0.11 for D5. 394 

For ease of comparison the time-domain results are shown for the first 5 s even when the decay 395 

lasts longer than this. Four different approaches are compared: (i) FE soundboard, (ii) reduced 396 

modal soundboard, (iii) Kelvin-Voigt soundboard and (iv) simply supported string (no soundboard). 397 

The influence of using different representations of the soundboard dynamics is discussed.  398 

The results presented below initially include a duplex scaling segment left to vibrate, which 399 

highlights the capability of this modelling approach to include this feature that is adopted in most 400 

grand pianos in the mid-high register. At the same time, as discussed in section E, the inclusion of 401 

distributed damping and stiffness along the duplex scaling length is shown to be an effective 402 

modelling approach to mute the vibration of this segment of the strings in the mid-low register1. 403 

A. Hammer-string contact force 404 

The hammer-string forces obtained with the four different models are generally not affected by the 405 

soundboard model. For note A1 the results in Figure 11 show that the forces do not vary when 406 
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using different soundboard representations. The results of the contact profile are similar to the ones 407 

produced by other modelling approaches taken in literature for C252. The variations in the contact 408 

force for D5 are also negligible while for D4 the simply supported string results in a force that is 409 

different from the other models, whereas for the three models that include the soundboard the 410 

forces are identical (results not shown here).  411 

 412 

Figure 11. Hammer-string contact force for string A1. 413 

B. String vibration and decay 414 

To verify the effects of the different modelling approaches on the vibration velocity of the string in 415 

the time domain, the envelopes of the time histories are analyzed in this section and the damping 416 

ratios of the string-soundboard systems are also extracted.  417 

The envelopes of the vibration velocity obtained at the excitation point are shown in Figure 12 for 418 

the three notes considered and the four different models. The vibration decays obtained with the 419 

simply supported string are longer than all the other models. This is due to the absence of the 420 

damping provided by the connection with the soundboard, the only damping mechanism being the 421 

structural damping estimated in Section IV. The other three models provide similar results. For A1 422 
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and D5 some differences occur at the beginning of the response where the reduced soundboard 423 

model is closer to the full FE representation than the Kelvin-Voigt model. 424 

425 

426 

 427 
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Figure 12. Envelopes of time histories of piano string vibration velocity at the excitation point. 428 

To quantify the differences seen in Figure 12 and evaluate the modelling approaches, it is of interest 429 

to calculate the damping introduced by the connection with the soundboard numerically and 430 

compare it with the experimental results shown in Figure 8 and Figure 9. The comparisons are 431 

presented in Figure 13 for the A1 string, where the damping estimations from both measurements 432 

and numerical models are obtained using the same procedure, described in section IV. 433 

The damping of the simply supported case corresponds to the constant structural damping ratio 434 

estimated from measurements, while the other models follow the trend of the measurements 435 

performed with the string connected to the soundboard. The reduced modal representation gives 436 

results closest to the FE soundboard model, particularly at lower frequencies below 600 Hz. At high 437 

frequencies the estimated damping of the coupled models tends to that of the simply supported 438 

string. Similar conclusions hold for the other strings analyzed but the results are not presented here 439 

for brevity. 440 

It can be seen that the damping ratios exhibit a squence of dips. Although they are not clearly 441 

identifiable in the measurements, the dips in the modal soundboard results align with the duplex 442 

scaling resonances. This is because damping estimates for frequencies at and close to the resonance 443 

of the duplex scaling segment are affected by vibration transmission beyond the bridge and into this 444 

segment. This is a typical characteristic of piano string vibration since it was patented by Steinway54;55 445 

and a feature of the model, and its effect on the estimated damping ratio is therefore considered. 446 

Although the general trend of the damping ratios is satisfactory in comparison with the 447 

measurements, some differences occur. These can be explained by the limitations and assumptions 448 

of the current models. The differences below 100 Hz, where the damping from the measurements is 449 

higher than the models, could be associated with differences between experimental and model 450 

mobilities. These differences have less influence at higher frequencies, but here double polarization 451 
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may have a significant effect. Double polarization can produce a two-stage decay, hence smaller 452 

apparent damping. An experimental method for estimating the damping of the two transverse 453 

directions of vibration of a uncoupled string were shown by Tan49. Nonetheless, assumes that strings 454 

have a non-linear behaviour and imperfections in the excitation that can excite the direction parallel 455 

to the soundboard. Herein, the model is assumed to be linear, the hammer excitation is perfectly 456 

transverse and the response in the second polarization is caused only by the connection with 457 

soundboard. Tan’s experimental results were processed using high resolution modal analysis 458 

techniques consisting in the separation of the signal into sinuosids with a corresponding decay, 459 

phase, and natural frequency56;57.  460 

 461 

Figure 13. (color online) Damping ratios for A1 string connected to the soundboard, estimated from 462 

modelling and experiments. Vertical dashed lines indicate resonances of the duplex scaling segment. 463 

To conclude the assessment of string vibration, the spectra of vibration velocity at the excitation 464 

point and the connection point with the bridge are shown in Figure 14 for the A1 string by way of 465 

example. The simply supported model is included for reference only, and is fixed at the connection 466 

point and hence this model is not present in Figure 14(b). The main feature of the spectra is the 467 

familiar series of partials for this note. At the excitation point in Figure 14(a) there is no identifiable 468 

presence of the soundboard resonances but the frequencies associated with the duplex scaling 469 



 33 

segment can be identified by small peaks at 660 Hz and its higher harmonics, indicated in the figure. 470 

At the bridge connection point shown in Figure 14(b), two low-frequency soundboard resonances 471 

are present for the two models that include them. Other resonances occurs close to the fundamental 472 

frequency of this note and is therefore not separately identifiable. The duplex scaling frequencies are 473 

also present and more distinct than at the hammer striking point.  474 

Considering the three models that include a connection with the soundboard, the string partials have 475 

similar levels. However, more similiarities exist between the two modal soundboard models. An 476 

example is highlighted in Figure 14(b), where at the first string partial the K-V model has a lower 477 

level than the other two models. A higher resonance is also highlighted showing that the differences 478 

are smaller than at lower frequencies. This is caused by differences in the mobility of the 479 

soundboard (see Figure 6) at lower frequencies, where it is comparable to that of the contact 480 

stiffness, whereas at higher frequencies the contact spring mobility is higher than that of the 481 

soundboard, and the soundboard has negligible influence on the string vibration. This shows that 482 

the higher frequency range, in which the simpler soundboard representations are less accurate (see 483 

Figure 5), is dominated by the interaction between the string and the contact stiffness, whereas the 484 

soundboard representation has a diminished role. For D4 or D5, where the string partials are higher 485 

in frequency, the interaction is dominated by the contact stiffness as its mobility is comparable or 486 

higher than that of the soundboard. 487 
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 488 

 489 

Figure 14. (color online) Spectra of vibration velocity for note A1: (a) at the excitation point, duplex 490 

scaling resonances are indicated by the arrows, and (b) at the connection point. 491 

Although the soundboard models produce similar results, the computational times required differ 492 

significantly. For the D4 case, on a standard desktop computer and with the ode45 Matlab routine 493 

the computational time required to calculate 10 s of time history with a sampling frequency of 494 

𝑓𝑓𝑆𝑆~63 kHz are as follows. The reduced representation requires about 37 s, the K-V takes 54 s and 495 

the FE representation requires approximately 840 s. The K-V model requires more computational 496 

time than the more complex reduced model because the former includes high damping. This 497 

hypothesis was tested by running the K-V under different damping coefficients, showing that 498 

computational time can be reduced as much as to 25 s when reducing damping by orders of 499 
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magnitude. The computational time are also related to the ode45 solver adopted in study and can 500 

vary with the numerical implementation. 501 

C. Force at the bridge and soundboard response 502 

In the interaction between the string and the soundboard, it is of interest to compute the interaction 503 

force between the two systems. This force is the responsible for the coupling and it can be used as 504 

an input for obtaining the vibratory response of the soundboard. In the case of the simply 505 

supported string, in absence of the soundboard, the force is given by Eq.(3). Once computed, the 506 

forces from the different models can be used for sound generation in future work. 507 

The envelopes of the time histories of the forces at the bridge are shown in Figure 15. The general 508 

trend of these results confirms that lower tones last longer and result in higher values of the force. 509 

Comparing the different soundboard models, the simply supported approach produces decays that 510 

are much longer than the others, as found for the string vibration. Although the reduced 511 

soundboard model is closer to the FE representation, the differences in terms of transmitted force 512 

are more subtle than for the string vibration. The largest difference is for D5 where the response is 513 

larger in the FE model. The time histories of the force decay do not seem to favour a particular 514 

representation of the soundboard. The readers can make their own subjective judgement from the 515 

audio files Mm. 1, Mm. 2, Mm. 3 and Mm. 4 for the A1 model, and Mm. 5, Mm. 6, Mm. 7 and Mm. 516 

8 for the D4 model. 517 

Mm. 1. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for A1, simply supported string. 518 

Mm. 2. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for A1, FE soundboard model. 519 

Mm. 3. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for A1, reduced soundboard model. 520 

Mm. 4. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for A1, K-V soundboard model. 521 

Mm. 5. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for D4, simply supported string. 522 

Mm. 6. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for D4, FE soundboard model. 523 
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Mm. 7. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for D4, reduced soundboard model. 524 

Mm. 8. Transmitted force to the soundboard 𝐹𝐹𝑏𝑏, for D4, K-V soundboard model. 525 

526 

527 

 528 



 37 

Figure 15. Envelopes of time histories of force transmitted to the soundboard. 529 

The force spectra of the different representations are shown in Figure 16. The simply supported 530 

case is omitted for ease of comparisons between the other models. There is no sign of soundboard 531 

resonances in the force spectra in contrast to what is seen in the string vibration at the connection 532 

point (see Figure 14(b)). The duplex scaling resonances are present in the transmitted force at 660 533 

Hz for the A1 string, and 1110 Hz for D4, as well as their higher harmonics. For D5 only one 534 

resonance is present at 3.8 kHz.  535 

Generally, the models that include the dynamics of the soundboard have similar peaks in their force 536 

spectra, both in level and in frequency, while the K-V model has peaks that are slightly different in 537 

magnitude and frequency, see for instance the highlighted first peak for A1. The case of D4 shows 538 

that the differences are consistent through the frequency range. At this location there exists a greater 539 

impedance mismatch between the string and soundboard than in the other locations on the bridge. 540 

Consequently, the soundboard model does not influence the results significantly and the interaction 541 

with the contact stiffness is predominant. Although the differences are generally small, the reduced 542 

model is closer to the FE model than the K-V model. 543 

 544 
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 545 

 546 

Figure 16. (color online) Spectra of force transmitted to the soundboard. 547 

The forces at the bridge can then be used to evaluate the vibration response at any point on the 548 

soundboard by combining them with the impulse response between the bridge, point 𝑏𝑏 (see Figure 549 

1), and a generic point 𝑘𝑘 on the soundboard shown in Figure 3. The transfer impulse responses are 550 

obtained by calculating the inverse Fourier transform of the transfer mobilities 𝑌𝑌𝑘𝑘𝑘𝑘 evaluated with 551 

the full FE model (irrespective of which soundboard model is used in calculating the string 552 

vibration). Mathematically, the vibration velocity at 𝑘𝑘, caused by a bridge force 𝐹𝐹𝑏𝑏 is the convolution 553 

between the bridge force and the impulse response as: 554 

 𝑣𝑣𝑘𝑘(𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑌𝑌𝑘𝑘𝑘𝑘) ∗ 𝐹𝐹𝑏𝑏(𝑡𝑡) (24) 
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The envelopes of the time histories of the soundboard vibration are shown in Figure 17 for 555 

excitation of strings A1 and D4. These allow two cases to be compared in which the soundboard 556 

representation has a different importance. Whereas for the transmitted force in Figure 15, the 557 

soundboard models did not exhibit notable differences, the response of the soundboard using the 558 

K-V model has more noticeable differences particularly in the case of A1, where the soundboard 559 

model plays a more significant role. Compared with the forces shown in Figure 15, the profiles of 560 

the resultant velocity 𝑣𝑣𝑘𝑘 are more regular and, moreover, the soundboard appears to enhance the 561 

differences between the K-V model and the modal soundboard models in the case where its 562 

mobility plays a more important role.  563 

564 

 565 
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Figure 17: Vibration velocity envelope at a position on the soundboard 566 

The spectra of the vibration of the soundboard are shown in Figure 18. The modes of the 567 

soundboard are now present in the vibration response for all the models due to the use of the same 568 

transfer mobility 𝑌𝑌𝑘𝑘𝑘𝑘 in each case. Two example string partials are highlighted, showing that, as in 569 

the transmitted force, the models with soundboard dynamics produce similar resonances while those 570 

of the K-V model are slightly different. As was stated in other comparisons, the differences are 571 

more significant at lower frequencies, where the soundboard has a more significant influence. 572 

The sound samples for the vibration velocity obtained via the reduced model for A1 and D4 are 573 

attached as Mm. 9 and Mm. 10. The listener should notice the influence of the soundboard. As the 574 

spectra are now richer in lower frequencies than the force sound samples, the sound is now “fuller”.  575 

The simply supported model, not shown, gives a spectrum which reproduces adequately the main 576 

features obtained with the other approaches, but its decay is larger and unrealistic. It cannot include 577 

the duplex scaling resonances, but the damping value could be adjusted to represent the effect of the 578 

soundboard in an equivalent way. This is presented in the next section. 579 

Mm. 9. Vibration velocity at the soundboard 𝑣𝑣𝑘𝑘, for A1, reduced soundboard model. 580 

Mm. 10. Vibration velocity at the soundboard 𝑣𝑣𝑘𝑘, for D4, reduced soundboard model. 581 

 582 

Figure 18. (color online) Spectra of vibration velocity at the soundboard. 583 
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D. A minimal model 584 

The simply supported string model is modified to include the damping arising from the connection 585 

with the soundboard, which would yield shorter computational times while maintaining the 586 

characteristics of the piano tone due to the coupling between the string and the soundboard. The 587 

formulation of the minimal model is the one already presented in section III-C, but in this case the 588 

modal damping matrix is modified to include the estimated damping rations of the string coupled to 589 

the FE soundboard. The real part of the mobility is not used in this case. To test this, the estimated 590 

damping ratios of the string coupled to the FE soundboard model, shown in Figure 13, are used as 591 

an input to the modal damping matrix of a simply supported A1 string. The envelope of the string 592 

vibration velocity at the excitation point is compared in Figure 19 with that obtained from the string 593 

coupled with the FE soundboard model. The agreement between the two models is satisfactory and 594 

some differences in the envelopes can be attributed to uncertainty in estimating low values of 595 

damping ratios.  596 

 597 

Figure 19. Time histories of piano string vibration velocity at excitation point for A1 string. Black 598 

line: string coupled with FE soundboard model. Gray line: simply supported string with adjusted 599 

damping ratio. 600 
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The comparisons are also made in the frequency domain: the spectra of the vibration velocity and 601 

the force transmitted to the soundboard are shown in Figure 20. The spectra have good agreement, 602 

but this minimal model fails to represent the vibration of the duplex scaling segment, which can be 603 

seen in the force spectrum in Figure 20(b), at approximately 660 Hz and higher harmonics.  604 

 605 

 606 

Figure 20. Comparisons of spectra between FE and minimal model for the A1 case. (a): Spectrum of 607 

vibration velocity at excitation point. (b): Spectrum of force transmitted to the soundboard. 608 

E. Attenuating the duplex scaling segment 609 

It has been shown in the previous sections that one of the features of the models that include the 610 

soundboard is the presence of resonances of the duplex scaling segment. However, in actual pianos 611 

these are muted in the lower register. The same models can still be adopted provided a suitable value 612 

for the distributed dampers and springs is applied in the duplex scaling segment. Using Eq.(14), 613 

different values of damping coefficients 𝑐𝑐𝑑𝑑 in a range between 1 and 4 Ns/m2 are used to 614 



 43 

determine what value can be used to obtain the desired effect without significantly affecting the 615 

other string resonances. The value of the distributed spring was fixed. The results are shown in 616 

Figure 21 for the spectra of the acceleration at the connection point of the soundboard 𝑏𝑏 for the 617 

note D4 using a reduced soundboard model. Again, the readers can compare the different outcomes 618 

by listening to the audio files provided, Mm. 11, Mm. 12, Mm. 13 and Mm. 14 for increasing values 619 

of  𝑐𝑐𝑑𝑑. The stiffness by itself can provide a sufficient attenuation of the first resonance of the duplex 620 

scaling. Within the range of values tested, a value of 𝑐𝑐𝑑𝑑 = 1 Ns/m2 reduces the higher duplex 621 

scaling resonances in the numerical model adequately: the effect on the adjacent string resonances is 622 

smaller than when using higher values of 𝑐𝑐𝑑𝑑. This is shown in the highlighted resonance in Figure 21 623 

a). For comparison, the measurement of acceleration at the bridge pin at the D4 location is shown, 624 

evidencing the lack of duplex scaling vibration in this piano. The modelled result has a satisfactory 625 

agreement with the measurement and confirms that the model approach taken and its coupling with 626 

the string is correct.  627 

Mm. 11. Acceleration at the connection point of the soundboard 𝑎𝑎𝑏𝑏, for D4, using 𝑐𝑐𝑑𝑑 = 0 Ns/m2. 628 

Mm. 12. Acceleration at the connection point of the soundboard 𝑎𝑎𝑏𝑏, for D4, using 𝑐𝑐𝑑𝑑 = 1 Ns/m2. 629 

Mm. 13. Acceleration at the connection point of the soundboard 𝑎𝑎𝑏𝑏, for D4, using 𝑐𝑐𝑑𝑑 = 2 Ns/m2. 630 

Mm. 14. Acceleration at the connection point of the soundboard 𝑎𝑎𝑏𝑏, for D4, using 𝑐𝑐𝑑𝑑 = 4 Ns/m2. 631 

 632 



 44 

 633 

Figure 21. (a): Spectrum of acceleration at the connection point of the soundboard for D4 string, 634 

using different damping coefficients for the duplex scaling segment. (b): Spectrum of comparison 635 

between measured acceleration and modelled using highly damped duplex scaling. 636 

VI. CONCLUSIONS 637 

Soundboard models of differing complexity, a detailed FE model, a reduced modal model and a 638 

simplified Kelvin-Voigt model, have been coupled to a string in a state-space approach. The scope is 639 

to address the effects of the assumptions in using different soundboard models differing in 640 

complexity in their modal representation. Nonetheless, it is not intended to produce complex 641 

soundboard model accounting for nonlinear effects due to prestresses or other effects of its 642 

manufacturing. Moreover, the modelling approaches presented in this study assume a linear 643 

behaviour of the different systems associated to piano sound generation, with the exception of the 644 

hammer excitation.  645 

The assumptions related to the soundboard have only a small effect on the results for the string 646 

response, affecting the lower frequency range more than higher frequencies. This is explained by the 647 

differences between mobilities of the string, the soundboard, and the contact spring used for the 648 

coupling between them. At lower frequencies the mobility levels of the soundboard are similar to 649 

those of the contact spring. Consequently, the string and soundboard can interact, and the 650 
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soundboard resonances have an influence on the resultant string vibration in this frequency range. 651 

On the other hand, at higher frequencies the contact spring mobility is much greater than that of the 652 

soundboard. Hence the response of the system is dependent on the interaction between the string 653 

and the contact spring, and the soundboard model does not significantly influence the results in this 654 

part of the spectrum. These observations are applicable at widely different locations in the piano 655 

range, for string vibration, interaction force between string and soundboard, and for the resultant 656 

vibration of the soundboard.  657 

In contrast, the damping estimation is affected by the soundboard representation to some extent. 658 

The trend of the damping ratios shows irregularities that can be attributable to the presence of the 659 

duplex scaling vibrations in the models. Differences between the experimental results and the 660 

models at low frequencies may be caused by deviations between the experimental and modelled 661 

soundboard mobilities at the connection point. Another cause of differences could be the presence 662 

of double polarization in the experimental measurements, producing a longer decay and hence 663 

smaller damping. Double polarization is not yet included in the numerical models.  664 

To provide a minimal model, a simply supported string model was modified to include the damping 665 

corresponding to that provided by the connection with the soundboard, yielding similar levels and 666 

spectra as a string connected with an FE soundboard model. However, this simply supported model 667 

does not include the duplex scaling segment resonances. Such a model could therefore be useful in 668 

low-mid range of the piano where this segment is muted. 669 

Finally, a brief study on the attenuation of the duplex scaling segment shows that a small damping 670 

coefficient is needed to accomplish the desired effect, so as not to affect greatly other adjacent 671 

resonances. This was achieved by using a distributed damping and stiffness approach along the 672 

duplex scaling segment. Results were compared with measurements showing a satisfactory 673 
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agreement. However, it is yet to be confirmed experimentally what is the damping introduced by the 674 

felt in the duplex scaling. 675 

Overall, it is clear that detailed FE soundboard models are not needed to represent the main 676 

characteristics of string-soundboard interaction. Simpler soundboard representations can achieve the 677 

expected results and can model the trend of the damping with less computational effort. The 678 

reduced model is more similar to the FE soundboard model than the K-V model, particularly at low 679 

frequencies, where the soundboard can influence vibration. Nonetheless, the K-V soundboard 680 

model is not far from representing the FE soundboard behavior. For a full 3D representation of 681 

strings and soundboard, a model considering a reduced modal soundboard would need to be 682 

extended to include different directions, and to consider other coupling mechanisms such as the 683 

interaction between unison strings. The force generated by these string-soundboard models could 684 

then be used to predict the vibration response across the soundboard, and hence the radiated sound, 685 

by applying the interaction force to a suitably complete model of the soundboard. To give an initial 686 

estimate of soundboard vibration, the velocity was obtained at a point on the soundboard, from 687 

which it can be heard from the corresponding audio files and seen how important the soundboard 688 

resonances are in the generated tone, producing a response that is enriched at lower frequencies. 689 
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