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Abstract—In harsh environments, such as mountainous ter-
rain, dense vegetation and urban landscapes, a single type of
unmanned aerial vehicles (UAVs) may encounter challenges like
flight restrictions, difficulty in task execution or increased risk.
Therefore, employing multiple types of UAVs to collaborate along
with satellite assistance, becomes essential in such scenarios. In
this context, we present a stochastic geometry based approach
for modeling the heterogeneous non-terrestrial networks (NTNs)
by using the classical binomial point process and introducing
a novel point process, called Matérn hard-core cluster process
(MHCCP) which possesses both properties of exclusivity and
clustering. Through simulations, MHCCP has been validated as
a more suitable model for UAV groups composed of multiple
clusters, compared with traditional point processes such as
Poisson point process, binomial point process, and Poisson cluster
process. This is because MHCCP ensures inter-cluster repulsion
while effectively capturing the clustered distribution observed
in practical scenarios. Then, taking into account the influence
of terrain shadows on the aerial-satellite links in low-altitude
harsh environments, we derive closed-form expressions of the
outage probability and average ergodic rate for the aerial-to-
satellite uplink of heterogeneous NTNs. Unlike existing studies,
our analysis adopts an advanced system configuration that
combines beamforming with frequency division multiple access
and incorporates a shadowed-Rician fading model to accurately
capture signal fading under complex environmental conditions.
Furthermore, we investigate link performance in the presence of
co-channel interference. Monte Carlo simulations validate that
the derived closed-form solutions of the outage probability and
the average ergodic rate provide a precise quantitative tool for
evaluating the reliability and transmission efficiency of the aerial-
satellite links, offering deeper insights into system performance
in complex environments.

Index Terms—Heterogeneous non-terrestrial network, stochas-
tic geometry, Matérn hard-core cluster process, binomial point
process, outage probability, average ergodic rate
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NON-TERRESTRIAL networks (NTNs), which include
unmanned aerial vehicles (UAVs), high-altitude plat-

forms and satellite networks, are extensively utilized for a
myriad of purposes, such as remote sensing, navigation, dis-
aster management and various commercial applications [1, 2].
In challenging environments, including disaster relief, complex
terrain monitoring, and urban security and surveillance, single-
type low-altitude UAV groups often encounter significant
limitations. These UAVs often struggle to meet simultaneous
demands for extensive coverage, endurance, anti-interference
capabilities, and handling complex tasks. Moreover, difficult
terrains such as mountainous regions, densely vegetated areas,
or urban landscapes pose flight restrictions and task execution
challenges, where specific UAV types may perform better
under particular conditions. To address these challenges, het-
erogeneous UAV groups, composed of various UAV types with
complementary strengths, become essential. This approach not
only enhances operational capabilities and reliability but also
ensures that UAV-based applications can adapt effectively to a
wide range of complex and demanding scenarios. Furthermore,
studying the performance of heterogeneous UAVs will offer
valuable insights for designing and developing future UAV
systems, ensuring their adaptability and resilience in dynamic,
challenging environments.

In complex terrains, shadow fading caused by obstruc-
tions such as buildings, trees, and mountains significantly
challenges the applicability of traditional fading models like
Rayleigh, Rician, and Nakagami. The analysis becomes even
more intricate in heterogeneous NTNs, where multiple UAV
types, their spatial distributions, and varying communication
characteristics add layers of complexity. Conventional meth-
ods, often reliant on discrete event simulations or network
simulators [3, 4], provide insights but lack the mathematical
rigor needed for a deeper understanding of network features.
Additionally, these methods may face limitations when applied
to specific network scenarios. To overcome these challenges,
recent research has demonstrated the potential of stochastic
geometry [5] and random geometric graphs [6] as effective
analytical tools, offering new perspectives on network behavior
and performance.

A. Related Works

Hybrid satellite-aerial-terrestrial networks (SATNs) have
gained increasing attention as a key aspect of 6G, driven
by the growing need for seamless global connectivity and
advancements in this integrated communication paradigm.
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Stochastic geometry has emerged as a powerful mathematical
tool for addressing the challenges posed by SATNs, enabling
the analysis of average network performance and offering valu-
able insights into network operations [7–17]. For example, [7]
utilized stochastic geometry to analyze downlink performance
and determine the effective number of satellites required for
real-world networks with uneven satellite distributions across
different latitudes. In addition, the researches conducted in
[13–16] explored the downlink performance of a low Earth
orbit (LEO) satellite communication system, by considering
various fading channel models and satellite distribution mod-
els. The works [8, 12] on the other hand carried out uplink
performance analysis for integrated SATNs, by focusing on the
Rayleigh fading model in general situations and the empirical
fading model in an urban setting. The paper [9] investigated
the performance of cache-enabled SATNs, utilizing the non-
orthogonal multiple access (NOMA) scheme, while the paper
[10] focused on the analysis of end-to-end (e2e) performance
in a cooperative SATN, considering either the satellite or the
aerial relay. The authors of [11] specifically investigated the
probability of establishing an end-to-end path from ground
users to a satellite, considering scenarios both with and without
aerial nodes serving as relays, and focused on spherical
stochastic geometry analysis under Nakagami fading. The
authors of [17] utilized a decode-and-forward relay method to
establish a model for the cooperative SATN system and studied
e2e outage probability (OP). However, all the aforementioned
UAV systems are homogenous as they only consider single-
type UAV. To date, few studies have focused on heterogeneous
NTN systems involving two or more types of UAVs, primarily
due to the increased complexity of the analysis process for
such systems. Building on the foundational work on multi-
layer LEO systems [18], our objective is to address the
challenge of analyzing the uplink involving heterogeneous
UAV groups. Besides, the interference which has significant
impact on the system performance in a wireless network with
numerous concurrent transmissions is often overlooked in the
various existing studies [13–17], as its exclusion simplifies the
analysis and derivation process. Addressing this interference
issue is therefore another key focus of our research.

Most of the above works conducted the modeling using
Poisson point process (PPP) and/or Poisson cluster process
(PCP), which are well known for their mathematical tractabil-
ity. Specifically, it is convenient to use them in deriving the
performance of a network where the node density is known
and the number of nodes in different disjoint subareas is
independent. However, they are not suitable for modeling the
nonstationary and often nonisotropic distribution in a finite-
area network with a fixed number of nodes, where the number
of nodes is also not independent among different disjoint
regions [19, 20]. The same issue also arises with a special
type of PCP, namely Matérn cluster process (MCP) [21],
as the parent points in MCP are constructed based on the
rules of PPP. On the other hand, since both Matérn hard-
core point process (MHCPP) [22] and binomial point process
(BPP) are defined within finite regions, they can be naturally
adopted to size-limited areas with spatial boundaries, which
means that the utilization of them are deemed more suitable

in this particular scenario for elucidating the attributes of the
network configuration. Furthermore, due to its exclusionary
nature, MHCPP is well-suited for modeling UAVs that need to
maintain a certain safe distance from each other. However, tra-
ditional MHCPP cannot capture the characteristics of clustered
tasks for UAVs. Thus, we need a point process that combines
both exclusion and clustering properties for heterogeneous
NTN systems.

In contrast to Rayleigh and Nakagami-m fading, shadowed-
Rician (SR) fading [23] has been proven to be more appro-
priate for the statistical characterization of satellite channels.
This model has been found to be applicable across several
frequency bands, such as S-, L-, Ku-, and Ka-band, making
it a versatile choice for modeling satellite communication
channels. While the SR model is extensively employed in
satellite link research, system-level analysis is understudied.
With LEO satellites located at different altitudes, the work
[13] investigated the joint coverage probability from satellites
to satellite gateways in remote areas and then to anchor base
stations, given that the satellite-to-gateway link is subject to
SR fading. The authors of [24] derived the downlink OP of the
LEO satellite communication system under SR fading based
on a BPP distribution and optimized the system throughput
under visibility and outage constraints. Nevertheless, similar
to majority of the works utilizing SR models, these two papers
solely examined SNR while neglecting the consideration of
interference. In recent studies on uplink communications with
SINR, [25] employed the Gaussian mixture model (GMM) for
channel fading, rather than the SR model. On the other hand,
in studies [26–29] that used the SR model and incorporated
SINR, the SR model was approximated using the Gamma
function. Song et al. [10] employed the Nakagami-m fading
model rather than the SR fading model for the purpose of
estimating statistical values of interference. Hence, it is evident
that the interference analysis with the SR model remains
unexplored. In our previous work [30], we have partially
explored this aspect; however, it lacks a detailed analysis of
the proposed novel point process and an in-depth investigation
of different performance metrics based on the SR fading.

B. Contributions and Organization of the Paper

Motivated by the aforementioned discoveries, this study
investigates the heterogeneous NTN system, comprising two
distinct groups of UAVs and one satellite. To better model such
a heterogeneous NTN, we introduce a novel point model called
Matérn hard-core cluster process (MHCCP)1. The location
distributions of these two UAV groups are described as the
MHCCP for one group and the BPP for the other group.
Furthermore, beamforming and frequency division multiple
access (FDMA) are employed to improve network efficiency.
Since in this heterogeneous NTN system, nodes operating
within the same subchannel share the same frequency band,
we explicitly investigate the effects of multi-user interference

1MHCCP is a point process that combines clustering behavior with spatial
exclusion by introducing a hard-core distance, which ensures a minimum
separation between cluster heads while allowing other points to cluster around
them within a defined radius. The specific construction rules will be provided
in the system model section.
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TABLE I
COMPARISON OF EXISTING STATE-OF-THE-ARTS FOR SATELLITE RELATED NETWORKS WITH OUR PROPOSED WORK

Reference Link types Channel fading model
of target signal

Channel fading model
of interference signal Multi-access Beamforming Point process

Zhang et al. [9] S-A-T
S-A: SR

A-T: Nakagami - NOMA - PCP

Song et al. [10] A-S-T
A-S: Nakagami

S-T: SR Nakagami CDMA - MHCPP/PPP

Liu et al. [11] T-A-S/T-S Nakagami Nakagami FDMA - PCP/PPP
Al-Houraniet al. [12] T-S Empirical Model Empirical Model - - PPP

Talgat et al. [13] S-GW-U
S-GW: SR

GW-U: Rayleigh - - - BPP/PPP

Al-Houraniet al. [14] S-T GMM - - - PPP
Okatiet al. [15] S-T Rayleigh - - - NPPP

Zhang et al. [17] S-A-T SR - Single-User - Single-Point
Jung et al. [24] S-T SR - - - BPP

Al-Houraniet al. [25] T-S GMM GMM - - BPP

Jia et al. [26] T-S
SR (Approximating

to a Gamma function)
SR (Approximating

to a Gamma function) - - PPP

Sellathurai et al. [27] S-T
SR (Approximating

to a Gamma function)
SR (Approximating

to a Gamma function) - - PPP

Kolawole et al. [28] S-U/GW-U
S-U: SR (Approximating

to a Gamma function)
T-U: Nakagami

Nakagami - ✓ PPP

Talgat et al. [29] T-S/T-GW-S
T-S: SR (Approximating
to a Gamma function)

T-GW-S: Rayleigh

T-S: SR (Approximating
to a Gamma function)

T-GW-S: Rayleigh
- - BPP/PCP

Our work A-S SR SR FDMA ✓ MHCCP/BPP

S: satellite, A: aerial node, T: terrestrial node, GW: gateway, U: ground user node. SR: shadowed-Rician fading, GMM: Gaussian mixture model. ✓: considered, - : not considered.
PCP: Poisson cluster process (contains Matérn cluster process and Tomas cluster process), MHCPP: Matérn hard-core point process, PPP: Poisson point process, NPPP:
nonhomogeneous Poisson point process, BPP: binomial point process, MHCCP: Matérn hard-core cluster process.

(MUI) under SR fading channels. Our contributions can be
summarized as follows.

• Unlike existing studies that often simplify system models,
we adopt a more realistic approach to analyzing the
performance of heterogeneous NTNs by considering key
factors such as network deployment, multi-access mecha-
nisms, beamforming models, and channel characteristics.
Specifically, we integrate beamforming, FDMA, and het-
erogeneous UAVs with different point distribution models
into the aeronautical communication system, focusing on
evaluating how these techniques impact link quality.

• While many existing studies overlook interference anal-
ysis, we account for interference in the presence of SR
fading when analyzing uplink performance in heteroge-
neous NTNs. Although the SR fading model provides a
more accurate depiction of the aerospace channel, it intro-
duces challenges in interference analysis. We overcome
these challenges by deriving a detailed solution for the
statistical analysis of MUI within the fading model used
in satellite communications.

• Building on existing point models, we modify the type-
II MHCPP to better accommodate the clustering scenario
for UAV modeling. The resulting point process, MHCCP,
combines both clustering and exclusion characteristics,
ensuring uniform dispersion of cluster members within
the exclusion region, and enabling tasks to be performed
at the cluster level. Due to the repulsion effect, MHCCP
has an upper density limit, distinguishing it from the
properties of MCP and PPP models. The impact of
density on the number of nodes in MHCCP is derived and

validated through both theoretical analysis and numerical
simulations.

• Our uplink performance analysis for heterogeneous NTNs
is highly accurate, with theoretical results validated
through Monte Carlo simulations. Specifically, we derive
precise mathematical formulations for the OP and the
average ergodic rate (AER) of a designated transmitter
within the heterogeneous NTN. Additionally, we provide
detailed numerical results for these two connectivity
metrics and analyze the impact of key system parameters,
such as the target transmitter’s power, the size of the point
distribution space, the node density, the transmission
distance, and the number of frequency channels.

Table I compares our work with some state-of-the-art con-
tributions related to satellite networks, in order to highlight
the novelty of our contributions.

The remainder of this paper is organized as follows. In Sec-
tion II, the topology model, the channel model, and the SINR
model of a heterogeneous NTN are presented. Section III
provides our primary performance analysis results, which
involve the derivation of the analytical uplink OP and AER of
an aerial transmitter. An investigation of the Laplace transform
of interference power is also included. In Section IV, we
provide numerical results to verify our theoretical derivations
and to study the effect of key system parameters, such as
network scale, the number of orthogonal frequency channels
in the constellation and the constellation altitude as well as
the channel parameters, on the network performance. Our
conclusions are drawn in Section V.

Notation: P(·) indicates the probability measure and E[·]
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Fig. 1. Illustration of the heterogeneous NTN system.

indicates the average measure. The Laplace transform of
random variable X is defined by LX(s) = E [ exp(−sX) ].
The cumulative distribution function (CDF) and probability
density function (PDF) of random variable X are denoted by
FX(x) and fx(x), respectively. Γ(·) is the Gamma function,
and the Pochhammer symbol is defined as Ps(x)n = Γ(x +
n)/Γ(x). The lower incomplete Gamma function is defined as
γ(a, x) =

∫ x

0
ta−1 exp(−t)dt.

(
n
k

)
denotes the binomial coef-

ficient. 1F1 (·; ·; ·) is the confluent hypergeometric function of
the first kind. The mathematical notations adopted in this paper
are summarized in Table II.

II. SYSTEM MODEL

We consider an NTN composed of an LEO satellite S and
two heterogeneous UAV groups, A1 and A2, as illustrated in
Fig. 1. These UAV groups exhibit distinct characteristics in
terms of deployment and transmitter capabilities.

For example, in tasks such as geological disaster detection
or post-disaster rescue, UAV group A1 operates in clustered
formations to efficiently survey surface areas. In contrast, UAV

TABLE II
SUMMARY OF MATHEMATICAL NOTATIONS ADOPTED.

Notation Description

A1; A2 Two types of UAV groups
ΦA1 Point set composed of nodes in A1

ΦA2 Point set composed of nodes in A2

Φc Point set of parent points following MHCPP
λ1 Density of candidate points
λ2 Density of parent points
λ3 Density of ΦA2

N1 Total number of nodes in A1

N2 Total number of nodes in A2

K Number of frequency channels
D Distance between two candidate points

Dmin Minimum distance between two candidate points
Gt Array gain of main lobes
gt Array gain of side lobes

Pout Outage probability
C̄ Average ergodic rate
V Space for deployment of all air nodes
c Parameter of MCP
α Path-loss exponent
T SINR threshold for outage probability
σ2 AWGN’s power spectral density

group A2 functions independently, providing the flexibility to
navigate challenging terrains such as canyons, mountainous
regions, or indoor structures for localized monitoring and
reconnaissance. The trajectories of LEO satellites are pre-
dictable, and their receiver antennas are designed with a wide
coverage angle, ensuring effective communication over large
areas. We also assume that the impact of Doppler shifts caused
by the high-speed movement of LEO satellites and the low-
speed movement of UAVs can be effectively mitigated by
invoking accurate estimation and compensation techniques2.
Our analysis focuses on the uplink connection between UAV
groups and a specific satellite.

A. Topology Model

1) Deployment of A1 and A2: As noted in [19, 20],
accurately modeling networks with a finite number of nodes
and a limited area using a PPP is impractical. Without loss of
generality, the aerial transmitters are assumed to be randomly
deployed in a spherical space. Considering that the radius of
UAV coverage areas is much smaller than the distances from
UAVs to the satellite, we opt to model both A1 and A2 within
the same spherical space for the sake of simplicity. In fact,
regardless of whether the two heterogeneous UAV groups are
within the same spherical space, their distance distribution
to the satellite remains unaffected by this assumption, which
in turn does not affect the derived results. In practical ap-
plications, A1 typically consists of a finite number of nodes
and operates within a region of limited size. Therefore, its
distribution is modeled as a Binomial Point Process (BPP),
denoted as ΦA1

, with N1 representing the number of nodes
within a spherical region V of radius R. For A2, the MHCCP
framework is used to model its clustered networking structure,
ensuring a minimum separation distance between clusters.
Fig. 2 illustrates the node distribution for A1 and A2.

2) Construction of MHCCP: Constructing an MHCCP
begins with sparsifying a PPP through the application of a
hard-core distance, which removes certain points to ensure a
minimum separation between them. The points obtained after
carrying out the above operations become cluster heads, each
defining a cluster where members are distributed within half
the hard-core distance around head. This approach generates
a new point process in which the hard-core distance between
clusters prevents overlap, ensuring clear separation. Conse-
quently, MHCCP achieves both spatial clustering of points and
regulated separation between clusters, effectively integrating
clustering behavior with spatial exclusion principles. We then
outline the three-step process for constructing the MHCCP,
denoted as ΦA2 .

In the first step, candidate points are uniformly generated
within the spherical space V using a homogeneous PPP with

2For dealing with the Doppler shifts caused by satellite movement, these
techniques rely on detailed satellite ephemeris data, including orbit type,
altitude, position, and velocity, which are used to accurately predict and
compensate for frequency shifts in advance [31, 32]. For UAVs, their low-
altitude and low-speed characteristics make Doppler shifts relatively minor.
Additionally, since the motion models of individual UAVs are well-defined,
these shifts can be effectively estimated and compensated, either through
onboard processing or external control systems.
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Fig. 2. Illustration of node positions in heterogeneous UAV network.

density λ1. The spherical space has a radius R1 and a volume
V1. The number of candidate points, denoted as Nc, follows
a Poisson distribution. The probability mass function of Nc is
given by P(Nc = s) = λ1V1

s! exp(−λ1V1), where s represents
the number of candidate points.

In the second step, each candidate point is assigned with
an independent mark, randomly drawn from a uniform distri-
bution within the range [0, 1]. Subsequently, we exclusively
retain the point with the smallest mark within a confined
spherical space with the radius Dmin by eliminating the others.
Specifically, for a given point Q serving as the center of
a spherical exclusion zone with the radius Dmin, any other
candidate points within this zone are compared by their mark
values, and only the point with the smallest mark is retained.
This process is repeated iteratively for each candidate point
until every exclusion zone contains exactly one point. As a
result of this elimination process, the distance D between
any two retained points is guaranteed to be at least Dmin.
The resulting hard-core point process, denoted as Φc, has
a density λ2, which can be expressed mathematically as:
λ2 =

1−exp(− 4
3πD

3
minλ1)

4
3πD

3
min

.
In the final step, the points in Φc are treated as parent

points, and subpoints are uniformly generated within spheres
of radius Dmin/2 centered on each parent point. The subpoints
are distributed according to a BPP with parameter c, where
c represents the number of members in each cluster of A2.
This clustering process completes the construction of the
MHCCP, with ΦA2

comprising all the generated subpoints.
Consequently, the set of points ΦA2

in A2 follows the MHCCP.
The relationship between the density of the parent points λ2

and the density of ΦA2 , denoted as λ3, is given by λ3=λ2c,
and hence

λ3 =c
1− exp(− 4

3πD
3
minλ1)

4
3πD

3
min

. (1)

B. Point Process Characteristics

Mathematical methods for analyzing differences or simi-
larities between point patterns rely on key characteristics of
point processes. One commonly used tool in the statistical

analysis of spatial point patterns is the pair correlation function
(PCF), a second-order function based on inter-point distance r.
The PCF characterizes interactions between points at varying
distances, revealing whether they exhibit attraction (cluster-
ing), repulsion, or neutrality. By leveraging this function, we
can both qualitatively explore the spatial structure of point
patterns and quantitatively assess these structures over specific
distance ranges, providing a more precise understanding of the
underlying spatial relationships.

1) Pair correlation function: The PCF, denoted as g(r),
provides information about the relative frequency of point
pairs separated by a specific distance r. Specifically, it mea-
sures the relative density of point pairs at distance r, normal-
ized against the expected density under complete spatial ran-
domness (CSR). Under CSR, where points are independently
and uniformly distributed, the PCF satisfies g(r) = 1 for
all values of r. Deviations from this baseline indicate spatial
interactions: g(r) > 1 suggests clustering of point pairs at
distance r, while g(r) < 1 implies repulsion. By definition,
the PCF is mathematically expressed as:

g(r) =
dK(r)

4πr2λdr
, (2)

where λ is the overall density of the point process, and K(r)
is the Ripley’s K-function.

The formula of the Ripley’s K-function is as follows:

K(r) =
V

n2

n∑
i=1

n∑
j=1

Ir(tij)

wij
(i ̸= j), (3)

where V is the volume of the region to be studied, n is the
total number of points in the point pattern, tij is the Euclidean
distance between points i and j, Ir(tij) is an indicator function
that equals 1 if the distance tij ≤ r, and 0 otherwise. In
addition, wij is a weighting factor to account for edge effects
(i.e., boundary correction), and it is typically used when points
are close to the boundaries of the region to be studied.

2) Comparison of Characteristics of Different Point Pro-
cesses: To highlight the unique characteristics of our proposed
MHCCP, we compare it with three classic point processes:
MCP, PPP, and BPP.

Fig. 3 provides three-dimensional visualizations of the point
distributions for these four point processes, with gray spheres
representing the cluster boundaries. A closer examination
reveals that clusters in MCP exhibit significant overlap, while
MHCCP demonstrates distinct inter-cluster repulsion. This
distinction underscores the dual properties of MHCCP, which
combines clustering behavior with inter-cluster repulsion. In
contrast, BPP and PPP lack clustering characteristics, further
emphasizing the distinctive nature of MHCCP.

Fig. 4 depicts the PCF g(r). For small values of r, the PCF
curves for both MHCCP and MCP rise significantly above 1,
reflecting strong clustering effects in these point processes. At
larger values of r, however, the PCF of MHCCP drops below
1, indicating inter-cluster repulsion, as previously observed.
In contrast, the PCF of MCP approaches 1 at larger distances,
suggesting the absence of such repulsion. Meanwhile, the PCF
curves for PPP and BPP remain near 1 across all distances,



6

Fig. 3. 3D illustration of the point distribution of MHCCP, MCP, PPP and BPP.
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Fig. 4. PCF of MHCCP, MCP, PPP and BPP.

indicating that points in these processes are independent and
exhibit neither clustering nor repulsion.

C. Channel Model and Access Mechanisms

1) Directional Beamforming Modeling: To enhance the
strength of the received signal and optimize transmission
performance, directional beamforming is employed at aerial
transmitters and satellite receivers. For simplified processing,
the actual antenna is modeled as a sector antenna. Given the
satellite’s extensive coverage capabilities, it is reasonable to
assume that the satellite receiver can effectively capture UAV
signals through the main lobe. Let i be the index of a specific
link, l represent the index of a UAV group in A1 or A2, m

be the target node, and xl the interference node of the l-th
UAV group. The overall directional gain of link i is denoted
as Di, where sub-indexes t and r refer to the transmitter and
receiver, respectively. In this context, Gt and gt represent the
transmitter’s main and side lobe gains,while the angular width
of the transmitter’s main lobe is denoted by θ. Similarly, Gr
represents the main lobe gain of the receiver array.

Hence the value of Dm for the link from a given target
node m to the satellite receiver is equal to Dm =GtGr. On
the other hand, the value of Dxl

for any other interference
node xl is determined by the directivity gains of the main
and side lobes of the antenna beam pattern. Accordingly, the
probability distribution of Dxl

is expressed as:

Dxl
=

{
GtGr, PM,M = θ

2π ,
gtGr, PS,M = 1− θ

2π ,
(4)

where the indexes M and S denote the main and side lobes,
respectively, and Pt,M, t∈{M,S}, denotes the probability of
the link in state {t,M}.

2) Channel Fading: The SR fading model [33] is com-
monly utilized in satellite-terrestrial links on a range of fre-
quency bands, such as S and Ka-bands, for both fixed and mo-
bile satellite services [34], [35]. For the heterogeneous NTN
studied in this paper, the presence of abundant shadows due
to complex terrain, along with the predominant propagation
path being the line-of-sight (LoS) path, closely aligns with
the characteristics of SR fading. Therefore, utilizing SR fading
for modeling the aerial-satellite link in complex terrain at low
altitudes is reasonable. The SR fading model encompasses
both the LoS component and the scatter component. We define
2c as the mean power of the multi-path component excluding
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the LoS component, Ω as the average power of the LoS
component, and q as the Nakagami-m fading parameter. The
small-scale fading is denoted by |h|2. The PDF of |h|2 can be
mathematically stated as [36]

f|h|2(x) = κ exp(−βx) 1F1(q; 1; δx), (5)

where κ = (2cq)q

2c(2cq+Ω)q , δ = Ω
2c(2cq+Ω) and β = 1

2c .
3) Multi-access Mechanism: Multi-access mechanisms in

aerial-to-satellite communications play an important role in
improving the uplink performance. To enhance the network’s
connectivity and capacity, the FDMA is employed, implement-
ing frequency reuse across a total of K orthogonal frequency
channels (K ≤ N1). N2/K represents the number of UAVs
competing for the same sub-band, which is designed to be
an integer. In addition, we assume N2/K = kc̄, where k is
also an integer and c̄ is the number of UAVs in each cluster.
This assumption indicates that multiple clusters, i.e., k clusters,
can share the same sub-band. Similarly, the nodes in A1 are
divided into K subgroups, which collectively share the same
spectrum resources as A2. Consequently, each subgroup of
N1/K nodes in A1 and N2/K nodes in A2 share the same
sub-band. This implies that N1/K+N2/K aerial transmitters
operate on a common sub-band, inevitably resulting in co-
channel interference. For analytical purposes, we randomly
select one sub-band from the K available sub-bands and
denote the sets of nodes from the two UAV groups sharing
this common sub-band as Φ1 and Φ2, respectively, where we
have |Φ1| = N1/K and |Φ2| = N2/K. Focusing on the usage
of a single sub-band allows for a clearer understanding of
interference dynamics and performance evaluation under these
shared spectrum conditions.

D. SINR Model

Based on the aforementioned model, the SINR, a metric for
evaluating wireless link performance, can be expressed as:

SINR =
pmDm |hm|2 d−α

m

I + σ2
, (6)

where I represents the interference experienced by the target
node from other UAVs in the heterogeneous UAV groups,
I =

∑
l∈{1,2}

∑
xl∈ϕl\{m} pxl

Dxl
|hxl

|2 d−α
xl

with l being the
index of a particular UAV group in A1 and A2, m is the
target node, xl is the interference node of the l-th UAV group,
pm and pxl

are the transmit power at m and xl, while dm is
the distance between m and the satellite, dxl

is the distance
between xl and the satellite, α is the path-loss exponent, and
σ2 is the strength of additive white Gaussian noise (AWGN).

III. PERFORMANCE ANALYSIS

This section analyzes the OP and AER for the proposed
heterogeneous NTN model. Specifically, we substitute the
SINR from the system model into the defined expressions for
OP and AER. A key step in this process involves deriving the
Laplace transform of the interference, which is essential for
obtaining the final closed-form expressions for OP and AER.
Without loss of generality, we assume a uniform transmission
power level for all transmitters within each UAV group, except

for the target transmitter. In particular, the power of the target
transmitter m is denoted as , while the transmission power
levels for UAVs in the two groups, ΦA1

and ΦA2
, are denoted

as p1 and p2, respectively.

A. Outage Probability

The OP represents the likelihood that the SINR at the
receiver falls below a predefined threshold, indicating that the
minimum SINR required for successful data transmission is
not achieved. In this scenario, when the SINR is below the
threshold T , the transmitter is considered to be outside the
receiver’s effective coverage.

As a critical reliability metric, the OP quantifies the prob-
ability of communication failure due to random and adverse
channel conditions, such as deep fading, interference, or shad-
owing. By analyzing the OP, we gain insights into how often
the system fails to meet the minimum quality of service (QoS)
requirements under such conditions. In fading environments,
the OP specifically captures the probability of the channel
being in an “outage” state, reflecting the system’s ability to
maintain link connectivity under varying SINR levels.

For links between low-altitude UAVs and LEO satellites,
where channel conditions are highly dynamic and unpre-
dictable, the OP is essential for evaluating coverage reliability
and the robustness of the communication link. It provides a
measure of the system’s resilience to link quality variations.
The OP for such links is defined as follows:

Pout ≜ P(SINR ≤ T ) = P

(
pmDm |hm|2 d−α

m

I + σ2
≤ T

)
, (7)

where T is the SINR threshold. The following theorem derives
a useful expression for OP.

Theorem 1. The outage probability for an arbitrarily located
aerial node under the SR fading channel is given by

Pout =

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

k+1∑
t=0

(
k + 1

t

)
(−1)t

× E
[
exp

(
− s(I + σ2)

)]
, (8)

where Ψ(k) = (−1)kκδk

(k!)2 Ps(1− q)k, s = tζ(β−δ)Tdα
m

pmDm
and ζ =

(Γ(k + 2))−
1

k+1 .

Proof. See Appendix A.

In order to further simplify the expression, we express
E
[
exp(−s(I+σ2))

]
as

E
[
exp(−s(I + σ2))

]
= E

[
exp(−sσ2)

]
E
[
exp(−sI)

]
= Edm

[
exp(−sσ2)

]
Edm,I

[
exp(−sI)

]
. (9)

In (9), the average operation for the first component is over the
random variable dm, and the average operation for the second
component is over both dm and the interference I .

Given that the distances between aerial nodes in finite-area
networks are typically limited to a few kilometers, while the
distance to the satellite extends to the range of hundreds or
even thousands of kilometers, it is reasonable to assert that
the latter is significantly greater in magnitude than the former.
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Therefore, it is assumed that all the aerial transmitters possess
an equal transmission distance to the satellite, i.e., dm = dxl

=
d0. Consequently, we obtain

E
[
exp(−s(I + σ2))

]
=exp(−sσ2)LI(s), (10)

where LI(s) is the Laplace transform of the cumulative
interference power I that is expressed in Lemma 1.

Lemma 1. The Laplace transform of random variable I is:

LI(s) =E[exp(−sI)]

= (M2(1))
n1 exp

(
λ3V1(M2(2)− 1)

)
, (11)

where λ3 is given in (1), and

V1 =
4πR3

1

3
, (12)

M2(l) =M1(µl)
θ

2π
+M1(νl)

(
1− θ

2π

)
, l ∈ {1, 2}, (13)

with

M1(tl) =
(2cq)q(1 + 2ctl)

q−1(
(2cq +Ω)(1 + 2ctl)− Ω

)q , tl ∈ {µl, νl} , (14)

µl =spld
−α
0 GtGr, l ∈ {1, 2}, (15)

νl =spld
−α
0 gtGr, l ∈ {1, 2}, (16)

and when the target UAV node is in ΦA1
or ΦA2

, n1 is given
by N1

K − 1 and N1

K , respectively.

Proof. See Appendix B.

Remark 1. According to Lemma 1, we can obtain the Laplace
transform of interference. The MHCCP model exhibits strong
repulsion between clusters, which is determined by the min-
imum distance separating them. Consequently, the system’s
total number of nodes cannot exhibit unlimited growth as
λ1 rises. In order to ascertain the upper limit of nodes in
this system, we differentiate the function λ3 over λ1, yielding
dλ3

dλ1
= c

(
4
3πD

3
min

)2
exp

(
− 4

3πD
3
minλ1

)
. Notably, dλ3

dλ1
≥ 0.

Moreover, lim
λ1→∞

dλ3

dλ1
= 0. Hence, the upper limit of λ3 can

be established as lim
λ1→∞

λ3 = 3c
4πD3

min
, whose validity will be

further examined in the simulation discussed in Section IV.

By substituting (10) and (11) into (8) and noting the
definitions of (12) to (16), we derive the analytical closed-
form expression for the OP, given in (17) at the bottom of this
page.

B. Average Ergodic Rate
The AER, measured in bits/s/Hz and also known as Shannon

throughput, represents the mean data rate that a commu-
nication system can achieve over time, normalized to unit
bandwidth. It reflects the average performance of the system,
considering the variations in the channel due to fading, as it
computes the ergodic capacity based on the Shannon-Hartley
theorem.

By averaging the achievable rates across all possible channel
conditions, the AER provides an effective measure of the
system’s overall efficiency and data transmission capability.
This metric is crucial, because it accounts for both short-
term fluctuations and long-term trends in channel quality
caused by phenomena such as multipath fading, interference,
and shadowing. By capturing the statistical nature of the
channel, the AER offers a realistic evaluation of sustained
performance in dynamically changing environments, making
it essential for optimizing resource allocation and ensuring
efficient communication in practical systems. The definition
of the AER is

C̄ ≜ E [log2 (1 + SINR)] . (18)

Theorem 2. Under a SR fading serving channel, the average
rate of any arbitrary UAV node is given by

C̄ =

∫
t>0

(
1−

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

k+1∑
j=0

(
k + 1

j

)
(−1)j

× exp
(
− sσ2

)(
M2(1)

)n1
exp

(
λ3V1(M2(2)− 1)

))
dt.

(19)

Proof. See Appendix C.

IV. NUMERICAL RESULTS

In this section, we validate the derived theoretical expres-
sions by Monte-Carlo simulations. Unless otherwise explicitly

Pout =

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

k+1∑
t=0

(
k + 1

t

)
(−1)t exp

(
− sσ2

)
(M2(1))

n1 exp (λ3V1(M2(2)− 1))

=

∞∑
k=0

(−1)kκδkPs(1− q)k
k!(β − δ)k+1

k+1∑
t=0

(
k + 1

t

)
(−1)t exp

(
− tζ(β − δ)Tdα0σ

2

pmDm

)

×

 (2cq)q
(
1 + 2tcp1GtGrζ(β−δ)T

pmDm

)q−1(
(2cq +Ω)

(
1 + 2tcp1GtGrζ(β−δ)T

pmDm

)
− Ω

)q θ

2π
+

(2cq)q
(
1 + 2tcp2GtGrζ(β−δ)T

pmDm

)q−1(
(2cq +Ω)

(
1 + 2tcp2GtGrζ(β−δ)T

pmDm

)
− Ω

)q (1− θ

2π

)n1

× exp

(
3acV1

(
1− exp

(
− 4

3
πD3

minλ1

))( (2cq)q
(
1 + 2tcp1gtGrζ(β−δ)T

pmDm

)q−1(
(2cq +Ω)

(
1 + 2tcp1gtGrζ(β−δ)T

pmDm

)
− Ω

)q θ

2π

+
(2cq)q

(
1 + 2tcp2gtGrζ(β−δ)T

pmDm

)q−1(
(2cq +Ω)

(
1 + 2tcp2gtGrζ(β−δ)T

pmDm

)
− Ω

)q (1− θ

2π

)
− 1

)
1

4πD3
min

)
. (17)
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specified, the default simulation system parameters detailed in
Table III are used. The outcomes obtained from the analytical
expressions derived in Section III are labelled as ‘Analysis’,
whilst the Monte Carlo findings are labelled as ‘Simulation’.

TABLE III
DEFAULT PARAMETER OF SIMULATION SYSTEM.

Notation Parameter Values

d0 Distance between UAVs and satellite 300km
R1 Radius of V 10km

Dmin Minimum distance of candidate pairs 1km
p1, p2 Power of transmitters in A1 and A2 20dBW, 19dBW
λ1 Density of candidate points 10−11

SR(c, q,Ω) SR fading model SR(0.158, 1, 0.1)
α Path-loss exponent 2
T SINR threshold -18dB
σ2 AWGN’s power spectral density -160dBm/Hz

A. Validation of Outage Probability Performance

To evaluate the accuracy of the analytical OP expression, a
series of Monte Carlo simulations are conducted with a total of
50,000 iterations. These simulations are utilized to generate the
plots depicting the simulated OP performance of the hetero-
geneous aerial-to-satellite uplink. The results obtained under
various network settings are depicted in Fig. 5 to 9 accord-
ingly, in comparison with their corresponding theoretical OP
performance. We observe that the analytical results exhibit a
high degree of concordance with the corresponding simulation
results, hence bolstering the credibility and soundness of our
theoretical investigation presented in Section III.
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Fig. 5. Outage probability as function of SINR threshold T , given different
transmit power pm of target node.

First Fig. 5 depicts the OP as the function of the SINR
threshold T , given three different values of the target node’s
transmit power pm. It can be seen from Fig. 5 that as the
SINR threshold T 3 increases, the OP, i.e., the likelihood of

3In this analysis, the SINR threshold is examined over a range of -
30 dB to 0 dB to investigate system behavior under varying link budget
conditions. It is worth noting that this threshold is not rigidly defined and
can be adapted according to system parameters and specific deployment
requirements. Factors such as link budget constraints, signal propagation
properties, and the environmental characteristics of the proposed system
influence the selection of this threshold. Consequently, the value of the SINR
threshold can be adjusted to align with the realistic conditions of different
scenarios. Besides, the same principle applies to other parameters as well.
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Fig. 6. Outage probability as function of target node transmit power pm,
given different values of spherical space’s radius R1.

experiencing the link interruption, also increases. This is due
to the inverse relationship between T and the possibility of
achieving an SINR that surpasses the given threshold value.
Hence, once the threshold value reaches to a specific level, the
likelihood of disruption occurring in the link between the aerial
transmitter and the satellite reaches its maximum value of 1.
Furthermore, increasing the power of the target transmitter
leads to an increase in its SINR and this reduces the risk
of communication interruption. Therefore, with an increase in
pm, the OP curve exhibits a rightward shift.

Next Fig. 6 plots the OP as the function of pm, given
three different values for the radius R1 of the spherical space
V . As expected, increasing pm decreases the OP. Also it
can be seen that the expansion of the distribution space of
aerial transmitters leads to a noticeably worse OP performance.
This is because the increased availability of space for the
MHCCP deployment of air nodes results in a higher number
of transmitters concurrently attempting to access the satellite,
leading to a higher MUI and consequently a worsen OP
performance.

Then we investigate the impact of node density on the OP,
and Fig. 7(a) depicts the OP as the function of pm, given
four different values for the density of candidate points λ1.
As expected, increasing λ1 increases number of nodes, which
results in greater MUI and consequently increases the OP,
i.e., the likelihood of communication interruption. However,
as can be seen from Fig. 7(a), when λ1 increases beyond
10−9, the OP appears saturated. This is because the imposed
minimum spacing Dmin prevents the number of nodes from
infinitely escalating as the density increases. To gain a deeper
understanding of the limit value of node density under the
MHCCP and its influence on the OP, additional simulations
are performed as depicted in Fig. 7(b), which demonstrates a
clear relationship between increasing λ1 and the convergence
of the OP towards its limit value. This convergence occurs
at the limit of λ3, i.e., lim

λ1→∞
λ3 = 3c

4πD3
min

, as predicted in

Remark 1. This finding implies that there exists a maximum
number of nodes and the upper bound of OP.

Fig. 8 investigates the influence of the transmission distance
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Fig. 7. Outage probability as function of target node transmit power pm,
given different values for density of candidate points λ1.
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20

Fig. 8. Outage probability as function of target node transmit power pm,
given different aerial-to-satellite link distances d0.

of the uplink on the OP, which suggests that changing the
transmission distance d0 of aerial-to-satellite links does not
impact on the OP. More specifically, the theoretical OP curves
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Fig. 9. Outage probability as function of target node transmit power pm,
given different numbers of frequency channels K.
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Fig. 10. Average ergodic rate as function of target node transmit power pm,
given different values of spherical space’s radius R1.

corresponding to the three different d0 coincides, while the
simulated OP curves for the three different d0 are almost the
same. This is because changing d0 changes the desired target
node’s power and the interference power almost equally, and
consequently, the link’s SINR does not change.

Fig. 9 provides a clear visual representation of the influence
of the number of frequency channels K on the OP, indicating
that increasing K decreases the OP. Evidently, providing
more frequency channels enables more transmitters operate
in orthogonal access mode, thereby resulting in a reduction
of the interference towards the intended transmitter. Conse-
quently, the SINR of the target link increases, diminishing the
likelihood of interruption.

B. Validation of Average Ergodic Rate Performance

Similarly, Monte Carlo simulations are employed to validate
the close-form analytical AER provided by Theorem 2. The
results obtained are presented in Figs. 10, 11 and 12, which
confirm that Monte Carlo simulated data rate closely matches
the theoretical AER.
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Fig. 11. Average ergodic rate as function of target node transmit power pm,
given different values for density of candidate points λ1.
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Fig. 12. Average ergodic rate as function of target node transmit power pm,
given different numbers of frequency channels K.

More specifically, Fig. 10 depicts the AER as the function
of the target node’s transmit power pm, given three different
values for the radius R1 of the spherical space V . As expected,
increasing pm increases C̄. In addition, the impact of R1 on
the achievable AER is clearly shown in Fig. 10. Evidently,
increasing the available space V results in a reduction of
the AER, because there are more interference transmitters.
Observe that Fig. 10 is consistent with Fig. 6, which is to
be expected given the relationship between the OP and AER.

Fig. 11 further investigates the impact of node density on the
achievable AER. As expected, increasing λ1 reduces the AER,
since increasing λ1 leads to more interfering nodes. Obviously,
Fig. 11 is entirely consistent with Fig. 7(a), because a higher
OP corresponds to a lower AER and vice versus.

Fig. 12 demonstrates the impact of the number of available
frequency channels K on the data transmission rate of the
uplink. As explained for Fig. 9, an increase in the number of
frequency channels K reduces the number of aerial transmit-
ters operating at a same subchannel. This improves the SINR
of the uplink, and consequently the data rate is enhanced.

V. CONCLUSIONS

In this paper, we have proposed a tractable approach for
analyzing the outage probability and average ergodic rate for
the uplink of heterogeneous NTNs. Our novel contribution has
been three-fold. First, we proposed modeling heterogeneous
NTNs using a combination of a Matérn hard-core cluster
process and a binomial point process. Second, we derived
accurate closed-form expressions for the outage probability
and average ergodic rate of the aerial-to-satellite uplink, ac-
counting for realistic multi-user interference and shadowed-
Rician channel fading. Third, we calculated and analyzed
the upper bound on the density of the MHCCP, providing a
precise quantitative benchmark for designing practical models
to achieve optimal resource utilization. The accuracy of these
theoretical derivations has been extensively validated through
Monte Carlo simulations. The closed-form expression for OP,
in particular, serves as a robust tool for evaluating the impact
of various configurations on link performance, facilitating the
optimization of deployment strategies, power control schemes,
and satellite resource allocation for UAV groups. This is cru-
cial for improving system efficiency and minimizing the risk of
communication interruptions. By incorporating heterogeneous
low-altitude UAV groups into the model, the closed-form
solution can reveal how different types of UAVs (they may
differ, e.g., in terms of density, power, antenna gain, etc.)
contribute to the overall OP and AER. This insight provides
a theoretical foundation for optimizing links in scenarios
involving diverse UAV collaborations.

APPENDIX

A. Proof of Theorem 1

Proof. Using the Kummer’s transform of the hypergeometric
function [37], we can rewrite the PDF of |h|2 as f|h|2(x) =
∞∑
k=0

Ψ(k)xk exp(−(β − δ)x, where Ψ(k) = (−1)kκδk

(k!)2 Ps(1 −

q)k. Then, the CDF of |h|2 can be represented as

F|h|2(x) =

∞∑
k=0

Ψ(k)

x∫
0

tk exp(−(β − δ)t)dt

=

∞∑
k=0

Ψ(k)

(β − δ)k+1
γ(k + 1, (β − δ)x). (20)
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Therefore, we can obtain Pout as

Pout ≜ P
(
pmDm|hm|2d−α

m

I + σ2
≤ T

)
= P

(
|hm|2 ≤ T (I + σ2)dαm

pmDm

)
= E

[
κ

∞∑
k=0

Ψ(k)

(β − δ)k+1
γ

(
k + 1, (β − δ)

T (I + σ2)dαm
pmDm

)]
(a)
≈ E

[ ∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

×
(
1− exp

(
−ζ(β − δ)T (I + σ2)dαm

pmDm

))k+1
]

(b)
=

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

k+1∑
t=0

(
k + 1

t

)
(−1)t

× E
[
exp(−s(I + σ2))

]
, (21)

where (a) is approximated by using γ(k+1, x) < Γ(k+1)(1−
exp(−ζx))k+1 [38], ζ = (Γ(k+2))−

1
k+1 , and (b) is obtained

from the binomial theorem [39] with s =
tζ(β−δ)Tdα

m

pmDm
. This

completes the proof.

B. Proof of Lemma 1

Proof.

LI(s) = E [exp(−sI)]

= E

exp(− s
∑

l∈{1,2}

∑
xl∈ϕl\{m}

plDxl
|hxl

|2 d−α
xl

). (22)

As the point process and the fading process are independent
of each other, LI(s) can be expressed as

LI(s) = E

 ∏
l∈{1,2}

∏
xl∈ϕl\{m}

E|hxl
|2
[
exp
(
−splDxl

|hxl
|2d−α

xl

)]
(a)
= ENl

 ∏
l∈{1,2}

∏
xl∈ϕl\{m}

EDxl
,|hxl

|2
[
exp

(
−tl |hxl

|2
)], (23)

where (a) is obtained by assuming that all the aerial trans-
mitters have the same transmission distance and denoting
tl = splDxl

d−α
0 .

As shown in [33], the moment-generating function of
the SR model is defined as MS(x) = E [exp(−xS)] =

(2cq)q(1+2cx)q−1

((2cq+Ω)(1+2cx)−Ω)q . Thus, we further obtain

LI(s)=ENl

[ ∏
l∈{1,2}

∏
xl∈ϕl\{m}

EDxl

[
(2cq)q(1 + 2ctl)

q−1

((2cq+Ω)(1+2ctl)−Ω)q︸ ︷︷ ︸
M1(tl)

]]

(b)
=ENl

[ ∏
l∈{1,2}

∏
xl∈ϕl\{m}

[
M1(µl)

θ

2π
+M1(νl)

(
1− θ

2π

)
︸ ︷︷ ︸

M2(l)

]]

=EN1

[ ∏
x1∈ϕ1\{m}

M2(1)

]
EN2

[ ∏
x2∈ϕ2\{m}

M2(2)

]

(c)
=

n1∑
n=1

(
n1

n

)
Pn
I (1− PI)

n1−n (M2(1))
n

×
∞∑

n2=0

(λ3V1)
n2

n2!
exp(−λ3V1)(M2(2))

n2

(d)
= (M2(1))

n1 exp
(
λ3V1(M2(2)− 1)

)
, (24)

where (b) is obtained by denoting µl = spld
−α
0 GtGr and νl =

spld
−α
0 gtGr, (c) is obtained by the fact that ΦA1 follows the

BPP with PI being the proportion of the interfering nodes to
the total number of nodes in ΦA1

, ΦA2
follows the PPP with

the density of λ3 and the volume of the spherical space V is
V1 =

4πR3
1

3 , and (d) is obtained by the fact that all the nodes in
ΦA1 are interference nodes and hence PI = 1. This completes
the proof.

C. Proof of Theorem 2
Proof. From the definition (18), we have

C̄ ≜ Ehm,dm,I [log2(1 + SINR)]

(a)
= Ehm,dm,I

[∫
t>0

P
(
log2(1 +

pmDm |hm|2 d−α
m

I + σ2
) > t

)
dt

]

= Ehm,dm,I

[∫
t>0

P
(
|hm|2> dm(I+σ2)

pmDm
(2t−1)

)
dt

]
, (25)

where (a) follows form the fact that the random variable
involved is positive. Then, we have

C̄
(b)
= EI

[∫
t>0

(
1− F|hm|2

(
dm(I + σ2)(2t − 1)

pmDm

))
dt

]
= EI

[∫
t>0

(
1− κ

∞∑
k=0

Ψ(k)

(β − δ)k+1
γ
(
k + 1, (β − δ)

)
× (2t − 1)(I2 + σ2)dαm

pmDm

)
dt

]
(c)
≈ EI

[∫
t>0

(
1−

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

×
(
1− exp

(
− ζ(β − δ)(2t − 1)(I + σ2)dαm

pmDm

))k+1
)
dt

]
(d)
=

∫
t>0

(
1−

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

×
k+1∑
j=0

(
k + 1

j

)
(−1)jEI

[
exp(−s(I + σ2))

])
dt

=

∫
t>0

(
1−

∞∑
k=0

Ψ(k)

(β − δ)k+1
Γ(k + 1)

×
k+1∑
j=0

(
k + 1

j

)
(−1)j exp(−sσ2)LI(s)

)
dt, (26)

where (b) is obtained from (20), (c) is approximated by
using γ(k + 1, x) < Γ(k + 1)(1 − exp(−ζx))k+1 [38],
ζ = (Γ(k + 2))−

1
k+1 , and (d) is obtained from the binomial

theorem with s =
jζ(β−δ)(2t−1)dα

m

pmDm
. Substituting LI(s) of (11)

into (26) leads to (19). This completes the proof.
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