The University of Southampton
University of Southampton Institutional Repository

Representative volume elements and unit cells: concepts, theory, applications and implementation

Representative volume elements and unit cells: concepts, theory, applications and implementation
Representative volume elements and unit cells: concepts, theory, applications and implementation

Numerical methods to estimate material properties usually involve analysis of a representative volume element (RVE) or unit cell (UC). The representative volume element (RVE) or unit cell (UC) is the smallest volume over which a measurement can be made that will yield a value representative of the whole. RVEs and UCs are widely used in the characterisation of materials with multiscale architectures such as composites. However, finite element (FE) software packages such as Abaqus and Comsol MultiPhysics do not offer the capability for RVE and UC modelling directly on their own. To apply them to analyse RVEs and UCs, the generation of the FE models for them, the imposition of boundary conditions, and the extraction of directly relevant results are essentially the responsibility of the user. These have tended to be incorrectly implemented by users! For the first time, this book will provide a comprehensive account on correct modelling of RVEs and UCs, which will eliminate any uncertainties and ambiguities. The book offers a complete and thorough review on the subject of RVEs and UCs, establishing a framework on a rigorous mathematical and mechanical basis to ensure that basic concepts, such as symmetry and free body diagrams, are applied correctly and consistently. It also demonstrates to readers that rigorous applications of mathematics and mechanics are meant to make things clear, consistent, thorough and, most of all, simple and easy to follow, rather than the opposite as many perceive. As a result, the book shows that the appropriate use of RVEs and UCs can deliver an effective and reliable means of material characterisation. It not only provides a much needed comprehensive account on material characterisation but, more importantly, explains how such characterisation can be conducted in a consistent and systematic manner. It also includes a ready-to-use open source code for UCs that can be downloaded from a companion site for potential users to utilise, adapt and expand as they wish.

Elsevier
Li, Shuguang
f99c53b3-e42e-456f-97df-4c4e06de4a40
Sitnikova, Elena
e0c2f901-24fe-43d0-88e8-76f415675104
Li, Shuguang
f99c53b3-e42e-456f-97df-4c4e06de4a40
Sitnikova, Elena
e0c2f901-24fe-43d0-88e8-76f415675104

Li, Shuguang and Sitnikova, Elena (2019) Representative volume elements and unit cells: concepts, theory, applications and implementation , Elsevier, 468pp.

Record type: Book

Abstract

Numerical methods to estimate material properties usually involve analysis of a representative volume element (RVE) or unit cell (UC). The representative volume element (RVE) or unit cell (UC) is the smallest volume over which a measurement can be made that will yield a value representative of the whole. RVEs and UCs are widely used in the characterisation of materials with multiscale architectures such as composites. However, finite element (FE) software packages such as Abaqus and Comsol MultiPhysics do not offer the capability for RVE and UC modelling directly on their own. To apply them to analyse RVEs and UCs, the generation of the FE models for them, the imposition of boundary conditions, and the extraction of directly relevant results are essentially the responsibility of the user. These have tended to be incorrectly implemented by users! For the first time, this book will provide a comprehensive account on correct modelling of RVEs and UCs, which will eliminate any uncertainties and ambiguities. The book offers a complete and thorough review on the subject of RVEs and UCs, establishing a framework on a rigorous mathematical and mechanical basis to ensure that basic concepts, such as symmetry and free body diagrams, are applied correctly and consistently. It also demonstrates to readers that rigorous applications of mathematics and mechanics are meant to make things clear, consistent, thorough and, most of all, simple and easy to follow, rather than the opposite as many perceive. As a result, the book shows that the appropriate use of RVEs and UCs can deliver an effective and reliable means of material characterisation. It not only provides a much needed comprehensive account on material characterisation but, more importantly, explains how such characterisation can be conducted in a consistent and systematic manner. It also includes a ready-to-use open source code for UCs that can be downloaded from a companion site for potential users to utilise, adapt and expand as they wish.

This record has no associated files available for download.

More information

Published date: 1 January 2019
Additional Information: Publisher Copyright: © 2020 Elsevier Ltd. All rights reserved.

Identifiers

Local EPrints ID: 497614
URI: http://eprints.soton.ac.uk/id/eprint/497614
PURE UUID: dec1625f-b369-4111-95fd-d17c3e1d9554
ORCID for Elena Sitnikova: ORCID iD orcid.org/0000-0001-6869-6751

Catalogue record

Date deposited: 28 Jan 2025 17:50
Last modified: 29 Jan 2025 03:16

Export record

Altmetrics

Contributors

Author: Shuguang Li
Author: Elena Sitnikova ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×