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Sulfur cycling in the gabbroic section of the Oman Ophiolite
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Abstract

We present sulfur mineralogy and isotope geochemistry from the gabbro transect of the Oman Drilling
Project to unravel the sulfur cycle during hydrothermal alteration of the plutonic oceanic crust. The
sheeted dike—gabbro transition (Hole GT3A) shows low sulfide-sulfur concentrations (GT3Amedian=178
ppm, c=4873 ppm) but with great sulfur isotope variability (5**S = -12.8 to 14.4%o V-CDT, weighted
average +5.8 %o) and unusually heavy compositions relative to in-situ or ophiolitic crust. These features
are consistent with abiogenic thermochemical sulfate reduction during intense hydrothermal alteration
under greenschist facies conditions which formed a low-variance and relatively high-fSz assemblage of
pyrite + chalcopyrite + bornite. The heaviest isotope compositions (+10 to +14 %o.) occur within 10 m of
the uppermost gabbro screen suggesting focused fluid-rock exchange with isotope enrichment relative
to seawater due to closed-system reservoir effects. The change in isotope compositions from +5 to 0
%o in the overlying sheeted dike reflect fluids gradually buffered by magmatic sulfur to signatures similar
to the Oman Volcanogenic Massive Sulfide deposits. Hole GT3A represents a deep hydrothermal
reaction zone with extensive S and base metal losses and incorporation of up to ~80% seawater-
derived sulfate. The amount of Cu and Zn released in a 1 km?® crustal section similar to Hole GT3A is

~3 times greater than the average contents of Omani VMS deposits.
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The mid to lower crustal section (Holes GT2A and GT1A) mostly preserves MORB sulfur isotope
compositions but highly variable sulfide-sulfur contents (GT2Amedian=454, 6=693 ppm, GT1Amedian=114,
6=277 ppm). Away from fault zones, silicate microvein networks enabled variable sulfide and metal
remobilization. Magmatic sulfides persist as remobilized remnants along with sulfidation reactions and
mild isotopic enrichments (<+2.7%o) in secondary sulfides (millerite + siegenite-polydimitess + pyrite).
The mid-lower crustal section experienced redistribution of magmatic sulfur mixed with minor inputs of
seawater-derived sulfur (<10%), under very low fluid/rock ratios and moderate sulfur fugacities, that
chiefly preserved base metal abundances in secondary sulfides. The many faulted intervals present in
Holes GT1A and GT2A record near complete sulfur and metal leaching of magmatic sulfides without
the deposition of secondary sulfides but preserve sulfate with a Cretaceous seawater sulfate-sulfur
isotope signature (+16.1 to +17.3%o). These structures are the expression of crustal scale channeled
hydrothermal recharge fluid flow and record a previously unaccounted sulfur budget introduced in the

deep crust.
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1 INTRODUCTION

Hydrothermal circulation modifies the composition of the oceanic crust by fixing chemical elements such
as magnesium, boron, strontium and sulfur during chemical exchange between seawater and basaltic
rock; these reactions take place under progressively higher temperatures with depth leading to mineral
transformations up to amphibolite facies temperatures (Alt, 1995). Ultimately, the balance between
hydrothermal alteration, submarine volcanic emissions and riverine inputs regulates the composition of
the ocean through time and can modify the mantle through the subduction of altered oceanic crust
(Plank and Manning, 2019). Sulfur is a crucial element for tracing global biogeochemical and planetary
cycles: the mass exchanges and isotopic fractionations of sulfur enable identifying the chemical
pathways and quantify elemental fluxes between surface and endogenous reservoirs within a wide
range of temperatures and redox conditions (Canfield, 2004). Sulfur cycling in the oceanic crust has
been studied on drill core samples obtained through scientific ocean drilling and in ancient oceanic crust
exposed on land in ophiolites. Drilling in the thick crust of fast spreading ridges has intersected the
volcanic rocks and the sheeted dikes (Alt et al., 1989; Alt et al., 1995). However, after more than five
decades of ocean drilling, Ocean Drilling Program Hole 1256D remains the only borehole to reach the
sheeted dike-gabbro transition, intersecting the “high level” or “isotropic” gabbros of the axial melt lens
(Teagle et al., 2010; Wilson et al., 2006). Submersible dives into lower crust exposed by rifting has
enabled mapping and sampling of deep cumulate gabbros formed on the fast spreading East Pacific
Rise (EPR) at Hess Deep (Gillis, 1995; Gillis et al., 2001) and Pito Deep (Barker et al., 2010; Heft et
al., 2008) but intact sections remain un-sampled leading to poor knowledge of magmatic accretion
processes and the associated hydrothermal exchanges (Kelemen et al., 1997; Lecuyer and Reynard,
1996; McCollom and Shock, 1998).

Due to these constraints, there is little knowledge of sulfur behaviour in deep plutonic rocks formed at
fast spreading ocean ridges. Evidence shows that the permeable volcanic section of the oceanic crust
experiences low temperature (<100 °C), oxidative alteration that leads to sulfur loss and mild isotopic
enrichments (53*S~+1.6 %o; ODP Hole 504B, Alt et al., 1989) relative to a canonical MORB mantle
value of +0.1£0.3%o0 (Sakai et al.,, 1984). Hz produced during iron oxidation can support
chemoautotrophs (Bach and Edwards, 2003) producing large fractionations down to a §**S value of -
26.1 %o in the volcanic section (Troodos; Alt, 1994) resulting from microbial sulfate reduction (MSR)
under open system conditions. Mixing of upwelling hydrothermal fluids with cold seawater can form
sulfide mineralization at the lava-dike transition (Alt et al., 2010), with 334S values up to +3%o (Alt et al.,
1989). During active axial hydrothermal circulation, increasing temperatures from greenschist (>250
°C) to lower amphibolitic facies conditions (>350 °C) in the sheeted dikes and the underlying dike-
gabbro transition precludes biologically mediated processes and incorporation of seawater derived

sulfur occurs via thermochemical sulfate reduction (TSR) pathways (Shanks, 2001).

Sulfur isotopic enrichments documented in the intrusive upper crustal section are significantly higher in
ophiolites (<+10%o; Alt, 1994) compared to those observed in modern crust (<+3.1%o, Alt et al., 1989;
Alt et al., 1995; Barker et al., 2010). Furthermore, the dike—gabbro transition is thought to represent the

reaction zone where metals for the genesis of Volcanogenic Massive Sulfide (VMS) deposits are
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sourced (Alt, 1995; Hannington, 2014). Epidosites, mineral associations of granoblastic epidote-quartz-
titanite, have long been considered to represent the depleted endmembers of sulfur and metal leaching
at the deep reaction zone. Despite clear evidence for metal mobilization in in-situ oceanic crust (Alt et
al., 2010; Alt et al., 1996; Gillis, 1995; Gillis et al., 2001; Heft et al., 2008; Patten et al., 2016), epidosites
have only been documented in ophiolites (Harper et al., 1988; Jowitt et al., 2012; Nehlig et al., 1994;
Richardson et al., 1987; Harris et al., 2015). Recent work in the Oman ophiolite has challenged the view
that epidosites are restricted to the deep reaction zone (Gilgen et al., 2016) and proposed that they are

formed by late, oxidized, Fe-poor fluids, unlikely to form VMS deposits (Richter and Diamond, 2022).

Differences between in-situ oceanic and ophiolitic lower crustal sections are seemingly less
pronounced. However, sampling deep crustal sections of in-situ oceanic crust is restricted to tectonically
exposed sections, most common on slow-spreading ridges. Uplifted sections of lower crust that are
directedly exposed to seawater can display oxidative, lower temperature alteration enabling MSR
processes (Alford et al., 2011). Otherwise, sulfur isotopic enrichments decrease throughout the
gabbroic lower crust towards values below +2.5%; although sections affected by channeled fluid flow
may record heavier isotopic compositions (ca. +6%o Alt, 1994; Puchelt et al., 1996; Delacour et al.,
2008a; Delacour et al., 2008b)

The Samail Ophiolite in the Sultanate of Oman (Figure 1B) provides a unique sample of the oceanic
crust and upper mantle exposed on land that has been extensively studied since the late 1970’s. The
International Continental Scientific Drilling Program (ICDP) Oman Drilling Project (OmanDP; Kelemen
et al., 2020) enabled unprecedented, continuous sampling of critical sections of the ophiolite crust and
mantle through drilling of a number of short (400 m) diamond coring drill holes from representative
sections of the mid- to lower plutonic crust of the Samail ophiolite (Figure 1A). Sulfide minerals are easily
modified by oxidation and weathering processes under surface conditions, therefore OmanDP samples
provide an exceptional opportunity to investigate sulfur and metal cycling in pristine rocks from the
oceanic crust. A profile in the Samail Ophiolite based on surface samples by Oeser et al. (2012) showed
elevated §*S values (up to +5 %o) and low sulfide S-contents in the dike-gabbro transition that were
attributed to TSR followed by oxidation and leaching; the lower crust and mantle section preserved
near-MORB %S values and non-zero, mildly negative A*S values (down to -0.042%). Building on
Oeser et al. (2012) findings, we present detailed sulfide mineralogy and results from whole-rock sulfur
isotope geochemistry complemented with data from in-situ techniques covering a representative profile
of the intrusive oceanic crust including: 1) the upper crustal sheeted dike complex and the transition to
the high level gabbros (Hole GT3A); 2) the mid-crustal section at the transition from foliated to layered
gabbros (Hole GT2A) and; 3) a sequence of lower crustal layered gabbros (Hole GT1A) about 1000 m
stratigraphically above the crust-mantle transition zone. To understand the pathways and isotopic
fractionation mechanisms of sulfur from magmatic conditions throughout the various stages of oceanic
hydrothermal alteration, our sampling covers a spectrum from fresh rocks to those recording moderate
to complete hydrothermal recrystallisation, including highly deformed rocks from deep oceanic fault-

zones crosscutting the layered gabbros (Zihimann et al., 2018). Finally, to assess the metal mobility
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and elucidate on the potential source rocks for VMS deposits, we make use of comprehensive whole-
rock profiles obtained during core logging by the OmanDP science team (Kelemen et al., 2020).
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Figure 1. (A) idealized stratigraphic column for the Samail Ophiolite (adapted from Kelemen et al., 2020) showing the
approximate stratigraphic depths of the sections studied. (B) Location of the Holes GT1A (22°53.535'N, 58°30.904’E, layered
gabbros) and GT2A (22°51.793'N, 58°31.191'E; foliated-layered gabbros) and gabbro-dike transition Hole GT3A (23°06.845'N,
58°12.703’E) in relation to the regional geology.

2  GEOLOGICAL SETTING

The Samail ophiolite is the largest and best preserved slice of ancient ocean lithosphere on land
(Nicolas et al. (2000) and references therein). Here we highlight the current views on the oceanic crust
accretion and hydrothermal alteration, followed by an overview of the main features for the 3 drillholes
based on the multidisciplinary core logging carried out by the OmanDP phase 1 scientific party
(Kelemen et al., 2020).
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2.1 The Samail Ophiolite and current views on the oceanic crust accretion and alteration

The Samail Ophiolite represents an exceptionally large fragment of the Tethyan ocean lithosphere with
ca 500 km long, 200 km width and 2-20 km thickness that was preserved from post-obduction tectono-
metamorphic events (Nicolas et al., 2000). Its classic Penrose stratigraphy (Anonymous, 1972) became
the template for the structure of the oceanic crust in fast-spreading ridges such as the EPR (Pallister
and Hopson, 1981). The ophiolite records a polygenetic history (Alabaster et al., 1982) starting with a
main axial stage of crustal accretion, during which the Penrose-like crustal architecture was developed
and the voluminous V1-Geotimes axial lavas erupted. A second magmatic stage comprises
incompatible element depleted, low-Ti off-axis volcanism (V2 lavas) and late intrusives (gabbronorites,
wehrlites; Benoit et al., 1996; Koepke et al., 2009), consistent with hydrous melting of a progressively
depleted mantle source. This evolution has led to considerable debate about whether the Samail
ophiolite was formed at a typical Mid-Ocean Ridge (MOR) or in a subduction initiation setting (Belgrano
et al., 2019; Godard et al., 2006; Lippard, 1986). Zircon U/Pb dating place axial magmatism at 96 Ma

whereas post-ridge magmatic activity extended until 95 Ma (Rioux et al., 2021).

Current views on the oceanic crust are based on seminal geological and geophysical observations on
the seafloor and ophiolites (Alt, 1995). They propose that fast-spreading ridges comprise an upper crust
with ca. 3 km where lavas grade into the sheeted dike complex via a ~100 to 300 m-thick transition
zone where subvertical dikes are increasingly common. The dike complex roots into a thin axial melt
lens (AML; MacLeod and Yaouancq, 2000; Gillis, 2008) the level of which can vary dynamically through
time due to eruption/replenishment cycles (Coogan et al., 2003). The AML is overlain by a thermal
boundary layer that separates the vigorous hydrothermal convective system responsible for the
generation of seafloor hydrothermalism and SMS/VMS deposits (France et al., 2009; Wilson et al.,

2006)from the underlying deeper hydrothermal system affecting the lower crust.

Much of the lower crust beneath the ridge is in a mushy state, down to the Moho Transition Zone (MTZ).
The exact mechanism of crustal accretion continues to be debated (e.g., Coogan et al., 2006; Zhang et
al., 2021) and is strongly dependent on the mechanisms for cooling of the crust and the geometry of
hydrothermal circulation. Potential processes for heat removal of the lower crust include a millimeter-
scale inter- and transgranular vein networks infilled with amphibole (Bosch et al., 2004; Manning et al.,
2000). Because these may not be sufficient to extract heat from depth, large scale corridors of focused
fluid flow extending from the base of the sheeted dike down to the MTZ under greenschist facies (~300
°C) up to very high temperature conditions (~880°C) have also been proposed, (Coogan et al., 2006;
Zihimann et al., 2018). Noticeable examples of such corridors in Oman are the Al Asih (Abily et al.,
2011) and Zihimann-Muller- fault zone-ZMFZ (Zihimann et al., 2018) where cooling was largely
facilitated by introduction of seawater-derived hydrothermal fluids to great large depths in the crust

resulting in the cooling from magmatic conditions to greenschist facies temperatures.
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2.2 Main features of drillholes OmanDP Holes GT1A, GT2A, GT3A

The three OmanDP drillholes investigated were diamond-cored to ~400 m and petrographically and
instrumentally described to better than scientific ocean drilling standards (Kelemen et al., 2020) (Figure
2). The lower crustal (GT1) and mid-crustal sites (GT2) are located in Wadi Gideah (Tayin Massif) and
estimated to lie ~1400 m and ~3300 m above the (crust-)Mantle Transition Zone (MTZ), respectively
(Figure 1, Figure 2). The gabbro-dike transition site (GT3) is located in Wadi Aswad in the Samail Massif,
approximately 40 km west of Wadi Gideah and is estimated to be collared ~4100 m above the MTZ. All
drill sites are located in domains without the influence of the second (V2) magmatic stage magmatism
and their magmatic features document the V1 crustal accretion stage of the Samail paleoridge
(Goodenough et al., 2014). All drilling depths refer to the Chikyu Curated Depth (CCD) scale (Kelemen
et al. (2020).
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Figure 2. Lithological columns for OmanDP Holes GT1A, GT2A and GT3A drill holes (adapted from Kelemen et al., 2020). All
depth scales in m CCD (Chikyu Curated Depth as in Kelemen et al. (2020).

2.21 Lithostratigraphy

Olivine gabbro is the most abundant rock type in both Holes GT1A and GT2A (65.9; 65.4% respectively)
followed by olivine-bearing gabbro (21.5%;15.8%) with subordinate intercalations of other rock types
(Figure 2). Magmatic units in Holes GT1A and GT2A were defined based on modal, grain-size and
layering intensities downhole. Grain-size is most commonly fine to medium with rare pegmatitic layers,
that are more common in Hole GT1A. Some fine-grained gabbros in Hole GT2A are porphyritic with
large, zoned, plagioclase phenocrysts. Layering and foliation are present in both holes, but dip more
steeply in Hole GT2A than in Hole GT1A, where layers have gentle dips sub-parallel to the paleo-Moho.
There is no clear boundary between foliated and layered gabbros, and both rock types occur throughout
Hole GT2A.
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Hole GT3A sampled the dike-gabbro transition, and is subdivided into four major magmatic units (Figure
2) including an Upper and Lower Sheeted Dike sequence with more than 95% steeply dipping dikes
with mean thickness estimated to be 0.58 m comprising (porphyritic) diabase with chilled, basaltic to
glassy margins . These dikes are separated by two gabbro sequences which nonetheless include
significant amounts of dikes (~46.5%) but have distinctive petrography. The thin Upper Gabbro (111.02
to 127.89 m downhole) is dominantly olivine (bearing) gabbro whereas oxide (disseminated) gabbro
prevails in the Lower Gabbro (from 233.84 m). Swarms of dikelets and magmatic breccias of tonalite
and diorite occur at the transition from the Lower Dikes to the Upper Gabbro sequence, wherein oxide
gabbros grade upward to leucodiorite. Dike-gabbro crosscutting relationships suggest that the Upper
Gabbro represents a younger paleolevel of the AML relative to the highly differentiated oxide gabbros
of the Lower Gabbro Sequence (Kelemen et al., 2020; Engelhardt et al., 2022; France et al., 2021).
Unlike ODP Hole 1256D (Wilson et al., 2006; Alt et al., 2010) no continuous region of granoblastic
hornfels resulting from contact metamorphism of the dikes was present in Hole GT3A although
granoblastic patches have been reported in the surrounding outcrops (France et al., 2021).
Microgranular domains with granoblastic textures representing stopped blocks of hydrothermally
altered and metamorphosed dikes are present at ~243 m (Engelhardt et al., 2022) and 323-326 m
depths in Hole GT3A (Kelemen et al., 2020) (Figure 2).

2.2.2 Alteration and deformation

Total alteration, defined as the weighted average of background alteration plus patches, vein halos and
deformation-related alteration, is higher in Holes GT1A (60%) and GT3A (54%) than in Hole GT2A
(44%). All sections record early alteration under amphibolite facies conditions (brown amphibole),
progressing through greenschist (green amphibole+chlorite+albite+epidote) and late sub-greenschist

facies (zeolites+prehnite+calcite) (Kelemen et al., 2020).

Brown amphibole blebs replace clinopyroxene in Holes GT1A and 2A and are less common in Hole
GT3A (Engelhardt et al., 2022), where fibrous green amphibole is the most common mineral
pseudomorphically replacing clinopyroxene. Olivine is replaced by chlorite + oxides (rarely serpentine)
although in Hole GT2A, talc or brown phyllosilicates are also common. Rare olivine phenocrysts in the
Hole GT3A diabase or in the matrix of olivine gabbros are completely replaced by mixtures of smectite-
chlorite + actinolite + opaques. Epidote (s.l.) is significantly more common in Hole GT3A, where it
extensively replaces igneous plagioclase in several intervals; plagioclase is also extensively replaced
by albite or zeolites (thompsonite; also present in Holes GT1A and GT2A). In the lower/mid-crustal
sections (GT1A-GT2A), plagioclase is more commonly replaced by chlorite, whereas albitization
prevails in intensely altered intervals with loss of primary texture. Most Hole GT2A rocks feature an
intergranular chlorite vein network that replaces plagioclase along the margins of microcracks.
Downhole variations are conspicuous for few alteration minerals: i) calcite and oxy-hydroxides are more
common in the uppermost part of each hole and; ii) Hole GT3A features a clear downhole increase in

epidotetprehnite (Kelemen et al., 2020).
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Vein mineral fill and associated halos follows the relative order of formation outlined above. Vein
densities increase towards fault zones and deformation-related alteration is most commonly associated
with lower temperature, sub-greenschist mineral paragenesis (~270 — 100 °C). Additionally, Holes
GT1A and GT2A have wide (2-10 m) intervals of fault rock with associated anhydrite veins (Kelemen
et al., 2020; Teagle et al., 2019).

Pre-drilling site survey geological mapping identified a 251/55°SE structure (Zihimann et al., 2018) ca.
300 m north-east of Site GT1 named Zihimann-Miiller- Fault Zone (ZMFZ; Kelemen et al., 2020). This
normal fault zone with convincing syn-oceanic origin comprises ~1 m fault-gauge and a > 4 m alteration
halo ranging from greenschist (chlorite-epidote) to zeolite facies (carbonate-zeolite) conditions with
formation of pyrite + chalcopyrite. Copper slags from ancient ore processing are common in the vicinity.
The ZMFZ was projected to be intersected by Hole GT1A between 145-310 m depth and is likely one
of the main fault structures identified at ca. 200 m. However, unexpectedly Hole GT1A intersected 7
major faut zones and 14 minor structures with associated intense deformation, alteration and veining,
so the exact correlation to the ZMFZ is not possible. Hole GT2A includes 20 main fault-zones and a
total >250 m of moderate to complete brittle deformation, more evenly distributed than in Hole GT1A

(see

Figure 5B, ahead). In Hole GT3A deformation is most commonly concentrated along dike margins and
postdates vein formation or is contemporaneous with the latest zeolite vein generation. The intervals

with most significant brittle deformation and veining are between 160-200 m and 360-400 m (Figure 2).

3  METHODS

3.1 Sampling strategy and sample preparation

Sampling took place aboard R/V Chikyu during ChikyuOman2017 Phase 1 core logging activities
(Kelemen et al., 2020). Most samples were quarter cores with lengths between 5 cm (for HQ=63.5 mm
diameter) and 10 cm (for NQ=47.6 mm diameter). 73 samples were selected for mineralogical study
and S isotopic characterization distributed amongst Holes GT1A, GT2A and GT3A, with care taken to
avoid the uppermost weathered intervals and focusing on intervals with visible sulfide (Table 1). Sample
referencing follows the original on-site labelling during core handling and curation (Kelemen et al.,
2020).

Following macroscopic description, thin section billets were made from representative portions of the
sample and the remainder core powdered at the Geology Department Faculdade Ciéncias Lisboa/IDL,
for whole-rock sulfur geochemical analysis. Samples were split with diamond saws and all surfaces
abraded in emery wheels to remove any metal contaminants. Whole-rock powders for sulfur elemental
and isotopic analysis were obtained by coarse crushing in a hardened steel roll crusher and final

pulverization in an agate mill.

3.2 Petrography and mineralogy
Due to microscopic scale variations in alteration and sulfide distribution, the samples processed for
sulfur isotopic geochemistry were studied in detail. Petrographic analysis of polished thin sections took

place under transmitted and reflected light, enabling visual estimates of: 1) total alteration % by
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weighted average of each magmatic mineral species; 2) modes for remobilized, magmatic and
hydrothermal sulfide, as reported in section 4.1. Total alteration % does not include veins and can thus
be considered as a minimum estimate for each thin section. Total sulfide modes were determined by
image analysis using Leica Software by averaging 3 random areas. All data are available in

Supplementary Material 1 (SM 1, Table 1).

3.3 Electron Probe Micro-analysis

Petrographic observations reported in this work were validated via Electron Microprobe analysis of
silicate (unpublished results) and sulfide mineral assemblages Supplementary Material SM1 (Table 2).
Mineral major element compositions were determined on polished sections, covered in a 20 nm-thick
carbon coating at the Geology Department Faculdade Ciéncias Lisboa/IDL using a JEOL-JXA 8200
electron probe microanalyzer (EPMA) equipped with four wavelength-dispersive spectrometers (WDS)
, Six analyzer crystals (LIF, LIFH, PET, PETH, TAP and LDED2), secondary and back-scattered
electron detectors, and an energy-dispersive spectrometer (EDS). Measurements were made with a
20s acquisition time for the peaks, and 5s for the background. The accelerating voltage was 15keV,
with a beam current of 25nA and a beam diameter of 5um. Natural mineral and metallic standards from

Astimex Scientific Ltd were used.

3.4 Sulfur isotopes- whole rock

Sulfur extraction, measurements and isotope analyses were performed at the Institut fiir Geologie und
Palaontologie, University of Miinster. Total sulfur concentrations (TSwmeas) Were measured using an Eltra
CS-580 sulfur/carbon analyzer with a detection limit of 0.01 wt% and an estimated analytical uncertainty
of 3 % relative. 10-20 mg of whole-rock powder was combusted at 1350 °C in a porcelain crucible under
an Oz-atmosphere. These data were used to determine the amount of sample for the sequential sulfur
extractions and to assess if the extractions were complete. All sulfur concentrations in the text refer to

those obtained by gravimetry, as described below.

Sulfur extraction for subsequent isotope analyses was performed by a sequential wet chemical
procedure. Acid Volatile Sulfides (AVS, including monosulfide phases such as pyrrhotite or sphalerite)
and Cr-reducible Sulfur (CRS, including disulfides such as pyrite, chalcopyrite or bornite), were
extracted in closed glass digestion vessels under a Nz-atmosphere using 6M HCI and 1M CrClz-HCl,
respectively (Canfield et al., 1986; Rice et al., 1993). Released H2S was firstly precipitated as ZnS in a
3% acetic zinc acetate solution and then as silver sulfide (Ag2S) using a 0.1 M AgNOs solution. The
sample residue following the AVS-CRS extraction (TSsuiee=AVS+CRS) was filtered and acid-soluble
sulfate (TSso4) was precipitated as BaSO4 using an 8.5% BaClz solution. The mass of each sulfur
species was determined via gravimetry, their sum representing the total sulfur extracted:
TSext=TSsuifice(AVS+CRS) +TSso04. Comparison of total sulfur extracted wet-chemically (TSex) with that
measured using the sulfur/carbon analyzer provides excellent agreement (r = 0.99) with deviations
mostly for samples with low S concentration (S <500 ppm) that approach the lower detection limit of the
Eltra furnace (SM2, Fig. 1).
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5%*S was determined for all three sulfur species using a a ThermoScientific Delta V Advantage mass
spectrometer coupled with a Flash EA IsoLink elemental analyzer. Between 0.290 and 0.440 mg of
sample were combusted with vanadium pentoxide in tin capsules along with the standards IAEA-S1, -
S2, -S3 and NBS127 for calibration. Results are reported in the common & notation relative to Vienna
Canyon Diablo Troilite (V-CDT):

Eq. 1 634Ssample:[(348/32S)sample/(348/328)V—CDT —-1]x1000.

Reproducibility for 3**S values was better than +0.3%. (10). Whenever no visible amount of H2S from
AVS species was released (i.e. no ZnS precipitate in the vials) CRS was collected subsequently in the

same vial and combined with AVS traces for sulfur isotope analysis.

Representative samples were selected for multiple sulfur isotopes (2S, 333, **S) measurements using
a ThermoScientific Mat 253 mass spectrometer coupled to a fluorination line. Between 2 and 3 mg Ag2S
was converted to SFe via fluorination at 300°C overnight in nickel reactors. SFs was cryogenically and
chromatographically purified and then introduced into the mass spectrometer via a dual inlet system
and masses 127, 128, and 129 (representing 323, 333, and 34S, respectively) measured simultaneously
(Peters et al., 2011). The IAEA-S1 standard was used as reference material. Following Farquhar et al.
(2000), Peters et al. (2010) and Peters et al. (2011) A®S is defined as (Eq. 2).

Eq. 2 A%S= 5%38-1000 x [(1+5°*S/1000)°°"° -1].

Reproducibility for A3S measurements is better than +0.008%o (10).

3.5 In-situ sulfur isotopes

In-situ measurements in pyrite, pyrrhotite and chalcopyrite were performed on sub-sampled portions of
previously studied thin sections representative of the three drillholes at the NordSIMS laboratory,
Swedish Museum of Natural History, Stockholm. Mounts with the cut fragments were polished, gold
coated, and then analyzed for 5**S using a CAMECA IMS-1280 large-geometry secondary ion mass
spectrometer (LG-SIMS). The method broadly followed that described by Whitehouse et al. (2005) and
Whitehouse (2013). A 20 keV impact energy, ~6 um-sized, critically focused beam of 33Cs* ions,
rastered over 10 x 10 ym to homogenise the crater base, was used to locally sputter and ionize S from
individual pyrite grains. A low energy electron flooding gun was used to prevent charge buildup on
adjacent, non-conducting matrix phases and/or inclusions. The 32S and 3*S isotopes were separated
using an NMR-regulated magnetic field and detected in two Faraday detectors operating at a mass
resolution of 2430 (M/AM). Matrix matched reference materials were regularly interspersed with the

analyses of unknowns and used to determine instrumental mass bias in order to derive the correct
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values of 3*Sv.cor. These reference materials were for pyrite Ruttan (Crowe and Vaughan, 1996;
recalibrated by Cabral et al., 2013) and S0302A (Liseroudi et al., 2021 Liseroudi et al., 2021); for
chalcopyrite Nifty-B (LaFlamme et al., 2016); and for pyrrhotite YP-136 (Li et al., 2019) or MV1
(Whitehouse et al., 2013). Reproducibility (1 std. deviation) based on the frequent standard
measurements in each analytical session (= sample mount) was propagated together with the within

run uncertainties to yield the overall uncertainty on 534S for a given analysis, as reported in Table 3.

4 RESULTS

41 Sulfide mineralogy

Sulfides were classified based on their micro-textures and associated paragenesis. Magmatic sulfides
form blebs or larger, smooth-surfaced, interstitial aggregates of pyrrhotite with chalcopyrite and
pentlandite which occurs as exsolutions or granular aggregates (Figure 4C). Remobilized sulfides are
magmatic sulfides that preserve their original mineralogy but were partly replaced by secondary
silicates (amphibole, chlorite) during hydrothermal alteration, without formation of secondary sulfide
phases. They can be recognized by their ragged edges and the outline of the original aggregate, with
some outlined by micron sulfide remnants intergrown with the hydrous silicates (Figure 4D, E).
Newformed sulfides were labelled as hydrothermal (Figure 4G-H) and can be found replacing silicates,
magmatic sulfides or in veinlets. Hydrothermal sulfides that can be identified as partially or totally
replacing preexisting magmatic sulfide assemblages were further sub-divided as hydrothermal-

metasomatic (Figure 4F).

Figure 5 shows the relative vol% of magmatic, remobilized and hydrothermal (including metasomatic)
sulfides in a composite downhole plot. Sulfides from the dike-gabbro transition zone (Hole GT3A) are
scarce only exceeding 1 %vol on few intervals: 97-120, 222.8, 253-258 m and in the lowermost ~42 m
(357.6 to 375 m;

Figure 5A). The most strongly sulfide mineralized interval is a pyrite-epidote patch at 362.2 m in the
Lower Gabbro Sequence (Figure 3D). All sulfides identified are hydrothermal except for within a diabase
at 6.6 m (sample GT3A-9Z-1 7-12 cm) where minute fragments of pyrrhotite are preserved within
amphibole replacing clinopyroxene. Sulfide blebs are common at the contacts between (glassy) basalt
crosscutting gabbro or diorite. Within the Upper Dike sequence some blebs are large, up to 1-3 mm
(Figure 3A-A1) whereas in the Lower Dike and Gabbro sequences they form arrays bordering lithological
contacts (Figure 3B). The blebs correspond to porous/spongy pyrite aggregates overgrowing the altered
matrix and their shape and mode of occurrence strongly suggests they are the result of pseudomorphic
replacement of preexisting magmatic sulfides. Pyrite dominates the sulfide assemblage down to ~300
m, most commonly as small porous/spongy grains overgrowing the intensely altered silicate
assemblage, and more rarely as shattered crystals within cataclastic bands. Pyrite in Hole GT3A is
close to an ideal composition (Figure 6A-B), with minor elevated Co concentration relative to other
analyzed metals (Figure 6C). Chalcopyrite is rare and occurs as small granular or dusty aggregates and
becomes more abundant below ~300 CCD (Figure 3C), commonly associated with epidote. Some

chalcopyrite is altered to bornite.
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Figure 3. Hole GT3A sulfide mineralogy with spots showing locations of SIMS analyses. (A-A1) Basalt with large magmatic bleb
replaced by pyrite (GT3A-48Z-1 11-13 cm, Upper Dike; 97 m). (B) Basalt in dike crosscutting oxide gabbro (GT3-101Z-3 66-71
cm, Lower Gabbro- 254 m) with multiple magmatic blebs replaced by pyrite (Py). (C) Pyrite — chalcopyrite (Ccp) in diorite (GT3-
142Z-3 4-10 cm; Lower Gabbro- 364 m). (D) Pyrite-epidote patch in gabbro, (GT3-141Z-4 61-69 cm; Lower Gabbro- 362 m).
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Figure 5. Sulfide mineralogy variations with depth. (A) Hole GT3A relative modal volume % of sulfide. With the exception of the
uppermost sample, all sulfides are hydrothermal. (B-D) Hole GT1A and GT2A showing: (B) Faulted intervals, (C) Individual sulfide
minerals, shown as present or absent since modal amounts are very low and, (D) relative modal volume sulfides (%) shown for
magmatic vs. remobilized or hydrothermal (including metasomatic, see text). Abbreviations: Mag-magmatic, Hydro- hydrothermal
Po- pyrrhotite, Pn-pentlandite, Ccp- chalcopyrite, Sph- sphalerite, Py- pyrite, Mil- millerite, Thi- thiospinels (polydymite-
siegenitess), Bn- bornite. All depth scales in m-CCD (Chikyu Curated Depth as in Kelemen et al., 2020).

Holes GT1A and GT2A have low sulfide abundances (<< 1 %vol) compared to Hole GT3A cores but
wider phase and textural variance (Figure 5B-D). Magmatic sulfides (as described above) are

predominantly preserved in the least altered and deformed intervals (

Figure 5B-D). The foliated gabbros in Hole GT2A have less well preserved pentlandite and more
abundant chalcopyrite compared to Hole GT1A, although it is unclear whether this results from
remobilization or is a primary feature. In both Holes, sulfides are completely remobilized in intervals
with intense cataclastic deformation and hydrothermal overprint including zones with abundant
deformation-related veins and fault gouges. Fault zones are abundant in both Holes GT1A and GT2A

but more common in the former where several meter-scale intervals of damaged rock are present (
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Figure 5B). Consequently, sulfides are chiefly absent throughout large intervals of Hole GT1A, including
those corresponding to the projected intersection of the ZMFZ (~150-100 m). Moderately altered rocks
display variable degrees of magmatic sulfide remobilization and deposition of hydrothermal
assemblages. In Hole GT1A the most common metasomatic replacement is the formation of pyrite-
milleritexchalcopyrite, whereas pyrite+(siegenite-polydimite)sstchalcopyrite aggregates are more
common in Hole GT2A (Figure 4D, F;

Figure 5A-B). Pyrite can also form idiomorphic or blocky aggregates overgrowing the silicate assemblage
that are more abundant as pyrrhotite disappears from the assemblage (Figure 4G). Minute aggregates
of sphalerite are most common in Hole GT2A, mostly associated with hydrothermal chalcopyrite
although some partially fill clinozoisite-albite-chalcopyrite veins (Figure 4H). Sulfides also show some
compositional differences between both Holes. Pyrite tends to be consistently more enriched in both Ni
and Co in Hole GT1A relative to Hole GT2A (Figure 6C) whereas magmatic pyrrhotite tends to show
minor (<1 wt%) enrichment in Ni leading to Ni/Co ratios >1 (Figure 6C). Pyrrhotite platelets in smectite-
chlorite pseudomorphs after olivine (Figure 4A-B) show similar metal contents relative to its magmatic
counterparts, although some pyrrhotite grains in Hole GT2A display a low Ni/Co trend similar to pyrite

(Figure 6C).



442

443
444
445
446
447

448

449
450
451
452

Ni Ni

(A) 19 Drillhoke (B)

Wl GT1A

Hoszetnoodte GT2A
90 GT3A

2 20
Mineral
80 @ Pyrmatite magmatic
© Pyrrhotiye hydrothermal
@ Pontlandie
70 @ Chalcopyrite
0 Pyrite
A Miserite
7 Thiospinels
60" Siogante % Bornite

100 100
Pyrte
" 4 4 4 4 /4 7 7 4 r 0 0
O“""”’: 0 10 20 30 40 50 60 70 80 90 19 co fe?® 10 20 30 40 50 60 70 80 90 100 g
e Pyrhoste Chatcopyrte  Pyrte Borrte. ante
‘Borm Urnsece
10 3
E (C) Drilihose
] oo —
: ooEh o GT3A
Mineral
4 @ Pyrotite magmatc
O Pyrmotite hydeothermal
0 Pynte
13 a ;
. I o
g th o«
3 o014 - Q
= ] a
o ] a e a) :‘ =
1 B HELtL [ = o
o= -
4 o "&—
g o & - 9% o
corge 87 F o Eoes ™ 8,0
3 (= ] v o ]
] - L) )
1 o [ =]
1 111]
0.001 4
1 T T T
0.001 0.01 0.1 1 10
Ni (wt%)

Figure 6. Sulfide compositional variations. (A, B) Fe-Ni-Co and Fe-Ni-S showing endmember compositions (stars) and using
wt%. The diagrams show the deviation from ideal compositions in pentlandite towards higher Ni/Fe towards millerite in both GT1A
and GT2A and the formation of violarite-siegenite-polydymite solid solutions in Hole GT2A. Also, it shows GT3A pyrite-
chalcopyrite-bornite hydrothermal assemblages are close to ideal compositions. (C) Ni-Co variations for Fe-sulfide phases. EPMA
data are available in SM 2 Table 2.

4.2 Bulk rock sulfur contents and isotope compositions
Results for extracted sulfide sulfur and sulfate contents are persented in Table 1 and plotted in a
composite downhole profile in Figure 7. Figure 8 shows the statistical distribution for the total sulfide sulfur

concentrations and isotope compositions.
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Figure 7. Downhole variation of whole-rock measurements for a reconstituted stratigraphic section of the three drillholes sulfide
sulfur: (A) Total sulfide sulfur (TSsurice); (B) 8%S for sulfide and sulfate fractions; (C) A®**S in CRS extracts. Also shown for
reference: (A) sulfur contents for EPR lavas (Alt et al., 2010) and depleted mantle (DM- Salters and Stracke, 2004); (B) 5**S for
MORB (Sakai et al., 1984), Cretaceous (Kampschulte and Strauss, 2004) and modern seawater (Johnston et al., 2014); (C) A%*S

for mantle (Labidi et al., 2012; Ono et al., 2007), modern and Cretaceous seawater (Masterson et al., 2016).

Sulfur contents (TSsuiide) in Hole GT3A show a broad variation with several domains showing very high
sulfide concentrations up to 24902 ppm for a pyrite-epidote patch, but relatively low median
concentrations due to very low S concentrations in many studied core intervals (Hole GT3A:
X=median=178 ppm, o=standard deviation=4873 ppm). Sulfur contents (TSsuride) in the mid- to lower
crustal section are higher in Hole GT2A (X = 454 ppm, o= 693 ppm, max = 2951 ppm) relative to the
layered gabbros in Hole GT1A (X = 114 ppm, ¢ = 277 ppm, max = 1050 ppm).
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Figure 8. Statistical distribution of §*Sts(A) and sulfide-sulfur concentration (i.e. TSsuice= AVS + CRS) (B) for the three Holes.
Upper and lower dashed bars: 95" and 5" percentiles, boxes: 75" and 25" percentiles; thick horizontal bar: median; white

squares: mean; diamonds: outliers.

Samples from Hole GT3A only yielded CRS with a wide range in S from -12.8% to +13.6 %o. Isotope
variations are not lithology-dependent but show distinct variations with depth: samples down to ~80 m
vary from -12.8%o to +5.1%0 and generally have very low TSsuride cOntents. From 80 m &3S reaches its
highest value (5%S=+13.6%.), and then broadly decreases downhole albeit not uniformly and is
associated with widely variable TSsuride cOncentrations (Figure 7). Pyrrhotite is scarce in Hole GT2A and
only traces of AVS were recovered, insufficient for isotope measurements. In Hole GT1A, the AVS
fraction (3%Sas = -0.4%0 to +1.9%0) lies within ~1%o relative to the isotope composition of the
coexisting CRS fraction ( 83*Scrs = -3.2%0 to +2.6%0). The median §**S for CRS fraction in both mid-
to lower crustal holes is identical (X=+1.2 %o) with Hole GT1A samples spanning a slightly wider range
of compositions ( §*S = -3.2%o to +2.6 %o) relative to Hole GT2A ( §**S -0.7%o to +2.1%so).

The relationships between sulfate and sulfide are shown in Figure 9. Sulfate minerals are scarce
throughout the Wadi Gideah drill holes with similar median concentration values for the entire studied
crustal section (X~12-15 ppm) and sulfate is generally only a small fraction of the extracted total sulfur,
with TSso4/TSext mostly <0.2 (Figure 9B). Maximum sulfate concentrations increase from Hole GT3A (76
ppm), to Hole GT2A (197 ppm) to 1933 ppm in fault zone samples from Hole GT1A that also include
traces of pyrite. The §**S isotope composition for sulfates is generally close to the range of coexisting
sulfides, except for three GT1A and GT2A samples with higher sulfate fractions (TSso4/TSext 0.40 to

0.96). Here, sulfate with a 534S value up to +17.3%., is considerably higher than the coexisting sulfides.
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Figure 9. (A) Relationships between sulfide and sulfate isotope compositions. (B) Total extracted sulfur (TSextracted) Versus sulfate
fraction (TSsos). Also shown for reference: §**S for Cretaceous (Kampschulte and Strauss, 2004) and modern seawater (Johnston
etal., 2014).

4.2.1 Multiple sulfur isotope compositions

Multiple sulfur isotope measurements performed on CRS extracts for selected samples are listed in
Table 2 and shown in Figure 7C; Figure 10 shows respective A*S and &S values. Mid-lower crustal
rocks show uniformly negative A*S compositions (Hole GT1A = -0.042%o to -0.019%o; GT2A = -0.042%o
to -0.014%o), that display a near vertical trend with 5%*S. Hole GT3A has one sample with a very negative
A®S value of -0.048%0 and a 8%4S value of -12.8%., but other Hole GT3A samples have A*S between
-0.028%o to +0.018%o0 and display a steep positive trend with §*S (Figure 10).
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Figure 10. Relationship between A%*S and §**S obtained from CRS fractions.

4.3 In-situ isotope compositions

In-situ SIMS data are listed in Table 3, with point locations for representative mineral assemblages
shown in Figure 4. In-situ measurements in the dike-gabbro transition zone samples (Hole GT3A) aimed
to assess the existence of compositional zonings in large hydrothermal sulfide grains and fractionations
between different sulfide phases. The large blebs in basalt samples in the Upper Dike Sequence display
lighter sulfur isotope values in their cores relative to their grain borders, ranging from +11.9%o to
+14.4% in the largest grains (Figure 3A1). In contrast, the epidote-pyrite patch with spongy texture within
the Lower Gabbro Sequence (Figure 3D) shows mostly uniform §*S values (+9.3%o to +10.0%o) with a
single value of +7.3%o in one grain boundary. In the Lower Gabbro Sequence, chalcopyrite is more
abundant, and has a heavier isotope composition relative to associated pyrite: one basalt (232 m-CCD)
includes pyrite with 334S between -1.0%o and +1.2%o whereas chalcopyrite displays 534S values from
+1.8%0 to 2.5%0. This chalcopyrite is partly altered to bornite that was not analyzed due to the lack of
appropriate standards. Sulfides in one diorite sample show heterogenous compositions, with
significantly higher chalcopyrite §**S values (+2.4%o to +13.1%.) compared to pyrite (+1.3%o to 5.4%o;
Figure 3C). There are no significant differences between cataclastic pyrite and non-cataclastic spongy

pyrite in the same samples.

In the mid-lower crust (Holes GT1A and 2A), SIMS analyses focused on distinguishing the composition
of mineral species occurring in different paragenetic contexts (see Section 4.2). Median §**S values for
hydrothermal pyrite (X=+1.6%o; -1.2%o to +2.7%o) are slightly more positive than for metasomatic pyrite
(X=-0.8%o; -3.2%o to 0.4%o0). Magmatic pyrrhotite grains have a slightly negative isotope composition
(X=-0.5%0; -4.3%o to +0.1%o), a tendency more pronounced in grains that experienced remobilization

(X=-2.8%o; -3.8%0 to -1.8%0) and hydrothermal pyrrhotite in smectite-chlorite aggregates (X=-3.8%o; -
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5%o0 to +0.8%0). Magmatic, remobilized and hydrothermal chalcopyrite overlap in composition with
median values of +0.9%o., +0.5%0 and +0.7%. respectively, with a wider spread of values for the
hydrothermal chalcopyrite (-1.8%. to +2.5%0). Grains representing metasomatic replacement have a
slightly heavier isotopic compositions (X=+1.4%0) although only 3 spots were analyzed showing a

relatively narrow compositional range.

As can be seen from Table 3, results from in-situ analyses fall within the range of whole-rock
measurements in the same sample or in adjoining domains. There are two noticeable exceptions.
Sample GT3A-140Z-2 22-30 cm is a basalt from the Hole GT3A Lower Gabbro Sequence for which in-
situ measurements yielded relatively lighter compositions (-1 to +2.5%o) compared to the whole rock
(+5%0). This sample has bornite after chalcopyrite which may have contributed to the heavier
composition measured in whole rock. The second disparity occurs in lower crust sample GT1A-152Z-3
0-8 cm where SIMS measurements in pyrrhotite blebs yield negative isotope values (-4.3%o to -2.2%o)
lower than the measured whole-rock value (0.6%o0). This sample is essentially fresh and devoid of
hydrothermal sulfides therefore the only explanation we can provide is that pyrrhotites are anomalous

and/or pentlandite contributed to this sample positive whole-rock isotope signature.

5 DiscussION
5.1 Sulfur geochemistry in the oceanic crust

We firstly evaluate the 8%4S values with respect to sulfur contents in our samples and compare them to
well-studied sections of ophiolitic and in-situ oceanic crust (Figure 11). A first insight into the processes
that affected the studied crustal section shows the compositional fields for sulfides formed through
different pathways during seawater/rock interaction following Alt et al. (2007). The crustal section is
highly heterogenous and includes gabbroic cumulates from the mid-lower crust (Holes GT1A and
GT2A) and dikes and varitextured gabbros (Hole GT3A) from the dike-gabbro transition which
lithological nature must be considered to determine reference values for primary (magmatic) S

concentrations, as discussed below.
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Figure 11. Sulfur geochemistry showing sulfide sulfur (TSsufice) Versus &**Ssuiice. Arrows indicate processes that can lead to
sulfur loss via melting, leaching or oxidation and sulfur increase via crystal fractionation without changes in the isotopic
composition and the fields indicate expectable isotope compositions for sulfides formed via open system Microbial Sulfate
Reduction (MSR) or Hydrothermal Sulfide Addition via Thermochemical Sulfate Reduction (TSR), based on Alt et al., 2007.
Ocean crust data from: [1]- Alt and Shanks, 2011; [2]- Alt et al., 1989, [3]- Alt et al., 1995, [4]- Puchelt et al., 1996, [5] Alt and
Anderson, 1991, [6] Alford et al., 2011, [7] Delacour et al., 2008a, [8] Alt, 1994, [9] Oeser et al., (2012]. Also shown for reference:
MORB §%S Sakai et al. (1984), sulfur contents for EPR glasses Alt et al.(2010), depleted mantle (DM) Salters and Stracke
(2004).

5.1.1 Main processes at the dike gabbro transition: Hole GT3A

Sulfide contents in Hole GT3A samples are extremely low considering the non-cumulate, and relatively
evolved nature of these rocks (#Mg = Mg/Mg+Fe, molar: X=0.52; 0.32-0.75). Sulfur solubility in basaltic
melts increases with Fe content, and variably complex formulation has been proposed to predict sulfur
contents in the melt or sulfur capacity at sulfide saturation-SCSS (Li and Ripley, 2009; Liu et al., 2007;
Mathez, 1976). In the absence of S measurements for fresh lavas or glasses from Oman, we rely on
#Mg-S relationships (Eq. 3) for ODP Hole 1256D fresh glasses (Alt and Shanks, 2011) with similar
compositional range (#Mg X=0.62; 0.32-0.63), to estimate primary sulfur contents for Hole GT3A

samples.
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Eq. 3 S = -0.198Mg# + 0.234

Magmatic sulfur contents for Hole GT3A rocks are estimated to lie between 851 and 1439 ppm,
which is significantly higher than their TSsuiise Or TSext sulfur contents (Figure 9, Figure 11; Supplementary
Material SM3- Table 1), implying that pervasive sulfur losses occurred throughout the section. Sulfide
addition (>2000 ppm) is concentrated in the Upper Gabbro sequence (~230-250 m) and at the bottom
(~360-375 m) of the Lower Gabbro Sequence.

The reduction of seawater sulfate to sulfide via biogenic (Microbial Sulfate Reduction- MSR), or
abiogenic high temperature thermochemical sulfate reduction (TSR) pathways will lead to sulfide
addition with extensive isotope fractionations. Because of the biological preference for 32S, open system
MSR will have large fractionation factors that will lead to very negative isotopic signatures (Canfield,
2004). Only one sample in the Upper Dike Sequence of Hole GT3A has a negative isotope signature -
12.8 %o which would be consistent with a biogenic origin via MSR. Likewise, one lava sample from
Wadi Gideah was reported by Oeser et al. (2012) with a strongly negative 534S value of -31.2 %.. For
both samples, sulfur contents are low (~210 ppm) suggesting that these rocks experienced leaching of
magmatic sulfur prior to the addition of a small amount of biogenic sulfur. All other upper crust samples
in this study show increasingly heavy sulfur isotope signatures at increasing sulfur contents consistent
with abiogenic TSR reactions during intense hydrothermal alteration. TSR is most effective above 250
°C, requiring H* provided by the simultaneous oxidation of ferromagnesian magmatic minerals in the
rock and will lead to moderately heavy 84S values (Shanks et al., 1981; Figure 11). Sulfur isotope
values determined here for the dike-gabbro transition (Hole GT3A) section differ substantially from
those reported by Oeser et al. (2012). They obtained 33*Scrs for sulfide between +0.3 to +5.4%o that
coexist with heavy sulfates (+2.8 to +14.8%0), which fall within the range of our sulfide isotopic
compositions (-0.5 to +13.6%o ; Figure 11). Given the coincidence between sulfate isotopic values
collected in outcrop (Oeser et a., 2012) and sulfide obtained in core samples (this work), we suggest
that the surface pyrite sulfur (CRS) may have experienced subaerial oxidation, as is commonly
observed in VMS deposits of Oman, where pyrite oxidizes almost immediately after exposure (Cravinho
et al.,, 2023). Oxidation via both abiotic or microbial pathways has been recognized to produce
fractionations up to -18%. (Alt et al., 2007; Canfield, 2001; Delacour et al., 2008a; Delacour et al.,
2008b). However, it is common that abiotic oxidation results in negligible fractionation thus explaining
the overlapping sulfide (this work) and sulfate (Oeser et al.2012) isotope signatures. Hole GT3A rocks
have a remarkably heavy isotopic composition compared to in-situ oceanic crust, consistent with the
sheeted dike complex in Cretaceous Troodos ophiolite (Alt, 1994), albeit that the Samail sheeted dikes
are even heavier. This is particularly significant considering that Cretaceous seawater was isotopically
lighter (Kampschulte and Strauss, 2004; see below) than modern day seawater. Consequently,
scenarios of restricted closed system seawater circulation that can produce significantly heavier isotope

signatures will also be considered in the geochemical modelling section (5.2) below.
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5.1.2 Main processes in the mid to lower crust: Holes GT2A and GT1A

Most of the Samail ophiolite mid to lower crustal gabbros from Holes GT1A and GT2A are cumulate
rocks and therefore expectedly have lower S concentrations than evolved MORBs from the EPR (1250
+ 200 ppm, Alt & Shanks, 2011). A significant number of samples have sulfide concentrations lower
than depleted mantle values (120 + 30 ppm, Salters & Stracke, 2003) (Figure 11). Results from this study
reveal that rocks with the lowest S concentrations are from fault damage zones where there was near
complete leaching of magmatic sulfides without the deposition of secondary sulfides. Leaching, melting
and equilibrium oxidation of magmatic sulfides will decrease total sulfide contents without imparting
changes in isotopic values (Alt et al., 2007). All other mid-lower crustal gabbros with (TSsuiice Values
between 120 and 1200 ppm) have sulfide sulfur concentrations within the range of in-situ gabbroic
oceanic crust and Troodos lower gabbros. The least altered rocks (defined here as rocks less affected
by post-magmatic processes with <50% hydrothermal sulfide) have TSsuride values that vary by one
order of magnitude (114 and 1050 ppm) suggesting a wide range of primary sulfur concentrations in

the cumulates due to segregation and mobility of sulfide melts within the cumulate mush.

Regardless of the intensity of hydrothermal and tectonic-induced alteration, both Holes from the Samail
mid- to lower crustal section (Hole GT2A and GT1A) broadly preserve magmatic isotope signatures
(Sakai et al., 1984). This is consistent with results obtained by SIMS showing that the entire spectrum
of analyzed sulfides, from secondary (hydrothermal or metasomatic) to partly remobilized sulfides,
chiefly retained their magmatic signatures. The sole exception are pyrrhotite laths within late-formed
smectite aggregates replacing olivine, which have mildly negative sulfur isotope signatures, with 534S
values as low as -5.0%.. Otherwise, the Samail lower crust is similar to most gabbroic sections of
oceanic crust (Figure 11) where a few 34S-enriched samples in the uplifted crust of SWIR (ODP Hole
735B; Alford et al., 2011) have been attributed to closed system microbial sulfate reduction (MSR) that

can lead to heavy signatures due to reservoir effects.

5.2 Geochemical modeling of sulfur geochemistry processes

Only one sample from Hole GT3A can be reasonably attributed to biogenic mediated processes.
Consequently, in this section we focus on high-temperature abiogenic processes dominating sulfur
cycling during hydrothermal alteration of the Samail ophiolite crust. Due to their greater sensitivity in
assessing mass-dependent sulfur isotope fractionation, modelling will concentrate on the multiple sulfur
isotope dataset, using mixing model formulations for thermochemical sulfate reduction (TSR) that take
into account temperature (Section 5.2.2) and variable sulfur concentrations (Section 5.2.3) in the

system.
5.2.1 Input isotope values for TSR mixing models

The main pools of sulfur involved in both low temperature and hydrothermal processes affecting the
oceanic crust are magmatic sulfide and seawater sulfate. Recent measurements of quadruple sulfur
isotopes on MORB samples suggest an average composition for the Depleted Mantle reservoir of 534S
-1.28 1+ 0.33%o (Labidi et al., 2014) instead of the canonical value of 0.3 + 0.5%o of Sakai et al. (1984).
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Our whole rock measurements in mid-lower crustal samples with more than 70% magmatic sulfides
show values between -0.1%. and +1.9%. with median close to +1%.. Although in-situ SIMS
measurements show some anomalous pyrrhotite isotopic compositions (sample GT1A-152Z-3 0-8 cm),
the positive sulfur isotope signatures in magmatic chalcopyrite and whole-rock data for fresh samples
strongly suggest that the integrated monosulfide from which pyrrhotite-chalcopyrite-pentlandite were
exsolved had a slightly positive signature. This would lie within the +0.3 + 0.5%0 range suggested by

Sakai et al. (1984) and therefore we use the value of 0%o as a reference in our calculations.

Mantle isotope compositions for A%S are 0% (Labidi et al., 2012; Ono et al., 2007). However, data
from incipiently hydrothermally altered mid-lower crustal sections from this work and Oeser et al. (2012)
are consistently negative. Indeed, irrespective of the model considered below, any set of curves
calculated assuming mantle compositions of A33S=0%, (Labidi et al., 2012; Ono et al., 2007) falls out
of the compositional space of the samples studied (stippled curves in Figure 12). Considering that Samail
mid-lower crustal rocks preserving magmatic sulfides have isotope compositions as low as A33S=-
0.042%o, we have used a value of -0.045%, for the mantle composition in the models below (solid lines
in Figure 12), although the model curves for the canonical mantle value are also depicted (stippled lines)
for comparison. The potential causes for the deviation of A%S values relative to canonical values require
further investigation. We propose a provisional explanation that relates to the Indian MORB
geochemical features of the Samail mantle source (Godard et al., 2006, Jesus et al., 2023). Indian
MORB presumably taps slab-derived components from old subduction zones where sediments with
mass independent fractionation (MIF) signatures could provide the mild but systematically negative
A*S signatures to the Samail crust. Recycling of old sedimentary slab-derived components has been
documented for example in the Mangaia plume considered to be an end-member for high-p mantle

where Archean sediments were recycled (Cabral et al., 2013).

Mesozoic seawater sulfate isotope composition was lower than modern day (§3*S=21.5+0.5%p;
Johnston et al., 2014), between +16 to +22%. (Kampschulte and Strauss, 2004). During the Cretaceous,
compositions were closer to +18%o (Kampschulte and Strauss, 2004; Paytan et al., 2004) and we use

this value in our modeling together with A33S of 0.043 + 0.016%. following Masterson et al. (2016).

In all mixing models presented below (Figure 12), the plotted §3*S-A%S curves represent the pooled
(accumulated) product composition of H2S for a given fraction of the mixture (f). Fractionation factors
between sulfide and H2S increase with decreasing temperature, being highest for pyrite at 300 °C (Apy-
H2s = 1.22 %0) Ohmoto et al., 1979. These values are one order of magnitude smaller than the isotope
fractionations for seawater sulfate reduction to H2S (10.1 to 20.2%o; see 5.2.2.) at the temperatures
considered in modeling (550-300 °C). Therefore, we take the composition of H2S in the models to be
chiefly identical to the resulting hydrothermal sulfides since this will have a negligible bearing on the

model sulfide compositions.
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Figure 12. Modelling of sulfide compositions using different mixing models for TSR. In all plots, curves represent the pooled (or
accumulated) composition of H2S: the upper set of stippled curves (ii) were calculated using the canonical mantle composition A
S = 0.00%o that cannot explain the OmanDP samples. Therefore the solid curves (i) were calculated using A%S = -0.045 %o, as
discussed in the text. Nodes in model curves represent increments of mixing from f = 0.001 to /=1. Additional input parameters

common to all models: magmatic sulfur §3*S=0 %o (Sakai et al., 1984), Cretaceous seawater 5**S=18 %o (Kampschulte and
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Strauss, 2004; Paytan et al. 2004) A®*S = 0.043 %o (Masterson et al., 2016). (A) Model 1: Open system mixing for TSR at variable
temperature [300-550] °C; (B-C) Model 2: Closed system, Rayleigh distillation for TSR assuming magmatic sulfur concentrations
of 120 (B) and 1200 ppm (C), calculated for different sulfate concentrations in the hydrothermal fluid, corresponding to the
coloured curves; (D-E) Model 3: Closed system, Rayleigh distillation for TSR assuming magmatic sulfur concentrations of 120
(D) and 1200 ppm (E), calculated at different sulfate concentrations in the hydrothermal fluid corresponding to the coloured curves
In model 3 it is assumed that the hydrothermal fluid has undergone 40% isotopic enrichment relative to Cretaceous seawater
during closed system evolution within the hydrothermal system (5%*S=26.8 %o, A**S=0.091 %o; see Supplementary Material SM2
Fig.2). Note that for models 1 and 2, assuming a magmatic S concentration of 1200 ppm results in a sulfide product with very
little isotopic fractionation, therefore the resulting curves are very short and plot close to the mantle composition being hard t

depict.

5.2.2 Open system mixing model for TSR as a function of temperature

Within the high-temperature zone at the base of the upper crustal hydrothermal system, the Hz2S in the
fluid will result from a mixture of (Ono et al., 2007; Shanks, 2001): a) magmatic H2S leached from the
magmatic sulfides in the basaltic (s.l.) rocks (Woodruff and Shanks lll, 1988) and; b) thermochemically
reduced sulfate in the presence of ferrous-bearing minerals (Shanks et al., 1981). Mixing model 1 in
Figure 12A shows the effects of open-system thermochemical sulfate reduction (TSR) under a range of
temperatures between 300 and 550 °C appropriate for high-temperature seafloor hydrothermal systems
(Shanks, 2001). Fractionation factors for SOs-H2S are temperature dependent and were calculated for

340, from Ohmoto and Lasaga (1982), where T is temperature in Kelvin (Eq. 4):

34 6463 x10°

Eq. 4 In T2+0.56

For mass-dependent SO4-H2S 33S fractionation processes, the temperature dependence of the
fractionation factor *3a can be related by the empirical expression for 330 (Ono et al., 2007; Eq. 5) which

at high temperatures approaches the value 0.515in Eq. 2 .

33, _ mPa) 9460 03117
Tl 72 T + 0.5159

Eq. 5

For each temperature, the sulfide produced from seawater TSR is mixed with the mantle isotope

composition following a simple binary mixing model (Eq. 6) where x refers to 333, 34S.

Eq 6 ﬁixture =fXx Sgeawater + (1 - f) X 8

X
Magmatic

Even if only a negligible contribution of leached magmatic sulfide is assumed, in a seawater-derived
sulfur dominated system, open-system TSR is only able to produce a relatively narrow compositional

range. Fractionation factors increase with decreasing temperature (T=500 to 300 °C,
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340~ +20 to +10 %o), meaning that TSR will produce S with mildly positive values at 550 °C but slightly
negative §**S compositions at low temperatures (Figure 12A). The Hole GT3A dike-gabbro transition
zone samples mostly fall outside these model curves, with the high isotopic values implying that either
a modified fluid, with S-isotopic compositions higher than Cretaceous seawater, was involved and/or

there are reservoir effects that the open-system mixing models do not consider.

Lower crustal gabbro samples plot within a poorly defined region of the model, albeit following a trend
that approaches the slope of lower temperature model curves. The formation of smectite-chlorite
pyrrhotite aggregates should have occurred at temperatures below 200° C (Alt et al., 2010). TSR is
sluggish below 250 °C (Shanks et al., 1981) and the large fractionation factors at these temperatures
(**a=24.2%0) could produce sulfide with 53*S values as low as -6%.. It is therefore possible that the
formation of secondary pyrrhotite sulfide assemblages began close to the limiting temperatures for TSR
with further alteration to smectite-chlorite stratified formation occurring at lower temperatures (<100 °C,
Alt et al., 2010).

5.2.3 Closed-system mixing model for TSR as a function of S concentrations

The amount of sulfur available in the different reservoirs, namely the proportions of S from magmatic
rocks and sulfate in the seawater-modified hydrothermal fluids, provide additional constrains on sulfur
isotope variations. Mixing models 2 and 3 in Figure 12B-D take into account reservoir effects arising from
closed system evolution of the hydrothermal system for different seawater and magmatic sulfur
concentrations, following Rayleigh fractionation formulations adapted by Schwarzenbach et al. (2018).
Based on MgO-S relationships for the dikes and frozen melts of the axial melt lens (Eq. 3), primary
sulfur concentrations in the upper crustal section are estimated between ~850 and ~1450 ppm. The
application of Eq. 3 to the mid-lower crustal rocks is precluded because these are cumulates and do
not represent melts. Based on median and maximum Tsuride €xtracts (Table 1 and Figure 8), a wide
permissible range of S concentrations is indicated: X= 454 ppm, max=2951 ppm for mid-crustal GT2A
cumulates and X=114 ppm, max= 1050 ppm for GT1A lower crustal cumulates. To accommodate for
this wide range, models consider initial magmatic sulfur concentrations of 120 and 1200 ppm.
Temperature was fixed at 350°C which is representative of the base of an upper crustal hydrothermal
system reaction zone near the dike-gabbro transition (Alt, 1995; Hannington, 2014) and would also
overlap with dominant conditions in the mid-lower crustal section. Similar to S isotope compositions,
seawater sulfate concentrations in the Mesozoic were lower than modern-day seawater, with the best
estimates being 2-12 mM (Timofeeff et al., 2006). However, anhydrite displays retrograde solubility and
upon reaching ~150 °C anhydrite should precipitate from seawater-derived fluids that will significantly
deplete the sulfate concentrations of recharge fluids, meaning a much smaller amount of sulfate will
reach the deeper parts of the hydrothermal system (Seyfried Jr and Bischoff, 1981; Sleep, 1991; Teagle
et al., 1998). Accordingly, our models consider a range of sulfate concentrations in the fluid from the
experimental minimum of 0.1 mM (Seyfried Jr and Bischoff, 1981) to 20 mM, which is above the 12 mM

limit proposed for the Cretaceous (Timofeeff et al., 2006).
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Mixing model 2 (Figure 12B-C) shows the sulfide composition that forms from fluids with a starting
isotopic composition equal to Cretaceous seawater at variable sulfate concentrations, represented by
the various colored lines. For high concentrations of magmatic sulfur (1200 ppm), the resulting
hydrothermal sulfide is buffered by the mantle isotopic composition, only reaching §3*S>5%o at high
sulfate concentrations in the fluid (>10 mM). Nevertheless, the heaviest isotopic composition that can
be produced under these model conditions (+11%o) is insufficient to explain many of the heavier
samples from the Hole GT3A dike-gabbro transition zone. For magmatic sulfur concentrations of 120
ppm, the model sulfide compositions are closer to those measured in Hole GT3A if sulfate
concentrations in the fluid are > 5 mM, although the corresponding A*S values are higher than our

samples.

Mixing model 3 (Figure 12D-E) introduces the effects of a hydrothermal fluid with isotopic composition
heavier than that of Cretaceous seawater, based on the residual fluid from model 2 (for details see
Supplementary Material SM2, Fig. 2). The best fit was obtained for a fluid that has undergone 40%
isotopic enrichment relative to Cretaceous seawater during closed system evolution within the
hydrothermal system (§3*S=26.8%o, A%*S=0.091 %o). This model shows a good fit to measured results,
accounting for the heavier isotope compositions recorded in Hole GT3A, even for an initial magmatic S
concentration of 1200 ppm (closer to the estimates for our samples). Furthermore, there is a good
adjustment for scenarios with low initial sulfate concentrations in the hydrothermal fluid which are likely
more realistic with those reaching the roots of the hydrothermal system (Seyfried Jr and Bischoff, 1981;
Sleep, 1991; Teagle et al., 1998).

Models 2 and 3 do not provide additional constrains for sulfide formation in mid-lower crustal rocks. At
lower temperatures all curves would follow to a trend towards lower §**S values at increasing A%S
values as seen in Model 1 (Supplementary Material SM2, Fig. 2). Given the significantly lower degree
of alteration in most mid-low crustal rocks, it is reasonable that most high temperature alteration
proceeded under low fluid/rock ratios and closed system conditions which cannot be resolved by the
models. Mid-lower crustal samples that experienced stronger degrees of alteration under sub-
greenschist conditions, such as faulted intervals or the pyrrhotite-smectite aggregates in non-faulted

rocks, the lower temperature trend in Model 1 remains the best approach.

5.3  Sulfur and base metal mobility during hydrothermal alteration

Figure 13A-D shows selected base metal and MgO concentrations in the crustal section from shipboard
data (Kelemen et al., 2020) plus reference values for Indian MORB (White and Klein, 2014) and the
axial Geotimes volcanic unit, contemporaneous to the crustal accretion stage (Belgrano et al., 2019).
As evidenced by MgO and Ni concentrations, Geotimes lavas are more differentiated than Indian MORB
(e.g. Godard et al., 2006) with samples from Hole GT3A straddling between both. The mid-lower crustal
gabbros (GT1A and GT2A) show a gradual increase in MgO and Ni downhole due to the combined
effects from increasing primitive character of the melts and olivine accumulation. Mg-Ni troughs

correspond to anorthosite and peaks, to ultramafic layers. Zn concentrations increase stepwise from
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the layered (Hole GT1A) to the foliated gabbros (Hole GT2A), following an expectable differentiation
trend, but Hole GT3A dike and gabbros concentrations are below the range for the Geotimes lavas.
The high Cu concentrations in the mid-lower crustal section are consistent with early sulfide saturation
and the common occurrence of chalcopyrite in magmatic and hydrothermal sulfide assemblages.
Contrarily to what is observed for Ni or Zn, strongly altered rocks in the lower crust have vanishingly
low Cu concentrations. The dike-gabbro transition section shows a remarkable Cu distribution, with
concentrations close to MORB at the bottom smoothly decreasing to a minimum at ca. 200 m (< 10
ppm), then slowly increasing towards the top of Hole GT3A. A more subtle similar trend can be observed
for Zn. The behavior of Cu and to a lesser extent Zn, in the upper crust suggest moderate to extensive
metal mobilization during hydrothermal alteration. The depletion of Cu in altered rocks of the mid-lower
crustal section is consistent with similar, but localized processes, that did not affect Zn or Ni to the same
extent. Ni and Zn occur in magmatic sulfides, but also in silicates and oxides. Where alteration did not
lead to the formation of secondary sulfides, as in mid-lower crust most altered domains, once the
primary phase is destroyed, Ni and Zn can be re-incorporated in secondary silicate (serpentine,

amphibole) or magnetite, whereas Cu will be transported out of the system.

5.3.1 A semi-quantitative assessment of Cu, Zn and S mobility in GT3A Hole

An accurate quantification of metal mobilization requires knowledge of chalcophile and immobile
elements in fresh glasses which are currently unavailable for Oman (Jowitt et al., 2012; Patten et al.,
2016). We provide a semi-quantitative assessment of Cu, Zn and S mobilization in the upper crust
frozen melts where metal mobilization was widespread and magmatic accumulation is less likely to
modify primary magmatic concentrations. Estimated magmatic Cu and Zn concentrations were
calculated for each sample from the shipboard dataset based on the regression of metal concentrations
relative to Y measured in Geotimes samples by Belgrano et al. (2019). Because Geotimes lavas are
spilitised and may have experienced base metal mobilization, magmatic values were also computed for
EPR basalts compiled by Gale et al. (2013) for comparison. Results for baseline magmatic
concentrations are quite similar for Zn but lower Cu concentrations are estimated based on Geotimes

lavas (details can be found in Supplementary Materials SM3, Fig.2).

Sulfur measurements are unavailable for Oman shipboard samples therefore we rely on MgO-S
relationships from Alt and Shanks (2011) (Eq. 3) only for samples studied in this work. Although MgO
is mobile during seawater-rock reactions, net fluxes estimated for the oceanic crust dike section are
mainly zero (Staudigel, 2014). Crucially, Hole GT3A alteration is dominated by albitization and
amphibolitization rather than chlorite formation. Hydrothermal amphiboles most commonly record the
Mg# of the primary pyroxenes (Gillis, 1995), unlike chlorite which can effectively accommodate

seawater Mg, but is largely subordinate to amphibole in Hole GT3A.

The final mass balance for Cu, Zn and S is given by Eq. 7 where E'sampe and E'magmatc are the
concentrations of the element measured in the altered sample and estimated for the magmatic protolith,

whereas AEi is the mass variation for that element (Jowitt et al., 2012).
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Mass balance for sulfur was made for all samples studied in this work and results are shown in Figure
13E-F alongside with the isotope values for comparison. Figure 13G-H shows the results for Cu and
Zn mass balance using all shipboard samples: the black and grey data series refer to estimates based
on a magmatic baseline that considers Geotimes and EPR basalts magmatic concentrations,
respectively. Details of the regressions are provided in SM3 and summary statistics are listed in Table
4A. Results based on Geotimes versus those obtained with EPR lavas are identical for Zn but differ for
Cu. Due to the higher magmatic baseline concentrations for EPR lavas, these estimates indicate more
extreme Cu losses, namely in sections where the Geotimes-based estimates would suggest moderate
Cu-gains (Figure 13G). Because currently there are no means to assess how much the Cu magmatic
concentrations in Geotimes lavas might have been lost during spilitization, we will consider these semi-
quantitative results in the forthcoming discussion, as they provide a more conservative estimate of Cu

losses compared to those provided by the EPR baseline.

Indeed, regardless of the regression considered, results suggest that most of the studied upper crustal
section experienced extensive (>80%) to near complete leaching of the magmatic sulfur content. Sulfur
gains due to hydrothermal sulfide deposition are restricted to the Hole GT3A Lower Gabbro Sequence.
Rocks that experienced >80% sulfur loss have enriched %S values of up to +10%., whereas those with

heaviest isotopic composition have sulfur losses up to ~60%.

AEZn estimates are relatively constant, without intervals of major Zn enrichment, as expected
considering the absence of sphalerite and low Zn contents in other sulfide phases. Results confirm that
the uppermost ~12 m of Hole GT3A show the most significant Zn losses (XAEZ1=-68, ¢ = 11), compared
to Cu (XAECu= -22, ¢ = 43). Below this interval, down to ~342 m, Cu losses are extensive to near
complete (XAE®=-88, ¢ = 17) and show no correlation with sulfur mass variations or isotope signatures,
as exemplified by intervals with higher sulfidation comprising isotopically heavy pyrite. These features
suggest that between 12-342 m Cu was substantially leached out of the system. The lowermost portion
of the hole (below 347 m) is characterized by smaller Cu losses or modest gains due to the greater

presence of chalcopyrite.
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873 Figure 13. (A-D) Cu, Zn, Ni and MgO concentrations for OmanDP Gabbro-Transect drillholes using OmanDP shipboard analyses
874 (Kelemen et al., 2020). Reference values: Geotimes V1 lavas (Belgrano et al., 2019; Indian MORB (White and Klein, 2014). (E-
875 H) Sulfur and base metal mass balance for the upper crustal section GT3A showing the §*S Isotope values (E) for comparison;
876 consult section 2.2.1 for details on GT3A lithostratigraphy. (F) Mass balance for sulfur based on data obtained in this work. (G-
877 H) Mass balance for base metals using OmanDP shipboard data from Kelemen et al., 2020 wherein two regressions lines are
878 shown: [1] black line with symbols is based on Geotimes lavas (Belgrano et al., 2019) and [2] grey line (symbols are omitted for

879 clarity) is based on regressions using EPR basalts compiled by Gale et al. (2013), for further details consult SM3.
880

881 5.4 Implications for fluid circulation in the oceanic crust

882 5.4.1 The origin of sulfates in the lower crust

883  Three samples yielded high sulfate fraction extracts (TSsos/TSext 0.41 to 0.96) with a sulfur isotopic

884  composition close to that of Cretaceous seawater, +16.1%o to +17.3%o (Figure 9B). These samples are
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associated with intervals of intense deformation representative of extensively metasomatized gabbro.
As noted above, these deformed rocks show the effects of extensive magmatic sulfide leaching without
hydrothermal sulfide precipitation, apart from traces of pyrite. Some of these intervals likely correspond
to fault infills of the Zihimann-Miiller-fault zone (ZMFZ, Kelemen et al, 2020; Zihimann et al., 2018)
intersected in Hole GT1A. As is common in other ocean-crust studies (e.g. Alt and Anderson, 1991) no
sulfates were observed petrographically or imaged using compositional EDS scans in our wall rock
samples (this study). However, thick anhydrite veins (>10 cm) are present associated with brittle
structures in Holes GT1A and GT2A (Kelemen et al., 2020, Teagle et al., 2019), and therefore it is

reasonable that (sub-) microscopic veinlets are present throughout the fault damage zones.

The presence of sulfates in deep seated oceanic faults documents the inflow of seawater that
precipitated anhydrite upon reaching temperatures of ~150 °C (Kleine et al., 2022; Seyfried Jr and
Bischoff, 1981; Sleep, 1991; Teagle et al., 2019; Teagle et al., 1998). Anhydrite veins were documented
in the Atlantis Massif (Delacour et al., 2008a) to a depth of 700 m in Hole U1309D whereas Hole GT1A
represents a paleodepth >5 km below the seafloor implying deep-seated hydrothermal recharge. Due
to anhydrite’s retrograde solubility, it is commonly assumed that it dissolves back into the oceans during
off-axis circulation within the upper crust (e.g., Alt, 1995; Kleine et al., 2022). The precipitation and
preservation of anhydrite in Holes GT1A and GT2A requires that the lower crust remained at T>150 °C
until the system was effectively closed to seawater interaction. This could occur when high temperature,
upwelling hydrothermal circulation (e.g., as documented in the ZMFZ by Zihimann et al., 2018) wanned
and downwelling fluids enabled anhydrite precipitation or, spatially close recharge-discharge during the
axial stage. Crucially, the occurrence of Cretaceous seawater sulfate in several fault-zones logged in
Holes GT1A and GT2A, attests to the complexity, and likely longevity, of the plumbing system of deep-

seated fault zones.

Other sulfates identified in the mid-lower crustal section represent a residual amount of the extracted
sulfur fraction in that sample (TSso04/TSext0.01 to 0.09) and display isotopic compositions slightly higher
(8%*Sso04 +2.8 %o to +5.7 %o) than the coexisting sulfides (5%*Ssuiide +0.8 %o to +1.2 %o) resulting in Asos-
suiide between +1.8 %o and +5.1 %o.. Abiotic oxidation of sulfide to sulfate under acidic conditions (pH<3)
produces negligible Asos-surice (Taylor et al., 1984) whereas under neutral to alkaline conditions (pH 8-
11), Asos-suriice are -5.2 £ 1.4 (Fry et al., 1988). Only one sulfate sample from Hole GT3A has negative
Asos-suiide Of -1.2 %0. The strong base metal leaching within Hole GT3A requires acidic, black smoker-
like fluids (Seyfried Jr and Bischoff, 1981), therefore this small negative Asos-suride could reflect sulfide
oxidation during the off-axis stage, under the influence of neutral to slightly alkaline seawater. The lower
crustal sulfates showing larger positive Asos-sufide imply that sulfide oxidation occurred under acidic
conditions, likely under the influence of residual hydrothermal fluids at temperatures between ~ 250-

150 °C where TSR was no longer possible,.
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5.4.2 Constrains to hydrothermal circulation in the mid-lower oceanic crust

The secondary sulfide assemblage within mid-lower crust rocks comprises millerite + siegenite-
polydimitess+ pyrite that formed by replacement of magmatic pyrrhotite-pentlandite in reactions such as
Eqg. 8 or Eq. 9. Chalcopyrite remained stable from the magmatic to hydrothermal stage, although
dissolution-reprecipitation cannot be excluded based on its occurrence in veins (Figure 4H). Millerite and
polydymite upper temperature stabilities are bounded at 379 and 356 °C, respectively (Fleet, 2006),

and their formation requires sulfur input to the system, enabling also the formation of pyrite.

Eq.8 FeS (Po) + (FesNis)Ss (Pn) + 7S = 4NiS (Mil) + 6FeS: (Py)

Eq.9 FeS (Po) + 3 (FesNis)Ss (Pn) + 23S = 4NisS4 (Poly) + 16FeS: (Py)

The formation of millerite implies slightly lower sulfur fugacity relative to polydymite-siegentitess and
indicating higher sulfidation conditions in the foliated (Hole GT2A) relative to the layered (Hole GT1A)
gabbros, where millerite is comparatively more abundant (

Figure 5). These mineralogical constraints are consistent with results from isotope modelling that suggest
the studied mid-lower crustal rocks experienced small additions of seawater-derived sulfur via TSR
down to ~300 °C (Figure 12A). For a closed system evolution, the isotopic signature of the most
isotopically modified rock (A%*S=-0.014%.) requires ~10% input of seawater derived sulfur (Figure 12B-
C). In-situ isotope measurements show that metasomatic and hydrothermal sulfides express this
progressive isotopic enrichment relative to magmatic and remobilized sulfide assemblages.

magmatic sulfidles metasomatic & hydrothermal sulfides
8*S~ 0% 84S -3.2% to +2.7%o0

remobilised sulfides
%S -3.8% to +1.3%0

{ =
o
=
=]
[=]
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Figure 14. Schematic evolution of sulfur cycling during magmatic and hydrothermal processes in the lower crustal gabbros (Holes
GT1A and GT2A). Mineral abbreviations as in Fig. 4, brown and green veins or patches denote amphibole and chlorite infilling

vein networks, respectively.

The observations for Hole GT1A and GT2A can be reconciled with the models for lower crustal cooling,
albeit with fundamentally different outcomes on sulfur and metal cycling (Figure 14). Away from intervals
affected by fault zones, sulfide and silicate alteration is not pervasive with many sections preserving
intact magmatic sulfide assemblages that also persist as remobilized remnants along with the
hydrothermal sulfides. In these rocks, textural relationships indicate that the microvein network (Bosch
et al., 2004; Manning et al., 2000) played a crucial role in sulfide and metal remobilization (Figure 4D).
The minor isotopic resetting suggests these rocks experienced redistribution of magmatic sulfur mixed
with very small inputs of seawater-derived sulfur. As implied by mineral paragenesis, this evolution took
place under very low fluid/rock ratios, moderate sulfur fugacities and essentially preserved base metal
abundances as metasomatic and hydrothermal sulfides. Strongly altered domains such as the ZMFZ
(Zihlmann et al., 2018) and the many faulted intervals present in Holes GT1A and GT2A, preserve lower
temperature, sub-greenschist mineral assemblages and the effects of near-complete sulfur and metal
mobilization. Such structures are the expression of crustal scale channeled hydrothermal fluid flow
(Coogan et al., 2006) and the occurrence of sulfate with a Cretaceous seawater sulfate sulfur isotope
signature (Figure 9; Kelemen et al., 2020, Teagle et al., 2019) attests to their open-system behavior,

representing a previously unaccounted sulfur budget introduced in the deep crust.

5.4.3 The dike-gabbro transition and the roots of VMS systems

The upper crustal dike-gabbro transition zone sampled by Hole GT3A experienced near-complete
metamorphic recrystallization giving rise to a low variance, higher fSz sulfide assemblage (pyrite-
chalcopyrite-bornite). Geochemical modelling of isotopic compositions implies ~20 to 80% incorporation
of seawater derived sulfur (Figure 12B-E). To achieve the heavier sulfur isotope compositions (+10 to
+14 %o) it is necessary to invoke a fluid that experienced isotope enrichment relative to seawater due
to closed-system reservoir effects, likely reflecting limited supply of sulfur into the system. Mass balance
indicates extensive S and Cu losses that were either re-precipitated at higher (not drilled) crustal levels

or vented to the seafloor.

The Hole GT3A matrix-forming mineral assemblages formed at low fluid/rock ratios (Kelemen et al,
2020) with the leaching of Cu in most of the Hole (between 12-342 m) requiring temperatures of 350 to
400 °C (Seyfried Jr and Bischoff, 1981) to solubilize Cu into the hydrothermal fluids. The smaller
losses/localized Cu enrichment in the lowermost portion of Hole GT3A (below 347 m) are due to the
formation of hydrothermal chalcopyrite rather than the preservation of magmatic sulfides. These
changes suggest that the hydrothermal fluid may have had decreased capacity to transport Cu. The

Fe/Cu ratio of VMS hydrothermal fluids increases mildly with decreasing pH or increasing chlorine in
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solution, but is mostly dependent on fO2 (Seyfried et al., 1997). The major changes in the Hole GT3A
mineralogy at depth reflect the increase in epidote due to increasing aCa?'/aH* (Kelemen et al., 2020)
and magnetite in the oxide gabbros which could buffer the fluids at higher Fe/Cu and lower fO2, favoring
chalcopyrite precipitation. SIMS measurements show that chalcopyrite has slightly heavier isotope
composition relative to coexisting pyrite and is therefore in isotopic disequilibrium regarding
fractionations to H2S (Ohmoto et al., 1979) or, formed from different fluids/stages. Gradual shifting to
lighter isotope compositions toward the bottom of the Lower Gabbros, along with the less pronounced
sulfur losses in this unit, suggests a sulfate-depleted fluid at this depth. Excluding later effects from late
MSR processes, the rocks in the uppermost section of Hole GT3A (above ~90 m) have §*S values of
+5%o0 to 0%o. These domains were less affected by sulfur and Cu mobilization and did not experience

hydrothermal sulfide deposition, despite displaying similar silicate alteration assemblages.

The lithology-weighted average of isotope compositions for Hole GT3A provides a §**S value of +5.8%o.
This overlaps with the upper range of currently documented VMS deposits in Oman: their 534S values
between -1.1 and +5.4 %, are typical of unsedimented ridges (Jesus et al., 2022). Hole GT3A records
significant sulfur isotope variability, with unusually heavy compositions relative to in-situ and ophiolitic
oceanic crust (Figure 11 and references therein). The dynamic magmatic-hydrothermal evolution
proposed for the dike-gabbro transition (Engelhardt et al., 2022; France et al., 2021) and age

relationships recorded in Hole GT3A may elucidate on the causes for such variations (Figure 15).

(i) The hydrothermal system was initially perched above the axial melt lens (AML) represented
by the Lower Gabbro, leaching the rocks of the Lower Dike Sequence that now record S

values ~+10%o. (Figure 15A).

(i) Once the Lower Gabbro consolidated, the hydrothermal cells could penetrate, progressing
downward into the AML (e.g. Gillis, 1995) and gradually forming isotopically lighter sulfides.
Less comprehensive leaching of S and Cu also lead to increasing abundance in

chalcopyrite. (Figure 15B).

(iii) Relative ages based on cross-cutting relationships for Hole GT3A decrease upwards,
suggesting that the Upper Gabbro Sequence was emplaced (slightly?) later, which could
have triggered a renewed period of hydrothermal activity. Although the three dimensional
geometry of the Upper Gabbro precludes precise assumptions, the localized isotopic
enrichments within £10 m of this Unit (Figure 13) and increasing §%**S toward pyrite grain
borders (Figure 3A), are consistent with efficient focalizing of an isotopically heavy, rapidly
evolving fluid (Figure 15B). The origin of the isotopically enriched fluid (supported by our
geochemical modelling) could lie on recycling of mature hydrothermal fluids from

previous/on-going hydrothermal activity beneath.

(iv) The transition to isotope compositions closer to MORB in the remainder ~90 m of the Upper
Sheeted Dike suggests a fluid buffered by magmatic sulfur outside of the influence of the
underlying Upper Gabbro. Although these values are closer to the compositional range of

Oman VMS deposits or the sheeted dike section in Troodos (Alt, 1994) the relatively abrupt
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transition from fundamentally different isotopic domains and the unknown features of the
thick crustal section above, advise caution in making further extrapolations to the actual

relationship with the sulfur isotope compositions of VMS fluids.
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Figure 15. Schematic evolution of sulfur cycling during magmatic and hydrothermal processes in the dike-gabbro transition (Hole
GT3A). (A) Initial stage where the Lower Gabbro (Axial Melt Lens- AML) is unconsolidated and separated from the overlying
hydrothermal system by an thermal conductive boundary layer. §*S would be bounded by the current composition of the Upper
Dikes. (B) The hydrothermal system penetrates the now consolidated Lower Gabbro while it is extensively intruded by new dikes.
The thin Upper Gabbro is meanwhile emplaced and quickly consolidates above being modified by a possible isotopically enriched
fluid. The diagrams on the right schematically show the isotope, sulfur and base metal loss profiles currently observed.

Despite its unusual isotopic variations, the upper crustal section drilled in Hole GT3A has many of the
ingredients of a deep reaction zone of a VMS hydrothermal system (Hannington, 2014). The degree of

Cu mobilization here estimated (based on Geotimes lavas, see section 5.3.1) is akin to that reported in
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diabase and epidosites of the Troodos ophiolite (Jowitt et al., 2012) although slightly lower for Zn.
Integrated weighted averages for S and metals mobilized in the Hole GT3A Sequence (Table 4) show
that 1 km? of crust can release 2712 kt S, 74.6 kt Cu and 144 kt Zn. These values are within the range
of the amount of metal released in the epidosite areas of Troodos (Jowitt et al., 2012). An average-
sized VMS deposit in Oman hosted in axial Geotimes lavas has ~1 Mt ore @ 2% Cu=20 kt, 0.5% Zn=5kt
and is constituted by ~80% of pyrite equating to 424 kt of sulfur (Cravinho et al., 2023; Gilgen et al.,
2014), much less than the amount of metal estimated to be mobilised in Hole GT3A. A twofold area (2
km?) would be necessary to produce a large 8 Mt deposit like Mandoos (Cravinho et al., 2023). These
results concur with observations by Nehlig et al. (1994), that hydrothermal leaching of metals and S do
not necessarily require the formation of epidosites, which were not documented in Hole GT3A. The
isotope shifts, and the most conservative estimates of metal and S leaching in Hole GT3A samples are
far more extensive than reported in in-situ oceanic crust (Alt et al., 2010; Alt et al., 1996; Gillis, 1995;
Gillis et al., 2001; Heft et al., 2008; Patten et al., 2016), reinforcing the view that ophiolitic crust
experienced larger hydrothermal fluxes than in-situ Mid Ocean Ridges (Bickle and Teagle, 1992; Alt
and Teagle, 2000).

6  CONCLUSIONS

The sheeted dike — gabbro transition sampled by Hole GT3A records wide variations in sulfur isotope
compositions, with unusually high %S values compared to in-situ or ophiolitic crust and an integrated
composition of +5.8%.. The low sulfide-sulfur concentrations and heavy sulfur isotope signatures are
consistent with abiogenic thermochemical sulfate reduction reactions during intense hydrothermal
alteration under greenschist facies conditions. This produced a low-variance and relatively high-fS2
assemblage of pyrite £ chalcopyrite + bornite. The Lower Gabbro Sequence records minor sulfur
additions and progressively lighter isotope signatures with depth which reflect decreasing availability of
seawater derived sulfate in the hydrothermal fluid following the gabbro consolidation. The heaviest
sulfur isotope compositions (534S of +10 to +14 %o) occur within £10 m of the Upper Gabbro and can be
explained by a focalized fluid that experienced isotope enrichment relative to seawater due to closed-
system reservoir effects. The overlying Upper Sheeted Dike Sequence records pronounced 534S values
closer to MORB values (<+5.1%o) due to magmatic sulfur leaching without associated hydrothermal
sulfide deposition. This suggests the influence of a fluid buffered by magmatic S isotopic compositions,
closer to the signatures of Oman VMS deposits. Rare negative §**S values resulted from late addition
of small amounts of biogenic sulfur, likely during post-axial stages. Hole GT3A has all the features of a
deep hydrothermal reaction zone with incorporation of up to ~80% seawater derived sulfate and
extensive S and Cu losses that were either re-precipitated at higher crustal levels or vented to the
seafloor. The amount of metal released in a 1 km?® crustal section like Hole GT3A represents ~3-fold

the typical metal endowment of VMS deposits hosted in the axial lavas of Oman.

The mid to lower crustal section sampled by Holes GT2A and GT1A mostly preserves MORB sulfur
isotope signatures and highly variable sulfur contents. Away from fault zones, a silicate microvein

network enabled sulfide and metal remobilization of magmatic sulfide assemblages along with formation
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of millerite + siegenite-polydimitess + pyrite. These reactions imply small additions of sulfur, expressed
by progressive isotopic enrichment in metasomatic or hydrothermal sulfides relative to magmatic or
remobilized sulfides. The mid-lower crustal section experienced redistribution of magmatic sulfur mixed
with very small inputs of seawater-derived sulfur (< 10%), under very low fluid/rock ratios, moderate

sulfur fugacities that essentially preserved base metal abundances in secondary sulfides.

Strongly altered domains (sub-greenschist facies) related with the many faulted intervals in Holes GT1A
and GT2A, record near complete leaching of magmatic sulfides without the deposition of secondary
sulfides. The near-complete sulfur and metal mobilization and occurrence of sulfate with a Cretaceous
seawater sulfate isotope composition attest to open system behaviour. These structures are the
expression of crustal scale channeled hydrothermal fluid flow and preserve a previously unaccounted

sulfur budget introduced in the deep crust.
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Table 1. Sulfur and sulfate contents and corresponding §%*S isotope composition extracted from bulk

rocks.
Table 2. Multiple sulfur isotope composition extracted from selected bulk rocks.
Table 3. §*S values measured in-situ for selected samples.

Table 4. (A) Summary statistics for mass balance of S (using measurements on samples from this
work), Cu and Zn (using all shipboard samples) in Hole GT3A (see text for details). (B) Estimated mass
of sulfur and metals released during hydrothermal alteration of GT3A rocks using section length
weighted average of results from table A. Samples recording S or metal gains were excluded, it is
assumed the corresponding mobilized mass was redistributed within the crust. Densities for each

sequence from shipboard data (Kelemen et al., 2020).

Supplementary Material

Supplementary Material 1. (SM1) SM1Table 1. Mineral data for studied Sulphide phases.

Supplementary Material 2. (SM2) Supporting data related with sulfur geochemistry.

Supplementary Material 3. (SM3) Supporting material regarding calculation of base metal magmatic

concentrations in Oman lavas.
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AVS CRS Sulfates
Sulfide-S TS Ext 84S Bulk
Ref Lithology S (ppm) ?3/: 3 ('yi:.,) (psm) ?3/:3 +0 | 'S (ppm) ?3/:3 (‘io) pm)  (ppm) SO¥TS “suifide

GT3A-9217.0-12.0  Diabase 6 05 6 6 05
GT3A-2222 4.0-9.0 DIA Diabase 2 05 3 2 4 064 05
GT3A-2623 10.0-15.0 Diabase 60 51  0.001 29 60 89 032 5.1
GT3A-4123 22.0-27.0 Basalt 212 128 0.003 212 212 12.8
GT3A-48Z1 11.0-13.0 Basalt 862 132 0018 862 862 13.2
GT3A-52Z135.0-40.0 Basalt 1060 113  0.001 25 1060 1084 002 113
GT3A-56Z1 59.0-64.0 Ol Gabbro 650 133  0.002 15 650 665 002 133
GT3A-63210060  [2gcPxphyric 462 136  0.017 462 462 13.6
GT3A-65Z136.0-39.0 Basalt 97 88  0.021 8 97 105 007 88
GT3A-73Z4 9.0-14.0 GBOxide Gabbro 4 32 0035 3 4 7 044 32
GT3A-78Z136.0-41.0 Basalt 94 74 0.009 3 94 98 003 7.
GT3A-9124 80.0-85.0 Basalt (Dior Xen) 105 94  0.056 20 105 125 016 94
ngA'g‘m 27.0-32.0 éiiza""fﬁ azit?;:e) 4032 104  0.041 4032 4032 10.4
oo 242127:0:32.0 - (Basall) Diorite) 3 38  0.009 36 36 3.8
GT3A-100Z4 67.0-72.0 Oxide Gabbro 21 54 0052 2 21 23 009 54
GT3A-101Z3 66.0-71.0 Basalt 1545 117 0.008 1545 1545 1.7
GT3A-109Z1 27.0-35.0 Gabbro 37 84 0012 14 37 51 027 84
GT3A-12124 7.0-15.0 8’;%’; Dissiminated 43 86 0027 43 43 8.6
GT3A-12822 62.0-70.0 Oxide Gabbro 714 51 0008 714 714 5.1
O A13021 550830 oside Gabbro 837 102  0.020 837 837 10.2
GT3A-13272 54.0-62.0 Gabbro 8 36 0023 1 8 10 014 36
GT3A-13724 26.0-34.0 Oxide Gabbro 103 59 0007 103 103 5.9
GT3A-139Z15.0-13.0  Oxide Gabbro 1452 52 0.010 19 1452 1472 0.01 5.2
GT3A-14022 22.0-30.0 [29-ePx Phyric 238 50  0.059 3 238 241 0.01 5.0
GT3A-14124 43-51 Egtr:;tr? Epidote 24902 86  0.013 24902 24902 8.6
oo 14224 610690 pigite 1575 7.4 0.023 35 1575 1610 002 7.
GT3A-143Z4 24.0-32.0 Oxide Gabbro 64 40 0037 64 64 40
GT3A-146Z1 57.0-65.0 Oxide Gabbro 11334 61 0.138 76 49 11334 11410 0.01 6.1
GT3A-14624 17.0-21.0 Oxide Gabbro 144 63 0031 37 144 180 020 63
GT3A-155Z3 21.0-29.0 Oxide Gabbro 428 08 0033 12 428 440 003 08
GT2A-2422 31.0-36.0 Ol gabbro 149 14 0.039 5 149 153 0.03 14
GT2A-31Z170.0-75.1 Ol gabbro 151 15 0077 0.4 151 152 0.00 15
GT2A-36Z1 50.5-55.5 Ol gabbro 483 11 0014 20 483 503 0.04 1.1
GT2A-45Z1 35.0-40.0 Ol gabbro 522 10  0.081 11 522 533 0.02 1.0
GT2A-5522 65.0-70.0 Ol gabbro 135 12 0.063 4 135 139 0.03 12
GT2A-58Z115.0-20.0 Ol bearing Gabbro 119 19 0025 18 119 137 013 1.9
GT2A-6723 58.0-68.0 Ol gabbro 2051 18 0018 11 2051 2962  0.00 18
GT2A-7623 61.0-68.0 Troctolite 0.1 65 21 04107 5 65 70 007 24
GT2A-78Z173.0-81.0 Ol gabbro 2 111 2 113 0.99




GT2A-83Z1 74.5-82.0

GT2A-92Z4 11.0-20.0

GT2A-100Z4 14.0-21.0

GT2A-100Z4 44.0-50.0

GT2A-104Z4 31.0-39.0

GT2A-108Z1 34.0-44.0

GT2A-115Z1 40.0-50.0

GT2A-123Z3 54.0-60.0

GT2A-133Z3 26.0-33.0

GT2A-139Z4 82.0-89.0

GT2A-149Z2 17.0-25.0

GT1A-25Z3 5.0-10.0

GT1A-30Z1 55.0-60.0

GT1A-31Z2 20.0-25.0

GT1A-33Z3 45.0-50.0

GT1A-39Z1 3.0-12.0

GT1A-49Z4 69.5-75.5

GT1A-57Z2 42.0-51.0

GT1A-63Z2 59.0-65.5

GT1A-72Z4 33.0-45.0

GT1A-79Z1 50.5-59.5

GT1A-89Z1 18.0-26.0

GT1A-96Z1 15.0-23.0

GT1A-100Z1 45.0-50.0

GT1A-107Z2 55.0-62.0

GT1A-112Z2 69.0-77.0

GT1A-119Z4 12.0-20.0

GT1A-123Z2 0.0-8.0

GT1A-136Z3 29.0-37.0

GT1A-138Z2 56.0-64.0

GT1A-141Z4 0.0-8.0

GT1A-147Z2 49.0-54.0

GT1A-151Z2 45.0-55.0

GT1A-152Z3 0.0-8.0
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Ref Lithology A[,,:Z?]s A[,,:Z::]s 6[5,24013
GT3A-26Z3 10.0-15.0 Diabase 1.001  -0.012 5.31
GT3A-41Z3 22.0-27.0 Basalt 1192 -0.048 -11.37
GT3A-48Z1 11.0-13.0 Basalt 1.069 0.018 13.76
GT3A-56Z1 59.0-64.0 Ol Gabbro 0.931 0.008 13.80
GT3A-6321 0.0-6.0 Plag-cpx phyric Basalt 0.986 0.005 14.27
GT3A-100Z4 67.0-72.0 Oxide Gabbro 0.815  -0.002 5.56
GT3A-101Z3 66.0-71.0 Basalt 0.877 -0.008 10.94
GT3A-12822 62.0-70.0 Oxide Gabbro 0.968 -0.017 5.33
GT3A-14124 43-51 Pyrite Epidote patch 1.069 -0.011 8.91
GT3A-142Z4 61.0-69.0 DIOR Diorite 0.802  -0.028 5.52
GT3A-146Z1 57.0-65.0 Oxide Gabbro 0.673  -0.007 7.44
GT2A-24Z2 31.0-36.0 Ol gabbro 1.239 -0.042 1.22
GT2A-31Z1 70.0-75.1 Ol gabbro 1.091 -0.036 1.42
GT2A-67Z3 58.0-68.0 Ol gabbro 1.022 -0.029 1.79
GT2A-8321 74.5-82.0 Ol-bearing Gabbro 1.520 -0.024 2.28
GT2A-100Z4 44.0-50.0 Ol gabbro 1.059 -0.014 -0.66
GT2A-10821 34.0-44.0 Ol-bearing Gabbronorite 0.857  -0.034 2.20
GT2A-133Z3 26.0-33.0 Ol gabbro 0.907 -0.023 0.78
GT1A-30Z1 55.0-60.0 Ol Gabbro 1.145 -0.023 1.55
GT1A-31Z2 20.0-25.0 Ol bearing Gabbro 1.145 -0.033 0.59
GT1A-49Z4 69.5-75.5 Ol Gabbro 1.143  -0.032 0.60
GT1A-100Z1 45.0-50.0 Ol Gabbro 1.083 -0.019 -0.17
GT1A-123Z2 0.0-8.0 Ol Gabbro 1.119  -0.035 242
GT1A-147Z2 49.0-54.0 Ol bearing Gabbro 0.980 -0.042 2.03
GT1A-152Z3 0.0-8.0 Ol Gabbro 1.044  -0.030 0.76




SAMPLE Mineral Phase s;’;f;‘:e 5.,: os + %o
GT3A-4724 34-39 Basalt Py small bleb 1 (C) Hydro 13.8 0.05
GT3A-4724 34-39 Basalt Py small bleb 1 (B) Hydro 13.9 0.06
GT3A-4724 34-39 Basalt Py small bleb 2 (C) Hydro 13.5 0.05
GT3A-4724 34-39 Basalt Py small bleb 2 (B) Hydro 129 0.06
GT3A-4821 11-13 Basalt Py large bleb (C) Hydro 11.9 0.05
GT3A-4821 11-13 Basalt Py large bleb (T) Hydro 1.1 0.06
GT3A-4821 11-13 Basalt Py large bleb (T) Hydro 12.7 0.08
GT3A-4821 11-13 Basalt Py large bleb (T) Hydro 14.2 0.06
GT3A-4821 11-13 Basalt Py large bleb (B) Hydro 14.4 0.05
GT3A-14022 22-30 Basalt Ccp dusty Hydro 25 0.28
GT3A-14022 22-30 Basalt Ccp dusty Hydro 1.8 0.29
GT3A-14022 22-30 Basalt Py large aggregate (C) Hydro 1.0 0.08
GT3A-14022 22-30 Basalt Py large aggregate (C) Hydro 0.9 0.08
GT3A-14022 22-30 Basalt Py large aggregate (C) Hydro 1.2 0.09
GT3A-14022 22-30 Basalt Py large aggregate (B) Hydro 0.9 0.09
GT3A-14022 22-30 Basalt Py large aggregate (B) Hydro 0.7 0.08
GT3A-140Z2 22-30 Basalt Py grain 2 (C) Hydro -1.0 0.09
GT3A-140Z2 22-30 Basalt Py grain 1 (B) Hydro 1.0 0.08
GT3A-140Z2 22-30 Basalt Py grain 1 (B) Hydro 1.2 0.08
GT3A-141Z4 43-51 Ep Py patch Py-ep patch © Hydro 9.6 0.07
GT3A-141Z4 43-51 Ep Py patch Py-ep patch (traverse) Hydro 10.0 0.07
GT3A-141Z4 43-51 Ep Py patch Py-ep patch (traverse) Hydro 9.3 0.07
GT3A-141Z4 43-51 Ep Py patch Py-ep patch (traverse) Hydro 9.5 0.07
GT3A-141Z4 43-51 Ep Py patch Py-ep patch (traverse) Hydro 9.9 2.00
GT3A-141Z4 43-51 Ep Py patch Py-ep patch (B) Hydro 7.3 0.07
GT3A-142Z3 4-10 Diorite Ccp grain1 (C) Hydro 131 0.09
GT3A-142Z3 4-10 Diorite Ccp grain 1 (B) Hydro 2.4 0.10
GT3A-142Z3 4-10 Diorite Ccp grain2 (C) Hydro 7.4 0.11
GT3A-142Z3 4-10 Diorite Ccp grain 2 (B) Hydro 7.2 0.11
GT3A-142Z3 4-10 Diorite Ccp small Hydro 3.1 0.15
GT3A-142Z3 4-10 Diorite Ccp small Hydro 6.4 0.08
GT3A-142Z3 4-10 Diorite Ccp small Hydro 7.4 0.08
GT3A-142Z3 4-10 Diorite Py 1 (C) Hydro 3.1 0.08
GT3A-142Z3 4-10 Diorite Py 1 (B) Hydro 5.4 0.10
GT3A-142Z3 4-10 Diorite Py 2 (C) Hydro 1.6 0.08
GT3A-142Z3 4-10 Diorite Py 2 (B) Hydro 1.3 0.09
GT3A-14621 57-65 Oxide Gb Py non cataclastic (C) Hydro 6.2 0.06
GT3A-14621 57-66 Oxide Gb Py non cataclastic (B) Hydro 5.9 0.06
GT3A-14621 57-67 Oxide Gb Py Cataclastic © Hydro 6.0 0.06
GT3A-14621 57-68 Oxide Gb Py Cataclastic (B) Hydro 6.4 0.07
GT2A-3121 68-70 Ol Gabbro Ccp Vein Hydro 0.7 0.11
GT2A-3121 68-70 Ol Gabbro Ccp Vein Hydro 0.4 0.11
GT2A-3121 68-70 Ol Gabbro Ccp Vein Hydro 1.5 0.12
GT2A-3621 59-62 Ol Gabbro Ccp (C) Remob 1.2 0.10
GT2A-3621 59-62 Ol Gabbro Ccp (B) Remob 1.3 0.10
GT2A-3621 59-62 Ol Gabbro Py after Po (C) Metas -1.5 0.33
GT2A-36Z1 59-62 Ol Gabbro Py after Po (B) Metas -0.8 0.27
GT2A-3621 59-62 Ol Gabbro Ccp in altered OI (C) Remob 0.8 0.12
GT2A-36Z1 59-62 Ol Gabbro Py bulky (C) Hydro 0.1 0.11



GT2A-36Z1 59-62 Ol Gabbro Py bulky (B) Hydro 1.6 0.13
GT2A-100Z4 14-17 Ol Gabbro Ccp intergranular veinlet (C) Hydro 0.6 0.19
GT2A-100Z4 14-17 Ol Gabbro Ccp intergranular veinlet (B) Hydro 0.4 0.16
GT2A-100Z4 14-17 Ol Gabbro Ccp PI fractures Hydro 1.0 0.16
GT2A-100Z4 14-17 Ol Gabbro Ccp Ol fractures Hydro 0.7 0.19
GT2A-100Z4 14-17 Ol Gabbro Ccp intergranular veinlet Hydro -1.8 0.23
GT2A-100Z4 14-17 Ol Gabbro Ccp Ol fractures Hydro 1.6 0.16
GT2A-100Z4 14-17 Ol Gabbro Py dendritic aggregate (C) Hydro 2.7 0.11
GT2A-100Z4 14-17 Ol Gabbro Py dendritic aggregate (B) Hydro 1.6 0.06
GT2A-100Z4 14-17 Ol Gabbro Ccp in hydrous silicates (C) Meta 1.1 0.19
GT2A-100Z4 14-17 Ol Gabbro Ccp in hydrous silicates (B) Meta 1.8 0.15
GT2A-13924 77-80 Ol Gabbro Ccp Remob 0.0 0.13
GT2A-13924 77-80 Ol Gabbro Po (C) Remob -1.8 0.15
GT2A-13924 77-80 Ol Gabbro Po (B) Remob -3.8 0.19
GT2A-139Z4 77-80 Ol Gabbro g‘l’ Smec-Chl aggregate after 1, 3.8 0.17
GT2A-139Z4 77-80 Ol Gabbro g‘l’ Smec-Chl aggregate after 1, 3.8 0.12
GT2A-139Z4 77-80 Ol Gabbro g‘l’ Smec-Chl aggregate after 5.0 0.24
GT2A-13924 77-80 Ol Gabbro Py dendritic aggregate (C) Hydro -1.0 0.12
GT2A-13924 77-80 Ol Gabbro Py dendritic aggregate (C) Hydro -1.2 0.11
GT1A-30Z1 55-60 Ol Gabbro Ccp in Polydimite aggregate Meta 1.4 0.07
GT1A-3021 55-60 Ol Gabbro Ccp Remob 0.5 0.10
GT1A-30Z1 55-60 Ol Gabbro Ccp Remob 0.6 0.09
GT1A-30Z1 55-60 Ol Gabbro Ccp in altered Ol Hydro 2.0 0.09
GT1A-3021 55-60 Ol Gabbro Ccp in altered Ol Hydro 1.0 0.13
GTIA31222025 g 0o Cep in Po Mag 0.9 0.06
GTIA31Z22025 Q0029 Cep in Po Mag 0.9 0.06
GT1A-3122 20-25 g;tt’)te)fging Cep in Po Mag 0.9 0.07
GTIA31222025 g 0o Cep in Po Mag 1.0 0.08
GT1A-3122 20-25 g;i’fjj”g Cep in Po Mag 0.8 0.07
GTIA31222025 g 0o Po Mag 0.0 0.10
GT1A-3122 20-25 8;?;?:”9 Po Mag 0.1 0.10
GTIA31Z22025 Q0029 Po Mag 0.0 0.09
GT1A-3122 20-25 8;?;?:”9 Po Mag 1.0 0.79
GT1A-3122 20-25 8;?;?:”9 g‘l’ Smec-Chl aggregate after 1, 0.5 0.10
GT1A-31Z2 20-25 8;?)‘;?:”9 E)(I) Smec-Chl aggregate after Hydro 0.8 0.10
GT1A-72Z4 33-45 Ol Gabbro Ccp platelets in Cpx Hydro 0.5 0.10
GT1A-72Z4 33-45 Ol Gabbro Ccp platelets in Cpx Hydro 25 0.07
GT1A-72Z4 33-45 Ol Gabbro Ccp platelets in Cpx Hydro -1.2 0.13
GT1A-72Z4 33-45 Ol Gabbro Ccp platelets in Cpx Hydro -0.4 0.22
GT1A-10021 45-50 Ol Gabbro Ccp Remob -0.3 0.13
GT1A-100Z1 45-50 Ol Gabbro Ccp Remob -0.4 0.12
GT1A-10021 45-50 Ol Gabbro Py after Po Meta -3.2 0.29
GT1A-10021 45-50 Ol Gabbro Py in Ccp aggregagte Metas 0.4 0.07
GT1A-10021 45-50 Ol Gabbro Py in Ccp aggregagte Metas 0.0 0.08
GT1A-10021 45-50 Ol Gabbro Ccp in Py aggregate Remob 0.1 0.11
GT1A-11222 69-77 Ol Gabbro Co-pyrite (C) Hydro 2.2 0.08



GT1A-112Z2 69-77 Ol Gabbro Co-pyrite (B) Hydro 2.6 0.08
GT1A-112Z2 69-77 Ol Gabbro Co-pyrite (B) Hydro 1.5 0.08
GT1A-152Z3 0-8 Ol Gabbro Ccp in Po anomalous Mag -0.8 0.12
GT1A-152Z3 0-8 Ol Gabbro Po bleb Mag -2.2 0.10
GT1A-152Z3 0-8 Ol Gabbro Po bleb Mag -4.3 0.14




Table 1. Modal estimates for studied samples including: 1) total alteration % by weighted average
of each magmatic mineral species; 2) relative modes for remobilized, magmatic and hydrothermal sulfide;

and 3) relative modes for sulfide species as reported in section 4.1.

Table 2. EPMA data for sulfide assemblages: a) Ni phases; b) Cu-phases; c) Fe-phases.
Classifications for sulfides are as described in text: Magmatic-Mag, Remobilized-Rem, Hydrothermal s.I.-
Hydro, Metasomatic. Met. Each mineral phase there are two calculations: Atoms % and the structural
formula based on the number of ions in one unit cell. The description column provides a brief description
of the mineral association where relevant, the associated sulfides usually are referenced in parenthesis.

Mineral Abbreviations: Po-Pyrrhotite, Pen-Pentlandite, Ccp- Chalcopyrite, Py- Pyrite, Thio-
Thiospinels (Poly- Polydimite, Sieg- Siegenite), Mil-Milerite, Bn- Bornite, Sph-Sphalerite,

Other Abbreviations: Alt- Altered, V-Veins

Classification- refers to the paragenetic mode of occurrence of the sulfides: Mag- Magmatic,

Remob- Remobilized, Met-Metasomatic, Hydro- Hydrothermal.
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SM2 Fig 1. Relationship between TSmeasurea in the Eltra furnace and TSextracted Obtained by gravimetry.
The TSmeasured data were used to determine the amount of sample to process for sulfur sequential

extractions and to assess if the extractions were complete.
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SM2 Fig 2. Evolving §*S (A) and A33S (B) isotope composition of the residual SO4 in the fluid and pooled
(or accumulated) H2S product as a function of fduring TSR followed by mixing in closed system conditions
(Rayleigh distillation). The example is from mixing Model 2 (Figure 12B) with magmatic sulfur
concentrations of 120 ppm and T=350° C. The model was computed for variable sulfate concentrations
in the hydrothermal fluid (20, 10, 5, 1 and 0.1 mMol) corresponding to the different coloured curves. The
isotope composition of the residual sulfate in the fluid does not vary with initial sulfate concentration in
the fluid because is depends exclusively of the SO4-H2S fractionation factor and f, therefore, only one

curve is shown for all considered initial concentrations. The final H2S product in turn, will depend on how



much sulfate is available in the fluid to convert to H2S and in the magmatic rocks which are fixed (compare
with mixing Model 2 for 1200 ppm magmatic sulfur in the main text). Therefore, for low initial SO4
concentrations in the fluid, the H2S product is dominated by the composition of magmatic sulfide, whereas
at higher SO4 concentrations more seawater-reduced sulfide will mix with magmatic sulfide producing
heavier compositions for the final product. Also shown is both diagrams is the point (f=0.6) where the

composition of an enriched fluid used in Model 3 was obtained.



SM3 Table 1. Relation between [A] GT3A sulfur geochemistry data from this work (TSextacted, 53*Ssuifide)
and [B] MgO and Fe203rqt, concentrations measured by the OmanDP shipboard party (Kelemen et al.,
2020) indicating the lithological units(*) that were matched when measurements were not available in the
same interval. Columns [C] show the estimated magmatic concentrations for GT3A rocks on the basis of
Equation 3 (Alt & Shanks 2011) for S-#Mg relationships.

[C]S
[A] this work [B] shipboard data estimates, this
. Matched
. Litholog | . work
Sample Lithology Depth ic Unit __ Lithologic Fez0,
unit* 534S TSext MgO Tot #Mg Smag AS

m CCD %o ppm wt%  wt% ppm %
GT3A-9Z-1 7.0-12.0 Diabase 6.6 3 3 -0.53 6 6.4 11.96 0.52 1318 -100
GT3A-2272 4.0-9.0 DB Diabase 23.7 12 8+13 0.53 4 6.9 9.83 0.58 1193  -100
GT3A-26Z-3 10.0-15.0 Diabase 35.1 13 13 512 89 7.9 9.52 0.62 1106 -92
GT3A-41Z-3 22.0-27.0 Basalt 78.0 21 16 + 28 -12.75 212 8.1 8.51 0.65 1044  -80
GT3A-48Z-1 11.0-13.0 Basalt 97.4 64-1 63 + 67 13.21 862 8.6 9.64 0.64 1077  -20
GT3A-52Z-1 35.0-40.0 Basalt 107.2 76 67 +73 11.30 1084 8.3 9.42 0.63 1085 0O
GT3A-56Z-1 59.0-64.0 Ol Gabbro 119.2 75-2 104 13.25 665 7.8 6.26 0.71 929 -28
GT3A-63Z-1 0.0-6.0 Pl-cpx phyric Bas 136.9 86 86 13.63 462 8.6 5.62 0.75 851 -46
GT3A-65Z1 36.0-39.0 Basalt 143.4 97 97 8.79 105 7.6 8.00 0.65 1046  -90
GT3A-73Z4 9.0-14.0 GB Oxide Gabbro 169.9 118 90 3.25 7 7.9 6.95 0.69 966 -99
GT3A-78Z-1 36.0-41.0 Basalt 182.6 130 130 712 98 7.3 10.15 0.59 1175  -92
GT3A-91Z-4 80.0-85.0 Basalt (Dior Xen) 2244 157-2 152+160 9.37 125 4.9 9.49 0.49 1366  -91
GT3A-94Z1 27.0-32.0 BS Basalt 230.5 166 166 10.38 4032 2.5 9.88 0.34 1677 140
GT3A-94Z1 27.0-32.0 DI Diorite 230.5 166 185 3.78 36 3.0 6.20 0.49 1368 -97
GT3A-100Z-4 67.0-72.0 Oxide Gabbro 2514 176 176 5.35 23 4.4 11.58 0.43 1490 -98
GT3A-1012-3 66.0-71.0 Basalt 253.5 176-1 177 11.67 1545 8.5 9.85 0.63 1092 41
GT3A-10921 27.0-35.0 Gabbro 265.7 178 178 8.37 51 7.5 7.69 0.66 1037 -95
GT3A-12124 7.0-15.0 Oxd Diss. Gabbro [303.8 207 216 8.57 43 3.9 13.37 0.36 1620 -97
GT3A-1282-2 62.0-70.0 Oxide Gabbro 3211 216 216 512 714 3.9 10.20 0.43 1483  -52
GT3A-130Z1 55.0-63.0 GB  Oxide Gabbro 326.5 216 216 10.17 837 6.0 15.10 0.44 1466  -43
GT3A-132Z2 54.0-62.0 Gabbro 333.2 218 218 3.56 10 8.3 9.02 0.65 1063 -99
GT3A-1372-4 26.0-34.0 Oxide Gabbro 350.0 226 235 5.89 103 4.7 15.56 0.37 1605 -94
GT3A-139Z1 5.0-13.0 Oxide Gabbro 353.4 226 235 5.23 1472 4.7 15.56 0.37 1605 -8
GT3A-14022 22.0-30.0 Pl-cpx phyric Bas | 357.6 229 229 4.99 241 6.3 10.30 0.55 1251  -81
GT3A-14124 43-51 Gabbro Py-patch 362.2 232 235+ 237 |8.63 24902 6.2 13.70 0.48 1396 1684
GT3A-142Z-4 61.0-69.0 DR Diorite 365.4 234 234 7.09 1610 2.2 9.49 0.32 1716 -6
GT3A-14324 24.0-32.0 Oxide Gabbro 368.2 235 235 4.04 64 41 14.34 0.36 1624  -96
GT3A-1462-1 57.0-65.0 Oxide Gabbro 375.3 235 235 6.14 11410 5.2 16.78 0.38 1586 619
GT3A-14624 17.0-21.0 Oxide Gabbro 377.4 235 235 6.33 180 4.7 15.56 0.37 1605 -89
GT3A-155273 21.0-29.0 Oxide Gabbro 397.8 237 237 0.78 440 8.1 9.48 0.63 1099  -60
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SM3 Fig 1. Geotimes lavas from Belgrano et al (2019) Y vs Cu (A) and Y vs Zn (B) and respective
regression equations used to estimate Cu and Zn magmatic concentrations for GT3A Hole lavas. Also
shown are the EPR basalts from Gale et al. (2013) and the global MORB database of Jenner & O’Neill
(2012) filtered out of anomalous, plume-influenced segments with high Cu.

Zn behaves incompatibly and increases along with Y in the melt throughout differentiation. EPR
lavas experienced an evolution path at slightly lower Zn at given Y content relative to other MORB:s.
Geotimes unit follows this trend closely, therefore calculations of AZn based on Geotimes (black line in
Fig 13H) or EPR concentrations (grey line in Fig 13H) are identical.

Cu has a compatible behaviour and EPR basalts lie within the upper limit of global MORB whereas
Geotimes lavas display much lower Cu contents, which should reflect at least in part, the overprint of low-
temperature spilitic alteration. As such, we present ACu calculated based on the Geotimes lavas (main,
black data series in Figure13G) and on the EPR dataset (Fig 13G greyline). It should be noted that: a)
the Geotimes-based calculations represent a more conservative estimate of Cu losses, and therefore are
used in the final metal estimates of mobilized metals per volume of crust; b) the extent of hydrothermal
alteration in Hole GT3A is such, that the extremely low Cu (and S) concentrations for most of the section
invariably result in Cu losses > 90%, therefore the main differences lie in the lower gabbro where higher
Cu concentrations may represent smaller losses, or minor gains.

Jenner, F. E., & O'Neill, H. S. C. (2012). Analysis of 60 elements in 616 ocean floor basaltic glasses.
Geochemistry, Geophysics, Geosystems, 13(2).



