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Multitemporal monitoring 
of paramos as critical water sources 
in Central Colombia
Cesar Augusto Murad 1*, Jillian Pearse 2* & Carme Huguet 3

Paramos, unique and biodiverse ecosystems found solely in the high mountain regions of the tropics, 
are under threat. Despite their crucial role as primary water sources and significant carbon repositories 
in Colombia, they are deteriorating rapidly and garner less attention than other vulnerable ecosystems 
like the Amazon rainforest. Their fertile soil and unique climate make them prime locations for 
agriculture and cattle grazing, often coinciding with economically critical deposits such as coal which 
has led to a steady decline in paramo area. Anthropic impact was evaluated using multispectral images 
from Landsat and Sentinel over 37 years, on the Guerrero and Rabanal paramos in central Colombia 
which have experienced rapid expansion of mining and agriculture. Our analysis revealed that since 
1984, the Rabanal and Guerrero paramos have lost 47.96% and 59.96% of their native vegetation 
respectively, replaced primarily by crops, pastures, and planted forests. We detected alterations in the 
spectral signatures of native vegetation near coal coking ovens, indicating a deterioration of paramo 
health and potential impact on ecosystem services. Consequently, human activity is reducing the 
extent of paramos and their efficiency as water sources and carbon sinks, potentially leading to severe 
regional and even global consequences.
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High-elevation mountain ecosystems, referred to as ’paramos’ in the Andes, thrive in the mountain ranges 
of Central and South America1–3. Colombia boasts the lion’s share, with thirty-seven paramos encompassing 
approximately 2% of the country’s territory4. Paramos provide 70% of Colombia’s potable water supply and are 
crucial for regulating the water cycle and regional climate, as well as for capturing and storing atmospheric car-
bon on long timescales3,5,6. Their resilience in arid conditions is attributed to their efficient harnessing of water 
from the atmosphere, facilitated by intricate structures in plants like the Espeletia genus, commonly known as 
frailejones. Moreover, the highly porous soil with remarkably high levels of organic matter ensures rapid water 
filtration, purifying it before it forms the headwaters of many Colombian rivers. These remarkable attributes 
underscore the vital role of paramos in sustaining ecosystems and human life.

Despite their significance, the lack of a precise and universally accepted definition for paramos makes them 
challenging to protect. Various criteria have been used to define their boundaries1, ranging from functional7–9, 
biogeographical10, and anthropogenic perspectives, such as traditional land uses11. Consequently, pinning down 
the exact definition of paramo has proven elusive12. For example, while frailejones are often associated with the 
paramo ecosystem in South America, not all paramos host frailejones, and areas with frailejones may not nec-
essarily qualify as paramos13. Attempts to establish an altitude-based lower limit of 2800 mamsl as a defining 
parameter have been made14, but the altitude of paramo vegetation varies across different mountain ranges and 
climatic zones in Colombia4,15, making a generalized altitude-based definition impractical16. This ambiguity 
surrounding the paramo’s definition opens the door to biased interpretations, favouring mining and agricultural 
activities within these ecologically fragile ecosystems.

The same attributes that make paramos essential water suppliers also make them attractive for coal mining, 
agriculture, and cattle grazing, leading to extensive occupation and settlement over the past several decades6,17–19. 
These activities raise alarms as they require the clearance of water-harnessing native paramo vegetation, which 
under anthropic pressure can become carbon sources instead of sinks5. Additionally, paramos are highly 
susceptible to the impacts of climate change, with studies indicating accelerated warming rates compared to 
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lower-elevation areas3,20. This confluence of effects portends a grim future for paramos unless robust preserva-
tion measures are undertaken.

Understanding the nature and rates of change in paramos is crucial for devising effective protection strategies, 
and remote sensing provides a cost- and time-effective means to monitor rapid land use and land cover (LULC) 
transformations21,22, and investigate the socioeconomic drivers behind them23,24. Given the escalating human 
pressures, land use changes, disturbances, and climate change, the wide coverage and non-invasive nature of 
satellite-based change detection makes it an ideal monitoring tool in threatened environments22. Additionally, 
remote sensing’s ability to provide comprehensive, continuous, and frequent observations generates extensive 
datasets which are invaluable for supporting research on ecosystem properties, functions, and processes, thereby 
contributing to our understanding and preservation of paramo ecosystems25. It is surprising, then, that these 
tools have only been applied recently to paramo ecosystems in Colombia26–28, and that a comprehensive case-
specific assessment has yet to be carried out and a land cover class identified specifically for paramo vegetation.

This study aims to quantify changes in LULC in Colombia’s paramos, focusing on the densely inhabited central 
region, home to the Guerrero and Rabanal paramos. This area has experienced rapid expansions in both agricul-
ture and coal mining activities since the 1940s29. Utilizing Landsat and Sentinel-2 images from 1984 to 2021, a 
comprehensive change detection analysis is conducted, focusing on quantifying native paramo vegetation loss, 
including frailejones. Adopting the Environment Ministry’s altitude-based definition from 2016 as a framework 
for delineating the paramos’ boundaries, we analyze changes in paramo vegetation extent within those boundaries 
and examine non-LULC alterations, such as the effects of open coal-coking ovens in the proximity of paramo 
Rabanal. Given the robust correlation between coal mining activities and paramo locations, our findings have 
potential implications for all paramos neighboring these activities, shedding light on the broader vulnerability 
of paramo well-being. Additionally, given the ubiquity of climate change, our outcomes are relevant for paramo-
like ecosystems worldwide, despite variations in local economic activities. The methodology employed in this 
study can be applied to any ecosystem, providing a benchmark for future research endeavors and a platform to 
steer conservation policy.

Materials and methods
Study area
The present study focuses on the Rabanal and Guerrero paramos of the Cundiboyacense Plateau (Altiplano) 
in the Eastern Cordillera of Colombia (Fig. 1). The plateau altitude ranges from 2500 and 2800 mamsl, and is 
surrounded by mountains of up to 4000 m, where paramo ecosystems are found30. The departments of Boyacá 
and Cundinamarca have the largest share of paramo area in the country, with 4172 km2 of protected area under 
the paramo category31, of which paramo Rabanal and Guerrero comprise 110.96 (2.6%) and 364.02 (8.7%) km2, 
respectively.

Temperatures in this area are mainly controlled by altitude, with an annual average of ~ 14 °C, and annual 
variation of less than 1 °C32. At higher elevations average temperatures decrease, ranging from 8 to 10 °C33 and 4 
to 10 °C34 in the Rabanal and Guerrero paramos, respectively. While annual variability is low, there are large daily 
fluctuations: temperatures in a single day can oscillate from 0 to 24 °C35,36. The annual rainfall in the region varies 
from 600 to 1500 mm, with a strong spatial variation and bimodal oscillation (April–June and October–Decem-
ber) mostly determined by the intertropical convergence zone migration (ITCZ)30,37.

The cold and humid climate favors organic matter accumulation in the soil above the average 5%, result-
ing in denser-than-expected vegetation for the altitude36,38,39. Paramo vegetation has developed physiological 
characteristics adapted to endure the region’s climate, and which are crucial for water capture and retention40,41. 
Guerrero and Rabanal are dominated by mid-paramo vegetation consisting of a matrix of frailejones (species 
from the genus Espeletia and Espeletiopsis endemic of these ecosystems), and grasses, in which scrubs, tussock 
grasses and herbs coalesce42. Also present are meadows commonly found around ponds or wetlands, lithophytes 
on rocky substrates and areas of high slope, coniferous plantations and high Andean forests; the latter are char-
acterized by Polylepis forests, shrubs and weeds as scattered conglomerates, forming a transition zone between 
the forest and the paramo itself43.

In both paramos, soils are derived from a parent material primarily composed of Upper Cretaceous and 
Lower Tertiary sedimentary rocks, and Quaternary sediments44,45. These were deposited during the regression 
of the Cretaceous seas and several smaller transgressive–regressive cycles that led to different associated coastal, 
alluvial and swamp facies and, therefore, the formation of coal beds46–48. Consequently, extraction of coal is com-
mon in the region, and used for export, internal consumption in heat and power applications and to produce a 
fuel known as coke49,50.

Over the past few decades, dual-purpose cattle for meat and milk production as well as potato growing have 
been the prevailing complementary agricultural activities inside the paramo areas, which combined with the 
increasing food demand from urban centers, have resulted in more paramo territory being put under intensive 
husbandry pressure51.

Data acquisition and image pre‑processing
The acquired Landsat dataset comprised the period from 1984 to 2021 and three tiles with path and row num-
bers 08/56, 07/56 and 07/57, respectively. The optical datasets used in this study included Landsat 4–5 Thematic 
Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager and 
Thermal Infrared Sensor (OLI-TIRS) and Sentinel-2 imagery (Table 1). The multitemporal Landsat dataset was 
downloaded from the United States Geological Survey Earth Explorer website (http://​earth​explo​rer.​usgs.​gov) 
and corresponds to Landsat Level-2 Surface Reflectance Science Products (L2SP), an atmospherically corrected 

http://earthexplorer.usgs.gov
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imagery source for land change detection and environmental monitoring52, generated by the Land Surface 
Reflectance Code (LaSRC)53 and the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)54.

Figure 1.   Map showing (A) the location of the departments of Boyacá and Cundinamarca and the study site 
within the departments and (B) the study site with the delineation of paramos Guerrero and Rabanal, and a 
Shuttle Topography Radar Mission (SRTM) digital elevation model as background. This map was produced 
using ArcGIS Pro Version 3.3 (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​pro/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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The Copernicus Sentinel-2 dataset was downloaded from the European Space Agency (ESA) Sentinels Sci-
entific Data Hub (SSDH) website (https://​scihub.​coper​nicus.​eu). The Sentinel-2 dataset covered the period from 
2016 to 2021 and three Sentinel-2 tiles (T18NXM, T18NXL and T18NWL), corresponding to Level-1C data and 
Level-2A data that provides surface reflectance in all bands except the Cirrus band55. Since Sentinel-2 Level-
2A products only became available from mid-March 2018, earlier Sentinel-2 imagery was not atmospherically 
corrected56,57. Therefore, the Sentinel-2 Level-1C images used in this research were converted from Top-Of-
Atmosphere (TOA) products to Level-2A Bottom-Of-Atmosphere (BOA) reflectance products using the atmos-
pheric correction processor Sen2Cor57, version 2.9 with its Python language implementation.

Images were selected based on minimizing cloud cover; thus, both datasets were acquired within the low 
precipitation seasons (i.e., January–March and July–September). However, the constant presence of clouds in 
paramo altitudes makes data selection challenging, especially for a large area of interest58. As expected, no single 
cloud-free scenes were available for the study area with either sensor, so all available scenes from low-precipi-
tation seasons with less than 30% cloud cover were employed for the present study (Supplementary Table 1A).

Corrections were applied to address cloud cover issues and image availability. These included a topographic 
correction to compensate for topographic bias in reflectance and a cubic convolution resampling technique to 
address the difference in spatial resolution between Landsat and Sentinel-259. Image pre-processing and the sub-
sequent processing was performed using ArcGIS Pro 2.8. In addition, a pixel-based image compositing approach 
through Google Earth Engine (GEE) was implemented to address the limitations related to image availability60. 
However, even after applying these techniques, no suitable composites were found for a small number of years 
(Supplementary Table 2A, Section 1A).

Image classification and change detection
A supervised image classification was performed for each image composite following a classification scheme 
based on the land use and land cover (LULC) classification system developed by61. It was defined according to 
the spectral variations within the same LULC class based on the land features present in the study region26,62, 
and similar regions of the Ecuadorian Andes63,64. Moreover, since the altitudinal limits of the paramo ecosystem 
vary, we defined the paramo land cover based specifically on characteristic paramo vegetation16,65,66.

Seven Level I classes were defined for the image analysis (Table 2). Based on this classification scheme, a false 
color IR composite was chosen as it is the standard technique for visual interpretation in vegetation mapping, 
and provides a clear differentiation between the LULC classes67. Then, a LULC supervised classification was 
performed using a Support Vector Machine (SVM) classification algorithm, a machine-learning methodology 
used for supervised classification of high-dimensional data. SVM has been shown to be reliable for the processing 
of remotely sensed data and superior to most of the alternative algorithms68, as well as highly accurate for land 
cover change mapping69. The supervised classification was performed independently for each satellite to ensure 
consistent spectral and spatial resolution, maintaining the reliability and accuracy of the classification results by 
avoiding inconsistencies arising from different sensor characteristics (Table 1).

For the Landsat composites, a pixel-based classification was performed for each subset image according to 
the sampling scheme proposed for land classification70, in order to define the spectral signatures representative 

Table 1.   Satellite band specifications of the study. The spectral bands of each optical sensor are indicated 
below, with wavelength in micrometers as λ (µm) and the spatial resolution in meters (Res). VRE Vegetation 
red edge, NIR Near infrared, SWIR Shortwave infrared, C/A coastal aerosol, TIRS thermal infrared.

Spectral bands

Landsat 4–5 TM Landsat 7 ETM +  Landsat 8 OLI-TIRS Sentinel 2

λ (µm) Res (m) λ (µm) Res (m) λ (µm) Res (m) λ (µm) Res (m)

C/A – – – – 0.43–0.45 30 0.42–0.45 60

Blue 0.45–0.52 30 0.45–0.52 30 0.45–0.51 30 0.44–0.53 10

Green 0.52–0.60 30 0.52–0.60 30 0.53–0.59 30 0.53–0.58 10

Red 0.63–0.69 30 0.63–0.69 30 0.64–0.67 30 0.64–0.68 10

VRE 1 – – – – – – 0.69–0.71 20

VRE 2 – – – – – – 0.73–0.75 20

VRE 3 – – – – – – 0.76–0.79 20

NIR 0.76–0.90 30 0.77–0.90 30 0.85–0.88 30 0.76–0.90 10

NIR narrow – – – – – – 0.84–0.88 20

Water vapor – – – – – – 0.93–0.95 60

Cirrus – – – – 1.36–1.38 30 1.33–1.41 60

SWIR 1 1.55–1.75 30 1.55–1.75 30 1.57–1.65 30 1.54–1.68 20

SWIR 2 2.08–2.35 30 2.09–2.35 30 2.11–2.29 30 2.07–2.31 20

TIRS 1
10.40–12.50 120 (30) 10.40–12.50 60 (30)

10.6–11.19 100 – –

TIRS 2 11.50–12.51 100 – –

Panchromatic – – 0.52–0.90 15 0.50–0.68 15 – –

Number of bands 7 8 11 13

https://scihub.copernicus.eu
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of each class (Supplementary Fig. 1A). By analyzing these spectral signatures and their variability, supervised 
classification algorithms can accurately distinguish between different land cover types71. Training samples were 
collected by selecting homogeneous sample pixels to represent each LULC class (Table 2). In contrast, for the 
Sentinel-2 composites, we performed an object-based image analysis (OBIA), designed mainly for analyzing very-
high-resolution (VHR) imagery, in which the image was segmented into objects for classification and analysis72 
based on spectral, spatial, textural and topological characteristics73. This differs from the traditional pixel-based 
classification, which focuses on a single pixel74. In this case, parameter selection for the segmentation was key 
to obtaining an accurate classification70; thus, the selection of the appropriate combination of segmentation 
parameters (i.e. shape, scale, smoothness and compactness) assigned to the objects was based on those suggested 
by75, for Sentinel-2 images, but required further testing to ensure high accuracy of the supervised classification 
of individual composites.

Mixed pixels causing similarities in the spectral responses of some classes are a common problem when using 
data with medium spatial resolution such as that of Landsat, especially in urban areas which have a heterogene-
ous mix of features such as buildings, grass, roads, soil, vegetation and water, and result in noisy LULC maps76. 
To improve classification accuracy, these drawbacks were addressed using visual interpretation supported by 
Google Earth images and with the ERDAS Knowledge Engineer tool from ERDAS Imagine 15, to apply an expert 
classification system model based on hierarchical user-defined decision rules77,78. By incorporating additional 
data, the overall accuracy of LULC classification was improved79,80; thus, using individual band values, spatial 
texture analysis and spectral indices [Normalized Difference Vegetation Index (NDVI), Moisture Stress Index 
(MSI), Mid Infrared Index (MidIR) Modified Soil Adjusted Vegetation Index (MSAVI)], the misclassified pixels 
resulting from the initial classification were re-evaluated and properly reclassified, then confirmed using visual 
interpretation and additional false color composites. Finally, a neighborhood 3 × 3 majority filter was applied to 
each classification to recode isolated pixels responsible for noticeable salt-and-pepper effects81.

Although field visits were conducted for visual inspection of vegetation within the study area, these did not 
include a comprehensive ground-truth data collection survey due to the challenging nature of surveying in this 
region. Instead, the accuracy assessment was conducted using randomly selected points (see Supplementary 
Section 2A.) supported by the original corresponding Landsat or Sentinel-2 images and, for the most recent 
classifications, Google Earth Images sourced between January 26 of 2016 and February 16 of 2021 at the time of 
the satellite image processing for the present study. Google Earth has been previously utilized as an alternative 
source for ground truth data when field data was not available, thereby aiding in the validation and accuracy 
assessment of land cover classifications derived from remote sensing data82. We recognize that discrepancies 
in the dates of Google Earth imagery could introduce changes in land cover and environmental conditions, 
potentially impacting the validation process’s accuracy and precision. Nevertheless, Google Earth data has been 
demonstrated to be a reliable and cost-effective reference for land cover maps, making it a viable alternative to 
more expensive or time-consuming high-resolution data83.

This process was further supported by extensive knowledge of the study area acquired through prior field 
visits to the Fúquene lagoon and coking oven locations, and observation of the distinguished classes, including 
agricultural activities, montane vegetation and native paramo vegetation along with forest plantations and inva-
sive species (Gorse). Large parts of the study area were difficult to access due to private property restrictions, so 
observations were instead made near accessible roadsides. Moreover, given the lack of availability of historical 
ground-truth data or high-resolution aerial photography, we assumed the long-term temporal stability of spectral 
responses to allow for historical classifications to inform land cover mapping efforts71. This approach mitigates 
potential biases, ensuring that the accuracy of past classifications is reasonably inferred based on recent data and 
field observations79. Further validation of our results was conducted through a review of available land cover 
and land use datasets, focusing on the 30-m annual maps (1985–2022) of the Colombia MapBiomas project 
(https://​colom​bia.​mapbi​omas.​org/) for Landsat classifications, and the 10-m annual land cover/land use maps 
(2017–2023) of the ESRI Living Atlas (https://​livin​gatlas.​arcgis.​com/​landc​over/) for Sentinel-2 classifications.

Multi-temporal satellite imagery is used to detect and monitor changes in ecosystems by comparing a pair of 
classified images from two different time periods84, ultimately in the form of land cover change maps. Nonethe-
less, change maps are subject to the same errors as the input classifications85, so we used a Post-Classification 
Comparison (PCC) change extraction algorithm to compare the classified images and produce a change matrix 
showing quantitative “from-to” changes. This cross-tabulation analysis simplifies the calculation of the quantity 
of conversions from one LULC class to another over the period evaluated86 and can be visually displayed as a 
change detection map to facilitate interpretation87. As a result, change detection maps were produced for each 

Table 2.   Land use and land cover classification scheme used in the present study based on Anderson, (1976).

LULC class Description

Montane vegetation Dense vegetation including native forest, coniferous plantations, shrubs, and ferns

Paramo vegetation Sparse vegetation including grasses, scrubs and frailejones

Agriculture Crop fields and pastures used for farming and ranching

Water Natural and artificial water bodies

Soil Land areas of exposed soil

Barren Quarries and bare ground influenced by human activity

Built-up Densely populated and mixed urban areas, greenhouse complexes

https://colombia.mapbiomas.org/
https://livingatlas.arcgis.com/landcover/
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paramo, showing a total of 30 “from-to” change categories. For a better map visualization, the number of cat-
egories was reduced by merging LULC that changed into a same class, while LULC classes that did not change 
were not displayed. Afterwards, an accuracy assessment of each classification and change detection map was 
performed along with their respective confidence intervals (see Supplementary Section 2A). The methodology 
adopted in this study is summarized in Fig. 2.

To account for the effects of human intervention that do not result in vegetation cover changes, we also 
monitored vegetation health and vigor changes. We employed band combinations using Landsat and Sentinel-2 
SWIR-1, SWIR-2, NIR and red bands, specifically the False Color and Shortwave Infrared band combinations, 
to identify the proximity of coking ovens to paramo Rabanal. The oven locations were identified by seeking very 
high temperature anomalies with respect to the background, often visible in vivid red color88, which has proved 
to be useful in detecting hotspots and fire spots with both Landsat89 and Sentinel-2 imagery90. Together with 
variations in the spectral response of the paramo vegetation in the multispectral images, potential alterations in 
the health of the vegetation within the paramo area was assessed.

Results
Classification and change detection
We observed a remarkable increase in montane vegetation, while paramo vegetation decreased. Agriculture, 
urban developments, soil, and barren terrains showed subtler shifts (Figs. 3 and 4). Suesca and Fúquene lagoons 
experienced a noticeable reduction in their surface area (Fig. 1), whereas the reservoirs of Tominé, Neusa and 
Sisga, as well as other non-lagoon water bodies within the paramos, were surprisingly resistant to change. The 

Figure 2.   Methodological flowchart of the data processing.
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temporal trends of the LULC classes were analyzed by evaluating different models to characterize these trends 
comprehensively, focusing on those which experienced significant land cover changes91–93. Strong positive and 
negative trends for vegetation-related classes were evident regardless of trend model, and further supported by 
the Cox-Stuart statistical test for trend detection94 (Supplementary Tables 14A and 15A, Section 4A).

Water bodies, soil and barren land did not show any major changes in cover area over time, and no urban 
development was detected inside the paramos since the beginning of the study period. However, when assessing 

Figure 3.   Land use and land cover (LULC) thematic maps of the delimited area of paramo Rabanal 
corresponding to the Landsat and Sentinel supervised classifications at the initial and final years of the period 
of study. Each of the four panels display the main LULC classes along with the local water bodies (blue) and 
road network (red), and a topography basemap. (A) Landsat-4/5 1984 (B) Landsat-8 2021 (C) Sentinel-2 2016 
(D) Sentinel-2 2021. This map was produced using ArcGIS Pro Version 3.3 (https://​www.​esri.​com/​en-​us/​arcgis/​
produ​cts/​arcgis-​pro/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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each paramo separately, we found strong trends in the changes between LULC classes, portrayed in the corre-
sponding thematic maps of the classification (Figs. 3 and 4). In the case of Rabanal (Fig. 3), montane vegetation 
exhibited a persistent increase along an approximately logarithmic trend, rising by 19.5% from 1984 to 2021, 
which translates to an average 4.5% annual rate of change and a land cover expansion of 21.7 km2. Agriculture 
inside the paramo increased by 12.5% during this period, with an average annual rate of change of 4.9%, with 
a quadratic trend that suggests an increasing rate of agricultural expansion. In contrast, paramo vegetation 

Figure 4.   Land use and land cover (LULC) thematic maps of the delimited area of paramo Guerrero 
corresponding to the Landsat and Sentinel supervised classifications at the initial and final years of the period 
of study. Each of the four panels display the main LULC classes along with the local water bodies(blue) and 
road network (red), and a topography basemap. (A) Landsat 1984 (B) Landsat 2021 (C) Sentinel-2 2016 (D) 
Sentinel-2 2021. This map was produced using ArcGIS Pro Version 3.3 (https://​www.​esri.​com/​en-​us/​arcgis/​
produ​cts/​arcgis-​pro/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16706  | https://doi.org/10.1038/s41598-024-67563-z

www.nature.com/scientificreports/

showed an astonishing 33.8% decrease since 1984, corresponding to an average annual rate of change of 1.3% 
and a strong negative trend.

Parallel trends were observed for the major LULC classes in paramo Guerrero (Fig. 4), though on a larger scale 
since Guerrero is about 3 times larger than Rabanal. An increase of montane vegetation area by 20.2%, transform-
ing a landscape area that spanned 73.7 km2 (an average annual rate of change of 3.2%), with the largest increase 
observed between 1988 and 1990. At the same time a staggering 110.4 km2 or 30.3% of paramo vegetation was 
lost, with the most significant reduction occurring between 1989 and 1991, equivalent to an average annual rate 
of change of − 1.5%. Agriculture showed a moderate positive trend growing by 41.2 km2 (1.6% annual change 
rate), with most expansion occurring between 1988 and 2000. The average annual rates of change varied between 
periods, with the timespan between 1984 and 1991 showing considerably greater changes compared to later years.

Sentinel-2 classifications confirmed these tendencies: between 2016 to 2021, while agricultural land use 
showed a slight change, montane vegetation increased by 43.89% in paramo Rabanal and by 40.64% in paramo 
Guerrero. These changes represent striking average annual growth rates of 8.77% and 8.12%, respectively. Mean-
while, paramo vegetation showed strong negative trends with a 11.5% reduction in Rabanal (average annual 
decline of − 4.1%), while paramo Guerrero saw a 4.7% decrease of its native vegetation (average annual rate 
of change of − 2.4%). Consequently, declining paramo vegetation mirrored a surge in montane vegetation and 
agricultural lands (Fig. 5). The remainder of the LULC classes remained largely unaltered throughout the entire 
study period.

Landsat and Sentinel-2 classifications clearly distinguished paramo vegetation from agriculture and montane 
vegetation. Nonetheless, Landsat classifications revealed a greater extent of paramo vegetation and less montane 
vegetation compared to Sentinel-2 classifications, probably because of the heterogeneity of classes95, and the 
detection of small-scale features in the higher resolution data96. Sentinel-2 classifications clearly indicated a 
larger paramo vegetation loss by 2021 compared to the Landsat classifications, showing an additional 5.3% and 
5% paramo vegetation loss inside paramos Rabanal and Guerrero areas, respectively, which is consistent with 
the continuous loss trend of paramo vegetation and gain in montane vegetation observed in both paramos over 
the entire study period.

It should be noted that a considerable portion of the study regions—56.9% (210 km2) in Guerrero, and 60.9% 
(68.7 km2) in Rabanal—remained unaltered since 1984. Nonetheless, when considering the paramo vegetation 
cover alone, 47.2% in Guerrero and 39.2% in Rabanal were converted into forest and agricultural land (Fig. 6). 

Figure 5.   Land use and land cover development inside the paramos Guerrero and Rabanal for Landsat 
(A,B) and Sentinel-2 (C,D) supervised classifications, which determine the contrast in the sensor’s temporal 
resolutions. Each period corresponds to the time span between two different classifications with subsequent 
acquisition years (refer to Supplementary Table 2A).
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These shifts corresponded to 73.3% and 83.5% of the total quantified change since 1984 in Guerrero and Raba-
nal, respectively. There was also a transition of paramo soils to agricultural use; this shift accounted for 2.54% 
and 5.29% of the total quantified change in Guerrero, and 5.1% and 20.1% in Rabanal, based on the respective 
classifications derived from Landsat and Sentinel-2 (Fig. 5). Built-up areas did not show significant change into 
other LULC classes, and as for soil and barren land, the major changes observed were between each other and 
to-and-from agricultural use. A comprehensive compilation of change detection statistics for both paramos 
and both sensors is presented in the Supplementary Information, in the form of percentages and areas of each 
"from–to" transition (see Supplementary Tables 5A, 6A and 7A for details).

Landsat-based change detection analysis from 1984 to 2021 in paramo Guerrero showed that a total of 
158.9 km2 underwent transformation during this time frame, mostly loss of paramo vegetation, which accounted 
for 116 km2 (Fig. 6). Nearly 42% (66.1 km2) of the original paramo vegetation was replaced by montane vegeta-
tion. Another 31.7% (50.3 km2) of the paramo vegetation was replaced by agricultural activities. Other changes 
included the shift from agriculture to montane vegetation (6.9%) and the transformation from soil to agriculture 
(5.1%) (see Supplementary Tables 5A and 6A). The remaining “from–to” change categories, each representing 
less than 5% of the total change, did not yield significant insights.

Rabanal experienced substantial LULC transformations between 1984 and 2021. A significant proportion of 
the transformed area consisted of the conversion of paramo vegetation to montane vegetation and agriculture, 
accounting for 51.5% (22.6 km2) and 32% (14.1 km2) of the total change (43.9 km2), respectively. An additional 
4.1% of the total change encompassed the conversion of paramo vegetation to soil, while the remaining “from–to” 
change categories individually represented less than 3% of the total change. A large portion of the land within 
the paramo area, comprising 68.7 km2 or 61%, remained unchanged throughout the study period. The percent 
change from paramo vegetation to other LULC classes is illustrated in Fig. 7 for every period within both para-
mos. Each period corresponds to the time interval between two different supervised classifications, as denoted 
in the Supplementary Table 2A.

Change detection analysis from Sentinel-2 showed the same tendencies within the paramo areas of Raba-
nal and Guerrero during the 5-year interval from 2016 and 2021. Again, the most substantial transformation 
observed was paramo vegetation being replaced by montane vegetation, constituting 43.6% (11.1 km2) and 
29.5% (23 km2) in Rabanal and Guerrero, respectively. However, there were nuanced variations in secondary 
changes: for Rabanal, the runner-up was the shift from paramo vegetation to agriculture, accounting for 16.3% 
of the altered landscape (Fig. 8), while in Guerrero, the transformation of soil into agricultural use represented 

Figure 6.   Change detection maps highlighting areas of paramo land cover loss between 1984 and 2021, as well 
as other land cover changes along with the local water bodies and road network, with a topographic basemap 
as background, for (A) Paramo Guerrero and (B) Paramo Rabanal. This map was produced using ArcGIS Pro 
Version 3.3 (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​pro/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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the second-most substantial alteration at 20.1%. It is worth emphasizing that despite these notable changes, 
the majority of the paramo areas in both Rabanal and Guerrero remained unaltered during this briefer period, 
with 77.2% and 78.6% of these sensitive landscapes retaining their LULC classification between 2016 and 2021. 
Figure 7 provides a year-by-year breakdown of percent change from paramo vegetation to other LULC classes.

Figure 7.   Bar charts depicting paramo land cover transformation to other LULC classes, in terms of percentage 
(%), corresponding to the Landsat change detection analysis for both paramos Rabanal and Guerrero over the 
study period. Each period corresponds to the time range between two different classifications with subsequent 
acquisition years. For the period’s timespan refer to Supplementary Table 2A.

Figure 8.   Bar charts depicting paramo land cover transformation to other LULC classes, in terms of percentage 
(%), corresponding to the Sentinel-2 change detection analysis for both paramos Rabanal and Guerrero over the 
study period. Each period corresponds to the time range between two different classifications with subsequent 
acquisition years. For the period’s timespan refer to Supplementary Table 2A.
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Accuracy assessment
High accuracy was obtained for all the classifications, with overall accuracies ranging from 93.8 to 97.9% and 
Kappa values between 0.88 and 0.97 (Supplementary Tables 3A and 4A). Supervised classifications of both Land-
sat and Sentinel images exhibited low omission errors with producer’s accuracies over 80% in all classes, except 
in the Soil and Barren classes, which presented lower values (but above 60%) in various instances, particularly 
for Rabanal. Similarly, high user’s accuracies indicated low commission errors, except for the Barren class, which 
was slightly below 80% for one of the Landsat classifications of Rabanal. The heterogeneity in land cover fea-
tures causing similar spectral responses of soil and barren land with sparse paramo vegetation and urban areas, 
respectively, reduces the measured accuracy values. The complete accuracy measures for each LULC class and 
their associated uncertainties are presented in the Supplementary Section 2A (Supplementary Tables 8A and 
9A), along with the error-adjusted total areas of each classification (Supplementary Tables 10A and 11A). The 
total area values obtained for each class each year using “pixel count” differ from the error-adjusted estimated 
area; however, they still fall within the 95% confidence interval.

Comparison of our results with those of the MapBiomas and ESRI datasets revealed the same trends, but 
different LULC areas inside paramos Rabanal and Guerrero. This discrepancy can be explained by the fact these 
datasets use different classification schemes (as neither has a specific category for paramo vegetation), and 
because significant cloud cover is still present in both the MapBiomas and ESRI datasets; however, equivalent 
classes were identified and assessed, with paramo vegetation corresponding to other non-forest formation and 
rangeland classes in the MapBiomas and ESRI, respectively. The MapBiomas revealed a substantial increase in 
forest and agriculture areas while paramo vegetation of Rabanal and Guerrero decreased by 44.26% and 40.59% 
from 1985 to 2021, respectively. Similarly, ESRI displayed a reduction in paramo vegetation of 19.66% and 18.74% 
for Rabanal and Guerrero, respectively, accompanied by an expansion of forest areas and agriculture between 
2017 and 2021.This trend agreement ensures the robustness of our cloud-free temporal mapping focused on 
paramos, demonstrating its value in contributing new insights for the studied region.

Likewise, a high accuracy was achieved for the change detection maps, with overall accuracies ranging from 
94 to 96.8% and Kappa values between 0.90 and 0.92 (Supplementary Tables 3A and 4A). Most transitions exhib-
ited low omission errors with producer’s accuracies over 75%, but soil related changes presented lower values 
(above 60%) in various instances for the Rabanal thematic maps. Conversely, high user’s accuracies (over 80%) 
indicated low commission errors for all classes of both the Landsat and Sentinel-2 change thematic maps. The 
total area values obtained for each change category and year using “pixel count” differ from the error-adjusted 
estimated area; however, they still fall within the 95% confidence interval. The complete accuracy measures for 
each “from-to” change category with their associated uncertainties are reported in the Supplementary Informa-
tion (Supplementary Table 12A).

Detection of coke ovens
Based on a false color band combination using the SWIR, NIR and VRE-2 bands of Sentinel-2, where hot surfaces 
saturate the mid-IR bands, coking ovens were identified close to the paramo Rabanal boundaries, especially 
along the northern and western limits, where they appear on the image as bright red spots (Fig. 9). The number 
of detected spots has increased by 492.2% since 1984, with a total change in area from 0.02 to 0.1 km2 by 2021. 
No coking ovens were found in paramo Guerrero.

We also detected a decrease in the infrared reflectance of the paramo vegetation near the coking ovens 
(Fig. 10). The spectral profile boxplots encompassed the pixels inside two distinct sections of the paramo: the 
north-western section in proximity to the nearest coke oven (within 2 km), and the south-eastern section of the 
paramo farther away. Visual inspection in the field confirmed that vegetation near the ovens has a coating of 
black soot, which is likely responsible for the change in the spectral signature.

Discussion
We found significant changes in Colombia’s eastern cordillera paramos, primarily due to human influence. 
These changes include alterations in soil cover, reduction of native vegetation, and profound impacts from agri-
cultural practices, coal mining, and climate change, varying across land covers and correlating with geographic 
features such as elevation gradients. By analysing each of these factors, we aim to characterize their individual 
and combined effects on paramo ecosystems. Because of the crucial ecosystem services they provide, continu-
ous monitoring is imperative to identify ongoing patterns of change and their causes. Freely available satellite 
images coupled with cutting-edge processing techniques have allowed us to define a spectral signature for paramo 
vegetation, identify patterns and drivers of rapid land cover change, and detect potential impacts of nearby coal 
production on vegetation health even where land cover type is conserved.

Both paramos in the region have experienced montane vegetation encroachment, yet there are differences: 
Rabanal has rapidly transitioned paramo vegetation into agricultural land, while Guerrero exhibits significant 
soil use changes. These variations can be attributed to factors such as geographic and climate differences, as 
well as variations in local agricultural practices and land management. Notably, Guerrero does not have coal 
mining operations, which significantly influence land use patterns. These differences reflect diverse ecological, 
geographical, and socio-economic factors, which call for tailored conservation efforts.

Magnitude of Paramo changes
Land cover changes in vegetation above the 2800 mamsl paramo boundary have been substantial (Fig. 5)41, 
and our findings agree with previous studies that report native vegetation loss and fragmentation from extrac-
tion activities, agriculture-related deforestation, and road construction51,97, leading to adverse spatial, socioeco-
nomic, and environmental consequences98. Similar encroachments have been observed in protected areas such 
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as the Amazon99, underscoring the broader trend of anthropogenic influence on Colombian ecosystems, while 
additional factors such as contamination and untreated domestic wastewater discharge further complicate the 
environmental landscape100.

The apparent decrease in anthropic pressure in recent years could be explained by the recent declaration of 
forest reserves and modifications to paramo protection policies101, including payment for ecosystem service 
programs13,102,103. However, the effectiveness of these measures has been questioned for some paramo areas104, 
which suggests that local conditions and geological factors also influence adherence to environmental laws105–107. 
Despite regulations prohibiting mining and farming activities within paramo boundaries since 2011, weak insti-
tutional oversight coupled with past governments’ push to attract foreign investment in Colombia’s extractive 
sector, has led to a surge in mining operations, even without environmental permits, affecting 26 paramo regions 
and exacerbating environmental challenges108,109. For instance, a recent environmental impact assessment in the 
southwest region of Santurbán paramo showed a level of arsenic contamination which surpasses international 
regulatory standards110, while coal and coking activity have been found to contaminate water, sediments, and 
soils near paramo Rabanal49,100,111.

Land use changes within the paramos are not evenly distributed: over half the increase in montane vegetation 
and half of the newly established agricultural land was located above 2800 mamsl, where paramo vegetation 
is prevalent (Fig. 11). Altitude was found to be a significant determinant of ecological changes within paramo 
ecosystems, with lower elevations experiencing more pronounced vegetation loss. Factors such as slope inclina-
tion and climatic variations also influence alterations, highlighting the multifaceted nature of paramo dynamics 
and emphasizing the need for a nuanced understanding of altitude’s role in driving ecological changes. This 
relationship between paramo change and elevation was confirmed by applying a General Additive Model. The 
complete statistical analysis is presented in Supplementary Section 3A (Supplementary Table 13A and Supple-
mentary Fig. 2A).

Factors driving change
Human activity was found to be the main factor driving change: we identified agriculture and mining activities, 
including inefficient coking processes, as key factors in the deterioration of both paramos; which have also led 
to soil contamination and surface water quality decline49. Higher temperatures and degraded soils are likely to 
result in net carbon loss, alteration of catchment areas, reduced soil water and carbon retention capacity5,112, and 
decreased aquifer replenishment3,113, thereby intensifying the conflict over water resource distribution between 

Figure 9.   Map displaying a false-color image (bands 12,8,6) subset of a Sentinel-2 scene from February 13 of 
the year 2021 provided by the Sentinels Scientific Data Hub (SSDH) website (https://​scihub.​coper​nicus.​eu), 
along with the local road network and the paramo boundary. Hot surfaces appear as noticeable bright red spots, 
which are highlighted by the yellow circles, mainly near the northern and western limits of paramo Rabanal. 
This map was produced using ArcGIS Pro Version 3.3 (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​pro/​
overv​iew).

https://scihub.copernicus.eu
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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human consumption, agriculture, and mining3,5,114. Water-related replacement of paramo vegetation within 
Rabanal can be attributed primarily to the creation of the Gachaneca reservoir33, although seasonality effects 
were also detected. The Fúquene and Suesca lagoons are known to be heavily intervened, primarily by conver-
sion of native vegetation to agricultural land, pasture, and mining systems115; and the accompanying increase 
in demand for water, mainly for irrigation, has reduced water levels in both systems116–120. Interestingly, many 
of the alterations expected from climate change mirror the impacts observed from current human activities121.

Agriculture expansion
In both paramos, the primary human-induced alterations stemmed from the expansion of farming activities, 
encompassing both crop cultivation and livestock rearing. The agricultural activity includes various traditional 
Andean root and tuber crops. Industrial farming is not used in these areas because the terrain makes its develop-
ment challenging122; however, many small operations have an equivalent impact when it comes to contamination 
and size reduction of the ecosystem123. This is the result of market dynamics in this region, characterized by a 
cyclic agriculture pattern between tuber crops and pastures124,125, which likely explains the observed fluctuations 
between crop, soil, and barren land in our classifications. Since 1984, agricultural expansion in the region has 
primarily occurred within the paramo areas, because agriculture had already been established in the surrounding 
plains. This expansion, driven by population growth, involves clearing new land126,127; unfortunately, fallow land 
does not naturally revert to paramo vegetation, and frailejones are challenging to transplant. Therefore, intensive 
efforts are required to restore altered paramo, even in abandoned grazing lands128,129.

The effects of human intervention on paramos are not limited to changes in vegetation type: the use of 
pesticides is an increasing source of soil and water contamination as agriculture expands and can affect the 
quality of the water supply in the high catchments. Furthermore, potato crop and livestock activities affect the 
physicochemical properties of the soils, including a reduction in carbon storage and cation exchange capacity130.

Coal mining
Afforestation with exotic species of the genera Eucalyptus and Pinus was the predominant direct impact of nearby 
mining, particularly evident in Rabanal. These plantations serve as a timber source for construction material 
within coal mines, making them an indirect and irreversible outcome of mining activities131, a phenomenon also 
reported in Ecuadorian paramos132. These trees demand substantially more water than native species, leading 
to water reserve declines133,134, displacement of native flora and fauna, and soil sterility135,136. Previous studies 
have shown that LULC changes influence the broader climate of South America and the specific microclimate of 
paramo ecosystems137,138, altering land surface albedo, thereby impacting precipitation and surface temperature. 

Figure 10.   Spectral profile box plot of paramo vegetation inside the paramo Rabanal area for all spectral bands. 
Two classes based on the distance or proximity to the coking ovens are displayed. The blue boxes indicate 
vegetation far (south-eastern section) from the coking ovens and the red boxes indicate vegetation near (north-
western section) the coking ovens.
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For example, afforestation decreases reflectivity and increases radiant energy absorption139, particularly with 
forest genera like Eucalyptus and Pinus140.

Mining activities, including underground extraction, waste dumping, coal transport, and coking-related emis-
sions, have indirect impacts on paramos as they mobilize pollutants, including heavy metals from coal deposits49. 
Detection of contaminants surpassing acceptable limits near mining sites, coupled with mining licenses covering 
all of Rabanal and parts of Guerrero, underscores the inadequacy of environmental regulations49,110,141. Remote 
sensing provides a tool for detecting compound pollution sources and monitoring environmental degradation 
due to mining, which could support evidence-based decision-making and targeted interventions to safeguard 
ecological integrity.

Local inhabitants have raised concerns about the effects of coal mining on water supply, human health, and 
biodiversity. Underground mining affects groundwater reserves, while improper waste disposal leads to soil 
and water contamination142–144. Inefficient coking technologies generate air pollution145, with coal ash and dust 
affecting soil and water quality146. Field observations reveal that the vegetation in the study area is covered with 
black soot from nearby coke ovens and coal dust on adjacent dirt roads, exacerbated by frequent truck traffic 
on unpaved roads adjacent to the paramo; effects that have also been documented in China’s Changhe River 
mining areas147. The affected vegetation showed a decrease in the red and near-infrared reflectance147,148, which 
in addition to demonstrating a reduction in the natural albedo, likely signals a deterioration in the paramo 
ecosystem’s health.

Climate change
In addition to the local and regional forces driving continuous native vegetation loss, global factors such as 
climate change are also pressuring paramo ecosystems27. Prior to 2008, the mean maximum temperature in the 
region increased 0.2–0.4 °C per decade, with projections suggesting a 3.0 ± 1.5 °C rise and decreasing precipita-
tion by the next century, exacerbating water stress121. Rising temperatures and changing precipitation patterns 
induce shifts in paramo boundaries, causing upward migration even without direct human interference149, as 
observed in the Ecuadorian Andes150,151, and Colombia’s paramo Chingaza152. Although no significant trends in 
precipitation variability were identified149,153, increased seasonal wildfires are expected due to the intensification 
of the El Niño–Southern Oscillation154–156. Paramos, being fire-prone ecosystems, experience frequent burning 
due to human activities, particularly during the hot, dry season between January and March157. An unprecedented 
wildfire season is currently in progress, devastating Colombia’s paramos158.

Figure 11.   Land use and land cover development of paramo vegetation, montane vegetation, and agriculture 
in relation to the elevation. Panels (A) and (B) represent evolution of paramo vegetation, (C) and (D) depict 
the variation of montane vegetation, while (E) and (F) display the development of agriculture over time. Darker 
colors indicate the most recent supervised classification, while the lighter shades correspond to the oldest one. 
The color variations and patterns provide insights into the temporal changes and trends in land use and land 
cover within the specified vegetation types in relation to elevation.
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A comparison of paramo vegetation distribution between 1984 and 2021 reveals significant altitudinal dif-
ferences. While paramo Rabanal showed a reduced, but still peak, concentration of paramo vegetation between 
approximately 3350 to 3400 mamsl, there’s a decline in coverage between 3180 to 3320 mamsl. Similarly, paramo 
Guerrero shows a reduction in coverage in the same altitude range, with a peak concentration shift from ~ 3250 m 
to ~ 3600 m, indicating a 94.6-m per decade upward migration. Consequently, paramo vegetation recedes as 
montane vegetation expands, facilitated by rising temperatures that favour agricultural activities at progressively 
higher altitudes159.

It has been suggested that paramos are increasingly vulnerable to disturbances caused by human activities, 
which inherently decrease biodiversity. This vulnerability is compounded by the naturally narrow range of 
eco-physiological strategies available to species in these ecosystems, because of the extremely harsh environ-
mental conditions they face. The presence of multiple species sharing similar traits is essential for maintaining 
resilience in these ecosystems160; yet climate change has also led to the proliferation of invasive species such as 
Gorse (Ulex europaeus)161,162. Known for its adaptability and use of fire for dispersal163, Gorse probably accounts 
for much of the observed increase in montane vegetation within the paramos15,164. Moreover, due to their high 
nitrogen intake, the species disrupts the natural nitrogen cycle, causing rapid soil degradation and hindering 
the survival, germination, and growth of other species165. Gorse quickly removes water from the ecosystem, 
altering its hydrological balance and causing further water stress166; so in spite of the presence of vegetation, the 
ecosystem’s ecological function is lost. The paramos’ high solar radiation along with the presence of fire-prone 
invasive species increase fire risk by drying out herbaceous vegetation167, raising the probability of spontaneous 
combustion of organic material168,169.

Monitoring paramos
Several regions face pressing issues despite their formal designation as protected areas, and their delineation 
remains incomplete170. Establishing consistent paramo boundaries is crucial for their protection, and monitor-
ing their extent and health will both create awareness of their vulnerability and help identify the highest impact 
human activities. The existing regulatory framework is failing to protect paramos because of lack of enforcement 
and systematic monitoring, as we see from the issuance of mining titles within protected paramos.

Efforts towards restoration have had some success in reversing paramo degradation171, for example, in Chin-
gaza National Natural Park. This shows that recovery may be possible, but biodiversity is still reduced compared 
to unaltered paramos128, indicating the most effective conservation strategy is to prevent further damage in 
existing paramos. Large-scale monitoring from space provides a cost-effective way to assess current ecological 
status and identify vulnerable areas. Composite techniques must be applied to address persistent cloud coverage 
and integrating data from multiple satellites172, enhances coverage, temporal, and spatial resolution, so they can 
be used as a starting point for local field studies and inform targeted conservation initiatives.

Introducing a new approach to assess vegetation health will enhance the parameters that can be remotely 
monitored in paramos. This could not only reinforce local conservation efforts but also deepen global environ-
mental understanding. Given the sensitivity of paramo ecosystems to human activities and climate change, this 
monitoring approach can be adapted for similar high-altitude ecosystems worldwide. The insights gained from 
our study can be used to develop a comprehensive monitoring program for paramo vegetation health, inform 
conservation practices, and contribute to broader ecological research and preservation efforts.

Conclusions
Paramos are fragile ecosystems that easily suffer degradation from LULC changes. Fortunately, there is an increas-
ing recognition of the need to protect them, and new policies promote their integrality, preservation, and restora-
tion. However, the upward shift of paramo vegetation’s lower limits, leading to an evolving delineation of paramo 
boundaries, could potentially threaten these vital ecosystems with extinction. If the current trend continues, 
by 2040, only 30% of paramo Guerrero’s native vegetation will remain. By 2085, it is projected that all paramo 
vegetation cover will be lost, assuming wildfires do not hasten this process. It is thus imperative to incorporate 
the effects of climate change in decision-making to preserve the ability of paramos to provide ecosystem services.

In recent years, the pace of LULC changes within paramos has decelerated, possibly due to increasingly effec-
tive preservation efforts and/or a decrease in pressure exerted by communities. However, the repercussions of 
changes within and around these ecosystems over the past four decades are already being felt by communities. 
These include a reduction in paramo extent, fragmentation, conflicts over water use, atmospheric pollution, 
soil degradation, water contamination, and deteriorating vegetation health. The impact of soot and dust on 
the health of paramo vegetation and its water retention capacity is a subject that requires further exploration. 
Monitoring changes in the spectral signature of vegetation can provide valuable insights for field studies and 
guide protective measures.

Low-cost remote sensing tools provide an efficient means to monitor land changes, track environmental 
trends, and facilitate informed decision-making. Specifically, monitoring invasive species like Gorse within 
paramo areas can aid in their location, control, and eradication, thereby enhancing paramo conservation strate-
gies. The need for continued monitoring of LULC changes is paramount, and extending this monitoring to other 
paramos is crucial. This will help raise awareness and concentrate social, economic, and ecological strategies 
towards consistently defining and protecting these vulnerable ecosystems. Such measures will prevent further 
decline and safeguard biodiversity and potable water supply.

Data availability
In addition to the Supplementary Information, the supervised classification and change detection maps produced 
as part of our analyses are available for download as georeferenced layer files in the following online repository: 
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Murad, Cesar (2024), “Repository of land use and land cover maps for the paramos Rabanal and Guerrero in 
Central Colombia”, Mendeley Data, V1, https://​doi.​org/​10.​17632/​gvkm5​wf3s5.1.
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