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Influence of soundboard modelling approaches on piano string
vibration

Pablo Miranda Valiente,a) Giacomo Squicciarini, and David J. Thompson
Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom

ABSTRACT:
This work explores the influence of the dynamics of the piano soundboard on string vibration and on the force acting

between the vibrating string and the bridge. Four different soundboard representations of different complexities are

considered: (i) a finite element model that considers the complete dynamic behavior of the soundboard at the

connection point with the string within the frequency range of interest, (ii) a reduced modal model containing only

five modes, (iii) a Kelvin–Voigt system characterized by an equivalent stiffness and damping, and (iv) a rigid

soundboard represented by a simply supported boundary condition. The connection between the string and the

soundboard is modelled by coupling a simply supported stiff string model with the different representations of the

soundboard through a contact stiffness. As well as directly accounting for the string-soundboard coupling, this

approach also includes the duplex scaling segment. The latter can be left to vibrate freely or muted with a continuous

distribution of dampers. Although the simplest soundboard representation is not dissimilar from the other more com-

plex models, the dynamics of the soundboard affect the decay time of the note, the force transmitted to it, and the

vibration of the radiating surface of the soundboard.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0025925
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I. INTRODUCTION

The strings of musical instruments, including the piano,

are generally coupled through a bridge to a soundboard,

which radiates sound more efficiently. The vibration of the

strings is affected by this coupling to some extent. The

bridge and soundboard provide a quasi-rigid termination to

the string at its speaking length, allowing it to vibrate at its

fundamental frequency and associated harmonics. Although

most of the vibration energy is reflected back into the string,

parts are also transmitted into the soundboard and past the

bridge into the duplex scaling segment of the string.1 The

connection with the soundboard can also produce the double

polarization of the strings2 and can provide coupling

between vertical and longitudinal directions.

In the literature, the connection between the strings and

the soundboard has been modelled either by studying the

dynamics of two separate systems or, less frequently, by

accounting for a full coupling between them. When the

string and the soundboard are modelled as decoupled sys-

tems, the component of the string tension perpendicular to

the soundboard serves as an input to the vibration of the

soundboard.3–6 In these cases, the length of the string corre-

sponds to the distance between the agraffe and the bridge

(the speaking length, i.e., neglecting the duplex scaling seg-

ment), and its ends are simply supported. String vibration

excited by the hammer can then be studied with numerical

approaches such as finite differences.7–11 In a fully coupled

approach, however, the dynamics of the soundboard at the

bridge provides a non-rigid boundary for the string. In this

case, the total length of the string between the agraffe and

the hitch pin is included. Models of this type are more com-

plex but can better explain the effect of the soundboard on

the string vibration and hence on the force transmitted to the

soundboard. Fully coupled string-soundboard models for

piano acoustics have been proposed by the authors,12,13 and

also exist for other instruments.14–17 Finite difference

approaches14 or modal models in the time domain15–17 have

been successfully implemented to obtain the string vibration

and contact forces of the coupled system.

Whether they are seen as part of a coupled system or as

independent vibrating components, the strings and sound-

board can be represented using different modelling techni-

ques. For string vibration, the equation of a stiff string

solved with finite differences is probably the most popular

method in musical acoustics, but finite elements (FE)4 or

modal models have also been presented.16,17 The dynamics

of the soundboard at the bridge have been addressed in dif-

ferent ways, including a frequency-dependent boundary

condition for string-only models,18 or plate models such as

thin plates,3 Reissner–Mindlin plates4 (including shear

deformations), linear filters,6 or FE.19–21

The soundboard itself was characterized experimentally

at the bridge by Wogram,22 using different modal analysis

techniques. The coupled vibration of the string soundboard

system was analyzed, and it was found that the decay of

string tones was larger due to the reduced energy transfer

caused by the mismatch in the impedance. Ege et al.23a)Email: pmmv1g14@soton.ac.uk
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characterized the soundboard both numerically and experi-

mentally. Among other things, the authors studied the non-

linear behavior of the soundboard, which was quantified to

be orders of magnitude smaller than the linear one. Their

study also gives an insight into the damping of the sound-

board. Values of damping ratio between 0:005 and 0:015

were obtained. Similar values for the soundboard damping

were obtained by Corradi et al.24 These authors measured

the vibration of the soundboard at different manufacturing

stages and noted that, at advanced manufacturing stages, the

soundboard presents damping ratios varying between 0:008

and 0:03. In Squicciarini’s thesis,20 the finished soundboard

fitted into the piano exhibited even higher damping ratios,

ranging between 0:007 and 0:047. Suzuki25 obtained values

of 0:032 for the first mode and between approximately 0:01

and 0:015 for higher modes, while Berthaut et al.26 obtained

smaller values of 0.003–0.0065.

Trevisan et al.27 developed analytical soundboard mod-

els, in which the soundboard was modelled as a

Love–Kirchhoff plate. One of the interesting conclusions

reached by the authors is that geometric and manufacturing

details of the soundboard can have an influence on the first

natural frequencies when compared with experimental

results. Closely related to the present study, reduced sound-

board modelling has been introduced by various authors

(see, for instance, Boutillon and Ege28 and Corradi et al.24).

In these studies, the frequency response of the soundboard is

approximated in an average sense by combining the driving

point impedances of an infinite beam and an infinite plate.

These approaches were formulated directly in the frequency

domain and cannot be directly adopted in a time-domain

solution.

The main aim of this work is to develop a model of a

coupled system, in which a piano string and soundboard are

connected at the bridge, and to evaluate the degree of

complexity required to describe the dynamic behavior of the

soundboard. For this purpose, different dynamic models of a

soundboard, of increasing complexity, are coupled to a

string in the direction perpendicular to the soundboard, as

described in Sec. II. The authors have previously developed

models using one of the simpler soundboard representations

to study the dynamics of the coupled system in two12 and

three13 directions. Differently from this, in the current work,

comparisons are made between different soundboard models

that focus on the transverse direction perpendicular to the

soundboard. To calculate the response of the coupled sys-

tem, a time-domain model in a state-space formulation is

implemented in Sec. III. This approach requires the struc-

tural damping of the string alone, for which an experimental

setup is designed, and measurements are performed in Sec.

IV to determine the damping of strings disconnected from

the bridge. The implications of using the different sound-

board representations are discussed in Sec. V, with conclu-

sions given thereafter. The modelling approach considers

only the transverse direction perpendicular to the sound-

board, and no nonlinear phenomena are considered, such as

the generation of phantom partials due to the coupling

between transverse and longitudinal directions on the

strings.6 Instead, the main novelty of this work lies in the

exploration of the details needed to model the soundboard to

account for the interaction with the string. Furthermore, the

inclusion of a duplex scaling segment in the model, which

can be either be attenuated with a continuous distribution of

dampers and springs or left free to vibrate (see below), is an

aspect that, to the best of the authors’ knowledge, has not

been extensively addressed before.

II. STRING AND SOUNDBOARD

A string of length L connected to a soundboard system

is shown in Fig. 1 together with the main variables adopted

FIG. 1. (Color online) Schematic representation of a string coupled with different representations of the soundboard. These are a full FE model, a reduced

modal model, and an equivalent Kelvin–Voigt system.
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for the analysis. These are the displacements y and forces F
at the hammer striking point e from a distance Le from the

agraffe termination and at the connection points between the

string s and soundboard b. Only vibration perpendicular to

the soundboard is considered; this direction will be referred

to as vertical. The connection with the soundboard divides

the string of total length L into two parts: the speaking

length, Ls, and the remaining vibrating duplex scaling seg-

ment, Ld. With the aim of analyzing the effect of sound-

board dynamics on the string vibration and transmitted

force, three different representations of the soundboard are

developed and compared in Sec. II B. These are also sum-

marized schematically in Fig. 1 and are a full modal FE

model, a reduced modal model, and a Kelvin–Voigt (K-V)

system. A contact stiffness, kc, is introduced to represent the

normal contact stiffness associated with local deflection at

the contact point. Although the contact stiffness could be

accounted for implicitly by higher order modes in the modal

summation of the soundboard mobilities presented in Sec.

II B, it is not considered as the modal summations are trun-

cated. In addition a simply supported end at the bridge loca-

tion (i.e., rigid soundboard) is considered.

A. Stiff string model

A model is defined for the vertical motion of the string

uncoupled from the soundboard and simply supported at its

ends defined by the agraffe and hitch pin (see Fig. 1). It is

represented as a stiff string with an equation of motion

given as29

l
@2y

@t2
¼ T0

@2y

@x2
� ESK2 @

4y

@x4
; (1)

where y is the vertical motion of the string in a position, x,

across the string at a time, t, l is the mass per unit length, T0

is the tension, E is the Young’s modulus, S is the cross-

sectional area, and K is the radius of gyration. For a pinned

string with length L, the n-th mode shape at a position, x,

from the agraffe and the corresponding natural angular fre-

quency are29

/n xð Þ ¼ sin npx=Lð Þ; xn ¼ n2pf0 1þ Bn2ð Þ1=2
; (2)

where f0 ¼ T0=lð Þ
1
2=2L is the fundamental frequency of the

string in the absence of bending stiffness and the inharmonic

coefficient B ¼ p2ESK2=T0L2. Damping is omitted from Eq.

(1), but this will be included in terms of damping ratios (see

Sec. III) in the state-space formulation and also indirectly by

coupling with the soundboard.

In a coupled string-soundboard system, the force at the

bridge is calculated from the interaction between the two

components, as outlined below. In the absence of a sound-

board model (i.e., simply supported string at the bridge), the

input force can be written considering the vertical compo-

nent of the tension and a third order derivative related to the

bending stiffness, evaluated at the string termination x ¼ Ls,

as

Fss ¼ �T0

@y

@x

����
x¼Ls

þESK2@
3y

@x3

����
x¼Ls

: (3)

B. Soundboard models

The different soundboard models adopted in this work

are introduced in this subsection. These are an FE model, a

reduced modal soundboard, the response of which is fitted

to the FE model, and a K-V soundboard consisting of a

spring-damper system.

1. FE model

The geometry of the soundboard adopted in this work is

based on a grand piano that was made available to the

authors. An FE model that can represent the complete

soundboard dynamics has been developed in COMSOL

MULTIPHYSICS
VR

. The thickness of the soundboard varies

between 7 and 9 mm from the edge to the center; its edges

are clamped, and the bridges and the wooden stiffener

beams—often referred to as ribs—are modelled as isotropic

and the soundboard as orthotropic. The assumption of iso-

tropic ribs and bridges is justified from previous studies by

one of the coauthors,20 in which a design sensitivity analysis

was performed. It was found that the most important param-

eter of the ribs is the Young’s modulus in their longitudinal

direction, with their other directions being negligible. This

matches the purposes of the ribs, which are to stiffen the

soundboard in its weakest direction. The properties of the

wood correspond to Sitka spruce and were obtained from lit-

erature,20 but the stiffest direction of the Young’s modulus

and the density have been modified to provide a better

agreement with driving point mobility measurements. The

direction convention used for the material properties is illus-

trated in Fig. 2, along with the points at which the mobilities

are obtained along the two bridges. Additionally, a point, k,

is identified in the middle of the soundboard that is used to

compute the vibrational response, as described in Sec. V C.

Regarding the mesh, approximately 49 000 quadratic

FIG. 2. Overview of soundboard geometry, with locations of connection

points for each note and response point k. Conventions used for directions

of orthotropic properties of wood are also shown.
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tetrahedral elements were used with a minimum size of

kpl=9 in the ribs and the bridge and kpl=10 in the sound-

board, with kpl being the shortest wavelength of a simple

Kirchhoff plate representing the soundboard. The ribs/

bridge and soundboard are considered as elastic bodies that

share common element nodes, corresponding to a perfect

connection between the domains. The main parameters of

the model are listed in Table I. The first three modes calcu-

lated using the FE model are shown in Fig. 3.

To calibrate the FE model, measurements of the mobility

were performed. Impact testing was conducted using an impact

hammer PCB model 086C03 (PCB Piezotronics, Depew, NY)

with sensitivity (615%) 2.25 mV/N, measurement range

62224 N pk, and hammer mass 0.16 kg. The response was

obtained using a miniature uniaxial accelerometer PCB model

352C23, with sensitivity (615%) 1.0 mV/(m/s2). Both devices

were connected to a Data Physics Quattro (Data Physics,

Riverside, CA), a portable data acquisition system.

A coherence above 0.9 was achieved for frequencies

between 50 and 4000 Hz. Damping ratios of the first six

modes were estimated from the measured mobilities, using

the circle fitting procedure.30 These are shown in Table II.

For higher frequencies, damping was chosen to represent the

different behavior that the piano structure may have on the

mobility response.

To cover a frequency range between 50 and 4000 Hz,

1000 modes of the soundboard are included in the modal

summation. The measured driving point mobility at the

bridge location of note D4 is compared with the results of

the FE model in Fig. 4. The FE model gives a similar trend

and level of the mobility magnitude and phase and can be

considered as a realistic representation of a piano sound-

board. It is therefore used in this work as a reference result

for the other simplified representations of the soundboard

dynamics.

2. Reduced modal soundboard

A simpler model of the soundboard is developed using

an equivalent modal system. Five modes are considered suf-

ficient to represent the main low frequency resonances as

well as the high frequency trends. The modal parameters of

this equivalent system are determined by fitting the mobility

to that from the FE model such that the first four modes cap-

ture the first four resonances, while the fifth mode is more

highly damped to represent the average level of the sound-

board mobility at higher frequencies. Although it would be

possible to extract the modal parameters directly from the

FE model to yield correct natural frequencies and mode

shapes, this would not produce the highly damped mode at

higher frequencies that represents the overall trend of the

mobility in this region. A modal fitting approach is therefore

applied by adopting the non-linear least-squares curve fitting

routine in MATLAB to refine the modal parameters of the

reduced model and hence minimize the error between the

FE mobility and the modal summation based on the five

modes. The mass normalized mode shapes, damping ratios,

and natural frequencies are then obtained. The soundboard

mobilities obtained at the bridge positions corresponding to

notes A1, D4, and D5 are shown in Fig. 5, together with

those from the full FE model and the simplified approach

discussed below. The reduced modal model can replicate

both the dynamic behavior of the main modes and the aver-

age flat response at higher frequency. This can represent the

mobilities quite well. However, at higher frequencies, the

reduced modal model can only represent the average

TABLE I. Parameters of FE soundboard model.

Description Value(s) Unit Description Value Unit

Soundboard width 1:39 m Poisson’s ratio, �12 0:37 —

Soundboard length 1:66 m Poisson’s ratio, �13 0:47 —

Young’s modulus, E1 17:1 GPa Poisson’s ratio, �23 0:43 —

Young’s modulus, E2 1:04 GPa Shear modulus, G12 1.0 GPa

Young’s modulus, E3 0:48 GPa Shear modulus, G13 0:96 GPa

Thickness 0:007–0:009 m Shear modulus, G23 0:04 GPa

Density 600 kg=m3 — —

FIG. 3. (Color online) First three modes of the soundboard calculated using FE.
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behavior of the mobility. Alternative methods have been

adopted in the literature24,28,31 based on the mean value

method proposed by Skudrzyk:32 although these can approx-

imate the dynamic response of a complex structure in the

frequency domain, they cannot be directly used in a time

domain, whereas the reduced modal model adopted in this

study is well suited to provide a direct structural coupling

between the string and the soundboard.

3. K-V model for the soundboard

Since the soundboard is significantly stiffer than the

strings,33 it may be sufficient to use a model that repre-

sents the generic trends and average values of the sound-

board mobility without including the full modal

characteristics. The local dynamic behavior of the sound-

board is therefore modelled using a spring and a damper

connected in parallel, which are tuned to fit to the mobil-

ity of the FE model. The stiffness is obtained from the

low frequency asymptote, where the model is stiffness-

controlled. The spring constant k is hence obtained by

considering the reference FE mobility YFE evaluated at a

frequency, x1, that needs to be 10 times smaller than the

first natural frequency of the soundboard. In this case,

k ¼ jx1=YFE x1ð Þ
�� ��. The damper coefficient is obtained

through the logarithmic average of the mobility at fre-

quencies above 2500 Hz. The soundboard mobility

obtained using this K-V approach is also shown in Fig. 5.

The spring-damper system can approximate the main

trends but does not replicate the modal behavior.

To connect the K-V soundboard model to the string via

the contact stiffness, a small mass is added at the interface

to avoid numerical problems in the time-domain calculation.

This mass should be small enough to ensure that the added

mode is outside the frequency range of interest, since the

trend of the mobility is chosen to be determined by the

spring and damper only in this case.

4. Input force to the soundboard

The connection between the string and the soundboard

is modelled by means of a contact stiffness, which repre-

sents the local stiffness behavior at the contact point.15,16

This method of connecting dynamic components of a system

is also used in other areas of research, such as railway noise

and vibration research.34 In the present case, the force is

proportional to the relative displacement between string and

soundboard as

Fb ¼ kc ys � ybð Þ; (4)

where ys and yb are the displacement of the string and

soundboard at the bridge, which can be obtained using the

output state-space matrix C defined in Sec. III B, and kc rep-

resents the stiffness of the contact zone. An expression for

the contact stiffness kc is derived starting from Hertzian con-

tact theory.35 For contact between cylindrical bodies, the

normal load per unit length P acting over a contact patch of

width a can be written as35

P ¼ pE�a2

4R
; (5)

where R is the equivalent radius of curvature for the two sur-

faces. For a cylinder in contact with a flat surface,

TABLE II. Measured damping ratios.

Natural frequency, Hz Damping ratio

75:0 0:04

118:8 0:034

145:3 0:019

182:8 0:024

242:2 0:025

260:9 0:018

FIG. 4. (Color online) (Left) Location

of measurement. The impact point is

circled in red. (Right) Point mobilities

of the soundboard at the bridge loca-

tion corresponding to note D4. (b)

Magnitude. (c) Phase.

J. Acoust. Soc. Am. 155 (5), May 2024 Miranda Valiente et al. 3217

https://doi.org/10.1121/10.0025925

 27 January 2025 15:07:07

https://doi.org/10.1121/10.0025925


representing the case of a string in contact with the bridge’s

surface, this is equivalent to the radius of the string alone.

The equivalent Young’s modulus, E�, is given by

E� ¼ EsEw

Es 1� �2
w

� �
þ Ew 1� �2

s

� � ; (6)

where Es, �s and Ew, �w are the Young’s moduli and

Poisson’s ratios of the steel string and the wooden bridge,

the latter corresponding to E3 in Table I. Such an approxi-

mation considers the rigidity of the material in the direction

normal to the surface.

Using a contact width of a �
ffiffiffiffiffiffi
Rd
p

, where d is the

indentation, and multiplying Eq. (5) by the length of the

contact surface Lc gives the contact force, as also derived by

Popov,36

Fc ¼
pLcE�

4
d; (7)

from which the contact stiffness (Fc=d) is

kc ¼
pLcE�

4
; (8)

FIG. 5. Soundboard mobilities obtained using different models at different locations. (a) Magnitude. (b) Phase.
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where Lc is the length of the contact zone. The value of kc

is on the order of LcEw, and for a small contact length,

Lc � 0:01 m is evaluated as 4:8� 106 N=m.

The mobility of the soundboard obtained from the FE

model at D4 is compared with that of the corresponding

string (full length L) and contact stiffness in Fig. 6. The

soundboard mobility is on average 5 to 6 orders of magnitude

smaller than that of the string at its resonances. The low

structural damping of the string gives pronounced peaks and

dips, unlike in the soundboard, where the damping of the

material is much higher. Consequently, at some antiresonan-

ces of the string, its mobility is comparable or even lower

than the soundboard and contact mobilities. The contact

spring mobility exceeds that of the soundboard for frequen-

cies above about 600 Hz. Results for the other notes exhibit

similar trends; however, for A1, the spring mobility from

300 Hz exceeds that of the corresponding soundboard.

III. TIME-DOMAIN MODEL

This section describes the state-space formulation

adopted to represent and solve the dynamics of the cou-

pled system in the time domain. The model adopted for

excitation by the hammer is described first, and this is fol-

lowed by the state-space formulation of the coupled

string-soundboard-hammer system. A brief discussion on

the numerical scheme used for this study is given at the

end of the section.

A. Hammer excitation

Since Ghosh in 1932,37 different authors have modelled

and showed experimentally that the hammer felt compres-

sion force is nonlinear and can be represented as a power

law7,38,39 given by

Fe ¼ KHnp; (9)

while the equation of motion of the hammer can be written

as

Fe ¼ �mH€yH: (10)

The parameters KH, mH, and p correspond to the nonlinear

stiffness, mass, and power law coefficients obtained experi-

mentally for piano hammers.40 The term €yH is the hammer

acceleration, while n is the compression of the hammer

which can be expressed as

n ¼
yH � ye if yH > ye;

0 otherwise;

(
(11)

where yH and ye are the displacement of the hammer and the

string at the excitation point, respectively.

Other approaches have been developed for the hammer-

string interaction, which can include, for example, the

effects of hysteresis.41 However, as the main focus of this

analysis is the string-soundboard interaction, the simple

power law formulation is adopted.

B. String coupled with soundboard

When the string is connected with any soundboard rep-

resentation, the equations of motion of the system in state-

space form can be expressed as42
FIG. 6. Mobility of the soundboard (FE model) Yb, the string Ys, and con-

tact stiffness Yc for A1, D4, and D5.
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_x ¼ Axþ Buþ B2Fb: (12)

On the left-hand side of Eq. (12), the state vector x contains

the modal velocities _q and modal displacements q of the

string and the soundboard, the velocity _yH, and displacement

of the hammer yH and can be written as x ¼ _q;ð
_qb; q; qb; _yH; yHÞT . This approach helps to produce a single

state-space formulation that can be used for all the models

that include the connection with a soundboard. For the

reduced soundboard, there are 5 modal coordinates, and for

the FE soundboard, 1000. For the simplest soundboard rep-

resentation, the K-V model with small added mass, only one

modal coordinate is considered. The state-space matrix A

can be defined as

A ¼

�diag 2fnxnð Þ � Cd 0 �diag x2
n

� �
�Kd 0 j 0 0

0 �diag 2fnb
xnb

� �
0 �diag x2

nb

� �
j 0 0

In�n 0n�n 0n�n 0n�n j 0 0

0nb�nb
Inb�nb

0nb�nb
0nb�nb

j 0 0

� � � � � � �
0 0 0 0 j 0 0

0 0 0 0 j 1 0

2
66666666666664

3
77777777777775
: (13)

For the different soundboard models, matrix A contains

information about the damping ratio and natural frequencies

of each string and soundboard mode within the correspon-

dent modal damping and stiffness matrices. The damping

ratio fn should be that of the string disconnected from the

soundboard; this is characterized below in Sec. IV. To atten-

uate the vibration occurring in the damped segment of the

string, a method consisting in coupling several dashpots has

been used previously by Jiolat et al.17 In the present work, a

distributed damper and spring are used to modify the modal

damping and stiffness matrix, respectively, embedded in the

state-space matrix A in Eq. (12). They take the form

Cd ¼
ðLsþLd

Ls

cd/n xð Þ/T
n xð Þdx;

Kd ¼
ðLsþLd

Ls

kd/n xð Þ/T
n xð Þdx; (14)

where Ld is the length of the duplex scaling segment and cd

and kd are the damping and stiffness coefficients that are

defined (see below Sec. V E) to represent the strip of felt

that usually mutes the duplex scaling segment in the mid-

low register. The row vector /n xð Þ corresponds to the mode

shape function evaluated across Ld .

The matrix B in Eq. (12) can be written as

B ¼

/T
e

0

�
�1=mH

0

2
66666664

3
77777775
: (15)

Matrix B is a column vector containing string mode shapes

at the excitation point e, /T
e , as well as the inverse of the

hammer mass. It is used to transform the force due to the

hammer Fe into modal forces. The external force vector u is

simply composed of Fe. The remaining modal force term,

B2Fb, is

B2Fb ¼

/T
S 0

0 /T
b

0 0

– –

0 0

0 0

2
6666666664

3
7777777775
�Fb

Fb

" #
; (16)

which introduces the modal contact force between the string

and the soundboard. This term couples the soundboard and

the string at their connection point using the string mode

shapes /s and the soundboard mode shapes /b at the con-

nection point b.

The physical displacements and velocities of the differ-

ent parts of the system are calculated as

y ¼ Cx; (17)

where the matrix C has the function of converting the modal

coordinates to physical coordinates, and the output y con-

tains the physical velocities and displacements of the string,

the soundboard at the connection point and hammer; these

are required to calculate the forces in Eq. (4) and Eq. (9) at

each time step of the integration. Expanding, this equation

takes the form
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_ys

_yb

ys

yb

_yH

yH

2
6666666664

3
7777777775
¼

/s 0 0 0 0 0

0 /b 0 0 0 0

0 0 /s 0 0 0

0 0 0 /b 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666664

3
7777777775

_q

_qb

q

qb

_yH

yH

2
6666666664

3
7777777775
: (18)

The mode shapes / are obtained at the excitation point and

at the connection point to obtain the relevant physical quan-

tities. Evaluating the mode shapes at different positions and

modifying C accordingly can give the vibration response of

the string at any arbitrary position.

C. Simply supported string

In the case where the connection between the string and

the soundboard is not included in the model, the string is

considered as simply supported at its ends, with a total

length equal to its speaking length, Ls. Equation (12)

becomes

_x ¼ Axþ Bu; (19)

where now the state space vector includes only the modal

coordinates of the string and the physical velocities and dis-

placements of the hammer x ¼ _q; q; _yH; yHð ÞT . The state-

space matrix A is now reduced to include only the modal

damping and modal stiffness matrix of the string:

A ¼

�diag 2fnxnð Þ �diag x2
n

� �
j 0 0

In�n 0n�n j 0 0

� � � � �
0 0 j 0 0

0 0 j 1 0

2
66666664

3
77777775
: (20)

The modal forcing term Bu remains unaltered.

D. Numerical integration

Numerical time integration is performed to obtain the

time-dependent output vector from the state-space model,

containing the velocities and displacements of the coupled

system at the connection point. The time resolution of the

response dt is defined as dt ¼ 1=fs in terms of a required

sample frequency, fs. This, in turn, is defined in terms of the

maximum natural frequency analyzed and set to fs ¼ 10fmax,

where fmax is the highest natural frequency considered for

the string. The initial conditions of the state-space vector x

are

_q; _qb; q; qb ¼ 0;

_yH ¼ 2:5 m=s; yH ¼ 0:05 m; (21)

where initial conditions for the modal coordinates are appli-

cable for both string and soundboard. The numerical time

integration of the input state-space equation for the different

cases [i.e., in Eq. (12) or Eq. (19)] is performed in MATLAB

using ode45, which is based on the fourth-order

Runge–Kutta method.

IV. DAMPING OF A PIANO STRING

Although most of the string parameters are available in

the literature, the model developed in this work requires the

structural damping of the string disconnected from the

bridge and tensioned between the agraffe and the hitch pin.

This is generally not available and was therefore measured

experimentally. To uncouple the string from the sound-

board, two example strings were lifted using a metal cylin-

der placed near the hitch pin and fitted between the string

and the cast-iron frame, as shown in Fig. 7. The string was

therefore lifted by 2–3 mm to avoid contact with the bridge.

Measurements were also performed with the string coupled

to the soundboard for comparison.

Free vibration of the string was excited by means of a

piano hammer, and the vibration decay was analyzed to

evaluate the damping. The transverse velocity response at a

point close to the hammer striking position was recorded

using a laser Doppler velocimeter.

Prior to the calculation of the energy decay, the veloci-

ties were filtered in frequency bands of bandwidth Df ¼ f0,

where f0 is the fundamental frequency; the bands were cen-

tered at the partials of the recorded tone. The energy decay

in each band was calculated using the Schroeder integral

as43

E tð Þ ¼
ð1

t

v2
f sð Þds; (22)

where vf represents the filtered measured velocity of the

string in the direction perpendicular to the soundboard.

Negligible double polarization was observed with this setup,

whereas in the case of the string coupled to the soundboard,

the energy associated with the decay will be influenced by

the different polarizations of the string. The reverberation

time T60 can be calculated by fitting a straight line to a

FIG. 7. (Color online) Cylinder used to lift the string to decouple it from

the soundboard.
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manually chosen range of the energy decay curve in decibels

to obtain the slope. Then the damping ratio f, corresponding

to a frequency band with central frequency fc, was found

from44

f ¼ 1:1

T60 fc
: (23)

Estimated values f for two uncoupled strings, a C2 (copper-

wound) string and F4 (steel) string, are shown as diamonds

in Fig. 8 and Fig. 9. The estimated damping for the case

where the strings are connected with the soundboard are

also shown (circles). In the uncoupled strings, the results for

F4 are more disperse than for C2, due to limitations of the

measurement technique used to try to avoid the hammer hit-

ting other unison strings, which in reality are not indepen-

dent strings: they consist of a single string that is chorded

through the hitch pin of the piano, as shown in the photo of

the piano string configuration in Fig. 10.

Thus, hitting other strings will result in undesired vibra-

tion in the measured string segment. These string segments

were therefore lifted, which produced a change in tension,

causing variable string frequencies. However, the resultant

damping ratios did not vary significantly.

The measured damping ratios are compared for refer-

ence with the viscous damping model (SVM), as proposed

by Chabassier4,45,46 and also used more recently by Tan.47

There is generally a good agreement between the measured

values and the SVM, which is here implemented using the

values available in the literature for this note and not by

curve fitting it with this set of measurements.

Although the results are slightly frequency dependent, a

constant value for f of all the modes could be also used as a

reasonable approximation for the decoupled string. This was

set to 5� 10�5 for the copper-wound string and to

7:5� 10�5 for the steel string (continuous lines in Figs.

8 and 9). In comparison to the structural damping of the

string alone, the damping ratios of the string coupled to the

soundboard are higher at low frequency by about a factor of

5–10, while they tend towards the damping ratios of the

string alone at higher frequencies. It is to be expected that

the model of the coupled string (see below) would be able to

replicate this effect.

V. TIME-DOMAIN MODEL RESULTS

Results from the time-domain model are shown here to

illustrate the various physical phenomena occurring in the

piano string vibration. The hammer-string contact force is

shown as well as the subsequent string vibration at different

locations. The interaction force between string and sound-

board is also described, including the vibration response at a

point on the soundboard. Comparisons are made using the

different models described in Sec. II B and the simply sup-

ported string (Sec. III C) used as a reference to emphasize

the presence of additional damping added by the connection

with the soundboard. Following this, a minimal model is

introduced, composed of a simply supported string with the

damping adjusted to include that introduced by the connec-

tion with the soundboard. Finally, the influence of including

a distributed damping and stiffness along the duplex scaling

segment of a string is shown.

FIG. 8. (Color online) Estimated

damping ratios f for C2 string. Circles

(red) represent string coupled to the

soundboard. Diamonds (black) repre-

sent decoupled string.

FIG. 9. (Color online) Estimated damp-

ing ratios f for F4 string. Circles (red)

represent string coupled to the sound-

board. Diamonds (black) represent

decoupled string.
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Three different notes across the piano range are consid-

ered for the analysis: A1, D4, and D5. For the different

strings analyzed, the soundboard dynamics is that of the cor-

responding connection point. The parameters used for the

strings are summarized in Table III. Some of these were

obtained from measurements on the available piano, while

others were obtained from literature, as indicated.

In Table III, the steel core of the string and its copper

winding, noted with the subscripts “core” and “wound,” respec-

tively, are used to obtain the corrected physical properties of

the copper-wound string—in this case A1, as in Conklin.50 The

agraffe segment corresponds to the distance from the agraffe

termination of the string to the point at which the hammer

strikes. It is calculated using the relative striking position a
given in Chaigne and Askenfelt,40 Le ¼ a� Ls, where a can

take the values 0:12 for A1 and D4 and 0:11 for D5.

For ease of comparison, the time-domain results are

shown for the first 5 s even when the decay lasts longer than

this. Four different approaches are compared: (i) FE sound-

board, (ii) reduced modal soundboard, (iii) K-V soundboard,

and (iv) simply supported string (no soundboard, noted as

SS). The influence of using different representations of the

soundboard dynamics is discussed.

The results presented below initially include a duplex scal-

ing segment left to vibrate, which highlights the capability of

this modelling approach to include this feature that is adopted

in most grand pianos in the mid-high register. At the same

time, as discussed in Sec. V A, the inclusion of distributed

damping and stiffness along the duplex scaling length is shown

to be an effective modelling approach to mute the vibration of

this segment of the strings in the mid-low register.1

A. Hammer-string contact force

The hammer-string forces obtained with the four differ-

ent models are generally not affected by the soundboard

model. For note A1, the results in Fig. 11 show that the

forces do not vary when using different soundboard repre-

sentations. The results of the contact profile are similar to

the ones produced by other modelling approaches taken in

the literature for C2.40 The variations in the contact force

for D5 are also negligible, while for D4, the simply sup-

ported string results in a force that is different from the other

models, whereas for the three models that include the sound-

board, the forces are identical (results not shown here).

B. String vibration and decay

To verify the effects of the different modelling

approaches on the vibration velocity of the string in the time

TABLE III. String and hammer parameters.

Description Variable Unit A1 D4 D5

Speaking length Ls m 1:3 0:59 0:308

Agraffe segment Le m 1:56� 10�1 7:1� 10�2 3:4� 10�3

Duplex length Ld m 0:11 0:15 0:05

Tension T N 1821 637 1420

Young’s modulus (Ref. 40) E GPa 200 200 200

Density of string steel core (Ref. 48) qc kg=m3 7860 7860 7860

Density of copper winding (Ref. 49) qw kg=m3 8960 — —

Diameter of steel string core dcore m 1� 10�3 1� 10�3 1� 10�3

Diameter of copper winding dwound m 1:5� 10�3 — —

Fundamental frequency of string f0 Hz 55 294 584

Piano hammer mass (Ref. 40) mH kg 10:4� 10�3 8:6� 10�3 7:8� 10�3

Piano hammer stiffness coefficient (Ref. 40) KH N=mp 2:15� 108 7:45� 109 3:23� 1010

Piano hammer nonlinear coefficient (Ref. 40) p — 2:28 2:41 2:58

FIG. 11. Hammer-string contact force for string A1.

FIG. 10. (Color online) Piano string configuration in the middle register of

the piano.
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domain, the envelopes of the time histories are analyzed in

this section and the damping ratios of the string-soundboard

systems are also extracted.

The envelopes of the vibration velocity obtained at the

excitation point are shown in Fig. 12 for the three notes con-

sidered and the four different models. The vibration decays

obtained with the simply supported string are longer than all

the other models. This is due to the absence of the damping

provided by the connection with the soundboard, the only

damping mechanism being the structural damping estimated

in Sec. IV. The other three models provide similar results.

For A1 and D5, some differences occur at the beginning of

the response, where the reduced soundboard model is closer

to the full FE representation than the K-V model.

To quantify the differences seen in Fig. 12 and evaluate

the modelling approaches, it is of interest to calculate the

damping introduced by the connection with the soundboard

numerically and compare it with the experimental results

shown in Figs. 8 and 9. The comparisons are presented in

Fig. 13 for the A1 string, where the damping estimations

from both measurements and numerical models are obtained

using the same procedure, described in Sec. IV.

The damping of the simply supported case corresponds to

the constant structural damping ratio estimated from measure-

ments, while the other models follow the trend of the measure-

ments performed with the string connected to the soundboard.

The reduced modal representation gives results closest to the

FE soundboard model, particularly at lower frequencies below

600 Hz. At high frequencies, the estimated damping of the

coupled models tends to be that of the simply supported string.

Similar conclusions hold for the other strings analyzed, but the

results are not presented here for brevity.

It can be seen that the damping ratios exhibit a squence

of dips. Although they are not clearly identifiable in the

measurements, the dips in the modal soundboard results

align with the duplex scaling resonances. This is because

damping estimates for frequencies at and close to the reso-

nance of the duplex scaling segment are affected by vibra-

tion transmission beyond the bridge and into this segment.

This is a typical characteristic of piano string vibration since

it was patented by Steinway51,52 and is a feature of the

model, and its effect on the estimated damping ratio is there-

fore considered.

Although the general trend of the damping ratios is sat-

isfactory in comparison with the measurements, some differ-

ences occur. These can be explained by the limitations and

assumptions of the current models. The differences below

100 Hz, where the damping from the measurements is higher

than that of the models, could be associated with differences

between experimental and model mobilities. These differ-

ences have less influence at higher frequencies, but here

double polarization may have a significant effect. Double

polarization can produce a two-stage decay, hence smaller

apparent damping. An experimental method for estimating

the damping of the two transverse directions of vibration of

a uncoupled string was shown by Tan.47 Nonetheless, it

assumes that strings have a non-linear behaviour and imper-

fections in the excitation that can excite the direction paral-

lel to the soundboard. Herein, the model is assumed to be

linear, the hammer excitation is perfectly transverse, and the

response in the second polarization is caused only by the

connection with soundboard. Tan’s experimental results

were processed using high resolution modal analysis techni-

ques consisting of the separation of the signal into sinuo-

soids with a corresponding decay, phase, and natural

frequency.53,54
FIG. 12. Envelopes of time histories of piano string vibration velocity at the

excitation point.
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To conclude the assessment of string vibration, the

spectra of vibration velocity at the excitation point and the

connection point with the bridge are shown in Fig. 14 for

the A1 string by way of example. The simply supported

model is included for reference only and is fixed at the con-

nection point, and hence this model is not present in Fig.

14(b). The main feature of the spectra is the familiar series

of partials for this note. At the excitation point in Fig. 14(a),

there is no identifiable presence of the soundboard resonan-

ces, but the frequencies associated with the duplex scaling

segment can be identified by small peaks at 660 Hz and its

higher harmonics, indicated in the figure. At the bridge con-

nection point shown in Fig. 14(b), two low-frequency

soundboard resonances are present for the two models that

include them. Other resonances occur close to the funda-

mental frequency of this note and are therefore not sepa-

rately identifiable. The duplex scaling frequencies are also

present and more distinct than at the hammer striking point.

Considering the three models that include a connection

with the soundboard, the string partials have similar levels.

However, more similiarities exist between the two modal

soundboard models. An example is highlighted in Fig.

14(b), where at the first string partial, the K-V model has a

lower level than the other two models. A higher resonance

is also highlighted, showing that the differences are smaller

than at lower frequencies. This is caused by differences in

the mobility of the soundboard (see Fig. 6) at lower frequen-

cies, where it is comparable to that of the contact stiffness,

whereas at higher frequencies, the contact spring mobility is

higher than that of the soundboard and the soundboard has

negligible influence on the string vibration. This shows that

the higher frequency range, in which the simpler soundboard

representations are less accurate (see Fig. 5), is dominated

by the interaction between the string and the contact stiff-

ness, whereas the soundboard representation has a dimin-

ished role. For D4 or D5, where the string partials are higher

FIG. 13. (Color online) Damping ratios

for A1 string connected to the sound-

board, estimated from modelling and

experiments. Vertical dashed lines indi-

cate resonances of the duplex scaling

segment.

FIG. 14. (Color online) Spectra of

vibration velocity for note A1. Duplex

scaling resonances are indicated at the

excitation point by the arrows in panel

(a). Spectra are shown at the connec-

tion point in panel (b).
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in frequency, the interaction is dominated by the contact

stiffness as its mobility is comparable to or higher than that

of the soundboard.

Although the soundboard models produce similar

results, the computational times required differ significantly.

For the D4 case, on a standard desktop computer and with

the ode45 MATLAB routine, the computational times required

to calculate 10 s of time history with a sampling frequency

of fS � 63 kHz are as follows. The reduced representation

requires about 37 s, the K-V model takes 54 s, and the FE

representation requires approximately 840 s. The K-V model

requires more computational time than the more complex

reduced model because the former includes high damping.

This hypothesis was tested by running the K-V model under

different damping coefficients, showing that computational

time can be reduced as much as to 25 s when reducing

damping by orders of magnitude. The computational time

are also related to the ode45 solver adopted in study and can

vary with the numerical implementation.

C. Force at the bridge and soundboard response

In the interaction between the string and the soundboard,

it is of interest to compute the interaction force between the

two systems. This force is the responsible for the coupling,

and it can be used as an input for obtaining the vibratory

response of the soundboard. In the case of the simply sup-

ported string, in the absence of the soundboard, the force is

given by Eq. (3). Once computed, the forces from the different

models can be used for sound generation in future work.

The envelopes of the time histories of the forces at the

bridge are shown in Fig. 15. The general trend of these

results confirms that lower tones last longer and result in

higher values of the force. Comparing the different sound-

board models, the simply supported approach produces

decays that are much longer than the others, as found for the

string vibration. Although the reduced soundboard model is

closer to the FE representation, the differences in terms of

transmitted force are more subtle than for the string vibra-

tion. The largest difference is for D5, where the response is

larger in the FE model. The time histories of the force decay

do not seem to favour a particular representation of the

soundboard. The readers can make their own subjective

judgement from the audio files Mm. 1, Mm. 2, Mm. 3, and

Mm. 4 for the A1 model and Mm. 5, Mm. 6, Mm. 7, and

Mm. 8 for the D4 model.

Mm. 1. Transmitted force to the soundboard Fb, for A1,

simply supported string.

Mm. 2. Transmitted force to the soundboard Fb, for A1, FE

soundboard model.

Mm. 3. Transmitted force to the soundboard Fb, for A1,

reduced soundboard model.

Mm. 4. Transmitted force to the soundboard Fb, for A1, K-

V soundboard model.

Mm. 5. Transmitted force to the soundboard Fb, for D4,

simply supported string.

Mm. 6. Transmitted force to the soundboard Fb, for D4, FE

soundboard model.

Mm. 7. Transmitted force to the soundboard Fb, for D4,

reduced soundboard model.

FIG. 15. Envelopes of time histories of force transmitted to the soundboard.
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Mm. 8. Transmitted force to the soundboard Fb, for D4, K-

V soundboard model.

The force spectra of the different representations are

shown in Fig. 16. The simply supported case is omitted for

ease of comparisons between the other models. There is no

sign of soundboard resonances in the force spectra, in con-

trast to what is seen in the string vibration at the connection

point [see Fig. 14(b)]. The duplex scaling resonances are

present in the transmitted force at 660 Hz for the A1 string

and 1110 Hz for D4, as well as their higher harmonics. For

D5, only one resonance is present at 3.8 kHz.

Generally, the models that include the dynamics of the

soundboard have similar peaks in their force spectra, both in

level and in frequency, while the K-V model has peaks that

are slightly different in magnitude and frequency: see, for

instance, the highlighted first peak for A1. The case of D4

shows that the differences are consistent through the fre-

quency range. At this location, there exists a greater imped-

ance mismatch between the string and soundboard than in

the other locations on the bridge. Consequently, the sound-

board model does not influence the results significantly and

the interaction with the contact stiffness is predominant.

Although the differences are generally small, the reduced

model is closer to the FE model than the K-V model.

The forces at the bridge can then be used to evaluate the

vibration response at any point on the soundboard by com-

bining them with the impulse response between the bridge,

point b (see Fig. 1), and a generic point, k, on the sound-

board shown in Fig. 3. The transfer impulse responses are

FIG. 16. (Color online) Spectra of force transmitted to the soundboard.
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obtained by calculating the inverse Fourier transform of the

transfer mobilities Ykb evaluated with the full FE model

(irrespective of which soundboard model is used in calculat-

ing the string vibration). Mathematically, the vibration

velocity at k, caused by a bridge force, Fb, is the convolution

between the bridge force and the impulse response as

vk tð Þ ¼ IFFT Ykbð Þ � Fb tð Þ: (24)

The envelopes of the time histories of the soundboard vibra-

tion are shown in Fig. 17 for excitation of strings A1 and

D4. These allow two cases to be compared in which the

soundboard representation has a different importance.

Whereas for the transmitted force in Fig. 15, the soundboard

models did not exhibit notable differences, the response of

the soundboard using the K-V model has more noticeable

differences, particularly in the case of A1, where the sound-

board model plays a more significant role. Compared with

the forces shown in Fig. 15, the profiles of the resultant

velocity vk are more regular, and, moreover, the soundboard

appears to enhance the differences between the K-V model

and the modal soundboard models in the case where its

mobility plays a more important role.

The spectra of the vibration of the soundboard are

shown in Fig. 18. The modes of the soundboard are now pre-

sent in the vibration response for all the models due to the

use of the same transfer mobility Ykb in each case. Two

example string partials are highlighted, showing that, as in

the transmitted force, the models with soundboard dynamics

produce similar resonances, while those of the K-V model

are slightly different. As was stated in other comparisons,

the differences are more significant at lower frequencies,

where the soundboard has a more significant influence.

The sound samples for the vibration velocity obtained

via the reduced model for A1 and D4 are attached as Mm.

9 and Mm. 10. The listener should notice the influence of

the soundboard. As the spectra are now richer in lower fre-

quencies than the force sound samples, the sound is now

“fuller.”

Mm. 9. Vibration velocity at the soundboard vk, for A1,

reduced soundboard model.

Mm. 10. Vibration velocity at the soundboard vk, for D4,

reduced soundboard model.

The simply supported model, not shown, gives a spec-

trum that reproduces adequately the main features obtained

with the other approaches, but its decay is larger and unreal-

istic. It cannot include the duplex scaling resonances, but

the damping value could be adjusted to represent the effect

of the soundboard in an equivalent way. This is presented in

Sec. V D.

D. A minimal model

The simply supported string model is modified to

include the damping arising from the connection with the

FIG. 17. Vibration velocity envelope at a position on the soundboard.

FIG. 18. (Color online) Spectra of

vibration velocity at the soundboard.
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soundboard, which would yield shorter computational times

while maintaining the characteristics of the piano tone due

to the coupling between the string and the soundboard. The

formulation of the minimal model is the one already pre-

sented in Sec. III C, but in this case, the modal damping

matrix is modified to include the estimated damping rations

of the string coupled to the FE soundboard. The real part of

the mobility is not used in this case. To test this, the esti-

mated damping ratios of the string coupled to the FE sound-

board model, shown in Fig. 13, are used as an input to the

modal damping matrix of a simply supported A1 string. The

envelope of the string vibration velocity at the excitation

point is compared in Fig. 19 with that obtained from the

string coupled with the FE soundboard model. The

agreement between the two models is satisfactory, and some

differences in the envelopes can be attributed to uncertainty

in estimating low values of damping ratios.

The comparisons are also made in the frequency

domain: the spectra of the vibration velocity and the force

transmitted to the soundboard are shown in Fig. 20. The

spectra have good agreement, but this minimal model fails

to represent the vibration of the duplex scaling segment,

which can be seen in the force spectrum in Fig. 20(b) at

approximately 660 Hz and higher harmonics.

E. Attenuating the duplex scaling segment

It has been shown in Secs. V B and V C that one of the

features of the models that include the soundboard is the

presence of resonances of the duplex scaling segment.

However, in actual pianos, these are muted in the lower reg-

ister. The same models can still be adopted, provided a suit-

able value for the distributed dampers and springs is applied

in the duplex scaling segment. Using Eq. (14), different val-

ues of damping coefficients cd in a range between 1 and

4 Ns=m2 are used to determine what value can be used to

obtain the desired effect without significantly affecting the

other string resonances. The value of the distributed spring

was fixed. The results are shown in Fig. 21 for the spectra of

the acceleration at the connection point of the soundboard b
for the note D4 using a reduced soundboard model. Again,

the readers can compare the different outcomes by listening

to the audio files provided in Mm. 11, Mm. 12, Mm. 13, and

Mm. 14 for increasing values of cd. The stiffness by itself

can provide a sufficient attenuation of the first resonance of

the duplex scaling. Within the range of values tested, a value

of cd ¼ 1 Ns=m2 reduces the higher duplex scaling resonan-

ces in the numerical model adequately: the effect on the

adjacent string resonances is smaller than when using higher

FIG. 19. Time histories of piano string vibration velocity at excitation point

for the A1 string. The black line represents string coupled with the FE

soundboard model. The gray line represents simply supported string with

the adjusted damping ratio.

FIG. 20. Comparisons of spectra

between FE and minimal model for the

A1 case. (a) Spectrum of vibration

velocity at the excitation point. (b)

Spectrum of force transmitted to the

soundboard.
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values of cd. This is shown in the highlighted resonance in

Fig. 21(a). For comparison, the measurement of acceleration

at the bridge pin at the D4 location is shown, evidencing the

lack of duplex scaling vibration in this piano. The modelled

result has a satisfactory agreement with the measurement

and confirms that the model approach taken and its coupling

with the string is correct.

Mm. 11. Acceleration at the connection point of the

soundboard ab, for D4, using cd ¼ 0 Ns=m2.

Mm. 12. Acceleration at the connection point of the

soundboard ab, for D4, using cd ¼ 1 Ns=m2.

Mm. 13. Acceleration at the connection point of the

soundboard ab, for D4, using cd ¼ 2 Ns=m2.

Mm. 14. Acceleration at the connection point of the

soundboard ab, for D4, using cd ¼ 4 Ns=m2.

VI. CONCLUSIONS

Soundboard models of differing complexities, a detailed

FE model, a reduced modal model, and a simplified K-V

model, have been coupled to a string in a state-space

approach. The scope is to address the effects of the assump-

tions in using different soundboard models differing in com-

plexity in their modal representation. Nonetheless, it is not

intended to produce complex soundboard model accounting

for nonlinear effects due to prestresses or other effects of its

manufacturing. Moreover, the modelling approaches pre-

sented in this study assume a linear behaviour of the differ-

ent systems associated with piano sound generation, with

the exception of the hammer excitation.

The assumptions related to the soundboard have only a

small effect on the results for the string response, affecting

the lower frequency range more than higher frequencies.

This is explained by the differences between mobilities of

the string, the soundboard, and the contact spring used for

the coupling between them. At lower frequencies, the mobil-

ity levels of the soundboard are similar to those of the con-

tact spring. Consequently, the string and soundboard can

interact, and the soundboard resonances have an influence on

the resultant string vibration in this frequency range. On the

other hand, at higher frequencies, the contact spring mobility

is much greater than that of the soundboard. Hence, the

response of the system is dependent on the interaction

between the string and the contact spring, and the sound-

board model does not significantly influence the results in

FIG. 21. (a) Spectrum of acceleration at the connection point of the soundboard for D4 string, using different damping coefficients for the duplex scaling

segment. (b) Spectrum of comparison between measured acceleration and modelled using highly damped duplex scaling.
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this part of the spectrum. These observations are applicable

at widely different locations in the piano range, for string

vibration, interaction force between string and soundboard,

and for the resultant vibration of the soundboard.

In contrast, the damping estimation is affected by the

soundboard representation to some extent. The trend of the

damping ratios shows irregularities that can be attributable

to the presence of the duplex scaling vibrations in the mod-

els. Differences between the experimental results and the

models at low frequencies may be caused by deviations

between the experimental and modelled soundboard mobili-

ties at the connection point. Another cause of differences

could be the presence of double polarization in the experi-

mental measurements, producing a longer decay and hence

smaller damping. Double polarization is not yet included in

the numerical models.

To provide a minimal model, a simply supported string

model was modified to include the damping corresponding

to that provided by the connection with the soundboard,

yielding similar levels and spectra as a string connected

with an FE soundboard model. However, this simply sup-

ported model does not include the duplex scaling segment

resonances. Such a model could therefore be useful in low-

mid range of the piano where this segment is muted.

Finally, a brief study on the attenuation of the duplex

scaling segment shows that a small damping coefficient is

needed to accomplish the desired effect, so as not to affect

greatly other adjacent resonances. This was achieved by

using a distributed damping and stiffness approach along the

duplex scaling segment. Results were compared with mea-

surements showing a satisfactory agreement. However, it is

yet to be confirmed experimentally what is the damping

introduced by the felt in the duplex scaling.

Overall, it is clear that detailed FE soundboard models

are not needed to represent the main characteristics of

string-soundboard interaction. Simpler soundboard repre-

sentations can achieve the expected results and can model

the trend of the damping with less computational effort. The

reduced model is more similar to the FE soundboard model

than the K-V model, particularly at low frequencies, where

the soundboard can influence vibration. Nonetheless, the K-

V soundboard model is not far from representing the FE

soundboard behavior. For a full three-dimensional (3D) rep-

resentation of strings and soundboard, a model considering a

reduced modal soundboard would need to be extended to

include different directions and to consider other coupling

mechanisms, such as the interaction between unison strings.

The force generated by these string-soundboard models

could then be used to predict the vibration response across

the soundboard, and hence, the radiated sound, by applying

the interaction force to a suitably complete model of the

soundboard. To give an initial estimate of soundboard vibra-

tion, the velocity was obtained at a point on the soundboard,

from which it can be heard from the corresponding audio

files and seen how important the soundboard resonances are

in the generated tone, producing a response that is enriched

at lower frequencies.
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