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Abstract

A novel damage evolution model for unidirectional (UD) composites is established in this paper in the

context of continuum damage mechanics (CDM). It addresses matrix cracking and it is to be applied along

with the damage representation established previously. The concept of damage driving force is employed

based on the Helmholtz free energy. It is shown that the damage driving force can be partitioned into

three parts, resembling closely three conventional modes of fracture, respectively. A damage evolution

law is derived accordingly based on the newly obtained expressions of the damage driving force. The fully

rationalised Tsai-Wu criterion is employed in the model for predicting the initiation of matrix cracking

damage and fibre failure, assisted with the rationalised maximum stress criterion for identifying the

damage modes. A mechanism is introduced to describe the unloading behaviour as a part of the proposed

model. The predictions were validated against experimental results, showing good agreement with the

experiments and demonstrating the capability and effectiveness of the proposed model.

Keywords
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Introduction

The concept of damage in the field of composites has been widely employed to describe the deg-
radation of effective properties based primarily on the fact that failure of composites is often a
process instead of an incident, starting from initiation of micro-cracks to the final rupture.

Faculty of Engineering, University of Nottingham, Nottingham, UK

*Current address: AECC Commercial Aero-Engine Corporation China.

Corresponding author:

Wenxuan Qi, University of Nottingham, Nottingham, NG7 2RD, UK.

Email: ezawq2@exmail.nottingham.ac.uk

International Journal of Damage

Mechanics

0(0) 1–30

! The Author(s) 2024

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/10567895241292744

journals.sagepub.com/home/ijd

https://orcid.org/0000-0002-9701-5625
mailto:ezawq2@exmail.nottingham.ac.uk
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/10567895241292744
journals.sagepub.com/home/ijd
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10567895241292744&domain=pdf&date_stamp=2024-10-31


The continuum damage mechanics (CDM) is one of the approaches to defining the constitutive
behaviour associated with damage. The damage is expressed in terms of a state variable so that the

constitutive relationship involving damage can be formulated to describe the effects of damage, as

opposed to studying individual cracks at a micro-scale, which is not always practical.
Unlike macro-cracks in metallic materials, where a single dominant crack often dictates the

eventual failure, micro-cracks in composites are often dispersed in the matrix, sometimes distributed

nearly uniformly (Talreja and Singh, 2012). Due to such distribution of micro-cracks, damaged

composites can therefore be regarded effectively as a continuum the effective properties of which

can be characterised using an appropriate representative volume element, as well as the damage
variable introduced to describe the problem of damage. This lays the basis for CDM.

Damage representation

In the framework of CDM, damage models for composite materials normally comprise two major

parts, namely, the damage representation and the damage evolution.
Damage representation interprets the physical presence of damage into a mathematical descrip-

tion by utilising a concept of damage variable. With an appropriate definition of the damage

variable, the constitutive relationship for the damaged material could be expressed in terms of a

relationship amongst stresses, strains and the damage variable.
However, there appeared to be no unique form of damage representation and different forms of

constitutive relationships have been obtained as a result. In fact, this issue was exposed in (Allix and

Hild, 2002) where it was also argued that some of the forms of suggested constitutive relationships

involving damage that may not even be considered as physically or mathematically sound. This
situation should be reviewed and improved.

One of the major differences between various damage representation formulations is the way of

accounting for the relationship between the degradations of transverse Young’s modulus E2 and in-

plane shear modulus G12. A simple example of such a damage scenario is matrix cracking parallel to
fibre direction. This should result in degradations in both transverse modulus E2 (in tension) and the

longitudinal shear modulus (G12). The experimental evidence for such damage coupling effect was

obtained by Knops and B€ogle (Knops and B€ogle, 2006), who conducted tests on tubular glass fibre

laminate specimens. It was shown that the transverse tensile modulus suffered higher extent of
degradation than the in-plane shear modulus.

However, some of the well-known CDM-based damage models for UD lamina employed unre-

alistic restrictions to interpret this coupled damage effect. In some cases, complete independence
between the degradation of E2 and G12 was assumed (Daghia and Ladeveze, 2013; Matzenmiller

et al., 1995; Sapozhnikov and Cheremnykh, 2013; Zinoviev et al., 1998), while in others, identical

degradations of E2 and G12 was imposed (Edge, 1998; Puck and Schürmann, 2002). None of them

can be justified physically or mathematically. This issue was also identified during the third World-
Wide Failure Exercises (WWFE-III) activities (Kaddour et al., 2013). Moreover, for general 3D

stress problems, in presence of matrix cracks parallel to fibres, there will also be coupling between

degradations of G23 in addition to that between E2 and G12, whilst the effective Poisson’s ratios in

different directions will be subjected to changes accordingly due to damage.
To address the above problem, some other damage representation models were proposed based

on the CDM theory in which the degradation of G12 are determined by the those of E1 and E2

(Gupta et al., 2012; Jain and Ghosh, 2009; Mohammadi et al., 2015; Onodera and Okabe, 2020;

Salavatian and Smith, 2015; Thollon and Hochard, 2009; Wang et al., 2015; Zhong et al., 2015).
Zhong et al (Zhong et al., 2015) proposed a damage representation model for 3D woven composites
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including fibre yarns and matrix. In their model, the damage variables representing the damage

effects on the shear stiffness of fibre yarns were calculated by the values of the ones characterizing

the degradation of longitudinal and transverse modulus. They also considered that the degradation

of out-of-plane shear stiffness G23 is determined by the degradation of E2 and E3. Williams et al

(Williams et al., 2003) introduced a scalar-valued history parameter to calculate the damage variable

and then the residual stiffness functions defined by the damage variables were derived for damage

representation.
On the other hand, Li et al. (Li et al., 2019) proposed a damage representation in which the

interaction between degradations of E2 and G12 was accounted for without imposing any artificial

restriction, leading to a rational model of damage. It was based on the damage formulation

proposed by (Talreja, 1985), who employed a vectorial damage variable. This was a relatively

simple damage representation, but it had been proven in (Talreja, 1987) that a more sophisticated

tensorial damage variable tended to lead to exactly the same constitutive relationship for matrix

cracking damage. By means of virtual experiments and associated mathematical derivations, seven

out of eight of these damage-related constants were determined analytically. For the determination

of the remaining one, a computational procedure has been developed. As a result, the proposed

damage representation (Li et al., 2019) minimised the efforts required for determining damage-

related material constants. This damage representation has been adopted in the present paper.

Damage initiation criterion and damage evolution law

Another integral part of the damage model is a damage evolution that describes the growth of

damage. Same as for damage representation, different types of damage evolution laws were also

proposed by various researchers. These models can be classified into three categories in general, as

shown in Table 1.

Table 1. Classification of damage evolution laws in damage models for UD lamina.

Damage evolution law types Damage models

Independent curve-fitting functions derived

using direct interpolation of

experimental stress-strain curves under

specific loading cases, which are not

applicable to other loading cases.

A structural-phenomenological model for multi-layered composites

under plane stress state by Zinoviev et al. (Zinoviev et al., 1998)

A stress-based Grant-Sanders method for predicting failure of com-

posite laminates by Edge (Edge, 1998)

Generalized Daniel’s model (Daniels, 1945) for fibre-reinforced

polymer under a complex loading by Sapozhnikov and Cheremnykh

(Sapozhnikov and Cheremnykh, 2013)

Damage evolution laws applicable to gen-

eral quasi-static loading cases based on

the concept of damage surface.

A continuum damage model for modelling transverse matrix cracking

damage in composite laminates by Li et al. (Li et al., 1998, 2005).

Implementation of the damage theory by Matzenmiller et al.

(Matzenmiller et al., 1995) as MAT 162 composite material damage

model in LS-DYNA (Haque, 2015; LS-DYNA, 2015).

A computational continuum damage mechanics model for notched

cross-ply composite laminates by Babaei et al (Babaei and

Farrokhabadi, 2017)

Damage evolution laws applicable to

general loading cases based on damage

driving force.

Enhanced meso-model for laminated composites by Ladeveze and

Daghia (Daghia and Ladeveze, 2013).
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Apart from the aforementioned models, other researchers proposed numerical methods to
address the mechanical properties and cracking problems in UD composites (Galadima et al.,
2023), including the extended finite element method (XFEM) (Abdullah et al., 2017; Dimitri
et al., 2017; Swati et al., 2019), peridynamics (PD) model (Li et al., 2023; Ni et al., 2023; Sun
et al., 2023), lattice model (Braun and Ariza, 2020; Braun et al., 2021, 2024) and so on. Li et al
(Li et al., 2023) proposed a highly efficient bond-based PD model to simulate the progressive
damage behaviour of laminated composites. In their model, critical values and damage character-
istics for different damage modes at material points were defined to predict the evolution of damage
in composite structures. Braun et al. (Braun and Ariza, 2020) presented an extended linear elastic
lattice model for anisotropic materials. A softening constitutive law in terms of an equivalent dis-
placement was introduced in the model to predict the progressive damage evolution in composite
materials. Mukhopadhyay et al (Mukhopadhyay and Hallett, 2019) presented a new direct CDM
model for matrix cracking in composites and it is implemented using Abaqus. A damage variable
was introduced in the bilinear damage evolution law based on the calculated mixed-mode critical
energy release rate. In their model, the fibre orientation at ply level was also used as an input so that
individual matrix cracks in cracked plies could be represented and their evolution could be tracked,
making their model independent of mesh pattern.

The objective of this paper is to supplement the damage representation formulated in (Li et al.,
2019) for matrix cracking damage in UD composites with a novel damage evolution law based on
the concept of damage driving force. Whilst retaining the necessary consistency in its formulation, a
great simplification will be brought forward by some rigorous mathematical transformation in the
presentation of the damage driving force, resulting in three naturally partitioned components direct-
ly associated with the corresponding stress components, resembling the conventional fracture
modes.

In absence of pre-existing defects or damage, a damage initiation criterion is usually required to
trigger the onset of damage process, therefore a complete formulation of the damage model should be
supplemented by a damage initiation condition. Failure criteria for UD composites are often employed
as the damage initiation criteria, and their comprehensive reviews can be found from the outcomes of
WWFEs (Hinton et al., 2002, 2004; Kaddour and Hinton, 2013; Kaddour et al., 2004, 2013; Soden
et al., 1998, 2004) and (Echaabi et al., 1996). The recently fully rationalised Tsai-Wu criterion (Li et al.,
2022a, 2022b) will be employed for damage onset, assisted with the rationalised maximum stress crite-
rion (Li, 2020) for the identification of the damage mode. The predicted damage initiation has also been
compared with that obtained using the Puck criterion (Knops, 2008) in terms of damage initiation and
its knock-on effects on the subsequent damage process.

In addition to predicting the onset of the transverse matrix cracking damage in laminated
composites under quasi-static loading, the failure criterion employed can also help with the predic-
tion of catastrophic failure modes like fibre failures. The model has been formulated in such a way
that it is applicable to general loading conditions including unloading and reloading scenarios, a
mechanism not present in many existing damage models, yet crucial in representing the effective of
irreversible nature of a damage process. Finally, the predicted results will be compared to experi-
mental data from quasi-static tests on composite laminates to validate the model developed.

Damage representation for matrix cracking in UD composites

The damage representation established by Li et al. (Li et al., 2019) is adopted in this paper to
incorporate the effects of damage in the form of matrix cracks on the elastic behaviour of UD
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composites. According to it, the effective stiffness matrix of transversely isotropic UD composites in

presence of a single array of aligned matrix cracks can be given as

C ¼ C0 þ CDx (1)

where C0 denotes the stiffness matrix in absence of damage, x is the damage variable defined as the

relative change in the transverse Young’s modulus and CD represents the effects of damage on the

stiffness matrix. It is expressed as

CD ¼�

E0
1�

0
12�

0
21

ðD0Þ2
E0
2�

0
12ð1� �012�

0
21Þ

ð1þ �023ÞðD0Þ2
E0
2ð1� �012�

0
21Þ2

ð1þ �023Þ2ðD0Þ2 symm:
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0
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0
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2ð1� �012�

0
21Þð�023 þ �012�

0
21Þ

ð1þ �023ÞðD0Þ2
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2ð�023 þ �012�

0
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G0

23

2ð1þ �023Þ
0 0 0 0 0
0 0 0 0 0 kG0

12

2
666666666666666664

3
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(2)

where D0 ¼ 1� �023 � 2�012�
0
21, and E, G and � denote the Young’s modulus, the shear modulus and

the Poisson’s ratio, respectively and parameter k is a material constant representing the relative

change in the longitudinal shear modulus with respect to the relative change in the transverse

Young’s modulus. Superscript 0 refers to parameter values in the virgin state of the composite

and the subscripts refer to the coordinate axes. The constitutive equation for a damaged UD

composite is expressed as

rep ¼ Cpqe
e
q ¼ ðC0

pq þ CD
pqxÞeeq ðp; q ¼ 1 to 6Þ (3)

where rp and eq are components of effective stress and strain tensor, respectively. This relationship

can be incorporated in appropriate constitutive models to predict the behaviour of damaged com-

posites, for instance, laminated composites in presence of transverse matrix cracks, in conjunction

with the use of the classic laminate theory (CLT).

A novel damage evolution model for UD composites subject to matrix

cracking

In order to establish a complete damage model, the damage representation should be supplemented

by appropriate damage onset conditions and damage evolution law. This is pursued in the following

subsections.
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Damage initiation criterion

Built on top of the knowledge acquired through the World-Wide Failure Exercises (WWFEs)
(Hinton et al., 2002; Kaddour and Hinton, 2012; Kaddour et al., 2013a, 2013b), two most popular
criteria, viz. the maximum stress criterion and the Tsai-Wu criterion have been fully rationalised
recently (Li, 2020; Li et al., 2022a, 2022b). Together, they can offer a complete damage initiation
criterion, with the rationalised Tsai-Wu criterion for the damage onset and the rationalised max-
imum stress criterion for the crack orientation as the damage mode.

The rationalised Tsai-Wu criterion for UD composites under a general 3D stress state can be
given as follows (Li et al., 2022a, 2022b)

F1r1þF2ðr2þr3ÞþF11r
2
1þF22ðr22þr23�r2r3þ3s223Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22

p
r1ðr3þr2ÞþF66ðs213þ s212Þ¼ 1

(4)

where

F1 ¼ 1

Xt
� 1

Xc
; F2 ¼ 1

Yt
� 1

Yc
; F11 ¼ 1

XtXc
; F22 ¼ 1

YtYc
and F66 ¼ 1

S2
L

(5)

with Xt, Xc, Yt, Yc and SL being the tensile and compressive strengths along and transverse to the
fibres and the shear strength along fibres, respectively. One of the logical outcomes of the ration-
alisation made to the Tsai-Wu criterion was that in it, the transverse shear strength is a derived
property and hence its value does not need to be specified explicitly. Given the linear elastic
response prior to damage initiation, the onset point can be determined by a load factor as

k ¼ �Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4Q

p
2Q

(6)

where

L ¼ F1r1 þ F2ðr2 þ r3Þ

Q ¼ F11r
2
1 þ F22ðr22 þ r23Þ � F22r2r3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22

p
r1ðr3 þ r2Þ þ 3F22s

2
23 þ F66ðs213 þ s212Þ (7)

The maximum stress criterion was rationalised primarily in the plane transverse to fibres (Li,
2020), in the sense that failure transverse to fibres should be determined by

rMII
rMIII

� �
¼ r2 þ r3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s223 þ

r2 � r3
2

� �2
s

(8)

where rMII and rMIII are direct stress transverse to fibres with superscript M signifying that rMII is the
maximum tensile stress if rMII � 0 and/or rMIII the maximum compressive stress if rMIII < 0. Although
the expression of rMII and rMIII are identical to those of the principal stresses under a 2D stress state,
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they are not principal stresses as the current stress state in 3D and on the plane where these stress are
found, the shear stress in the direction along fibres does not vanish, in general.

As illustrated in Figure 1(a), the transverse failure plane in UD composites is always parallel to
the fibre direction. Under transverse loading, from the equilibrium conditions for the free body
diagram as illustrated in Figure 1(b), the following two equations can be obtained

r3sinhþ s23cosh ¼ rMsinh
r2coshþ s23sinh ¼ rMcosh

(9)

where rM and h denoting the maximum direct stress and the angle of maximum direct stress and the
axis 2, respectively.

By combining the above two equations and eliminating rM, the angle between the maximum
direct stress and the coordinate axis 2 is given as

h ¼ 1

2
tan�1 2s23

r2 � r3
where � p

2
� h � p

2
(10)

Under uniaxial transverse tension, the normal to the failure plane is identical to the direction of
the applied tensile stress rM according to the rationalised maximum stress criterion (Li, 2020), on
which the shear stress is equal to zero. One has ht¼ h¼ 0.

Under a uniaxial transverse compression stress condition (when s23¼ 0), the failure is primarily
due to the transverse shear stress on the fracture plane. According to the Mohr’s circle, the max-
imum shear stress is found on a plane �p/4 from the direction of applied compressive stress (also
�p/4 from the direction of rM which is 0 in magnitude in this case). As h is equal to 0, the angle
between the failure plane and axis 2 can be obtained as

hc ¼ �p
4
þ h ¼ �p

4
(11)

The experimental result is obtained as 56.5�, and a commonly-used test value is 53� (Tao et al.,
2017). Besides, the Puck criterion (Knops, 2008) also predicted an angle slightly different from
�p/4.

The longitudinal shear failure is determined by the maximum longitudinal shear stress

sL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s212 þ s213

q
(12)

Figure 1. Illustration of transverse failure plane in UD composites.
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instead of any individual longitudinal shear stress on a coordinate plane. The normal to the failure

plane is at an angle

hs ¼ tan�1 s12
s13

where � p
2
� hs � p

2
(13)

to the coordinate axis 2.
Once damage onset is predicted by the rationalised Tsai-Wu criterion, the following ratios will be

examined

r1
Xt

ðif s1 is positiveÞ; jr1j
Xc

ðif s1 is negativeÞ (14)

rMII
Yt

ðif rMII is positiveÞ; jrMIIIj
Yc

ðif rMIII is negativeÞ and
sL
SL

(15)

and the highest will dictate the failure mode. Predictions dictated by (14) in fibre mode will usually

lead to catastrophic failure of the structure and damage modelling is not relevant. Those predicted

by any in (15) are matrix dominated and characterised by some kind of matrix cracks parallel to

fibres as illustrated in Figure 2, where the crack orientation can be determined as from (10), (11) or

(13) depending on the dictating ratio from (15).

The damage evolution model

Having introduced the damage initiation criterion, a novel damage evolution law is proposed below

to describe the evolution of matrix cracking under general quasi-static loading.

Derivation of damage driving force. To be consistent with the damage representation derived from the

Helmholtz free energy density, it is natural to derive the corresponding damage evolution law based

on the concept of damage driving force from the same energy as well, offering a natural connection

in the theoretical framework between damage representation and damage evolution.

Figure 2. UD composite matrix cracking damage orientation definition.
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For vector field characterization of damage in composites, a damage vector V¼ [v1 v2 v3]
T

defined in (Li et al., 2019; Talreja, 1985) was introduced, which is shown as follow,

VðaÞ ¼ DðaÞnðaÞ; a ¼ 1; 2; 3 (16)

where D(a) is a suitably defined average over the volume, and n(a) is a unit vector normal to the crack
planes whose direction is parallel to the a axis. Then the Helmholtz free energy density can be
expanded into a Taylor series. Its expression in terms of irreducible invariant integrity bases had
been presented in (Li et al., 2019) for UD composites. Since the first order terms are associated with
the initial stresses and the initial damage, they can be waived if such effects are not present in the
problem under consideration. On the other hand, all terms higher than the second order are deemed
to be high order terms. The formulation can therefore be truncated at the second order terms of
strains and damage for problems involving small deformation and small damage. In the formulation
in (Matzenmiller et al., 1995), the terms involving second order of damage were also dropped
because they did not contribute to stresses in the damage representation. However, they will con-
tribute to the damage driving force and therefore should be retained for the formulation of the
damage evolutional law. As a result, the Helmholtz free energy density W can be expressed as

W ¼ 1

2

A1I
2
1 þ A2I1I2 þ A3I

2
1I

2
5 þ A4I1I5I6 þ A5I

2
1I8 þ A6I1I9 þ A7I1I2I

2
5

þ A8I1I2I8 þ B1I
2
2 þ B2I

2
2I

2
5 þ B3I2I5I6 þ B4I

2
2I8 þ B5I2I9 þ C1I3

þ C2I3I
2
5 þ C3I3I8 þD1I4 þD2I4I

2
5 þD3I4I8 þ E1I5I7 þ F1I

2
6

þ G1I
2
5 þ G2I8

0
BBB@

1
CCCAþO2ðe;VÞ (17)

where the irreducible integrity bases are defined as

I1 ¼ e1
I2 ¼ e2 þ e3
I3 ¼ 2e22 þ c223 þ 2e23
I4 ¼ c213 þ c212
I5 ¼ v1
I6 ¼ v2c12 þ v3c13
I7 ¼ 2v2e2c12 þ v2c23c13 þ v3c23c12 þ 2v3e3c13
I8 ¼ v22 þ v23
I9 ¼ v22e2 þ v2v3c23 þ v23e3:

(18)

where vi are components of the damage vector as originally defined in (Li et al., 2019) (be aware of
the disparity between letter vee, v, in Norman face to distinguish from Greek nu, �, for the Poisson’s
ratios), e1, e2 and e3 are direct strains and c23, c13 and c12 engineering shear strains. In comparison
with the Helmholtz free energy density employed in (Li et al., 2019), there are two additional terms
involving damage variable only associated with coefficients G1 and G2, respectively. Coefficients
A1�A8, B1�B5, C1�C3, D1�D3, E1 and F1 are the constants associated with the effective stiffness
matrix of the damaged composite and they were all as involved in (Li et al., 2019). With the
Helmholtz free energy density expression as given in (16), the components of the damage driving
force can be obtained as

Ri ¼ � @W
@vi

ði ¼ 1; 2; 3Þ (19)

Yu et al. 9



It should be noted that since energy is being released from the material during a cracking process,
negative sign is introduced here to reflect this negative gain. The damage driving force can be
expressed in general as follows

R1

R2

R3

8<
:

9=
; ¼

W11 W12 W13

W21 W22 W23

W31 W32 W33

2
4

3
5 v1

v2
v3

8<
:

9=
; (20)

where Wij (i,j¼ 1,2,3) are quadratic expressions of strains.
Referring to Figure 2, the local coordinate system can be so chosen that the damage vector V¼

[v1 v2 v3]
T is aligned with n, the normal to the cracks, so that the damage vector will always be V¼

[0 v2 0]
T, as was the case in (Li et al., 2019), where a single array of microcracks is present within the

representative volume of the material. The new coordinate system is shown in Figure 3. Thus, the
damage representation as given in (1) and (2) can be employed directly. In the case where the local
coordinate system of material differs from that defined above, a conventional coordinate transfor-
mation would suffice to reconcile the differences in the obtained expressions of the effective stiffness
matrices due to the use of different coordinate systems.

Assume that as the damage evolves, microcracks keep their orientation, as is usually the case in
the most popular scenarios of transverse matrix cracking in laminated composites. In other words,
R1 and R3 would not make any difference as there is no relevant damage components for them to
drive, no matter how significant their values become. Component R2 will be the only one having
effects on the damage evolution. Given v1¼ v3¼ 0, one has

R2 ¼ W22v2 (21)

where

W22 ¼ fegT½Y�feg þ G2 (22)

Figure 3. Rectangular material coordinate system assigned to UD composites.
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with

½Y� ¼

2A5 A6 þ A8 A8 0 0 0
A6 þ A8 2B4 þ 2B5 þ 4C3 2B4 þ B5 0 0 0
A8 2B4 þ B5 2B4 þ 4C3 0 0 0
0 0 0 2C3 0 0
0 0 0 0 2D3 0
0 0 0 0 0 2F1 þ 2D3

2
6666664

3
7777775

(23)

Before the material undergoes any deformation, G2 would be the only non-vanishing term in

W22, implying the presence of damage driving force Ri even then, provided that damage vi is not

zero. The same argument also applies to the constant term of G1 in W11. Obviously, such a scenario

corresponds to a case in presence of initial damage in the material. For simplicity, G1 and G2 are set

to zero, implying the absence of initial damage for the subsequent development in this paper.
Recall the relationship between damage vector component v2 and damage parameter x in (Li

et al., 2019),

x ¼ kv2
2 with x ¼ E0

2 � E2

E0
2

(24)

where k is a proportion factor between damage parameter x which has a definitive measure of

magnitude as the relative change in the effective transverse modulus and the vectorial damage

variable which is defined through the surface area of microcracks. Factor k will eventually disappear
as in (Li et al., 2019) when damage variable v is subsequent replaced by damage parameter x, for
the specific type of damage as is dealt with in this paper, as well as in (Li et al., 2019). To drive the

damage expressed in terms of x, it is appropriate to redefined the damage driving force with respect

to x and denoted as q

q ¼ � @w
@x

¼ � @w
@v2

@v2
@x

¼ �W22

2k
¼ � 1

2k
fegT½Y�feg (25)

where [Y] is defined in (23). Expressing the strains in terms of stresses using the strain-stress

relationship in presence of damage, i.e., the inverse of (3), the expression of q as in (25) can be

re-written as

q ¼ � 1

2k
frgT½S�T½Y�½S�frg ¼ frgT½P�frg (26)

where [S] is the inverse of [C] as given in (1). As a result of this simple yet rigorous mathematical

transformation, a very attractive presentation of [P] is obtained as

½P� ¼ � 1

2k
½S�T½Y�½S� ¼

0 0 0 0 0 0
PI 0 0 0 0

0 0 0 0
PIII 0 0

Symm: 0 0
PII

2
6666664

3
7777775

(27)
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After linearization with respect to x under the assumption of small damage, i.e., x	1, one

obtains

PI ¼ P0
I þ PD

I x
PII ¼ P0

II þ PD
IIx

PIII ¼ P0
III þ PD

IIIx
(28)

where

P0
I ¼

1

E0
2

; PD
I ¼ 2ð1� �012�

0
21Þ

ð1� �023 � 2�012�
0
21Þð1þ �023ÞE0

2

P0
II ¼

k

G0
12

; PD
II ¼

2k2

G0
12

P0
III ¼

1

E0
2

; PD
III ¼

1

ð1þ �023ÞE0
2

(29)

with k being the same as that in (2). It can be noted that the proportion factor k has disappeared

from the expression of [P] as expected.
As a result, the damage driving force q in (25) for the specific form of damage, i.e., matrix

cracking, can be expressed as

q ¼ qI þ qII þ qIII with
qI ¼ PIr22
qII ¼ PIIs212
qIII ¼ PIIIs223

(30)

where each of the three parts is directly associated with transverse direct stress r2, longitudinal shear
stress s12 and transverse shear stress s23, in a completely decoupled manner.

As shown in equation (27), there are only three non-zero elements in matrix [P], and they dictate

the damage driving force q. Expressions (27) to (29) were rigorously derived analytically, although

use was made of mathematical software Maple (Maplesoft, 2014) to ease the mathematical manip-

ulations. The sparce appearance of [P] and the explicit decoupled expression of the damage driving

force q as given in (30) are apparently of great simplicity. They are naturally linked to the three

conventional modes of fracture. The subscripts I, II and III introduced in (27) for P terms and in

(30) for q terms represent the corresponding modes when the microcracks are viewed from the

direction of axis 3. Different from fracture modes in conventional fracture mechanics which are

associated with a specific crack, the modes here characterise the damaged material as a whole.
The expression of the damage driving force derived above and the damage representation pre-

viously established in (Li et al., 2019) are fully consistent. Assisted with the damage initiation

criterion and the identification of the damage mode as proposed in Section ‘Damage initiation

criterion’, a novel and complete matrix cracking damage model has been formulated.
From (28), (29) and (30), it can be seen that the newly derived damage driving force q can be

expressed explicitly in terms of the effective elastic constants of the undamaged UD composites, the

damage parameter and stresses, without introducing any new constants as fudge factors, and its

physical dimension is the same as stresses. In this case, under a loading condition in which stresses

increase monotonically, damage driving force q would increase accordingly according to (30). In
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such a loading process from a stress-free initial state, the damage evolution process is triggered when

the damage initiation criterion is satisfied.
If q is regarded as the total damage driving force, it consists of three parts as naturally parti-

tioned in (30). Similar to the concept of mixed mode fracture, the three parts of the damage driving

force should be counted independently in order to form a damage growth law in a mixed mode sense

as is the subject of the next subsection.

Critical damage driving forces and a mixed mode damage growth law. The total damage driving force q as

obtained above is apparently not completely determined by the material properties. It is also affect-

ed by the loading conditions, i.e., different stress ratios. This is similar to the observation in fracture

mechanics where critical total energy release rate is not a material property but varies with the mode

ratio. It has to be partitioned into individual modes and compared with their respective critical

values, GIc, GIIc and GIIIc, before the mixed mode problem can be meaningfully addressed

(Anderson, 2017). The same argument applies to the total damage driving force. Critical values

as material properties will have to be associated with individual modes, i.e., qIc, qIIc and qIIIc. Each
of these critical damage driving forces has to be obtained under a single mode of loading right up to

the point of damage growth as follows:

qIc ¼ PIr22c
qIIc ¼ PIIs212c
qIIIc ¼ PIIIs223c

(31)

where r2c, s12c and s23c are uniaxial or pure shear stress threshold values for damage growth ini-

tiation at the current damage state. They can vary with the damage variable x in general. However,

as a first approximation, they are assumed to be constant and hence material properties. Their

values can therefore be evaluated at x¼ 0, i.e.

qIc ¼ P0
Ir

2
2c

qIIc ¼ P0
IIs

2
12c

qIIIc ¼ P0
IIIs

2
23c

(32)

where superscript ‘0’ indicates the corresponding values obtained at x¼ 0. According to equations

(29) and (32), it can be seen that the critical damage driving forces can be considered as threshold

values of the critical total potential energy release rate with respect to damage. The critical damage

driving forces are also adopted to define the criteria of unloading and reloading process when

analysing the damage evolution in composite materials under complex loading conditions, as will

be demonstrated in Section ‘Unloading and reloading scenarios’.
Based on above discussion, the total damage driving force q is divided into three parts, which

represent corresponding individual modes respectively for mixed-mode loading cases. Some kind of

mixed mode damage evolution law will have to be resorted to as in the case of mixed mode fracture.

Let

g ¼ qI
qIC

� �a

þ qII
qIIC

� �b

þ qIII
qIIIC

� �c

(33)
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where g represents the combined equivalent effect from all pure mode damage driving forces so that

mixed-mode loading condition can be accounted for. The critical condition for damage to evolve is

g ¼ 1 (34)

Although constants a, b and c could each take different values and should be determined by

fitting available experimental data to achieve a best fit, the lack of sufficient experimental data

renders a fairly arbitrarily selected value of a¼ b¼ c¼ 1 or 2 as a practical approximation as is also

case in the practices of mixed mode fracture mechanics (Anderson, 2017).

Damage evolution law and incremental material constitutive relationship. From the derivation of damage

driving force, the quantities driving the evolution of damage have been clearly identified, and they

determine whether the damage will grow. However, an additional relationship is required between

the damage driving force and the amount of damage growth.
For this, an incremental relationship is presented as follows. Since damage growth is driven by

damage driving force, it is then conceivable that the magnitude of damage should be a function of

the three independent components of the damage driving force, i.e.

x ¼ f ðqI; qII; qIIIÞ (35)

Imagine the critical state for damage initiation is met once the values of the damage driving force

components reach qI0, qII0 and qIII0 at a given damage level x0. One can expand the function in (35)

into a Taylor’s series in the neighbourhood of the state. Neglecting terms of orders higher than the

first, the following equation is obtained,

x
x0 þ lIðqI � qI0Þ þ lIIðqII � qII0Þ þ lIIIðqIII � qIII0Þ (36)

where lI, lII and lIII are damage-evolution-related constants which are material properties and

should be determined based on experimental data. Equation (36) can be expressed in an alternative

manner as

Dx ¼ lIDqI þ lIIDqII þ lIIIDqIII (37)

This is the incremental relationship between the damage and the components of the damage

driving force. In general, damage-evolution-related constants for a given material system, lI, lII and
lIII in (37), correspond to each of the three different modes and therefore take different values,

implying that loads in different modes make different contributions to damage growth.
It also can be seen from (37) that the damage evolves only when the components of the damage

driving force produce a positive value for Dx. Otherwise, unloading takes place, as will be addressed

in the next subsection.
According to the continuum damage mechanics, the second law of continuum thermodynamics

leads to the following Clausius-Duhem inequality (Murakami, 2012),

r : _ep þ q _x þ g=Tð Þ � q � 0 (38)
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where r and ep denoting the stress and plastic strain, respectively; x and q denoting the damage
variable and the associated damage driving force, respectively;. g and q being temperature gradient
and heat flux vector, respectively, and T being the temperature.

In our model, the inelastic strain is not considered, and a uniform temperature field is assumed.
So, the above inequality leads to the following condition,

q _x � 0 (39)

Hence, satisfying the above inequality will ensure our proposed damage evolution law thermo-
dynamically admissible. This inequality imposes restrictions on the values of damage-evolution-
related constants lI, lII and lIII such that the incremental damage value Dx predicted by (37)
should always satisfy (39) after (39) is approximated by its incremental form instead of rate form.

The incremental form of qI, qII and qIII can be given as

DqI ¼
�
P0
I þ PD

I ðx0 þ DxÞ
�
ðr2 þ Dr2Þ2 � ðP0

I þ PD
I x0Þr22

DqII ¼
�
P0
II þ PD

IIðx0 þ DxÞ
�
ðs12 þ Ds12Þ2 � ðP0

II þ PD
IIx0Þs212

DqIII ¼
�
P0
III þ PD

IIIðx0 þ DxÞ
�
ðs23 þ Ds23Þ2 � ðP0

III þ PD
IIIx0Þs223

(40)

Substituting them into (37) yields

Dx ¼ lI ½P0
I þ PD

I ðx0 þ DxÞ�ðr2 þ Dr2Þ2 � ðP0
I þ PD

I x0Þr22
n o

þ lII ½P0
II þ PD

IIðx0 þ DxÞ�ðs12 þ Ds12Þ2 � ðP0
II þ PD

IIx0Þs212
n o

þ lIII ½P0
III þ PD

IIIðx0 þ DxÞ�ðs23 þ Ds23Þ2 � ðP0
III þ PD

IIIx0Þs223
n o (41)

It should be noted that the incremental stress terms Dr2, Ds12 and Ds23 in (40) are also dependent
on incremental damage Dx. Based on the constitutive relationship (3), one has

Dr2 ¼
X6
i¼1

c02i � cD2iðx0 þ DxÞ
	 


ðei þ DeiÞ �
X6
i¼1

ðc02i � cD2ix0Þei

Ds23 ¼
X6
i¼1

c04i � cD4iðx0 þ DxÞ
	 


ðei þ DeiÞ �
X6
i¼1

ðc04i � cD4ix0Þei

Ds12 ¼
X6
i¼1

c06i � cD6iðx0 þ DxÞ	 
ðei þ DeiÞ �
X6
i¼1

ðc06i � cD6ix0Þei

(42)

where c0ji and cDji (j¼ 2,4,6) are the components of C0 and CD as introduced in (1).
It is obvious that (41) is a nonlinear and implicit algebraic equation of the damage increment Dx.

To solve for Dx from (41), Newton’s iterative method is employed with (42) incorporated in the
algorithm as presented in Appendix 1.

The tangential stiffness matrix could also be obtained as given in (52) in Appendix 1 as a part of
the Newton’s iteration mentioned above. It is required in an implicit finite element analysis (FEA)
solver, such as ABAQUSTM/Standard when a user defined material subroutine is resorted to for the
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implementation of the above damage model in a structural finite element analysis. It should also be

pointed out that there are many damage evolution laws in commercial software based on energy or

displacement. The present model is a material model. It defines the state of damage and the evo-

lution of the damage at a material point. In practice, the model will be applied to each integration

point. Existing damage models in commercial software are different. For instance, the continuum

damage model in Abaqus is defined on a plane or surface, through which decohesion is simulated,

as conventionally described as cohesive zone model. Such planes or surfaces, have to be predeter-

mined so that cohesive elements can be pre-planted

Unloading and reloading scenarios. It should be noted that when the material is unloaded after loading,

the value of Dx becomes negative according to (37). However, damage evolution is an irreversible

process, unless the material possesses self-healing function which is not available for conventional

composites. Therefore, once negative value for Dx is predicted, it signifies the start of unloading

process. The damage evolution should pause and the current level of damage should remain

unchanged during the unloading process. An appropriate unloading criterion can be given as

Dx < 0 or g < 1 (43)

With the unloading process introduced, there is also the issue of reloading when the previously

unloaded material is loaded up again. For such a scenario, since damage evolution process has been

suspended during previous unloading process, a reloading criterion is needed to indicate that the

damage evolution process is expected to resume during reloading stage. It should be the logical

opposite of the unloading criterion, .i.e.

Dx � 0 and g � 1 (44)

Unless it is satisfied, the damage state will still remain unchanged.

Incorporation of instant failure criteria. Apart from capturing the effects of damage growth associated

with matrix cracking, the possibility of fibre failure should also be monitored. If a fibre failure mode

is identified from (14), i.e., either of the ratios exceeds 1, a fibre failure is predicted. It should be

noted that the fibre failure predicted here is a local failure mode. The ultimate failure of the struc-

ture like a composite laminate is characterised by the loss of load carrying capability of the structure

concerned. However, any local fibre failure often appears as a close precursor to the ultimate failure

in a composite structure.

Implementation of proposed damage evolution law and its verification

and validation

The damage model has been formulated under a general 3D stress condition. It is therefore appli-

cable to problems of such nature. However, due to the availability of experimental data that can be

employed as validation cases, the subsequent discussion will be specialised to a plane stress state for

its applications to structures of laminated composites that can be analysed based on the classic

laminate theory (CLT). As a result, the orientation of the microcracks become predetermined so

that they fall into the category of so-called transverse matrix cracks. It should be also pointed

out that in this paper the proposed damage model was implemented in the software MATLAB

16 International Journal of Damage Mechanics 0(0)



(Mathworks, 2017) as the experimental cases adopted for model validation and verification were of
macroscopically uniform stress field in each ply.

However, the proposed model could also be implemented easily in the finite element (FE) soft-
ware to analyse the damage evolution in composite structures under quasi-static loading. To imple-
ment the model in this paper, the tangential stiffness matrix has been derived as presented in
equation (52) in Appendix 1, which is a matrix variable required to be updated in the subroutine.
To calculate the change of damage variable in a loading increment, the Newton’s iterative method is
employed in our model, as presented in Appendix 1, and the obtained values are also updated in the
subroutine as required. With the use of subroutine, the proposed damage model will become appli-
cable to the analysis of problems involving macroscopically non-uniform stress.

Several experimental results of glass fibre laminates were adopted for model verification and
validation. Due to the limitation of test equipment, only the strain-stress curves of composite
laminates were recorded in the tests, and the longitudinal stiffness degradation was derived from
it for comparison with the predicted results of longitudinal stiffness properties of these composite
laminates.

Among the adopted experimental results, two laminate test cases are employed to determine
damage-related material property lI as a first attempt. The corresponding experiments are as
follows:

1. Uniaxial tensile tests on UD laminates in their transverse direction to determine the transverse
tensile strength Yt which is associated with the initiation of matrix cracking in mode I.

2. Uniaxial tensile test on cross-ply laminates of UD laminae to determine the damage-related
constant lI for mode I type matrix cracking damage.

Verification with E-glass/MY750 composite laminates

Determination of material parameters. Experimental data obtained for the E-glass fibre [0/90]s laminate
in WWFE-I (Soden et al., 1998, 2002) were adopted to validate the proposed damage model. The
particular laminate of interest consists of UD laminae, which was made of Silenka 1200tex E-glass
fibre and MY750 epoxy. The corresponding UD lamina material elastic properties and strength
properties as provided in (Soden et al., 1998) are summarised in Table 2 and Table 3, respectively.

In the model, the value of factor k for the coupling effects of damage between the transverse
tension and in-plane shear was determined in the same manner as in (Li et al., 2019) and the
obtained value is given in Table 4. In order to determine the damage-evolution-related constants
lI in the damage evolution law, use has been made of the experimental data obtained under uniaxial
tension. In general, the stiffness reduction of the cracked lamina, i.e., the damage parameter x, can

Table 2. Material elastic properties of E-glass/MY750 UD lamina (Soden et al., 1998).

E1 (MPa) E2 (MPa) G12 (MPa) �12 �23

45600 16200 5830 0.278 0.4

Table 3. Strength properties of E-glass/MY750 UD lamina (Soden et al., 1998).

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa)

1280 800 40 145 73
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be extracted from the laminate stiffness reduction based on CLT, provided that the specimens for
the test are so designed that under the loading condition, there is only one lamina that is subjected
to cracking damage. Similarly, the effective stress transverse to fibres in the cracked lamina could be
extracted from the average stress in the laminate, given the uniaxial loading condition to the lam-
inate, also based on CLT. The damage driving force qI in the cracked laminae can be obtained from
(30). Only the non-zero element PI in [P] in (27) can be evaluate, given (28) and (29), and the value
of x. The relationship between x and qI directly obtained from experimental results were plotted in
Figure 4 as discrete data points. Damage-evolution-related constant lI was obtained as the gradient
of the straight line fitted to the experimental data, as shown in Figure 4, and the obtained value is
given in Table 4.

Results and discussion. To assess the accuracy of predictions, stress-strain curve for E-glass/
MY750UD fibre cross-ply laminate under tensile loading was calculated and compared with exper-
imental results from (Soden et al., 1998, 2002) in Figure 5. Close agreement between the predicted
and the experimental stress-strain curves is apparent. Given that some of the input data were
derived from the experimental results, the agreement can only serve as a necessary ‘sanity check’,
an important verification.

The variation of the predicted damage variables in the 90� and the 0� plies with the applied strain
has been plotted in Figure 6. As can be seen, in addition to cracking damage in the 90� plies, damage
was also predicted in the 0� plies at later stage, once the transverse stress in the 0� plies reached
transverse tensile strength and thus triggered transverse matrix cracking in the 0� plies. The
Poisson’s effect and the constraint provided by the fibres in the 90� plies to the 0� plies were
responsible for this. Specifically, as the laminate was gradually loaded, the 0� plies tended to
shrink in the transverse direction due to Poisson’s effect. However, stiff fibres in the adjacent 90�

Table 4. Damage- related and damage-evolution-related constants of
E-glass/MY750 lamina.

k lI

0.310 0.98

Figure 4. Determination of damage-evolution-related constant lI based on experimental results.
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plies tended to impede this tendency, resulting in the transverse tensile stress build up in the 0� plies,
which eventually resulted in transverse cracking in 0� plies, which was sometimes described as

longitudinal splitting damage in the 0� as reported in the cross-ply laminate specimen in

(Daniels, 1945), when tensile strain exceeded 1.25%.

Verification and validation against E-glass/YPX3300 laminates

In order to validate the proposed model in predicting the degradation of stiffness properties of

composite laminates, experimental results of E-glass/YPX3300 cross-ply laminates as reported in

(Shen et al., 2017) were employed, involving two different lay-up configurations, [0�/90�4]s and [0�2/
90�4]s. The experimental results from the former had been employed to extract the required material

properties as the input to the model. Independent predictions were made to both laminates. Whilst

the prediction made to the [0�/90�4]s laminate served as a necessary verification, the agreement

between the prediction and the experimental data for the [0�2/90�4]s laminate offered a meaningful

case of validation. Key experimental data employed either for material property extraction or for

Figure 5. Comparison of the stress-strain curve with the experimental results for E-glass/MY750 [0�/90�]s laminate.

Figure 6. Damage parameter as function of strain in E-glass/MY750 [0/90]s.
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comparisons with the predicted results were the average stress-strain curves, from which longitu-

dinal moduli of the laminates at different states of damage could be obtained. The obtained tan-

gential moduli were presented graphically after being normalized with respect to the longitudinal

moduli of the laminates at their undamaged states.

Determination of material parameters. The elastic and strength properties of E-glass/YPX3300 UD

lamina are shown in Table 5 and Table 6, respectively.
The damage-related constant for E-glass/YPX3300 was determined following exactly the same

procedure as described previously, utilising the experimental stress-strain curve for [0�/90�4]s lam-

inate from (Shen, 2016). The obtained value is given in Table 7.

Results and discussion. Employing the obtained damage-evolution-related constants and applying the

damage model to both laminates, i.e. [0�/90�4]s and [0�2/90�4]s, the deformation and damage process

in both laminates can be predicted. The results in terms of normalized longitudinal modulus are

compared with the experiment data in Figure 7. The first case is in fact not truly predictive as the

experimental results had been employed to extract the damage-evolution-related constant. The

degree of agreement as shown in Figure 7(a) serves at least as a promising verification. The dis-

crepancy indicates the level of error in the damage model, given various simplifications and approx-

imations introduced in the model. In the model, both the damage representative and damage

evolution model deals with transverse matrix cracking damage in composite materials, which dom-

inates the early stage of damage evolution process. Experimental results show that the typical

damage evolution process in composite materials could be divided into three main parts (Talreja

and Singh, 2012). At early stage, the main damage mode is transverse matrix cracks. As the increase

of loading, the matrix cracks tend to saturate and local delamination starts to emerge at the tips of

matrix cracks, leading to a further degradation of stiffness properties of materials. At the later

period, fibre breakage and some other diffuse damages would exist, and these damages could cause

the final failure of composite structures. Since the present model only addresses the transverse

matrix cracks, the influence of other damage modes is not considered, leading to the differences

Table 5. Material elastic properties of E-glass/YPX3300 UD lamina (Shen et al., 2017).

E1 (MPa) E2 (MPa) G12 (MPa) �12 �23

43160 10810 4850 0.306 0.3

Table 6. Strength properties of E-glass/YPX3300 UD lamina (Shen, 2016).

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa)

1114 800 38 145 66

Table 7. Damage- related and damage-evolution-related constants
for E-glass/YPX3300 lamina.

k lI

0.314 8.5
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Figure 7. Comparison of normalized longitudinal modulus between prediction results and experimental results of
E-glass/YPX3300 laminates. (a) [0�/90�4]s, (b) [0�2/90�4]s.
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between prediction and experimental results, especially when the applied stress load is large.

Moreover, The proposed model also ignored the nonlinear elastic behaviour of composite materials

under quasi-static loadings. Experimental results show that the longitudinal modulus of composite

laminates start to decrease due to the tensile nonlinearity before the initiation of matrix cracks (Shen

et al., 2017), but this effect is not included in our present model, leading to the differences between

the prediction results and experimental results. Given the complex nature of the damage problem,

the error should fall in an acceptable range for engineering applications.
The results as presented in Figure 7(b) should be considered true predictions in a sense that the

experimental results for this case had not been employed directly or indirectly. The agreement with

experimental data is certainly satisfactory, at least no worse than that in Figure 7(a).
Note that there are two curves shown in Figure 7(a) and (b). One in black corresponds to the

damage model where damage onset is predicted with the rationalised Tsai-Wu criterion, while for

red curve, damage initiation was predicted based on the Puck criterion, as was originally used in

(Yu, 2016). No significant differences have been observed. However, recent efforts on the full

rationalisation of the Tsai-Wu criterion (Li et al., 2022a, 2022b) rendered the formulation free

from any fudge factors and it is also much simpler to implement than the Puck criterion. The

identification of failure modes can be satisfactorily accommodated by adopting the mode identifi-

cation scheme based on the rationalised maximum stress criterion (Li, 2020) as described in sub-

section ‘Damage initiation criterion’ previously.

Model verification with fiberite/HyE 9082Af composite laminates

Apart from the verification in predicting the stiffness degradation of cross-ply laminates, experi-

mental results in (Joffe and Varna, 1999) were also adopted to validate the proposed model in

predicting the stiffness degradation of composite laminates with off-axis plies. In their experiments,

the specimen was made from Fiberite/HyE 9082Af, and the configuration of laminates was

[�h/90�4]s with h¼ 0�, 15�, 30� and 40�.

Determination of material parameters. The basic elastic properties and strength properties of Fiberite/

HyE 9082Af UD lamina are shown in Table 8 and Table 9, respectively (Joffe and Varna, 1999;

Moure et al., 2014). Out of the four laminates, the experimental results from the [30�2/90�4]s lam-

inate were employed to extract the damage-evolution-related constant of this type of composite and

the obtained value are listed in Table 10. The comparison with the experimental results obtained

from the remaining three laminates would serve as validation cases.

Table 8. Material elastic properties of Fiberite/HyE 9082Af UD lamina (Joffe and Varna, 1999).

E1 (MPa) E2 (MPa) G12 (MPa) �12 �23

44730 12760 5800 0.297 0.42

Table 9. Strength properties of Fiberite/HyE 9082Af UD lamina (Moure et al., 2014).

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa)

1020 620 40 140 60
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Results and discussion. The comparisons between the predictions and experimental results are shown
in Figure 8 in terms of the degradation of the normalized longitudinal modulus. Out of the four
laminates corresponding to Figure 8(a) and (d), the case for Figure 8(c) should be considered as a
verification, as it is meant to reproduce the test case from which the input data were extracted. It is a
laminate with off-axis plies. Under uniaxial tension, an in-plane along-fibre shear stress is generat-
ed. Any discrepancy between the prediction and the experimental data gives a good indication of
possible errors in the model due to the assumptions and approximations employed. The agreements
as shown in the remaining three cases in Figure 8(a), (b) and (d), respectively, for laminates of
different layups are valid cases of validation of the model.

Table 10. Damage-related and damage-evolution-related constants
of Fiberite/HyE 9082Af lamina.

k lI

0.329 3.5

Figure 8. Comparison of normalized longitudinal modulus between prediction results and experimental results of
Fiberite/HyE 9082Af laminates. (a) [0�2/90�4]S, (b) [15�2/90�4]S, (c) [30�2/90�4]S, and (d) [40�2/90�4]S.
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The predicted results of stiffness degradation of composite laminates with off-axis plies as shown
in Figure 8 are generally in good agreement with experimental results, indicating the capability of
proposed model in predicting stiffness degradation of both cross-ply laminates and laminates with
off-axis plies due to transverse matrix cracking damage under quasi-static loading.

It should be noted that the in-plane shear nonlinearity in presence of off-axis plies in the laminate
makes the problem significantly more complicated if the interactions between this nonlinearity and
that caused by damage are considered (Li et al., 2005). A consistent approach of incorporating
along-fibre shear nonlinearity under a general 3D stress state has been formulated in (Li et al., 2021).
Whilst it is of interest to incorporate such interactions in the new damage model, it is beyond the scope
of this paper and will be pursued as a future development. A significant part of the disparity between the
predicted results and the experimental data can be attributed to this consideration. In addition, the
neglect of other damage modes, e.g., local delamination at crack tips at increasing loading would lead to
the further errors between the prediction results and experimental results, as discussed in part of sub-
section ‘Verification and validation against E-glass/YPX3300 laminates’.

Again, predictions using the Puck criterion for damage initiation have also been included in
Figure 8. They remain comparable with the present results.

Conclusion

In this paper, a new damage evolution model is formulated based on the concept of damage driving
force to predict the initiation and evolution of transverse matrix cracks in composite materials
under quasi-static loading. The expression of the damage driving force can be presented in a
decoupled form with each component corresponding to a mode resembling one of the three well-
known modes of fracture. At the implementation level, the Newton’s iterative method has been
derived to deal with the nonlinearity involved in the problem. This damage evolution law is for-
mulated at macro scale, although it is to model the effects of micro cracks in the composite. First
attempt has been made to incorporate the fully rationalised Tsai-Wu failure criterion (Li et al.,
2022) to predict the damage initiation and the fully rationalised maximum stress criterion (Li, 2020)
to predict the damage modes in the composite. The newly formulated damage evolution model takes
account of unloading and reloading based on appropriately proposed criteria for these processes
respectively to duly reflect the irreversible nature of damage. Hence the model could be used to
predict the deformation of composite structures involving damage initiation and evolution when the
structure is under complex loading conditions. With the help of classical laminate theory, it can also
be applied to laminates of arbitrary layups although for the examples in the present paper only one
of them has been used. The application of the new model requires only three newly defined damage-
evolution-related material properties that can be extracted from a set of appropriate tests on a
simple laminate layup before the model can be applied to laminates of arbitrary layups under
arbitrarily loading cases.

Several sets of the experimental results for glass fibre reinforced composite laminates were adopted
for the verification and validation of new model, including the stress-strain curves and stiffness reduc-
tion as a function of the applied load. Good agreements have been observed in general.

It should be pointed out that due to the neglect of nonlinear elastic behaviour of composite
materials, the proposed model cannot deal with damage behaviour of composite materials involving
significant nonlinearity, and this would be addressed in the further work. Besides, both the damage
representative model and damage evolution model in the present model deal with transverse crack-
ing damage only in uniaxially fibre reinforced composites, which dominates the early stage of
damage evolution process. The evolution of some other damage modes, for instance, local
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delamination and fibre breakage, are not considered. These damages often initiate and develop after

the saturation of transverse matrix cracks and would lead to the final failure of composite struc-

tures. Hence, the present model is only limited to transverse cracking damages and cannot analyse

further damage and failure behaviour of composite materials after the saturation of transverse

cracking damage. Considering the difference between fatigue loading and quasi-static loading,

the proposed damage evolution model is only valid for predicting the evolution of transverse

matrix cracks in composite materials under quasi-static loadings, and it cannot predict the matrix

cracks initiation and evolution in composite materials under fatigue loading.
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Appendix 1

To calculate the increment of damage parameter Dx from (41) with relevant stress increments as

given in (42), Newton’s iterative method can be employed as shown below. To facilitate this,
rearrange (41) to introduce a new function as follows.

fðDxÞ ¼ Dx� lI ½P0
I þ PD

I ðx0 þ DxÞ�ðr2 þ Dr2Þ2 � ðP0
I þ PD

I x0Þr22
n o

� lII ½P0
II þ PD

IIðx0 þ DxÞ�ðs12 þ Ds12Þ2 � ðP0
II þ PD

IIx0Þs212
n o

� lIII ½P0
III þ PD

IIIðx0 þ DxÞ�ðs23 þ Ds23Þ2 � ðP0
III þ PD

IIIx0Þs223
n o (45)

Solving (38) is equivalent to finding an appropriate value for Dx which makes f(Dx)¼ 0.

Newton’s iteration scheme can be employed to find the root for such a homogeneous equation

through the following formula:

Dxk ¼ Dxk�1 þ dk for the k-th iteration (46)

with Dx0 ¼ 0, and

dk ¼ � fðDxk�1Þ
f0ðDxk�1Þ (47)

where

f0ðDxÞ ¼ 1� lIðr2 þ Dr2Þ PD
I ðr2 þ Dr2Þ þ 2 P0

I þ PD
I ðx0 þ DxÞ	 
 @Dr2

@Dx

� �

� lIIðs12 þ Ds12Þ PD
IIðs12 þ Ds12Þ þ 2 P0

II þ PD
IIðx0 þ DxÞ	 
 @Ds12

@Dx

� �

� lIIIðs23 þ Ds23Þ PD
IIIðs23 þ Ds23Þ þ 2 P0

III þ PD
IIIðx0 þ DxÞ	 
 @Ds23

@Dx

� � (48)
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whilst

@Dr2
@Dx

¼ �
X6
i¼1

cD2iðei þ DeiÞ

@Ds23
@Dx

¼ �
X6
i¼1

cD4iðei þ DeiÞ

@Ds12
@Dx

¼ �
X6
i¼1

cD6iðei þ DeiÞ

(49)

with cDij as given in (2).
When the above defined iterations converge, Dxk converges to Dx. It should be used to update

the damage state. As a result, the stress state and the tangential stiffness matrix of damaged material
incorporating evolving damage variable can be determined at a given deformation state (eþDe).
According to stress-strain relationship as given in (3), its incremental form can be obtained in a
straightforward manner, from which the current stress state can be obtained as follows, where
boldface letters are employed to stand for tensor for the neatness of the expressions involved.

Dr ¼
�
C0 þ CDðx0 þ DxÞ

�
ðeþ DeÞ � ðC0 þ CDx0Þe

¼ ðC0 þ CDx0ÞDeþ CDðeþ DeÞDx
(50)

Differentiate the above with respect to De, one obtains

Ct ¼ @Dr
@De

¼ C0 þ CDðx0 þ DxÞ þ CDðeþ DeÞ @Dx
@De

¼ C0 þ CDðx0 þ DxÞ þ CDðeþ DeÞ @Dx
@Dr

@Dr
@De

¼ C0 þ CDðx0 þ DxÞ þ CDðeþ DeÞ @Dx
@Dr

Ct

(51)

The tangential stiffness [Ct] can then be obtained after an appropriate rearrangement of the above

Ct ¼ I� CDðeþ DeÞ @Dx
@Dr

� ��1�
C0 þ CDðx0 þ DxÞ

�
(52)

where [I] is identity matrix and @Dx
@Dr can be obtained using (41) as follows.

@Dx
@Dr

¼ @Dx
@Dr1

@Dx
@Dr2

@Dx
@Dr3

@Dx
@Ds12

@Dx
@Ds13

@Dx
@Ds23

� �

¼ @

@Dr1

@

@Dr2

@

@Dr3

@

@Ds12

@

@Ds13

@

@Ds23

� �
Q

(53)
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where

Q ¼ lI
�
P0
I þ PD

I ðx0 þ DxÞ
�
� ðr02 þ Dr2Þ2 þ lII

�
P0
II þ PD

IIðx0 þ DxÞ
�
� ðs012 þ Ds12Þ2

þ lIII
�
P0
III þ PD

IIIðx0 þ DxÞ
�
� ðs023 þ Ds23Þ2

(54)

with the expressions of P0
I ; P

0
II; P

0
III; P

D
I ; P

D
II and PD

III as given in (29). Equation (53) can be manip-
ulated into

@Dx
@Dr

¼ Qx
@Dx
@Dr

þ ½ 0 QI 0 QII 0 QIII � (55)

where

Qx ¼ lIP
D
I ðr02 þ Dr2Þ2 þ lIIP

D
IIðs012 þ Ds12Þ2 þ lIIIP

D
IIIðs023 þ Ds23Þ2

QI ¼ 2lI
�
P0
I þ PD

I ðx0 þ DxÞ
�
ðr02 þ Dr2Þ

QII ¼ 2lII
�
P0
II þ PD

IIðx0 þ DxÞ
�
ðs012 þ Ds12Þ

QIII ¼ 2lIII
�
P0
III þ PD

IIIðx0 þ DxÞ
�
ðs023 þ Ds23Þ

Re-arranging (55), one obtains

@Dx
@Dr

¼ 1

1�Qx
½ 0 QI 0 QII 0 QIII � (56)

With this, the evaluation of the tangential stiffness as given in (51) can be fulfilled.
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