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A critical appraisal of the Hashin failure
criterion

Shuguang Li and Elena Sitnikova

Abstract
The Hashin criterion is one the most popular failure criteria for fibre reinforce composites. It is critically appraised in this paper.
The most significant feature of the criterion is failure modes introduced and the assumption that failure is determined by the
traction on the failure plane. For this assumption, there has never been any justification provided in the literature, except the
available arguments in the Mohr criterion, where the concept of plane failure as opposed to point failure was first introduced
based on this assumption. However, the arguments there were applicable only to isotropic materials and, even so, they are not
without exceptions. As contradictions to the assumption in the context of composite failure, three relatively simple cases have
been considered in this paper, supported by physical evidence. In each case, failure is observed in a plane on which traction
vanishes completely, to which the failure cannot be attributed. The assumption is therefore unfounded both theoretically and
physically for anisotropic materials, which dismisses the validity of the Hashin criterion in turn.
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Introduction

The study of material failure criteria is an arena where
scientific principles are mingled with individuals’ percep-
tions. As one of the most pronounced examples, for a
question as fundamental as whether a failure criterion
should be formulated in terms of stresses or strains, a clear
answer has not been available until recently.1 In the
meantime, there has been no lack of strong views against
each other, based mostly on perceptions rather than sci-
entific evidence, despite of claims of strong experimental
support to either side. The present paper is to address an-
other case of similar characteristics but in the context of the
Hashin failure criterion2 for composites, in which an un-
founded assumption amounted to little more than a personal
perception underlying the theoretical framework without
any scientific justification. Yet, it has become one of the
most popular criteria for composite materials in the liter-
ature as well as in engineering applications according to
Christenson3 where he honoured the Tsai-Wu criterion4 and
the Hashin criterion2 as two that outstood amongst as many
as a hundred of various criteria available for composites.
The Hashin criterion gained its popularity partially due to its
introduction of failure modes into the formulation of the
criterion.

The failure of fibre reinforced composites predicted
using the early primitive criteria, such as the maximum

stress, came with a clear indication of the failure mode,
associated with the specific stress component responsible
for the failure and, in the case of a direct stress component,
the sense of it. Although there had been some inconsis-
tencies in some of these simple criteria, they could be
relatively easily corrected.5,6 The crucial deficiency of such
simple criteria was the lack of interactions amongst stress
components, and hence the subsequent generation of failure
criteria emerged employing a failure function of all stress
components, where constant coefficients involved would be
expressed in terms of experimentally measured strengths of
the material. Typical examples were the Hoffman criterion7

and the Tsai-Wu criterion,4 to name but a few. Some of the
originators categorised these failure criteria as purely em-
pirical exercises.8 Whilst there is a good degree of truth in
this modest description for these criteria in the forms when
they were originally proposed, it could be a considerable
understatement, especially if the empiricism is further
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enriched by appropriate rationalism in terms of logic and
mathematics, with the Tsai-Wu criterion rationalised in
9–12 being an example. It should be noted that such ra-
tionalism has not even been achieved properly in failure
criteria even for homogeneous and isotropic materials until
recently13 where the rationalism underlying the von Mises
criterion 14 for ductile materials has been extended con-
sistently to brittle materials for the first time, although
relevant criteria by Raghava, Caddell and Yeh15 and
Christensen16 were proposed decade(s) ago.

Another historical account of failure criteria for homo-
geneous and isotropic materials was due to Mohr,17 which
was based on a key underlying assumption that failure is
determined by the Traction on the Failure Plane, referred to
as Assumption TFP hereafter in this paper. This assumption
formed the cornerstone of the Hashin criteria under scrutiny
in this paper.

The development in composites failure theories took a
sharp turn when Hashin proposed his failure criterion2

where different failure modes were introduced. To facili-
tate the partitioning of the stresses associated with the
failure modes, Assumption TFP1 was adopted. A natural
consequence of the adoption of the Assumption TFP in the
Hashin criterion is that only some of the six stress com-
ponents contribute to each of the failure modes introduced.
This of course led to significant simplification to the for-
mulation. Whilst the simplifications are attractive, the un-
derlying assumption cannot be simply justified by the
simplifications it introduced alone.

In 2, the only justification for Assumption TFP offered
was through a counterargument, namely, the case of failure
under fibre direction compression, that was cited and dis-
missed there by referring to an established conclusion on
fibre buckling and the shear mode associated with such
buckling mechanism.18 To the best of the authors’
knowledge, nowhere else has any further justification ever
been provided to the adoption of Assumption TFP in an-
isotropic composites, in particular, associated with any of
the matrix failure modes.

On the other hand, given the popularity of the Hashin
criterion, it has been incorporated in commercial finite el-
ements codes, e.g. Abaqus,19 through which its blind ap-
plications became widespread. As separate subsequent
developments, Assumption TFP has been taken for granted
in many influential failure theories of composites, e.g. 20,
21, as one of the key assumptions. They are even labelled as
‘physically based’ theories, more or less because of their
employment of Assumption TFP, rendering their seemingly
unchallengeable status. This paper aims to offer a long
overdue critical appraisal of the Hashin criterion, in par-
ticular, Assumption TFP, and its inapplicability to aniso-
tropic composites.

This will be pursued by a re-examination of Assumption
TFP first in the next section, followed by a comparison

between the Hashin criterion and the Tsai-Wu criterion to
appreciate the role Assumption TFP plays in the former in
the section after. Then, three contradictions with As-
sumption TFP will be presented when applied to anisotropic
materials. Discussion about the failure modes will be
made before concluding the paper.

Justifications of Assumption TFP in the
Mohr criterion and its inapplicability to
anisotropic materials

Assumption TFP was a part of the Mohr failure criterion.17

A quick survey on the Mohr failure criterion will reveal that,
apart from few excessively complicated accounts as re-
viewed in 22, 23, the only existing implementation of the
Mohr criterion is based on a linearised failure envelope,
leading to what is commonly unknown as the Coulomb-
Mohr criterion (CM). In terms of understanding of the
failure modes, CM is definitely not helpful, because ac-
cording to it the orientation of the failure plane relative to its
the 1st principal direction is kept constant under all stress
states for a given material. It was made clear in 22 that the
justifications for Assumption TFP in the Mohr criterion
were reasonable but only for isotropic materials. Even for
isotropic materials, Assumption TFP is not without ex-
ceptions, and one of them will be revealed later in the paper.
It is because of the lack of practically manageable im-
plementation of the Mohr criterion in the past that the
limitations and implications of the criterion as well as its
underlying Assumption TFP has never been fully appre-
ciated and respected, even amongst those who rely heavily
on the assumption in their theories. With a recent attempt of
implementing the Mohr criterion in its general form ra-
tionally and reasonably simply as presented in 23 as a
quantitative account of the Mohr criterion, in addition to its
qualitative predecessor in 22, readers should be able to
objectively evaluate now the relevance, in fact, the lack of it,
of Assumption TFP to anisotropic composites. As a truthful
statement out of the reflection, the relevant understanding of
the Mohr criterion and Assumption TFP has been patchy
and often twisted by perceptions rather than facts, as will be
gradually unravelled in his paper.

Assumption TFP in the Mohr criterion is not made in
isolation. It is justified and supported by a number of
considerations or assumptions, in which the employment of
principal stresses plays a crucial role. First of all, a stress
state defined in terms of the principal stresses can be rep-
resented by the 1st and the 3rd principal stresses in the
context of the Mohr criterion. This is achieved through the
Mohr’s circles as sketched in Figure 1 for a general 3D
stress state expressed in terms of three principal stresses σ1,
σ2 and σ3 (in descending order). Any point P on the σ-τ
plane within the shaded zone represents the orientation of a
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plane and the traction on that plane. A different orientation
of the plane and hence different traction corresponds to a
different location of point P. As one of the most important
considerations in theMohr criterion, the shear component of
the traction always promotes failure of the plane. At the
same value of the direct component of the traction as that of
P, points Q and R on the major Mohr’s circle are always
more critical than P, because they correspond to planes of
higher magnitude of the shear stress at the same direct stress.
As a result, the critical plane is always found on the major
Mohr’s circle. This partially fixes the orientation of the
failure plane to those parallel to the 2nd principal direction.

The transition from point P to Q or R is a process of
selecting the orientation of failure plane based on the
principal stresses. This consideration reduces a 3-dimension
stress state into a 2-dimensional problem expressed in terms
of 1st and 3rd principal stresses. Equivalently, the 2-
dimensional problem can be expressed in terms of the
traction on a plane parallel to the 2nd principal direction.
This offers the justification underlying Assumption TFP in
the context of the Mohr criterion, which is possible only
because the stress state can be expressed in terms of three
principal stresses with the principal directions as references
for the orientation of the failure plane under the pre-
condition of isotropy of the material. The isotropy of the
material implies that the failure plane is determined by the
stress state completely, without any predetermined direc-
tions as present in anisotropic materials.

In essence, the Mohr criterion states that failure is de-
termined by the 1st and 3rd principal stresses and the failure
plane is parallel to the 2nd principal direction. Principal
stresses and principal directions are vital, as a strong im-
plication of Assumption TFP in the Mohr criterion.

In composites, principal stresses are no longer as in-
formative as in isotropic ones. Instead, stresses in the
principal axes of the material, in presence of shear stresses
in general, are usually employed, instead of the conven-
tional principal stresses in absence of shear stresses. As a
result, the justifications available in the Mohr criterion for
Assumption TFP do not offer any support to its extension to
anisotropic materials. In other words, if Assumption TFP
was to be introduced to anisotropic composites, one would
have to justify its applicability to the materials concerned.
Such justifications have been absent.

An interesting and also revealing example can be found
in 24 where tensile tests were conducted on metallic glass
specimens with inclined notches to predetermine the ori-
entation of the failure plane. Such artificial interference of
the orientation of the failure plane compromises the validity
of the Mohr criterion and hence Assumption TFP. In other
words, the failure of such a plane is not completely de-
termined by the traction on the plane. Without the artificial
interference, the plane failed in the tests would not have
failed and the failure would have taken place at a different

load level on a different plane according to the Mohr cri-
terion. In the Hashin criterion, the orientation of a failure
plane was predetermined to a great extent, perpendicular or
parallel to the fibre direction, regardless the stress state. The
applicability of Assumption TFP cannot be taken for
granted without appropriate justifications.

Assumption TFP plays a key role in the Hashin criterion.
Without it, the introduction of failure modes alone would
not bring forward any simplification. Before the simplifi-
cations associated with Assumption TFP makes the dif-
ferences, its failure function is identical to that of the Tsai-
Wu criterion. The identical nature of the failure function to
that of the Tsai-Wu will be briefly shown in the next section
to highlight the role of Assumption TFP in the Hashin
criterion from a different perspective.

The relationship between the Hashin
criterion and the Tsai-Wu criterion

Before Hashin introduced failure modes in terms of fibre
failure and matrix failure as two major categories, the failure
function, as quoted precisely from 2, was

FðσÞ ¼ A1I1 þ B1I
2
1 þ A2I2 þ B2I

2
2 þ C12I1I2 þ A3I3 þ A4I4,

(1)

where

I1 ¼ σ1, I2 ¼ σ2 þ σ3, I3 ¼ τ223 � σ2σ3 and I4 ¼ τ212 þ τ213
(2)

are stress invariants for transversely isotropic composites,
such as unidirectionally fibre reinforced (UD) ones, and
σ1, σ2, σ3, τ23, τ13 and τ12 are the stresses in the principal
axes of the material, NOT the principal stresses.

It should be pointed out that, although systematic use of
stress invariants for failure criterion formulation can be

Figure 1. Mohr’s circles for a 3D stress state.
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traced back to the von Mises criterion,14 which applies
strictly to isotropic materials of equal tensile and com-
pressive strengths, hence ductile, no complete rationality
has achieved until very recently beyond that of the von
Mises criterion. For brittle materials characterised by their
higher compressive strengths than tensile ones, three co-
efficients to the invariant terms are required to ensure the
consistency in truncating the failure function at the 2nd order
of a polynomial, whilst there are only two conditions
available associated with the tensile and compressive
strengths. This difficulty has only been resolved recently by
the author 13 after recognising that the failure envelope is a
paraboloid in the space of principal stresses.

Along a similar line, the number of independent coef-
ficients involved in failure functions for transversely iso-
tropic materials have been determined as five in 10, 11,
which have been successfully expressed in terms available
strength properties for these materials.

A further extension has been made to orthotropic ma-
terials in 12 for which only nine independent strength
properties are required and they can all be determined in
terms of conventional strength properties whose measure-
ments can all be supported by existing industrial standards.

Given the fact that the above-mentioned progresses have
only been achieved recently, those coefficients as intro-
duced in the original Tsai-Wu criterion had not been
completely and convincingly determined over the space of
half a century subsequent its first publication in 4. Avoiding
some of them motivated Hashin to come up with his cri-
terion, as stated in 2. He pursued this goal by introducing
Assumption TFP before further introducing the so-called
failure modes.

The failure function of the Tsai-Wu criterion for trans-
versely isotropic materials as quoted from 4 can be given as
follows with two terms slightly rearranged as highlighted in
boldface.

FðσÞ¼F1σ1þF11σ
2
1þF2ðσ2þσ3ÞþF22ðσ2þσ3Þ2

þ2F12σ1ðσ3þσ2Þþ F44

�
τ223�σ2σ3

�þF66

�
τ213þτ212

�
(3)

A one-to-one correspondence to those in the Hashin’s
failure function (1) can be given as

A1 ¼ F1, A2 ¼ F2, B1 ¼ F11, B2 ¼ F22,
C12 ¼ 2F12, A3 ¼ F44 and A4 ¼ F66:

(4)

It is clear that up to this point, i.e. before introducing
Assumption TFP, the Hashin failure function is identical to
that of the Tsai-Wu criterion, although Hashin employed
stress invariants to construct the failure function, differing
from what Tsai and Wu did in their approach.4

A distinct and certainly popular feature of the Hashin
criterion was the introduction of failure modes, fibre

mode and matrix mode, before subdividing them into
tensile and compressive, respectively. The so-called
fibre mode and matrix modes are identified by the
orientations of their respective failure planes. The
failure plane of the fibre mode is perpendicular to the
fibres and that of the matrix mode parallel to fibres. It
should be noted that the exact orientation of the failure
plane in the matrix mode is not actually determined in
the Hashin criterion. Its determination is one of the
highlights in the Puck criterion20 which was also built
on top of Assumption TFP.

The introduction of fibre mode and matrix mode would
not have helped much in the Hashin criterion if the failure
had to be determined by the stress state, i.e. all six stress
components. Assumption TFP allowed some of the stress
components to be dropped from the failure function (1) for
each of the failure modes. On the failure plane for fibre
mode, σ2, σ3 and τ23 did not show and hence would not
contribute to failure according to Assumption TFP. As a
result, all terms associated with these stress components
would disappear from the failure function (1), including the
interactive term with the coefficient ofC12, equivalent to F12

in the Tsai-Wu criterion.
Although the failure plane for the matrix mode had not

been determined completely, it had been set to be parallel to
the fibres. This was enough to conclude that σ1 would not
appear on the failure plane of the matrix mode. The failure
would be determined by the remaining five stress compo-
nents, again, according to Assumption TFP. All terms as-
sociated with σ1 would disappear from the failure function
(1), including the interactive term with the coefficient
of C12.

It should be pointed out that Hashin did not determine
C12 and he certainly did not set it to zero, either, because
there was no need to do so anymore. Eliminating the
contribution from this interactive term, hence avoiding the
challenges of determining interactive coefficient C12 was
one of the most appealing features of the Hashin criterion
when it was formulated. However, this was made possible
only through Assumption TFP.

Another effect of the failure modes Hashin introduced on
the formulation of his composite failure criterion was that
the corresponding failure envelope in the 6-dimensional
stress space was a piece-wise defined surface, with each
piece corresponding to a specific failure mode, fibre tension,
fibre compression, matrix tension and matrix compression.
For this reason, Hashin referred to them as a set of criteria
(plural).2 As these pieces are continuous, forming a single
integral and comprehensive failure envelope, it is reason-
able to consider it as a criterion (singular), as was also so
referred to in the literature, e.g. in 3. Piecewise defined
failure envelope could indeed be a way forward in order to
improve the accuracy a failure criterion without escalating
the order of failure function.
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Apparently, all attractive features of the Hashin criterion
which have been considered to be superior to the Tsai-Wu
criterion relies crucially on the validity of Assumption TFP.
It is the objective of this paper to establish that Assumption
TFP unfortunately does not stand scrutiny in its application
to anisotropic composites.

Contradictions to assumption TFP

Whilst no appropriate justifications had been provided to
Assumption TFP in 2, experimental cases of composite
failure contradicting the assumption will be demonstrated
and elaborated in this section as the main subject of this
paper. They should dismiss the general applicability of
Assumption TFP to anisotropic composites.

In order to draw the relevance of the physical tests
conducted as close as possible to the points to be made,
some qualitative analyses will be carried out closely as-
sociated with the experimental cases to be presented for the
first two cases. The prime interest of the experiments in-
volved is the relationship between the observed failure
plane and the traction on the failure plane. The qualitative
analyses serve as a steppingstone to the respective physical
experiments, offering a basic level of theoretical justifica-
tions to the experimental observations. It would be rela-
tively straightforward to justify the modes of failure through
these qualitative analyses, given the idealised stress states
and their corresponding deformations, based on common
sense and basic reasoning in micromechanics, although the
outcomes will always be presented at the macroscopic scale
phenomenologically. Readers are reminded that Assump-
tion TFP was made in the context of macroscopic stresses in
a phenomenological manner. To mimic these qualitative
analyses, two relatively simple physical experiments have
been conducted with results presented in this section, fol-
lowed by a third commonly observed case in experiments.
Although the experiments conducted for the first two cases
do not reproduce the conditions of the qualitative analyses
precisely, they should be sufficient to put the observations
made and conclusions drawn from them beyond any rea-
sonable doubt.

Contradiction 1

A qualitative analysis of a UD composite under equal biaxial
transverse compression. The first contradiction to Assump-
tion TFP in the context of its applications to anisotropic
materials is associated with UD composites subjected to the
biaxial compression in the plane transverse to fibres. For the
ease of elaboration, an ideal stress state of equal biaxial
compression as depicted in Figure 2 is considered.

For this particular stress state, Hashin 2 assumed an
infinite strength in order to obtain an additional condition to
determine one of the constant coefficients in the failure

function. This assumption can be considered as a reasonable
approximation mathematically as the strength under this
stress state is bound to be significantly greater than its
counterpart under uniaxial compression. This is not sub-
jected to any dispute here. Since no failure was predicted
under this stress state according to the Hashin criterion, the
failure mode was irrelevant, as far as the Hashin criterion is
concerned. However, failure does take place in reality, as
will be explained below, though at a very high stress level
indeed. It is the failure mode under this stress state that is
most revealing. It is therefore the subject of the discussion in
this subsection.

According to the generalised Hooke’s law for trans-
versely isotropic materials,25 under an equal biaxial
transverse compressive stress state as shown in Figure 2, i.e.
when σ1 ¼ 0 and σ2 ¼ σ3 < 0 in absence of any shear stress,
the direct strain of the composite in the fibre direction can be
obtained as

ε1 ¼ �2ν12
E1

σ2 (5)

where E1 and ν12 are longitudinal Young’s modulus and
Poisson’s ratio of the UD composite. According to (5), ε1 is
positive and it increases with the load level, and so does the
longitudinal stress and strain in the fibres. A simple mi-
cromechanical analysis will reveal that in the longitudinal
direction, fibres are subjected to tensile stress and strain,
whilst the matrix is under compressive stress (whilst with
positive strain, though). The resultant of the tensile stress in
the fibres counterbalances the resultant of the compressive
stress in the matrix, exhibiting zero effective stress for the
composite in the fibre direction. Common sense dictates that
fibres can only sustain finite tensile stress and strain lon-
gitudinally. The presence of compressive stresses in the
transverse directions to the fibres is unlikely to prevent, if
not to promote, the tensile failure in the fibre direction.

On the other hand, microscopically the matrix is under
triaxial compression: biaxial compression due to applied
loading and compression in the fibre direction as described
above due to the Poisson effect. Given the high longitudinal
stiffness of the fibres, a significant part of the triaxial
compression in the homogeneous and isotropic matrix
under consideration is of a hydrostatic nature. According to
the von Mises criterion,14 the hydrostatic part of the stress
state does not contribute to failure, and as a result, the matrix
can be expected to sustain a high level of stresses concerned.

As the load increases, the composite will eventually
reach a stage when the fibres can no longer sustain the
tension in the longitudinal direction. Then fibre breakage
takes place. This might also be promoted to an extent by the
transverse compression microscopically. Such fibre break-
age releases of the tensile stress in the fibres, equivalent to a
compressive stress wave emanating from the fracture
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surface along the fibre direction toward both ends of the
specimen. As the ends are free, a compressive stress wave
reflects back into tensile wave, breaking the remaining part
of the specimen eventually. Macroscopically, as a com-
posite, fracture in planes perpendicular to the fibres should
be observed, described as fibre failure mode of the com-
posite as in the Hashin criterion.

This particular mechanism of failure could also be
considered within the framework of the Puck criterion for
fibre failure.20 The magnitude of the applied compressive
stress can be predicted from

σ2 ¼ σ3 ¼ �σ*1t
�
2

 
ν12 � mf

σ

ν f
12E1

Ef
1

!
(6)

where Ef
1 and νf12 are the Young’s modulus and Poisson’s

ratio of the fibres in their longitudinal direction, σ*1t is the
tensile strength of the composite in the fibre direction, and
mf

σ is a so-called stress magnification factor relating the
macroscopic transverse stresses to those in the fibres, which
takes as value around 1.1∼1.3 depending on the properties
of the constituents of the composite according to 20. For
reader’s information, this particular part of the Puck cri-
terion20 is independent of Assumption TFP.

Although its quantitative accuracy is yet to be validated
when the material is loaded in absence of the direct stress in
the fibre direction, (6) at least indicates qualitatively that
failure could take place under equal biaxial transverse
compression.

It should be pointed out that the Hashin criterion was
proposed based on the effective stresses in the composite,
although micromechanics has been employed above to
explain and justify the mechanism of failure anticipated.
When the qualitative analysis is presented in terms of ef-
fective stresses in the composite, the outcome would clearly
contradict Assumption TFP. In other words, failure cannot
be determined by the traction on the failure plane under the
loading condition as in the present example, since the

traction vanishes on the failure plane. Because the traction
on the failure plane does not change with the applied load,
one would conclude that failure could take place at any load
level, which was apparently not reasonable.

To support the qualitative analysis above, physical proof
would play a decisive role. This will be pursued in the next
subsection.

An experiment of a UD composite under transverse biaxial
compression. Practically, an equal biaxial compression is not
easy to achieve experimentally. As a compromise whilst
remaining as a close representation of the qualitative ana-
lyses, a relevant physical test is biaxial transverse com-
pression with an unequal but obtainable ratio between the
two transverse stresses. Provided that the stress state would
still allow the strain in the composite specimen to build up in
the fibre direction, the failure would still be in fibre tension
on the plane perpendicular to fibres, whilst the traction on
the failure plane of the composite vanishes.

This was achieved by putting a UD composite cube inside a
channel within a steel block as the fixture, as shown in
Figure 3(a) and (b), with the fibre direction aligned with the
length direction of the channel. The composite was made from
IM7/8852 prepreg produced by hand layup process and cured
in autoclave following the instruction from themanufacturer.26

Basic elastic properties from the manufacturer broadly agree
with those measured independently.27 The UD cube was
loaded in one of the transverse directions, denoted as σ3,
through a punch into the channel on the top and supported by
the base plate of the testing machine at the bottom of the
specimen, as sketched in Figure 3(c). The specimen was
constrained by the walls of the channel in the other transverse
direction, i.e. ε2 ≈ 0. The lack of constraints in the direction
along the channel delivered the condition σ1 ¼ 0.

Biaxial compression is generated due to the Poisson effect.
Approximating the constraints from the channel walls of the
fixture as rigid, i.e. ε2 ¼ 0, given the significantly higher
stiffness of steel than that of the composite in its transverse
direction, according to the generalised Hooke’s law,25 the
transverse stress generated to suppress the strain is

σ2 ¼ ν23σ3 resulting f rom the condition

ε2 ¼ �ν12
E1

σ1 þ 1

E2
σ2 � ν23

E2
σ3 ¼ 0: (7)

This leads to a stress ratio of σ2 : σ3 ¼ ν23 : 1 in the
transverse plane. The condition σ1 ¼ 0 also results in

ε1 ¼ �ν12
E1

ðσ2 þ σ3Þ ¼ �ν12ð1þ ν23Þ
E1

σ3: (8)

Following the same argument as was made in the
qualitative analysis in the previous subsection, fibre failure
due to tension will eventually take place at a sufficiently

Figure 2. A stress state of equal biaxial compression transverse
to fibres.
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high load level when ε1 exceeds the limit the fibres can
sustain under the microscopic stress state in the fibres.

The applied stress indeed went to a much higher level
than the transverse compressive strength of the composite
obtained under uniaxial compression, as shown in Figure 4.
The uniaxial compression test had also been conducted
separately on identical cubic specimens from which a
typical stress-strain curve has also been presented in
Figure 4 and compared with that from biaxial compression.

When failure under biaxial compression eventually took
place during the test, it was explosive. The failed specimen

was very fragmented as shown in Figure 5(a). The char-
acteristics of a tensile fibre failure were obvious in the SEM
pictures as shown in Figure 5(b), in support of the quali-
tative analysis. The matrix was subjected to triaxial com-
pression and it is unlikely to initiate such a failure.

Phenomenologically, the observation was that the com-
posite failed over a cross-section on which the traction van-
ishes completely. If the material failure was to be determined
by the traction on the failure plane, the strength would be an
arbitrary value, because the traction on the failure plane
vanished identically, independent of the loading applied. This

Figure 4. Experimental stress-strain curves.

Figure 3. (a) Steel fixture, (b) top view of the fixture with a specimen as indicated, and (c) a section view of the test arrangement where
fibres in the specimen are orientated out of the page.

Li and Sitnikova 3051



is obviously unreasonable. One has to concede that, at least in
this particular case, failure was not determined by the traction
on the failure plane of the composite, which of course con-
tradicts the Assumption TFP. As has been pointed out earlier,
without Assumption TFP, the introduction of failure modes
alone would not be able to bring forward any simplification as
employed in the Hashin criterion. In absence of any alternative
and more representative way of partitioning stresses, one will
have to retreat to a position that failure is determined by the
stress state, i.e. all six components of the stress tensor, rather
than those on the fracture plane. The qualitative analysis and
the physical experiment collectively have delivered the first
contradiction to Assumption TFP.

At the actual failure under transverse biaxial compres-
sion, the fibre direction strain ε1 as obtained from (8) ap-
proached the order of magnitude of strain for fibre breakage,
and the applied stress approached the order of magnitude as
evaluated from (6), although their actual values were not as
high as those predicted using (8) and (6).

There are a number of additional aspects which differ
from the ideal case as discussed in the previous subsection
in addition to the fact that σ2 ≠ σ3. The tension in the fibres is
not uniform along the complete length of the specimens.
Fibres as well as the matrix are free from stresses in the fibre
direction on the free surfaces at both ends of the cube. The
stresses took some distance from the free surface into the
specimen to build up their magnitudes. Given the fact that
the failure took place in the middle of the specimen, this
consideration did not seem to have made any difference.

Another consideration could be strength variability
amongst fibres. Tensile failure of fibres was often triggered
by the breakage of the weakest ones. As the stress at failure
and the observed failure mode fell within the expectation
and the experimental result could be considered as both
reasonable and reliable. Any difference made by the

variability concerned would only affect the outcome
quantitatively, but not qualitatively.

In the elaboration above, the effects of friction between the
specimen and its surroundings have been neglected, as well as
the deformation of the steel fixture. The friction was eased by
greasing the surfaces of the specimen before testing. Quali-
tatively, the effect of the friction would generate a minor
tendency to resist the free expansion in the fibre direction
impeding the observed fracture. The fact that fracture did
actually take place in the test suggested that the friction effect
was not significant. The deformation of the fixture was another
factor neglected. If incorporated into the consideration, it
would tend to reduce the magnitude of σ2. This would deviate
the transverse stress ratio from σ2 : σ3 ¼ ν23 : 1 to somewhat
σ2 : σ3 < ν23 : 1, a bit further away from the ideal 1:1 ratio as in
the qualitative analysis. However, given the fact that failure
took place, this effect was not expected to be significant and
had not altered the failure mode.

Similar experiments were reported in 28 where speci-
mens of quasi-isotropic layup were subjected to uniaxial
compression in the through-thickness direction. The results
were employed in the Second World Wide Failure Exercise
(WWFE-II)29 to establish one of the test cases for par-
ticipating theories to compare with. In such experiments, the
in-plane transverse constraints to a ply were provided by its
neighbouring plies with fibres orientated in different di-
rections, in particular, those running in the perpendicular
direction. The nature of the failure observed then was
similar to that presented above and fibre fracture was clearly
identified. Note that in those experiments a degree of
macroscopic tensile stress in the fibre direction was present
in each ply due to the quasi-isotropic layup. However, this
macroscopic tension alone was far from being sufficient to
cause the fibre tensile failure of the plies involved. The
dominating tensile stress in fibres responsible for the failure

Figure 5. (a) Fragments of a failed specimen and (b) an SEM image of the fracture surface.
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resulted from the micromechanical consideration as given in
the qualitative analysis in the previous subsection.

Despite the disparity between the physical test and the
qualitative analysis in terms of the ratio between transverse
stresses and other considerations as cited above, similar
responses have been observed, suggesting that the physical
test captured the idea conveyed through the qualitative
analysis, contradicting Assumption TFP.

Contradiction 2

A qualitative analysis of a UD fibre-weakened composite under
uniaxial transverse compression. The second contradiction can
be revealed in a special type of anisotropic composites where
fibres were of elastic properties so low in comparison with
those of the matrix that they can be considered as voids. These
‘fibres’ are unidirectionally aligned in the matrix.When such a
‘composite’ is uniaxially compressed in its transverse direc-
tion, as illustrated in Figure 6, the microscopic stresses around
a ‘fibre’ are readily obtained from awell-known problem in the
theory of elasticity, namely, the stress concentration around a
circular hole, provided that the fibres were distributed suffi-
ciently sparsely over the cross-section of the ‘composite’ so
that the stress distributions around a ‘fibre’ is not affected by
the presence of other ‘fibres’ around it. The stress concen-
tration problem has been sketched in Figure 7 with the values
of the circumferential stress at typical points indicated.30

Whilst the highest stress can be found at θ = ±90°, which
is compressive, a tensile circumferential stress can be found at
θ = 0° or 180°, which is of the same magnitude of the applied
far-field stress but opposite in sense. It should be noted that
stress concentration does not necessarily leads to failure, at
least not necessarily at the site of highest stress concentration.
How a material responds to these stress concentrations de-
pends as much as on the nature of the material as on the stress
concentrations.

As a brittle material, it can sustain higher compressive stress
than tensile stress. The highest stress concentrations are on the
sides of the ‘fibres’. However, since they are under com-
pression, they do not necessarily result in failure. On the other
hand, as a secondary site of stress concentration, circumfer-
ential tensile stress is found on the top and the bottom of the
‘fibres’. These tensile stresses are the 1st principal stresses at
these locations. A commonly accepted view for sufficiently
brittle materials is that when the 1st principal stress is tensile
whilst the 3rd principal stress is insufficient to cause com-
pressive failure, the failure is usually dictated by the 1st

principal stress. The action plane of these tensile stresses is
parallel to the applied compression and also parallel to the
‘fibres’. Failure could take place due to the tensile stress and, if
so, the failure plane would be the action plane of the tensile
stress. Reflecting this failure mechanism, a qualitative analysis
can be presented below.

A unidirectionally fibre-weakened composite of the
characteristics as described above is considered, as illustrated
in Figure 6. It is subjected to uniaxial compression transverse
to the fibres. If the matrix is so brittle that its compressive
strength is more than three times of the tensile one, the failure
will be due to the microscopic tensile stress, and the failure
plane will be parallel to the directions of the applied stress and
also to the fibres, as indicated in Figure 6. This particular plane
in the composite at macroscopic scale is free from any non-
vanishing traction. The phenomenological observation will
conclude that the failure is not determined by the traction on
the failure plane. This provides yet another contradiction to
Assumption TFP.

Figure 6. UD fibre-weakened composite under uniaxial
compression transverse to fibres.

Figure 7. Circumferential stress along the edge of a circular hole
in a 2-dimensional elastic body under uniaxial compression.
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A qualitative analysis of a particulate-weakened composite under
uniaxial compression. The qualitative analysis as presented
in the previous subsection is relatively easy to envisage but
by no means straightforward to implement physically in
reality due to the lack of materials bearing characteristics of
unidirectionally fibre-weakened composite as was required
above. To draw the position a step closer to the realistic
testing, considerations are given to a brittle material
weakened by spherical particulates sparsely suspended in it.
Under uniaxial compression, stress concentration occurs
around each spherical particulate. If the particulates are so
compliant that they could be approximated as voids, the 3D
stress field with stress concentration characteristics will be
similar to that in the 2D case.31 With the particulates being
sparsely distributed, the stresses around a particulate will
not be affected by those around it. Each particulate can be
approximated as an isolated one. In this case, as a reasonable
resemblance to the 2D scenario, under uniaxial compres-
sion, tension is found on the poles of the particulate whilst
concentrated compression is present along the equator of the
particulate,31 although the magnitudes of these stresses tend
to differ from their 2D counterparts slightly. As long as the
matrix material is sufficiently brittle, the tensile stresses on
the poles would be more critical than the compressive one at
the equator. As a result, fracture will be expected to initiate
at poles, propagating microscopically as a mode I crack
along the loading direction. A major difference from the
case of uniaxially fibre weakened composite as in the
previous subsection is that the tension on the poles is bi-
axial. As a result, the orientation of the failure plane is not
unique now but can take any direction parallel to the loading
direction, as shown in Figure 8. However, no matter which
plane the fracture takes place in, it is free from traction on it
macroscopically. As the traction on the failure plane is zero,
the failure cannot be determined by it and hence the case can
be presented as another contradiction to Assumption TFP.

The reasoning as elaborated above has been logical.
However, their authenticity needs a crucial support, i.e. some
physical proof. This is the subject of the next subsection.

Experiments on a particulate-weakened composite under uni-
axial compression. Relatively, a particulate-weakened
composite is easier to obtain than a unidirectionally fibre-
weakened one. Untoughened crystal glass bricks with
bubbles sparsely suspended in them, as shown in Figure 9,
are widely available. They can be regarded as spherical
particulate-weakened composites as a reasonable resem-
blance of the material employed in qualitative analysis in the
previous subsection. To facilitate the experiment, the brick
was water jet cut into 20 × 20 × 20 mm cubes as the
specimens to be tested, as shown in Figure 10(a), where the
air bubbles were of a diameter of around 1 mm. The cubes
were compressed uniaxially with contact surfaces greased to
minimize the effect of friction.

As expected, fracture took place on planes parallel to the
direction of loading as can be seen in Figure 10(b) where the
specimen was loaded in the vertical direction in compression.
As argued in the previous subsection, there is no preferred
failure plane orientation amongst those parallel to the loading
direction and hence the material selected the plane(s) to suit
itself. On the failure plane, themacroscopic stresses vanish and
the failure in this particular case cannot be determined by the
macroscopic traction on the failure plane.

The experimentally recorded stress-displacement curves
for some of the specimens tested are shown in Figure 11
where the curves had been artificially offset one another to
avoid overlapping. The recorded displacements and the
strain scale as marked in Figure 11 should not be read too
literally as they were measured from the crosshead of the
test machine, which tended to exaggerate the readings. They
are nevertheless indicative at least. The stresses went to
relatively high levels as shown due to the high compressive
strength of brittle materials in general.

A valid counterargument can be made against the ex-
perimental case presented in this subsection. The material of
the specimens can be considered isotropic macroscopically.
If so, the failure plane is perpendicular to the 1st principal
direction, though the magnitude of the 1st principal stress is
zero. This challenges Assumption TFP not only in the
context of the Hashin criterion, but also in the context of the
Mohr criterion for isotropic materials. The validity of As-
sumption TFP cannot even be take for granted for isotropic
materials in this particular case as an exception. The danger
of stretching it blindly to anisotropic composites is now
conceivable. Isotropy is a necessary condition for TFP, but
not sufficient, in general.

An attempt is being made to extend the Mohr criterion as
implemented in 23 to embrace the extraordinary phenomena as
revealed in 24 for metallic glass under uniaxial tension and that
as observed above under uniaxial compression. One of the
objectives is to justify Assumption TFP for highly brittle

Figure 8. Particulate-weakened composite under uniaxial
compression.
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isotropic materials fracture in the manner as observed above.
The outcomes will be presented in a future publication soon,
but none of them would help with the justification of the
extension of Assumption TFP to anisotropic materials.

Contradiction 3

Splitting is one of the failure mechanisms in the experiment of
UD composites subjected to uniaxial tension or compression in
the fibre direction, as sketched in Figure 12, where cracks often
appear in their multiplicity instead of a single one as illustrated.
This mode of failure is perhaps more commonly observed in
actual experimentation than systematically reported in the
literature. Macroscopically, the failure plane is parallel to the
direction of loading and therefore on the failure plane, traction

vanishes. This mode of failure is somewhat counterintuitive
and it may be almost embarrassing to report this observation.
Researchers tend to blame themselves and try to identify
possible mistakes or oversights in their experimentation, rather
than challenge their intuition by exploring any unknown but
intrinsic behaviour of material failure. There have been ex-
planations from micromechanics perspective, such as fibre
misalignment,32 or weak bond between fibres and matrix,33,34

etc. Genuine causes as they might be, macroscopic fact is that
the traction on the failure plane vanishes, completely or nearly.
Apparently, the phenomenon is present even for some of the
brittle isotropicmaterials as revealed in the previous subsection
when glass cubes with bubbles inside were subjected to
uniaxial compression, where the issues, such as fibre mis-
alignment and weak bond were not even relevant.

Splitting failure as described above will certainly serve
as yet another contradiction to Assumption TFP.

A statement on assumption TFP

The inapplicability of Assumption TFP to anisotropic materials
has been reviewed in early on in this paper. Its success in the
Mohr criterion for isotropic material does not lend any justi-
fication for its extension into anisotropic materials. Should it be
employed in the formulation of a failure criterion for anisotropic
materials, it would have to be justified separately. There has
never been any tangible justification for it in the Hashin cri-
terion, which was proposed specifically for transversely iso-
tropic materials, neither in other criteria built on top of it.

On the other hand, based on the outcomes of the three
contradictions as presented above in this section, As-
sumption TFP has been found to contradict with

Figure 9. An untoughened crystal glass brick with sparsely
suspended bubbles.

Figure 10. Cubic glass specimens (a) before testing (with a clear surface chosen to show the bubbles inside) (b) after testing (loaded in
uniaxial compression vertically, different specimen from that in (a)).
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experimental observations, at least for the three examples
cited above. They should be sufficient to dismiss the uni-
versal applicability of the assumption to UD composites in
general. A fresh examination needs to be given to each of
the failure criteria in the literature, such as 20,21, based on
this assumption for anisotropic composites.

About the failure mode in the
Hashin criterion

There is another aspect of the Hashin criterion that should be
challenged related to the failure modes as another key el-
ement in the theory.

In the field of material failure criteria, perception sometimes
overrides scientific understanding. On the subject of the Ha-
shin criterion, there has also been such an observation re-
garding the failure modes. In addition to fibre and matrix
modes of failure, Hashin also introduced tensile and com-
pressive modes of failure.2 There are two issues which have
left quite some misperception behind amongst its users.

Firstly, in the formulation as Hashin finally arrived, the
tensile failure is independent of the compressive strength and
vice versa. This seemed to have created a perception that
compressive strength should not play any part in the prediction
of failure in tensile mode, and vice versa. However, there has
never been any justification for this, just like Assumption TFP.
It has been taken for granted and never been challenged.

Based on scientific understanding, not any perception, a
serious challenge could come from theMohr criterion, bearing
in mind that the Hashin criterion rests heavily on the Mohr
criterion. In the Mohr criterion, the failure envelope should be
constructed from all Mohr’s circles at failure in theory. As
obtaining all Mohr’s circles at failure is impractical, those for
uniaxial tension and uniaxial compression should be presented
at least. As the result, unless the stress state concerned happens
to be uniaxial tension or uniaxial compression, when the
failure is dictated by tensile or compressive strength exclu-
sively, respectively, failure should be determined by the tensile
and compressive strengths collectively under any other stress
state, in general, whether the failure mode is classified as
tensile or compressive. Even under uniaxial compression, the
orientation of the failure plane would be affected by the tensile
strength. The conclusion is that in the prediction of a so-called

Figure 11. Experimental stress-strain curves for a range of specimens.

Figure 12. Splitting failure in UD composites under uniaxial (a)
tension and (b) compression along fibres.
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compressive failure, the tensile strength of the same material
can legitimately play a part without contradict any established
understanding, and vice versa for tensile failure.

The second issue is associated with matrix failure. The
partition between tensile and compressivemodes was based on
the sum of the two transverse direct stresses. Again, the Mohr
criterion tells that tensile failure could take place even if the
sum was negative provided that one of them was positive and
of a sufficiently largemagnitude and thematerial is sufficiently
brittle. This has been fully demonstrated in 23. Such classi-
fication of failure modes into tensile and compressive ones in
the Hashin criterion was rather baseless.

The arguments made above are not to dismiss the
consideration of failure modes as a part of the considerations
in the formulations of a failure criterion. They are to reveal
the fact that the way Hashin introduced the failure modes
has not been justified in much scientific manner but unduly
glorified. According to 2, the introduction of the concept of
failure modes was mostly to avoid the coefficient to the
interactive term in the quadratic failure function, rather than
any full scale of micromechanical investigation. It did not
use any mode-related information other than Assumption
TFP when partitioning fibre mode and matrix mode, whilst
artificially avoiding compressive strength when deriving the
criterion for tensile failure and vice versa. In order to reflect
the failure mode in a failure criterion objectively, more
systematic investigation is required. It is not the objective of
this paper to achieve this. Instead, the key message out of
the present paper is, if thinking is restrained by the
framework in 2, e.g. by blindly adopting Assumption TFP
and the failure mode partition as in 2, no serious
achievement would be possible.

Conclusions

The key assumption (Assumption TFP) of the Hashin failure
criterion stating that failure is determined by the traction on the
failure plane is under scrutiny in this paper. As an assumption,
it was originally introduced as a part of the Mohr criterion for
brittle and isotropic materials. It has been argued in this
paper based on the understanding established in 22 that this
assumption is inapplicable in general to anisotropic materials.
Before this assumption was introduced for the failure modes to
take advantage of it, the failure function obtained in the Hashin
criterion was identical to that of the Tsai-Wu criterion. Any
difference from the Tsai-Wu criterion rests on the introduction
of Assumption TFP.

Whilst there was lack of much needed justification to
demonstrate the validity of Assumption TFP in its appli-
cation to anisotropic composites, three serious contradic-
tions have been presented in this paper, in which the
assumption falls apart completely. They have been argued in
the realm of a phenomenological approach as far as the
failure is concerned, on the same basis as the Hashin

criterion. In the first two cases, some qualitative analyses
have been made resorting to basic concepts of micro-
mechanics in order to explain the mechanisms of the failure
observed. They were followed by physical tests which agree
well with the qualitative analyses. In each of the three cases
cited, the failure plane was free from macroscopic traction,
which contradicts the assumption of failure being deter-
mined by the traction on the failure plane. The extension of
Assumption TFP from the Mohr criterion for isotropic
materials to failure criteria for anisotropic composites is
therefore invalid, in general. Fresh thinking is required
before any breakthrough can be envisaged leading to a
consistent and reliable composite failure criterion.
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Note

1. This was not introduced as an assumption explicitly in 2. The
exact statement made was: “It may be argued that in the event
that a failure plane can be identified, the failure is produced by
the normal and shear stresses on that plane” (page 331 column
1 line 5). No reference was made to the Mohr criterion at this
point. Mohr’s name was mentioned later in the paper (page
331 column 2 line 15) but associated with the orientation of the
failure plane for the matrix failure mode, which was about the
consequence, but not justification, of the assumption made,
noting that the orientation of the failure plane for the matrix
failure mode was not determined in the Hashin criterion. The
Mohr criterion was then endorsed as having “sound physical
basis” without even referencing Mohr’s paper, implying the
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Mohr criterion is well-known and universally applicable.
Theories based on this assumption thereafter tended to label
themselves as “physically based” ones, sometimes.
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