A failure criterion for genuinely orthotropic materials and integration of a series of criteria for materials of different degrees of anisotropy
A failure criterion for genuinely orthotropic materials and integration of a series of criteria for materials of different degrees of anisotropy
Existing failure criteria for orthotropic materials are subject to an underlying assumption which cause contradictions when applied to genuinely orthotropic materials that are significantly anisotropic in elasticity as well as in strengths. For such materials, there is lack of consistent failure criteria to support their applications in engineering structures. A general quadratic failure criterion tends to leave undetermined coefficients for interactive terms. A rational approach is adopted in this paper based on mathematical and logical considerations to determine these coefficients as the objective of this paper. Considerations are based on the intrinsic characteristics of the quadric surfaces introduced by the quadratic failure criterion. These coefficients must take the values as obtained, leaving no alternatives if logic prevails. The obtained criterion integrates for the first time a range of criteria separately formulated for materials of different degrees of anisotropy, from genuinely orthotropic, through transversely isotropic, cubically symmetric, to completely isotropic ones with different or identical tensile and compression strengths.
failure criterion, orthotropic materials, quadratic failure function, quadric surface, strength, Tsai-Wu criterion
Xu, Mingming
b1989557-3ad2-4fa9-8d94-a36c95524321
Sitnikova, Elena
e0c2f901-24fe-43d0-88e8-76f415675104
Li, Shuguang
f99c53b3-e42e-456f-97df-4c4e06de4a40
22 May 2024
Xu, Mingming
b1989557-3ad2-4fa9-8d94-a36c95524321
Sitnikova, Elena
e0c2f901-24fe-43d0-88e8-76f415675104
Li, Shuguang
f99c53b3-e42e-456f-97df-4c4e06de4a40
Xu, Mingming, Sitnikova, Elena and Li, Shuguang
(2024)
A failure criterion for genuinely orthotropic materials and integration of a series of criteria for materials of different degrees of anisotropy.
Royal Society Open Science, 11 (5), [240205].
(doi:10.1098/rsos.240205).
Abstract
Existing failure criteria for orthotropic materials are subject to an underlying assumption which cause contradictions when applied to genuinely orthotropic materials that are significantly anisotropic in elasticity as well as in strengths. For such materials, there is lack of consistent failure criteria to support their applications in engineering structures. A general quadratic failure criterion tends to leave undetermined coefficients for interactive terms. A rational approach is adopted in this paper based on mathematical and logical considerations to determine these coefficients as the objective of this paper. Considerations are based on the intrinsic characteristics of the quadric surfaces introduced by the quadratic failure criterion. These coefficients must take the values as obtained, leaving no alternatives if logic prevails. The obtained criterion integrates for the first time a range of criteria separately formulated for materials of different degrees of anisotropy, from genuinely orthotropic, through transversely isotropic, cubically symmetric, to completely isotropic ones with different or identical tensile and compression strengths.
Text
xu-et-al-2024-a-failure-criterion-for-genuinely-orthotropic-materials-and-integration-of-a-series-of-criteria-for
- Version of Record
More information
Accepted/In Press date: 10 April 2024
Published date: 22 May 2024
Additional Information:
Publisher Copyright:
© 2024 The Authors.
Keywords:
failure criterion, orthotropic materials, quadratic failure function, quadric surface, strength, Tsai-Wu criterion
Identifiers
Local EPrints ID: 497651
URI: http://eprints.soton.ac.uk/id/eprint/497651
ISSN: 2054-5703
PURE UUID: 97233ee7-60f0-489e-8623-9fd9f242c174
Catalogue record
Date deposited: 28 Jan 2025 18:13
Last modified: 22 Aug 2025 02:46
Export record
Altmetrics
Contributors
Author:
Mingming Xu
Author:
Elena Sitnikova
Author:
Shuguang Li
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics