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Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due
to their excellent isolation from the environment. These instruments can be utilized in searches for
ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition
to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magnetic
fields, ferromagnets are also sensitive to the effective magnetic field (or “axion wind”) produced by an
axion-electron coupling. While the dynamics of a levitated ferromagnet in response to a dc magnetic
field have been well studied, all of these couplings would produce ac fields. In this work, we study the
response of a ferromagnet to an applied ac magnetic field and use these results to project their sensitivity
to axion and dark-photon dark matter. We pay special attention to the direction of motion induced by an
applied ac field, in particular, whether it precesses around the applied field (similar to an electron spin)
or librates in the plane of the field (similar to a compass needle). We show that existing levitated
ferromagnet setups can already have comparable sensitivity to an axion-electron coupling as
comagnetometer or torsion balance experiments. In addition, future setups can become sensitive
probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling, for
ultralight dark matter masses mDM ≲ feV.

DOI: 10.1103/PhysRevD.110.115029

I. INTRODUCTION

Levitated ferromagnets can serve as excellent instru-
ments for precision measurements of torques and magnetic
fields [1–5], which can be applied to tests of fundamental
physics and searches for new physics [6,7]. Due to the
intrinsic spin of its polarized electrons, a ferromagnet may

act as a gyroscope in the limit where the spin contribution
S ¼ Nℏ=2 to its total angular momentum dominates
over the contribution from its rotational angular momentum
L ¼ Iω [1].1 In such a case, the ferromagnet will precess
around an applied dc magnetic field, similar to a single
electron spin. In the opposite limit S ≪ L, the dominant
motion of the ferromagnet will be to librate in the plane of
the applied field, similar to a compass needle.
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1Generically, this is a tensor relation. For simplicity, here we
assume the moment of inertia tensor I is diagonal; see also
discussion following Eq. (7).
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In order to realize the potential of this system, the
ferromagnet must be adequately isolated from its environ-
ment. One of the most promising ways is to levitate the
ferromagnet over a superconducting plane [3–6,8]. In such
a scenario, the ferromagnet is repelled by an “image”
magnetic dipole located below the plane. The presence of
this superconducting plane can significantly affect the
dynamics of the ferromagnet, slowing down its precession
frequency.2 Alternatively, it has been proposed to place the
ferromagnet in free fall [7], in order to avoid the effects of
any trapping potential.

One particularly interesting application of levitated
ferromagnets is the search for ultralight dark matter
candidates, including axion and axionlike dark matter
(henceforth, simply axion DM) and dark-photon dark
matter (DPDM). The former can address the strong-CP
problem [9–11], while both can exhibit the correct relic
abundance [12–16] and generically arise in new physics
theories of many different origins, see, e.g., a recent review
[17]. In the ultralight regime, these candidates behave as
classical fields, which oscillate near their Compton
frequencies [18,19]. Axion DM could potentially couple
to electron spins, causing them to precess, as if it were an ac
magnetic field [20–23]. As a ferromagnet is composed of
many polarized electrons, axion DM can impart a collective
oscillating torque on the whole ferromagnet. In addition,
axion DM and DPDM can both couple to photons,
generating a physical ac magnetic field, which could also
impart a torque on a ferromagnet.
While the response of a ferromagnet to an applied dc

magnetic field has been well studied, both in free fall and
above a superconductor [1,6], the response to a driving
ac magnetic field has not been adequately addressed
thus far.
The purpose of this work is to study the dynamics of

a ferromagnet in response to an ac magnetic field and
to apply these dynamics to the case of ultralight DM.

TABLE I. Parameters choices for various setups. Here, we show three sets of parameters: one representative of an
existing levitated setup [5] (but with an additional readout mode; see text), a future levitated setup, and a space-based
free fall setup with parameters comparable to LISA Pathfinder. Each section of the table includes ferromagnet
parameters, system parameters, readout parameters, and resulting quantities defined in Secs. II and III A. In the first
two cases, the polar trapping Vθθ can be computed via Eq. (4), while in the third case, it is the same as Vϕϕ. In the
future setup, both modes satisfy Eq. (60), so the readout is appropriately coupled. In the existing setup, both modes
are undercoupled. In the free fall setup, they satisfy Eq. (60), but the sensitivity would benefit at higher frequencies
from an even larger coupling. In all three cases, the system exhibits “trapped” behavior (i.e., vθθ; vϕϕ ≫ ωI).

Parameter Existing Future Freefall

Ferromagnet radius R 20 μm 2 mm 2 cm
Ferromagnet magnetization M 7 × 105 A=m
Ferromagnet density ρ 7400 kg=m3

Temperature T 4 K 50 mK 300 K
Dissipation rate γ 10−2 Hz 2 × 10−6 Hz 10−10 Hz
Azimuthal trapping Vϕϕ 10−14 J 10−3Vθθ 7 × 10−9 J

Energy resolution κθ ¼ κϕ 1000ℏ ℏ ℏ
Polar coupling η̃θ 1.1 × 10−7

ffiffi
J

p
3.7 × 10−3

ffiffi
J

p
10−5

ffiffi
J

p
Azimuthal coupling η̃ϕ 5 × 10−9

ffiffi
J

p
3.7 × 10−3

ffiffi
J

p
10−5

ffiffi
J

p

η̃ðresÞθ ¼ η̃ðresÞϕ
9.1 × 10−7

ffiffi
J

p
4.6 × 10−3

ffiffi
J

p
2.5

ffiffi
J

p

η̃ðbroadÞθ
6.4 × 10−7

ffiffi
J

p
3.6 × 10−3

ffiffi
J

p
10−5

ffiffi
J

p

η̃ðbroadÞϕ
10−7

ffiffi
J

p
1.1 × 10−4

ffiffi
J

p
10−5

ffiffi
J

p

ωI 2π × 0.53 Hz 2π × 5.3 × 10−5 Hz 2π × 5.3 × 10−7 Hz
vθθ 2π × 4.9 × 105 Hz 2π × 1.6 × 107 Hz 2π × 0.12 Hz
vϕϕ 2π × 1.2 × 104 Hz 2π × 1.6 × 104 Hz 2π × 0.12 Hz

2As discussed in Ref. [6], a ferromagnet levitated above a
superconducting surface by the Meissner effect possesses cylin-
drical symmetry and thus conserves the angular momentum
component along the direction ẑ perpedicular to the super-
conducting surface. If such a levitated ferromagnet experiences
a torque that would cause it to precess, in order to conserve
angular momentum along z, the ferromagnet must tilt such that its
spin component Sz, counteracts the rotational angular momentum
component Lz induced by the precession. This in turn tilts the
image dipole in such a way as to suppress the torque experienced
by the ferromagnet, thereby suppressing the precession fre-
quency. This effect can suppress the precession frequency by
orders of magnitude for ferromagnets with characteristic sizes
above ∼0.1 microns.
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In Sec. II, we derive the response of the system to an applied
acmagnetic field, which is qualitatively different from the dc
case. This is because, in the dc case, the precession frequency
is givenby theLarmor frequency,which is proportional to the
applied magnetic field. Meanwhile, wewill see that in the ac
case, the frequency of the ferromagnet dynamics is deter-
mined by the frequency of the ac field (the Compton
frequency, in the case of ultralight DM). Therefore, whether
the ferromagnet precesses as a gyroscope or librates as a
compass needle will be frequency dependent. Moreover, as
mentioned above, the presence of a levitation/trapping
mechanism can alter the dynamics of the system. We will
determine in what contexts the ferromagnet undergoes
precession vs libration.
In Sec. III, we compute the sensitivity of a ferromagnet

to an applied ac magnetic field. We review the relevant
noise sources and utilize the results of Sec. II to determine
the magnetic-field sensitivity of a ferromagnet setup,
accounting for motion in both angular directions. We
propose three cases of interest: one representative of an
existing levitated setup [5], a future levitated setup, and a
future free fall setup. The parameter choices for these
setups are shown in Table I and their magnetic-field
sensitivities are computed in Fig. 5.
In Sec. IV, we project the sensitivities of these setups to

ultralight DM. We review the physics of axion DM coupled
to electrons, kinetically mixed DPDM, and axion DM
coupled to photons. In each case, we compute the effective/
physical ac magnetic field generated by the DM candidate,
and show the sensitivities of the three setups of interest to
the DM candidate in Fig. 6.
In Sec. V, we conclude. We make all the code used in this

work publicly available on Github [24].

II. LEVITATED FERROMAGNETS

In this section, we compute the response of a levitated
ferromagnet to an applied ac magnetic field. Importantly,
we account for the effect of any trapping potential on the
ferromagnet’s response and determine when libration
versus precession occurs. We begin by introducing some
examples of trapping potentials. Then, we derive the
equations of motion for the dynamics of the ferromagnet
in this trap. Finally, we show how these dynamics are
modified in the presence of a driving field.

A. Trapping potential

Generically, in order for the ferromagnet to remain
levitated, it must be trapped in both the translational and
angular directions. In other words, it must sit at the
minimum ðx0; n̂0Þ of some potential Vðx; n̂Þ. Here x
denotes the position of the ferromagnet, while n̂ ¼ ðθ;ϕÞ
describes its orientation (using spherical coordinates with
θ ¼ 0 the positive z axis). In this work, we will consider the
magnetic moment of the ferromagnet to be locked to its
spatial orientation so that n̂ more specifically denotes the

direction of its magnetic moment.3 If the ferromagnet
consists of N polarized electron spins, then its magnetic
moment is given by

μ ¼ −γeS≡ −γe ·
Nℏ
2

n̂; ð1Þ

where γe ¼ geμB=ℏ is the electron gyromagnetic ratio.
(ge is the electron g factor and μB ¼ eℏ=2me is the Bohr
magneton.)
There are various ways in which the ferromagnet can be

trapped in a potential. Perhaps the simplest is to levitate the
ferromagnet in some static magnetic field BðxÞ. This gives
the trapping potential

Vðx; n̂Þ ¼ −μ · BðxÞ þmgz; ð2Þ

where the latter termarises due to gravity (m is themass of the
ferromagnet, and g is the gravitational acceleration onEarth).
In such a potential, the ferromagnet will always prefer to
align with the local magnetic field, i.e., n̂0 ¼ B̂ðx0Þ.4 Note
that in this case, the ferromagnet will, in general, be trapped
in both angular directions, i.e., ∂2θV; ∂

2
ϕVjðx0;n̂0Þ > 0.5

Alternatively, the ferromagnet may be levitated above a
superconducting plane. The potential in such a setup can be
computed via the method of images; that is, if the
ferromagnet lies a distance z above the superconducting
plane, then one computes the potential it feels due to a
magnetic moment located a distance z below the super-
conducting plane [4,6]. This gives a potential6

3In general, the individual electron spins Si within the
ferromagnet are not locked to its orientation n̂. The atomic
lattice of the ferromagnet exhibits some interaction with each
electron spin, which relaxes the spins to align with the lattice.
This relaxation occurs at a typical rate Γ ∼ GHz [25]. In this
work, we only consider dynamics at much lower frequencies than
this (see Ref. [21] for an example at higher frequencies, where
such spin excitations occur), and so it is safe to treat the
macroscopic magnetic moment of the ferromagnet to be locked
to its orientation. We do note that coupling of individual spin
fluctuations to external magnetic fields can act as an additional
noise source, though this noise is typically small [26].

4By Earnshaw’s theorem, a static magnetic field alone cannot
stably levitate a magnetic dipole [27]. The equilibrium x0 can be
made stable through an active feedback loop, a method known as
electromagnetic levitation [28]. In this work, we focus primarily
on the angular motion of the ferromagnet, and so do not worry
about the stability of the translational modes.

5We note that this spherical coordinate system becomes
pathological when n̂0 ¼ ẑ because ϕ is not well defined at this
point. In the sections that follow, we will consider only the
angular dependence of Vðn̂Þ, in which case we will be free to
rotate our coordinate system so that n̂0 ≠ ẑ.

6Note the additional factor of 1
2
in the first term of Eq. (3).

Without this factor, this term would describe the work required to
bring two physical dipoles from infinity to a distance 2z apart.
Because we have only one physical dipole, only half the work is
required to bring it to a distance 2z from its image.
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Vðx; n̂Þ ¼ −
1

2
μ ·

μ0
4π

3ðx̃ · μ̃Þx̃ − x̃2μ̃
x̃5

þmgz; ð3Þ

¼ μ0μ
2

64πz3
ð1þ cos2θÞ þmgz; ð4Þ

where x̃ ¼ 2zẑ is the distance between the ferromagnet and
its image, and μ̃ ¼ ðπ − θ;ϕÞ is the orientation of the image
magnetic moment. It is clear in this case that the ferro-
magnet is trapped in the θ direction, with its minimum at
θ0 ¼ π=2 (parallel to the superconducting plane), but it is
free to rotate in the ϕ direction. In a physical system, this
exact degeneracy in the ϕ direction will be broken, but
nevertheless, the trapping in the ϕ direction can be
significantly weaker than the trapping in the θ direction,
i.e., ∂2θVjðx0;n̂0Þ ≫ ∂

2
ϕVjðx0;n̂0Þ.

B. Ferromagnet dynamics

Now let us derive the equations of motion for the
ferromagnet. We will first consider only the trapping
potential without the presence of any driving ac magnetic
field. In the remainder of this work, we will also ignore
translational motion, and only focus on the angular
dependence of Vðn̂Þ.7 Let the total angular momentum
of the ferromagnet be given by J ¼ Sþ L, which consists
of both an intrinsic spin contribution S and an orbital
angular momentum contribution L. The potential exerts
a torque

τ ¼ ∂J
∂t

¼ −n̂ ×∇n̂V; ð5Þ

≡ − n̂ ×

�
∂V
∂θ

θ̂þ 1

sin θ
∂V
∂ϕ

ϕ̂

�
ð6Þ

on the ferromagnet. Additionally, the orientation of the
ferromagnet rotates around its orbital angular momentum

∂n̂
∂t

¼ Ω × n̂ ¼ ðI−1LÞ × n̂: ð7Þ

Generically, the moment of inertia I may be an anisotropic
tensor. However, for simplicity, in this work, we will take I
to be diagonal, e.g., in the case of a spherical ferromagnet.
Note that because S ∝ n̂, then we may replace L in this

expression with J. If we make this replacement, then
these two equations of motion govern the dynamics
of n̂ and J. Let us normalize all of our quantities by the
intrinsic spin

J ¼ Nℏ
2

j; ð8Þ

L ¼ Nℏ
2

l; ð9Þ

ωI ¼
Nℏ
2I

; ð10Þ

V ¼ Nℏ
2

v; ð11Þ

so that we may rewrite the equations of motion Eqs. (5)
and (7) as

∂j
∂t

¼ −n̂ ×∇n̂v; ð12Þ

∂n̂
∂t

¼ ωIðj × n̂Þ: ð13Þ

The frequency ωI is known as the Einstein–de Haas
frequency [29].
Let us decompose these equations of motion in terms

of the unit vectors n̂, θ̂, and ϕ̂ in spherical coordinates.
The time derivatives of these coordinates are related by

∂n̂
∂t

¼ ∂θ

∂t
θ̂þ sin θ

∂ϕ

∂t
ϕ̂; ð14Þ

∂θ̂
∂t

¼ −
∂θ

∂t
n̂þ cos θ

∂ϕ

∂t
ϕ̂; ð15Þ

∂ϕ̂
∂t

¼ − sin θ
∂ϕ

∂t
n̂ − cos θ

∂ϕ

∂t
θ̂; ð16Þ

and the total angular momentum j can be decomposed
as

j ¼ jnn̂þ jθθ̂þ jϕϕ̂: ð17Þ

Note that Eqs. (12) and (13) imply

∂jn
∂t

¼ j ·
∂n̂
∂t

þ ∂j
∂t

· n̂ ¼ 0; ð18Þ

so that jn is a constant of motion. If the ferromagnet is not
spinning around its magnetic moment axis, then the orbital
angular momentum l has no component along n̂, and so

7The translational modes of the system will not be directly
excited by a uniform magnetic field but instead can only be
excited by a magnetic field gradient. The DM models of interest
and the frequency regime considered in this work produce
magnetic-field signals that are relatively uniform, so in this
work, we will neglect any such gradients. In principle, the
translational modes may also exhibit some coupling to the
angular modes, e.g., due to inhomogeneities in the trap. This
cross-coupling is small in existing experiments [3,4].
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jn ¼ 1. In the interest of maintaining generality, we will
leave our results in terms of jn. As we will see in Sec. II C,
the limit jn → 0 will correspond to the “compass” behavior
where the ferromagnet’s angular momentum is dominated
by its orbital angular momentum, while the limit jn → ∞
will correspond to the “electron spin” behavior where it is
dominated by its intrinsic angular momentum.
In terms of our spherical-coordinate variables, Eqs. (12)

and (13) become

∂jθ
∂t

− jϕ cos θ
∂ϕ

∂t
þ jn

∂θ

∂t
¼ 1

sin θ
∂v
∂ϕ

; ð19Þ

∂jϕ
∂t

þ jθ cos θ
∂ϕ

∂t
þ jn sin θ

∂ϕ

∂t
¼ −

∂v
∂θ

; ð20Þ

∂θ

∂t
¼ ωIjϕ; ð21Þ

sin θ
∂ϕ

∂t
¼ −ωIjθ: ð22Þ

These can then be combined to give

∂
2θ

∂t2
−
sin 2θ
2

�
∂ϕ

∂t

�
2

þ jnωI sin θ
∂ϕ

∂t
þ ωI

∂v
∂θ

¼ 0; ð23Þ

sin2θ
∂
2ϕ

∂t2
þ sin 2θ

∂ϕ

∂t
∂θ

∂t
− jnωI sin θ

∂θ

∂t
þ ωI

∂v
∂ϕ

¼ 0:

ð24Þ

Finally, let us suppose that the motion of the ferromagnet is
small,8 so that we may perturb Eqs. (23) and (24) around
the minimum n̂0 ¼ ðθ0;ϕ0Þ of v. Namely, let us write
θ ¼ θ0 þ δθ and ϕ ¼ ϕ0 þ δϕ. Then to first order, these
equations become

�
∂
2
t

�
1 0

0 sin2θ0

�
þ jnωI sin θ0∂t

�
0 1

−1 0

�

þ ωI

�
vθθ vθϕ
vϕθ vϕϕ

���
δθ

δϕ

�
¼ 0; ð25Þ

where vαβ ¼ ∂α∂βvjðθ0;ϕ0Þ.

C. Response to ac magnetic field

Equation (25) encodes all the important dynamics of the
ferromagnet. To understand the structure of this equation,
let us consider the effect of an ac magnetic field

BðtÞ ¼ B0 cosωt on the ferromagnet.9 This magnetic field
will have the same effect as a (time-dependent) potential of
the form of the first term in Eq. (2). If we write

B0 ¼ B0b̂ ¼ B0ðbnn̂0 þ bθθ̂0 þ bϕϕ̂0Þ ð26Þ

in terms of the spherical-coordinate unit vectors at ðθ0;ϕ0Þ,
then this corresponds to a normalized potential

vBðθ0 þ δθ;ϕ0 þ δϕ; tÞ ¼ ωL cosωtðn̂ · b̂Þ; ð27Þ

≈ωL cosωtðbn þ bθδθ þ bϕ sin θ0δϕÞ; ð28Þ

where ωL ¼ γeB0. Plugging vB into Eqs. (23) and (24) as
an additional contribution to v, we find that it acts as an
ac driving force for the system (because ∂θvB; ∂ϕvB ≠ 0).
In particular, it will appear on the right-hand side of
Eq. (25) as

−ωIωL cosωt

�
bθ

bϕ sin θ0

�
: ð29Þ

We can then readily interpret the structure of Eq. (25). The
first row represents how the system responds to an applied
magnetic field in the θ direction, while the second row
represents how the system responds to an applied magnetic
field in the ϕ direction. Meanwhile, the first column
represents motion in the θ direction, and the second column
represents motion in the ϕ direction. This tells us that the
diagonal elements of Eq. (25) indicate libration, while the
off-diagonal elements indicate precession.
Let us now analyze the behavior of this system in various

cases. Without loss of generality, we may orient our
coordinates so that θ0 ¼ π

2
, ϕ0 ¼ 0, and vθϕ ¼ vϕθ ¼ 0.

Moreover, let us complexify the ac magnetic field
BðtÞ ¼ B0e−iωt. The homogeneous response of δθ and
δϕ will then be

�
δθ

δϕ

�
¼ −

NℏγeB0

2
· χðωÞ

�
bθ
bϕ

�
; ð30Þ

8In the weakly coupled limit, the dark matter signal we
consider only generates a small, oscillating perturbation to the
system.

9In this subsection, we will assume that the ac magnetic
field is linearly polarized. This is because we will be interested
in distinguishing whether the ferromagnet librates or pre-
cesses, and such a notion is only well defined if the direction
of the field is fixed. This will be the case for the magnetic-field
signal from an axion-photon coupling Baγ (see Sec. IV C),
since its direction remains fixed and only its phase oscillates.
This will, however, not be the case for an axion wind or
DPDM signal (see Secs. IVA and IV B), as the components of
the axion gradient or dark photon may have different phases
[e.g., see Eq. (74)], and so the resulting magnetic-field signal
may be elliptically polarized.
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FIG. 1. Absolute values of the eigenvalues (left) and elements (right) of χðωÞ in the “partially trapped” case. In these plots, we set
vθθ ¼ 2π × 104 Hz, ωI ¼ 2π × 1 Hz, vϕϕ ¼ 2π × 10−4 Hz, and jn ¼ 1. On the left, the blue line denotes the larger eigenvalue, which
predominantly determines the sensitivity of the system, while the orange line denotes the smaller eigenvalue. Note that the larger
eigenvalue exhibits resonances at ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ωIvϕϕ
p and ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ωIvθθ
p

. On the right, the blue, orange, and red lines represent Ijχθθj, Ijχθϕj,
and Ijχϕϕj, respectively. Note that jχθϕj > jχθθj for jnωI ≫ ω ≫ vϕϕ=jn (green shaded region), indicating that an ac magnetic field in
the θ direction can induce precession in this frequency range.

FIG. 2. Same as Fig. 1, but in the “gyroscope” case. In these plots, we set ωI ¼ 2π × 104 Hz, vθθ ¼ 2π × 1 Hz, vϕϕ ¼ 2π × 10−4 Hz,
and jn ¼ 1. Note that the resonances in the left plot are now at ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffivθθvϕϕ

p and ω ¼ ωI , and that the blue line exhibits the scaling
behavior indicated in Eq. (32). On the right, note that jχθϕj > jχθθj; jχϕϕj for jnωI ≫ ω ≫ vθθ=jn (darker green shaded region),
indicating that there is precession in both directions in this frequency range.
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where the mechanical susceptibility χðωÞ is given by

χðωÞ−1 ¼ I

�
−ω2

�
1 0

0 1

�
− ijnωIω

�
0 1

−1 0

�

þ ωI

�
vθθ 0

0 vϕϕ

��
: ð31Þ

We will consider a few properties of the system based on
the characteristics of χðωÞ. First, we will be interested in the
resonances of the system, which occur at the frequencies
where χðωÞ−1 becomes singular. Second, we will determine
whether libration or precession dominates the motion,
based on whether the off-diagonal components of χ are
larger than its diagonal components.10 Finally, we will
consider the behavior of the sensitivity as a function of
frequency ω. As shown in Appendix A, the peak sensitivity
of the system is primarily determined by the eigenvalue of χ
with the largest absolute value λmaxðωÞ. We consider three
cases of interest for this system (without loss of generality,
we take vθθ ≫ vϕϕ in all three cases, but their roles will
simply be interchanged if the hierarchy is flipped):
(1) Trapped (vθθ=jn ≫ vϕϕ=jn ≫ jnωI): This will be

the case, for instance, when the ferromagnet is
trapped by a strong magnetic field, as in Eq. (2).
At all frequencies, the second term in Eq. (31) can be
neglected, and so the dominant motion is libration.
The system exhibits two resonances at ω ≈ ffiffiffiffiffiffiffiffiffiffiffi

ωIvθθ
p

and ω ≈ ffiffiffiffiffiffiffiffiffiffiffiffi
ωIvϕϕ

p . For ω ≪ ffiffiffiffiffiffiffiffiffiffiffiffi
ωIvϕϕ

p , the response
of the system is flat as a function of ω, that is
λmaxðωÞ≈ðIωIvϕϕÞ−1. Meanwhile for ω ≫ ffiffiffiffiffiffiffiffiffiffiffiffi

ωIvϕϕ
p ,

it decays as jλmaxðωÞj ≈ I−1ω−2 (except near the
resonance ω ≈ ffiffiffiffiffiffiffiffiffiffiffi

ωIvθθ
p

).
(2) Partially trapped (vθθ=jn ≫ jnωI ≫ vϕϕ=jn): This

will be the case, for instance, when the ferromagnet
is trapped above a superconductor, as in Eq. (4) (and
the degeneracy in the ϕ direction is only weakly
broken). The resonant frequencies are again ω ≈ffiffiffiffiffiffiffiffiffiffiffi
ωIvθθ

p
and ω ≈ ffiffiffiffiffiffiffiffiffiffiffiffi

ωIvϕϕ
p . The off-diagonal compo-

nents of Eq. (31) are always subdominant to the θθ
component, however, for jnωI ≫ ω ≫ vϕϕ=jn, they
are larger than the ϕϕ component. This implies that
in this frequency range, an ac magnetic field in the ϕ
direction will result in libration, while one in the θ
direction will result in precession. The behavior of
λmax is the same as in the trapped case. We note that
in the frequency range where precession can occur,
the eigenvector associated with λmax is closely
aligned with the ϕ direction. Therefore even though
precession can be achieved, it is not the dominant
behavior of the system.

(3) Gyroscope (jnωI ≫ vθθ=jn ≫ vϕϕ=jn): This will be
the case, for instance, when the ferromagnet is in
(near) free fall. The resonant frequencies are nowω ≈
ωI andω ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffivθθvϕϕ

p .When jnωI ≫ ω ≫ vθθ=jn, the
off-diagonal components dominate, and there is
precession in both directions. When vθθ=jn ≫ ω ≫
vϕϕ=jn, there will be precession in one direction and
libration in the other. For all other frequencies, there
will only be libration. The response of such a system
as a function of frequency is given by

jλmaxðωÞj ≈

8>>>>><
>>>>>:

ðIωIvϕϕÞ−1; ω ≪ ffiffiffiffiffiffiffiffiffiffiffiffiffiffivθθvϕϕ
p =jn

vθθ=ðj2nIωIω
2Þ; vθθ=jn ≫ ω ≫ ffiffiffiffiffiffiffiffiffiffiffiffiffiffivθθvϕϕ

p =jn

ðIjnωIωÞ−1; jnωI ≫ ω ≫ vθθ=jn
I−1ω−2; ω ≫ jnωI

: ð32Þ

In Figs. 1 and 2, we show the behavior of χ in the
“partially trapped” and “gyroscope” cases, respectively.
The left plots show the behavior of the eigenvalues λmax,
λmin of χðωÞ. The right plots show the elements of χðωÞ.

We show in green the regions where precession is possible,
which occurs when the off-diagonal elements are larger
than the diagonal elements.

III. MAGNETIC-FIELD SENSITIVITY

In this section, we compute the sensitivity of various
ferromagnet setups to an applied ac magnetic field. First,
we review the dominant noise sources present in such a
setup, accounting for noise in both angular directions using
the formalism developed in Sec. II. Then, we consider the
physical constraints of a levitated ferromagnet setup in
order to determine optimal parameters for a future levitated
setup. These parameters are shown in Table I, along with
parameters representative of an existing setup and ones for

10One may wonder whether this definition of libration/pre-
cession is coordinate dependent. Because we have assumed BðtÞ
is linearly polarized (see footnote), then bθ and bϕ are real, and so
we should restrict our coordinate transformations to be orthogo-
nal (as opposed to unitary). Given any 2 × 2 Hermitian matrix, an
orthogonal transformation can always be performed so that the
off-diagonal components become purely imaginary. This coor-
dinate choice minimizes the size of the off-diagonal components,
and libration/precession can always be defined in these coor-
dinates. The matrix in Eq. (31) is conveniently already in these
coordinates, so we require no transformation.
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a space-based free fall setup. Finally, we review other
potential noise sources.

A. Dominant noise sources

Now, we characterize the relevant noise sources in our
system. The noise analysis presented in this subsection
parallels the analysis in Ref. [30], but we account for the
motion of the ferromagnet in both angular directions.
To this end, we generalize many of the scalar quantities
introduced in Ref. [30] to 2 × 2 matrices [as we did for the
mechanical susceptibility χðωÞ in Eq. (31)].
We consider three primary noise sources: thermal,

imprecision, and backaction noise. Let us first begin with
thermal noise. The thermal torque noise acting on the
ferromagnet is given by

SthττðωÞ ¼
 
Sthττ;θθðωÞ Sthττ;θϕðωÞ
Sthττ;ϕθðωÞ Sthττ;ϕϕðωÞ

!
; ð33Þ

¼ 4kBIγT

�
1 0

0 1

�
; ð34Þ

where Sττ;αβ represents the cross-correlation between
torque noise in the α and β directions, and γ is the
dissipation rate of the system.11 An applied magnetic field
induces a torque

τ ¼ −μn̂ × B; ð35Þ

where μ ¼ Nℏγe=2 is the magnetic moment of the ferro-
magnet, or equivalently

�
τθ

τϕ

�
¼ μ

�
0 1

−1 0

��
Bθ

Bϕ

�
: ð36Þ

Then the torque noise in Eq. (34) can be translated into a
magnetic-field noise

SthBBðωÞ ¼
1

μ2

�
0 −1
1 0

�
SthττðωÞ

�
0 1

−1 0

�
; ð37Þ

¼ 4kBIγT
μ2

�
0 −1
1 0

��
1 0

0 1

��
0 1

−1 0

�
; ð38Þ

¼ 4kBIγT
μ2

�
1 0

0 1

�
: ð39Þ

Imprecision and backaction are noise sources related to
the readout scheme. For concreteness, here wewill consider
a readout scenario that utilizes two SQUIDs (to read the

two angular modes of the ferromagnet). Each SQUID
exhibits both a flux noise Sφφ;j and current noise SJJ;j
(for j ¼ 1; 2).12 They can be combined to define the energy
resolution κj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sφφ;jSJJ;j

p
of the SQUID, which is

bounded below by the uncertainty relation κj ≥ ℏ [31].
Currents in the SQUIDs lead to backaction torques on the
ferromagnet. These can be defined by a coupling matrix

�
τθ

τϕ

�
¼ τ ¼ −n̂ × ηJ; ð40Þ

¼
�

0 1

−1 0

��
ηθ1 ηθ2

ηϕ1 ηϕ2

��
J1
J2

�
: ð41Þ

(Note that if we wish to reduce to the case of a single-
SQUID readout, this can be done by taking ηθ2; ηϕ2 → 0.)
Likewise, fluxes in the SQUIDs correspond to angular
displacements n̂ ¼ ðη−1ÞTφ. We can then express the
current and flux noise as torque and angular uncertainties,
respectively,

Sbackττ ¼
�

0 1

−1 0

�
ηSJJηT

�
0 −1
1 0

�
; ð42Þ

¼
�

0 1

−1 0

�
η

�
SJJ;1 0

0 SJJ;2

�
ηT
�
0 −1
1 0

�
; ð43Þ

Simp
n̂ n̂ ¼ ðη−1ÞTSφφη−1; ð44Þ

¼ ðη−1ÞT
�
Sφφ;1 0

0 Sφφ;2

�
η−1: ð45Þ

Much like the thermal noise, it is straightforward to
translate the backaction noise into a magnetic-field noise

SbackBB ðωÞ ¼ 1

μ2
ηSJJηT: ð46Þ

The imprecision noise, on the other hand, requires the use
of χðωÞ, as in Eq. (30), in order to translate it into a
magnetic-field noise13

Simp
BB ðωÞ ¼

1

μ2
χðωÞ−1ðη−1ÞTSφφη−1χðωÞ−1: ð47Þ

11We assume that the dissipation rate is the same for both
modes, e.g., in the case of damping due to gas collisions. For a
more general case, one can extend this formalism directly.

12In this work, we neglect any correlations SφJ between flux
and current noise.

13One may consider adding a damping term (corresponding to
the quality factor of the system) to the definition of χðωÞ in
Eq. (31), in order to regulate the behavior of this expression near
the resonances of χðωÞ. Below, we will consider parameters such
that imprecision noise never dominates on resonance, so it is
reasonable to exclude this damping term.

SAARIK KALIA et al. PHYS. REV. D 110, 115029 (2024)

115029-8



The total magnetic-field noise will be given by

StotBBðωÞ ¼ SthBBðωÞ þ Simp
BB ðωÞ þ SbackBB ðωÞ: ð48Þ

As the imprecision and backaction noise scale in opposite
ways with the coupling η, there exists a trade-off between
them, and so we should consider our choice of η carefully.
Let us begin by making a slight change of variables to
Eqs. (46) and (47); that is, let us define

κ ¼ S1=2JJ S1=2φφ ¼
�
κ1 0

0 κ2

�
; ð49Þ

η̃ ¼ ηS1=4JJ S−1=4φφ ; ð50Þ

so that we may write

SbackBB ðωÞ ¼ 1

μ2
η̃κη̃T; ð51Þ

Simp
BB ðωÞ ¼

1

μ2
χðωÞ−1ðη̃−1ÞTκη̃−1χðωÞ−1: ð52Þ

As we can see from Figs. 1 and 2, the response of the
system is maximized for frequencies at/below the lowest
resonance, and so this is where we will get the best
sensitivity. As such, we will choose η to maximize our
sensitivity in this region. Note that in this frequency range,
the last term in Eq. (31) always dominates (regardless of
what parameter regime we are in). Therefore, χðωÞ is
always nearly diagonal. Since κ is also diagonal, it will be
advantageous for us to take η̃ diagonal as well. In that
case, we find14

SbackBB ðωÞ ¼ 1

μ2

�
κ1η̃

2
1 0

0 κ2η̃
2
2

�
; ð53Þ

Simp
BB ðωÞ ≈

1

μ2

�
κ1η̃

−2
1 V2

θθ 0

0 κ2η̃
−2
2 V2

ϕϕ

�
; ð54Þ

where the approximation in Eq. (54) holds forω ≤ ffiffiffiffiffiffiffiffiffiffiffiffi
ωIvϕϕ

p ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffivθθvϕϕ
p , and we have defined Vαβ ¼ ∂α∂βVjðθ0;ϕ0Þ and set

η̃ ¼
�
η̃θ 0

0 η̃ϕ

�
: ð55Þ

Once we have chosen η̃ to be diagonal, we see that the
choice of coupling along each axis is independent. As
shown in Appendix A, the total sensitivity of our system
ultimately depends on the sensitivity in both directions, but
it will be predominantly determined by the sensitivity along
the more sensitive axis. Let us first address how to choose
the coupling for a single axis. There are two cases one
should consider. First, if the thermal noise is larger than the
geometric mean of the backaction and low-frequency
imprecision noise, that is,

SthBB;αα ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Simp
BB;ααðω ¼ 0Þ · SbackBB;αα

q
; ð56Þ

or equivalently

η̃ðresÞα ≥ η̃ðbroadÞα ; ð57Þ

where

η̃ðresÞα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBIγT

κj

s
; ð58Þ

η̃ðbroadÞα ¼
ffiffiffiffiffiffiffiffi
Vαα

p
; ð59Þ

then both imprecision and backaction noise can be made
subdominant to thermal noise at frequencies at/below the
resonance of this mode. This is achieved so long as

η̃ðresÞα ≥ η̃α ≥ ½η̃ðbroadÞα �2=η̃ðresÞα : ð60Þ

The closer η̃ is to the upper bound in Eq. (60), the better the
sensitivity will be at higher frequencies (as imprecision
noise always dominates at sufficiently high frequencies),
but if the primary goal is to maximize sensitivity at/below
the resonance, then any coupling in this range will suffice.
If Eq. (57) is not met, then one of imprecision or

backaction noise will always dominate at low frequencies.
There are then two possible approaches. If we wish to
maximize the sensitivity on resonance, then we should set
the backaction noise equal to thermal noise, i.e., the choice
of η̃ in Eq. (58). If, instead, we wish to optimize for
sensitivity at low frequencies, then we should set back-
action noise equal to low-frequency imprecision noise,
i.e., the choice of η̃ in Eq. (59). In this way, an individual
mode can be optimized for either resonant or broadband
detection. If two SQUIDs are utilized to track both modes,
then we can make this choice for each mode separately.

14In many cases, Eq. (54) is not the correct expression for Simp
BB ,

as we have neglected the contributions from the off-diagonal
elements of χðωÞ−1. Nevertheless, Eq. (54) possesses the correct
eigenvalues and eigenvectors for Simp

BB , which are the only
properties we require. This is because Eq. (54) has the correct
value for Simp

BB;θθ, which is much larger than the other elements.
This ensures that κ1η̃−21 V2

θθ=μ
2 is indeed an eigenvalue of Simp

BB ,
with corresponding eigenvector approximately equal to θ̂. The
other eigenvector is fixed by orthogonality, and the other
eigenvalue is fixed by the determinant of Simp

BB [which depends
negligibly on the off-diagonal elements of χðωÞ−1].
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B. Parameter estimation

In this section, we estimate the parameters that can be
realistically achieved in a future levitation setup. In
particular, we need estimations for the ferromagnet param-
eters, the trapping potential V, the temperature T, and
dissipation rate γ that determine the thermal noise, and
finally, the energy resolution κ and coupling η̃ of the
readout.
For concreteness, we consider a setup with a permanent

hard ferromagnetic sphere with magnetization M ¼ Bs=μ0
(with Bs saturation remanence field), density ρ, and
radius R, levitated via the Meissner effect above a type-I
superconducting plane [3,4], i.e., with a potential of the
form in Eq. (4). We consider the plane to be made of lead,
which has a critical field Bc ¼ 80 mT. The equilibrium
levitation height can be expressed as [3]

z0 ¼
�
μ0M2R3

16ρg

�1
4

: ð61Þ

A typical neodymium-based rare earth alloy used in
current experiments features M ≈ 7 × 105 A=m and
ρ ≈ 7400 kg=m3. For these parameters, the maximum field
produced by the magnet at the superconducting surface

Bsurf ¼
2Bs

3

�
R
z0

�
3

ð62Þ

increases with R and approaches the critical field for
R ≈ 35 mm. This is an ultimate upper limit on R for pure
Meissner levitation above lead. A safe choice for a future
experiment is R ¼ 2 mm, which implies a field at the
surface of ∼9 mT, one order of magnitude below the
critical field. Levitating a larger magnet would require
using a type-II superconductor [32], in which case model-
ing would be more complex, and additional dissipation
from vortex motion would arise.
The magnetic confinement in the polar direction Vθθ can

be determined via Eq. (4). The azimuthal confinement Vϕϕ

has been recently shown to be tunable in a wide range
between 10−5 and 10−1 times Vθθ by applying a bias
field [5]. For concreteness we set Vϕϕ ¼ 10−3Vθθ. For the
thermal noise we set γ ¼ 2 × 10−6 Hz and T ¼ 50 mK.
Such values appear within reach and have been approached
by a recent experiment [33], where γ ≲ 10−5 Hz was
measured at the operating temperature T ¼ 30 mK. In that
experiment, an excess noise of a factor 100 larger than the
thermal noise was attributed to insufficient vibrational
isolation. We also remark that even lower dissipation
γ ≈ 4 × 10−7 Hz has been measured with a nanoparticle
in ultrahigh vacuum levitated within a Paul trap [34].
For the readout, we consider two circular superconduct-

ing pickup coils. In accordance with the choice of setting η̃
to be diagonal [see Eq. (55)], we optimally orient the coils

to sense rotations along the θ and ϕ directions, with number
of loops Np;α and radius Rp;α. This arrangement is sketched
in Fig. 3. Each pickup coil, with inductance Lp, is
connected to the input coil of a dc SQUID. The latter
has inductance LS, the input coil has inductance Li, and
they have mutual inductance Mi ¼ k

ffiffiffiffiffiffiffiffiffiffi
LiLS

p
, with k ≤ 1 a

geometrical coupling factor.
A dc SQUID can be modeled as a linear detector

of magnetic flux, with imprecision flux noise SφSφS
and

circulating current backaction noise SJSJS . These can
alternatively be expressed as flux/current energy resolution
κφ ¼ SφSφS

=LS and κJ ¼ SJSJSLS (so that κ2 ¼ κφκJ).
15 The

advantage of this normalization is that the quantum limit for
each noise source is given by κφ; κJ ≥ ℏ.
In a pick-up coil configuration, the flux effectively

coupled into the SQUID is φS ¼ ðMi=LÞφ, where
φ ¼ ηθθ or φ ¼ ηϕϕ is the flux coupled into the pickup
coil by a rotation angle θ or ϕ of the ferromagnet. Here,
L ¼ Li þ Lp is the total inductance of the superconducting
flux transformer loop. Likewise, a circulating current in the
SQUID JS translates into a current J ¼ ðMi=LÞJS in the
pickup coil. This is shown in Fig. 4. The flux transformer
loop thus behaves as an equivalent SQUID with inductance
L, imprecision noise Sφφ ¼ SφSφS

=ðMi=LÞ2 and backaction
noise SJJ ¼ SJSJSðMi=LÞ2. The energy product κ ¼ SJJSφφ
is invariant, while η̃ ¼ ðMi=LÞη̃S is rescaled.

FIG. 3. Scheme of the circular pickup coils considered for the
estimation of coupling. The spherical magnet at equilibrium
height z0 has its magnetic dipole oriented along n̂. Rotations
along the spherical angles θ and ϕ are detected with maximum
efficiency by the horizontal coil (radius Rp;θ) and vertical coil
(radius Rp;ϕ) respectively.

15We note that in the literature, these energy resolutions are
sometimes defined as ϵφ ¼ κφ=2 and ϵJ ¼ κJ=2. Here, we omit
the factor of 2 to agree with our definition of κ.
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The coupling η between the rotating ferromagnet and
pickup coil for the optimal geometrical configuration
shown in Fig. 3 is given by

η ¼ Npμ0μ

2Rp
: ð63Þ

If one wishes to increase the coupling η̃, then one should
maximize the product η ·Mi=L. This is most easily done by
modifying the pickup coil, specifically by varying the
number of loops. A pickup coil made of Np circular
superconducting loops of radius R with wire radius a
has inductance

Lp ¼ N2
pμ0Rp

�
log

�
8Rp

ap

�
− 2

�
: ð64Þ

As a function of Np, the product η ·Mi=L will be
maximized when Lp ¼ Li. (Alternatively, if one wishes
to reduce η̃, the number of coils can be decreased/
increased.)
In Table I, we show sample parameters for three different

setups: ones representative of an existing levitated setup
[5], ones for a future levitated setup, and ones for a space-
based free fall setup. Their corresponding magnetic field
sensitivities SBBðfÞ are shown in Fig. 5. The future setup
takes the ferromagnet (R,M, and ρ) and system parameters
(T, γ, and Vϕϕ) described above. For the readout, we take

Rp ¼ 8 mm, ap ¼ 100 μm, LS ¼ 80 pH, Li ¼ 1.8 μH,
and k ¼ 0.85. With these values, the optimal number of
loops (to achieve Lp ≈ Li) is Np ¼ 6. We also assume a
quantum-limited readout κ ¼ κφ ¼ κJ ¼ ℏ. With these
parameter choices, we see that the system exhibits the
“trapped” behavior described in Sec. II C response
because vθθ; vϕϕ ≫ ωI . (We set jn ¼ 1 in all cases.)
Moreover, both modes satisfy Eq. (60), so the readout
is appropriately coupled.
The existing case uses ferromagnet and system param-

eters comparable to the setup in Ref. [5]. For the readout of
the θ mode, we take the same parameters as in the future
setup, but with a smaller pickup loop Rp ¼ 1 mm and
worse energy resolution κ ¼ κφ ¼ κJ ¼ 1000ℏ. With this
pickup loop radius, the optimal number of coils isNp ¼ 25.
For the readout of the ϕ mode, the setup in Fig. 3 is not
achievable since the equilibrium point of the ferromagnet is
so close to the superconducting plane z0 ≈ 250 μm.
Instead, different geometries may be realized. For instance,
in Ref. [5], the ϕ mode is read out using a figure-eight-
shaped coil lying in a plane above the ferromagnet. Such
a geometry will naturally exhibit a weaker coupling
than the θ readout. In Table I, we simply fix a coupling
η̃ϕ ¼ 5 × 10−9

ffiffi
J

p
comparable to that of Ref. [5], without

focusing on any particular geometric realization. In this
case, neither mode satisfies Eq. (60), so both modes are
undercoupled.
Finally, the free fall case considers a space-based experi-

ment with parameters comparable to the LISA Pathfinder
mission [35,36]. We take a ferromagnet of similar dimen-
sions to theLISA testmass (but we take a neodymium sphere
rather than a gold cube).We consider the system tobe at room
temperatureT ¼ 300 Kwith a dissipation rate γ ¼ 10−10 Hz
that produces a thermal noise slightly better than LISA
Pathfinder’s angular sensitivity [35]. The ferromagnet will
experience someweak trapping from stray dcmagnetic fields
inside the apparatus. The Sun’s magnetic field near LISA’s
position averages ∼5 nT, which can be reduced by a few
orders of magnitude with moderate magnetic shielding. On
the other hand, the shielding itself will exhibit some residual
magnetization, which will likely dominate the stray fields
inside the apparatus. We assume a residual magnetic field
of ∼300 pT [37],16 resulting in a trapping potential
V ∼ 7 × 10−9 J. Finally, a SQUID readout will be difficult
to implement effectively at room temperature. Instead, LISA
utilizes an interferometric readout with positional impreci-
sion noise

ffiffiffiffiffiffiffi
Sxx

p
∼ 3 × 10−14 m=

ffiffiffiffiffiffi
Hz

p
[36], which translates

to an angular imprecision
ffiffiffiffiffiffiffiffi
Sn̂ n̂

p
∼ 10−12 rad=

ffiffiffiffiffiffi
Hz

p
.

FIG. 4. A SQUID connected through a superconducting pickup
coil to the ferromagnet motion [subfigure (a)] is equivalent to a
SQUID directly connected to the ferromagnet [subfigure (b)],
with the backward scaling J=JS ¼ Mi=L and the forward scaling
φS=φ ¼ Mi=L. Here, Mi is the mutual inductance between the
input coil and SQUID, and L ¼ Li þ Lp. The effective coupling
η to the equivalent SQUID coincides with the coupling to the
pickup coil. The imprecision and backaction noises Sϕϕ and SJJ
of the equivalent SQUID are rescaled by ðMi=LÞ−2 and ðMi=LÞ2
with respect to the real SQUID noises. As a result, κ is the same
for the effective and real SQUIDs, while η̃ is rescaled by Mi=L.

16We note that it may be possible to reduce the stray fields in
the apparatus further [38,39]. Ultimately, trapping by stray fields
does not limit our final sensitivity. This will only affect the
imprecision noise at low frequencies, but as can be seen from the
bottom plot of Fig. 5, we are dominated by thermal noise at low
frequencies.
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Assuming a quantum-limited readout κ ¼ ℏ, this corre-
sponds to a coupling η̃ ∼ 10−5 J. We see that both modes
satisfy Eq. (60), so that the low-frequency sensitivity is
dominated by thermal noise. However, since η̃ is far from

the upper bound of Eq. (60), the high-frequency sensi-
tivity could be improved if the coupling can be increased
further. Also note that despite the fact that the experiment
is in free fall, this case still exhibits the “trapped” rather

FIG. 5. Magnetic field sensitivities for the three setups shown in Table I. We show the thermal contribution in red, the backaction
contribution in yellow, and the imprecision contribution in blue. For the imprecision noise, the smaller eigenvalue of SimpBB , which dominates
the sensitivity, is shown as solid, while the larger eigenvalue is dashed. In black, we show the total noise, specifically Tr½ðStotBBÞ−2�−1=2, as
this is the quantity which appears in Eq. (71). [In some cases, the black curve appears lower than the colored curves by a factor of

ffiffiffi
2

p
, as the

colored curves show the eigenvalues of the individual contributions.] Note that the future and free fall setups have broadband sensitivity
because they are adequately coupled [which satisfies Eq. (60)], while the existing case has resonant sensitivity (in both modes) because it is
undercoupled. The free fall setup demonstrates better sensitivity than the future setup at low frequencies, but becomes dominated by
imprecision noise at much lower frequencies than in the future case. This can be improved by increasing the coupling towards the upper
bound in Eq. (60). Both cases show significantly better sensitivity than the existing case.
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than “gyroscope” behavior (i.e., vθθ; vϕϕ ≫ ωI still). To
achieve the gyroscope behavior with such a large ferro-
magnet would require significantly better shielding.

C. Other noise sources

Before we move on to estimate the sensitivity of these
setups to DM, we note a couple of additional sources of
noise, which are not inherent but may take additional care
to mitigate. The first is vibrational noise, which can lead
to translational motion of the ferromagnet if not properly
attenuated. If the translational and rotational motions
of the ferromagnet exhibit some small coupling (see
footnote 7), this will translate into noise in its angular
orientation n̂ (similar to imprecision noise). The angular
imprecision noise for the future levitated setup isffiffiffiffiffiffiffiffi
Sn̂ n̂

p
∼ 3 × 10−15 rad=

ffiffiffiffiffiffi
Hz

p
. Assuming a Oð0.01Þ cou-

pling between the translational and rotational modes,
this setup would require a vibrational noise

ffiffiffiffiffiffiffi
Sxx

p ≲ 6 ×
10−16 m=

ffiffiffiffiffiffi
Hz

p
in order for vibrations to be subdominant.

The corresponding requirement for the existing and free
fall setups is

ffiffiffiffiffiffiffi
Sxx

p ≲ 10−12 m=
ffiffiffiffiffiffi
Hz

p
. LIGO has achieved

vibrational noises below these thresholds for frequencies
f ≳ 10 Hz [40].
Another noise source of concern is 1=f noise in the

SQUID readout, which typically dominates at low frequen-
cies f ≲ 10 kHz and results in flux noise

ffiffiffiffiffiffiffi
Sφφ

p
∼

5–10μΦ0=
ffiffiffiffiffiffi
Hz

p
at f ∼ 1 Hz [41] (compared to the much

lower noise
ffiffiffiffiffiffiffi
Sφφ

p
∼ 0.04μΦ0=

ffiffiffiffiffiffi
Hz

p
assumed in our future

setup). Methods to substantially reduce 1=f noise by
material engineering have demonstrated suppression
down to

ffiffiffiffiffiffiffi
Sφφ

p
∼ 0.3μΦ0=

ffiffiffiffiffiffi
Hz

p
at f ∼ 1 Hz [41]. A more

complex approach is to mitigate 1=f noise by upconvert-
ing the signal to a higher pump frequency where 1=f
noise is negligible. This can be achieved via a capacitor
bridge transducer [42,43], or an inductance bridge trans-
ducer [44]. Henceforth, we assume that our readout
implements such a scheme. This allows us to neglect
1=f noise and validates our assumption of frequency-
independent flux noise.

IV. SEARCHING FOR ULTRALIGHT DM

In this section, we introduce a few ultralight DM
candidates/couplings which could be detected with ferro-
magnets. All of these candidates manifest in laboratory
experiments as effective/physical ac magnetic fields, and so
a ferromagnet will respond to these DM candidates in the
manner described in Sec. II. We can then use the magnetic-
field sensitivities computed in Sec. III to project the
sensitivity of ferromagnets to these DM candidates. In this
section, we consider two possible interactions of axion
DM: a coupling to electrons gae and a coupling to photons
gaγ. The former directly causes precession of electron spins,
while the latter creates an observable magnetic field (which

in turn leads to precession of magnetic moments). In
addition, we also consider DPDM with kinetic mixing ε,
which generates a similar observable magnetic field.

A. Axion-electron coupling

An axionlike particle a, with mass ma, is a pseudoscalar
which may generically exhibit various interactions with SM
particles. One such possible interaction is a coupling to
electrons via the operator

Lae ⊃
gae

ffiffiffiffiffiffiffiffi
ℏ3c

p

2me
∂μaψ̄eγ

μγ5ψe; ð65Þ

where me is the electron mass and ψe is its wave function.
When the electron is nonrelativistic, this leads to a coupling
between the axion gradient and electron spins, i.e., a
Hamiltonian of the form

H ⊃
gae

ffiffiffiffiffiffiffiffi
ℏ3c

p

2me
σe ·∇a≡ −γeSe · Bae; ð66Þ

where Se ¼ ℏ
2
σe is the spin of the electron (and −γeSe is its

magnetic moment). We then see that an axion gradient (or
“axion wind”) has the same effect on an electron spin as an
effective magnetic field17

Bae ¼ −
2gae

ffiffiffiffiffiffi
ℏc

p

gee
∇a: ð67Þ

As a ferromagnet is composed of many polarized electrons
spins, the axion wind will also generate a torque on the
ferromagnet, just as a real magnetic field would. (See also
Ref. [21] for another example where ferromagnetic materi-
als are used to probe an axion wind, although at much
higher masses than the range considered in this work.)
If axionlike particles make up the DM, then they will

also be nonrelativistic. This implies that a oscillates at its
Compton frequency fa ¼ mac2=2πℏ, namely

aðx; tÞ ≈ a0ðxÞ cosð2πfatÞ: ð68Þ

Moreover, the spatial gradients of a are suppressed by its
velocity vDM ∼ 10−3c, so that

17We note that Bae may receive a suppression from the
magnetic shielding of the experimental apparatus in certain
contexts [analogous to the mA0L shielding suppression appearing
in the DPDM signal in Eq. (76)]. In particular, this can occur if
the shielding is accomplished with a material of high permeabil-
ity, such as mu metal, but it will not occur if superconducting
shielding is used [45]. Note that in the case of multiple layers of
shielding, it is only the composition of the innermost layer which
is relevant for this suppression.
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∇a ∼
vDM

c2
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
sinð2πfatÞ; ð69Þ

where ρDM ≈ 0.3 GeV=cm3 is the local DM energy
density [46]. The effective magnetic field in Eq. (67) is
then an ac field with frequency fa and amplitude

Bae ∼ gae · 4 × 10−8 T: ð70Þ

Note that the monochromatic time dependence in Eq. (68)
only applies on timescales shorter than the coherence time
tcoh ∼ c2=fav2DM. On longer timescales, the amplitude a0
and gradient of the axion will vary stochastically [47–51].18
Equivalently, in frequency space, the ac signal will be
peaked at fa, but exhibit a linewidth ∼10−6fa.
In the top left plot of Fig. 6, we show the projected

sensitivity of the setups described in Table I to an axion-
electron coupling for tint ¼ 1 yr of integration time. As
shown in Appendix A, the signal-to-noise ratio (SNR) for a
given setup is

SNR ¼ B2
ae

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðStotBBÞ−2� · tint · minðtint; tcohÞ

q
; ð71Þ

where Bae is the amplitude in Eq. (70), and the last factor
accounts for the incoherence of the signal when tint > tcoh.
In all our projections, we set SNR ¼ 3. In Fig. 6, we show
a number of existing constraints on gae, including the
following: limits based on old comagnetometer data [22],
constraints on axion-mediated forces from a torsion pen-
dulum experiment [54], limits on solar axions from
XENONnT electronic recoil data [55], and constraints
based on the brightness of the tip of the red-giant branch
[56]. Laboratory-based constraints (comagnetometers, tor-
sion pendulum, and XENONnT) are shown in darker
shades of gray, while astrophysical ones (tip of the red-
giant branch) are shown in lighter shades. Figure 6 shows
that even an existing levitated ferromagnet setup can be
competitive with the limits from comagnetometer or torsion
pendulum experiments, while a future levitated or free fall
setup can surpass all existing probes of an axion-electron
coupling for ma ≲ 10−15 eV.

B. Dark-photon kinetic mixing

A kinetically mixed dark photon A0
μ, with mass mA0 ,

is a vector boson which may mix with the SM photon.
There are multiple equivalent descriptions of the interaction
between the dark photon and SM photon (see Appendix A
of Ref. [52] for further discussion), but the most useful for

very low dark-photon masses is via the operator

LA0 ⊃
ε

μ0

�
mA0c
ℏ

�
2

AμA0μ: ð72Þ

We see that if A0
μ is treated as a background field, then it has

an effect equivalent to a current

Jμeff ¼ −
ε

μ0

�
mA0c
ℏ

�
2

A0μ: ð73Þ

Much like the case of axion DM, if dark photons make
up the DM, they will be nonrelativistic, and so should have
negligible spatial gradients and oscillate at their Compton
frequency fA0. Moreover, because its equations of motion
necessitate ∂μA0μ ¼ 0, then the DPDM should have A00 ¼ 0

(i.e., no effective charge). In this case,

A0ðx; tÞ ≈ Re

� X
i¼x;y;z

A0
i;0e

−2πifA0 t
�
; ð74Þ

where A0
i;0 are complex amplitudes for each spatial com-

ponent of A0
0 (which may have independent phases, so that

A0 can be elliptically polarized; see footnote 9).
The (spatial components of the) effective current Jeff

will also be approximately constant throughout space
and oscillate at frequency fA0. This effective current will
generate observable electromagnetic fields through the
Ampère-Maxwell law

∇ × B −
∂tE
c2

¼ μ0Jeff : ð75Þ

The electric field term in Eq. (75) can be ignored in
contexts where the Compton wavelength λA0 ¼ c=fA0 of the
dark photon is much larger than the size of the experimental
apparatus L.19 This implies that the primary observable
effect of the dark photon is an oscillating magnetic field.
Generically, this magnetic field will have amplitude

BA0 ∼ μ0JeffL ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
c

ℏ
εmA0L; ð76Þ

∼ 7 × 10−21 T

�
ε

10−8

��
fA0

30 Hz

��
L

10 cm

�
: ð77Þ

Note that by symmetry, BA0 generically vanishes at the
center of the apparatus [30], and so the ferromagnet should
be located off-center within the apparatus in order to

18If the integration time tint of the experiment exceeds one day,
then the direction of the gradient will also precess (in the frame of
the experiment) due to the rotation of the Earth. Such effects must
be accounted for in the data analysis (see, e.g., Refs. [52,53]), but
will not affect the overall sensitivity of the setup. A similar effect
will occur for the DPDM direction in the case of Sec. IV B.

19More specifically, by “apparatus” here, we mean the size of
the conducting shield which sets the electric field boundary
conditions; see Refs. [30,52,63] for further discussion.
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experience a nonzero DPDM-induced magnetic field. In
scenarios where the ferromagnet is levitated above a
superconductor, this will typically be satisfied, as the
ferromagnet will be much closer to the floor than the
ceiling of the apparatus.

In the top right plot of Fig. 6, we show the projected
sensitivity of ferromagnets to DPDM. The existing DPDM
constraints shown include limits from: global unshielded
magnetometer data maintained by the SuperMAG collabo-
ration [52,53,64]; unshielded magnetometer measurements

FIG. 6. Projected sensitivities of ferromagnets to an axion-electron coupling gae, DPDM kinetic mixing ε, and an axion-photon
coupling gaγ . In each case, we show three projections corresponding to the parameter choices in Table I. In all cases, we take an
integration time of tint ¼ 1 yr and set SNR ¼ 3. In the DPDM and axion-photon cases, we take an apparatus size of L ¼ 10 cm. In
darker shades of gray, we show existing laboratory constraints for these various models, while in lighter shades we show astrophysical
constraints; see respective section of Sec. IV for descriptions. (Several of these limits were acquired from Refs. [57,58]. See also
Refs. [59–62] for other limits in this mass range which are not shown here, and Ref. [63] for a brief discussion of the caveats regarding
those limits.) We see that in all cases, ferromagnets can be the strongest laboratory probe of ultralight DM across a broad range of
masses, and in some cases can even surpass astrophysical constraints.
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made by the SNIPE Hunt collaboration [65]; magnetometer
measurements taken inside a shielded room by the
AMAILS collaboration [66]; nonobservation of CMB-
photon conversion into (non-DM) dark photons by the
FIRAS instrument [59]; heating of the dwarf galaxy Leo T
[67]; and resonant conversion of DPDM during the dark
ages [68]. A future levitated setup could become the
leading probe of DPDM across the entire mass range
shown in Fig. 6. Additionally, a free fall setup could be
competitive with even the leading astrophysical constraint
(Leo T) at low masses mA0 ≲ 10−16 eV.

C. Axion-photon coupling

In addition to the coupling to electrons described by
Eq. (65), an axionlike particle may also exhibit a coupling
to photons via the operator

L ⊃
gaγ

ffiffiffiffiffiffiffiffi
ℏc3

p

4μ0
aFμνF̃μν; ð78Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ. Similar to the DPDM case, this

operator is equivalent to an effective current

Jμeff ¼ −
gaγ

ffiffiffiffiffiffiffiffi
ℏc3

p

μ0
∂νaF̃μν: ð79Þ

Again taking the axion DM ansatz in Eq. (68) [with
negligible spatial gradients], we find J0eff ¼ 0 and spatial
components

Jeff ¼
ffiffiffiffiffi
c5

ℏ

r
gaγmaa0

μ0
B0 sinð2πfatÞ: ð80Þ

One crucial difference from the DPDM case is that the
effective current in Eq. (80) requires the presence of a
background magnetic field B0. In our case, the magnetic
field of the ferromagnet itself can act as B0. (See also
Ref. [69] for another example where the magnetic field from
a ferromagnet is used to induce axion-photon conversion.)
Unlike the DPDM case, the current in Eq. (80) will not

be uniform, and so computing the resulting ac magnetic
field Baγ is more complicated. Generically, this must be
evaluated numerically, but, in Appendix B, we parametri-
cally estimate it as

Baγ ∼Oð0.1Þ ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏcρDM

p
μ0

gaγμ

L2
; ð81Þ

∼3×10−21 T

�
gaγ

10−9GeV−1

��
μ

20mA·m2

��
10 cm
L

�
2

;

ð82Þ

where μ is the magnetic moment of the ferromagnet, and L
is again the size of the experimental apparatus.

In the bottom plot in Fig. 6, we show the projected
sensitivity of ferromagnets to an axion-electron coupling.
The existing constraints on gaγ shown include limits from
SuperMAG [64,70], SNIPE Hunt, the CAST helioscope
search for solar axions [71], nonobservation of gamma rays
in coincidence with SN1987A [72], and x-ray observations
of the quasar H1821þ 643 from the Chandra telescope
[73]. Note that in the case of an axion-photon coupling, a
free fall setup may have significantly better sensitivity than
a levitated setup. This is because the background magnetic
field B0 is sourced by the ferromagnet itself. A ferromagnet
in free fall can be much larger (and so source B0 over a
larger volume) than a ferromagnet levitated over a super-
conductor because, in the latter case, the size is constrained
by the critical field of the superconductor [see Eq. (62)]. In
fact, a free fall setup can even be more sensitive than all
existing constraints at low masses ma ≲ 10−15 eV.
We note that in levitated setups, it may be possible to

apply an additional magnetic field to act as B0 in order to
enhance the sensitivity to an axion-photon coupling
[although this will affect the trapping potential Vðx; n̂Þ].
We leave further exploration of this idea to future work.

V. CONCLUSION

In this work, we determined the sensitivity of levitated
ferromagnets to ac magnetic fields and to various ultralight
DM candidates. In the presence of an applied magnetic
field, a ferromagnet may either precess around the applied
field (similar to an electron spin) or librate in the plane of
the applied field (similar to a compass needle). While the
distinction between these behaviors has been studied for dc
magnetic fields, the cases when precession vs libration
occurs in the presence of an ac magnetic field has not been
adequately studied. In this work, we determined the
response of a ferromagnet to an ac magnetic field as a
function of frequency, paying special attention to the
presence of any trapping potential used to levitate the
ferromagnet. We determined three possible cases for
the behavior of the system: a “trapped” case, where the
trapping potential is strong in both directions so that only
libration occurs; a “partially trapped” case, where the
ferromagnet is only trapped strongly in one direction,
so precession is possible in one direction within a certain
frequency range; and a “gyroscope” case, where the
ferromagnet is weakly trapped, so that precession can
occur in both directions within a certain frequency range.
We then computed the magnetic-field sensitivity of

various ferromagnet setups, using the formalism of
Sec. II to account for motion in both angular modes. We
considered three possible setups: one representative of an
existing levitated setup [5] (but with an additional readout
for the θ mode), a future levitated setup, and a space-based
free fall setup comparable to LISA Pathfinder. All three
setups manifest the “trapped” behavior. In Eq. (60), we
show the optimal range for the readout coupling. This range
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comes from demanding that thermal noise dominates over
imprecision and backaction noise at low frequencies. [This
is only possible when Eq. (57) is met; see Sec. III A for
optimal choices when this condition is not met.] Both
modes of the existing setup do not fall in the range in
Eq. (60), and so are undercoupled. The other two lie in the
range in Eq. (60), but the free fall setup could benefit from
an even stronger coupling, which would improve its
sensitivity at high frequencies. We also note that the free
fall setup could be further improved if the system can be
lowered to cryogenic temperatures and ultrahigh vacuum,
similar to Gravity Probe B [7,74].
Finally, we use the results of Sec. III to determine the

sensitivity of these setups to various DM candidates. We
consider sensitivity to an axion-electron coupling, a dark-
photon kinetic mixing, and an axion-photon coupling. While
many experiments which detect magnetic fields have sensi-
tivity to either an axion-electron coupling [22] or to a kinetic
mixing and an axion-photon coupling [30,52,65,70], levi-
tated ferromagnets are unique in their ability to achieve good
sensitivity to all three of these potential DM couplings. In all
three cases, ferromagnet setups could become the most
sensitive laboratory probes of these DM candidates, and for
the axion DM cases, they could surpass even the leading
astrophysical constraints at low frequencies. Levitated fer-
romagnets may also be sensitive to gravitational waves [75].
We leave further exploration of this idea to future work.
While the results of this work are already quite promising,
further optimization of the setups proposed here may lead to
even better detection prospects for new physics.
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APPENDIX A: SIGNAL-TO-NOISE-RATIO

In this appendix, we derive an appropriate SNR for our
system. Defining such an SNR is complicated by the fact
that we have sensitivity to magnetic fields in two directions,
so in this appendix, we pay special attention to the matrix
nature of our noise StotBBðωÞ. Here, we consider sensitivity to
an ac magnetic field signal20

BSðtÞ ¼ BS;n cosðωStþΦS;nÞn̂0
þ BS;θ cosðωStþΦS;θÞθ̂0
þ BS;ϕ cosðωStþΦS;ϕÞϕ̂0 ðA1Þ

of unknown direction and phase. (As we are insensitive to
the n̂0 direction, we will ignore BS;n.) We will take the
distribution of BS to be Gaussian and isotropic so that each
component follows an independent Gaussian distribution
with mean zero and hB2

S;αi ¼ B̄2
S=3 (where h·i represents an

ensemble average). Meanwhile, the noise BNðtÞ has a
Fourier transform whose components satisfy

hB̃N;αðωÞB̃N;βðωÞ�i ¼
StotBB;αβðωÞtint

2
; ðA2Þ

20This would be the form of the signal in the case of an axion-
electron coupling or DPDM kinetic mixing. In the case of an
axion-photon coupling, each term in Eq. (A1) would have the same
phase ΦS, so that the signal is linearly polarized (see footnote 9).
Moreover, the direction of the signal is, in principle, not random
but rather can be predicted through a sufficiently accurate signal
calculation. As we do not perform such a calculation in this work,
we treat the direction as random in our sensitivity projections, and
so we still apply the formalism of this appendix.
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where tint is the integration time of the experiment (and B̃N
is uncorrelated at different frequencies).
When we perform an experiment, we measure the Fourier

transform of the total magnetic field B̃tot ¼ B̃S þ B̃N , if there
exists a signal, or simply B̃tot ¼ B̃N, if there does not. To
distinguish these two scenarios, we ought to combine the
information from the different components of B̃tot (for a fixed
frequency) into a single test statistic

q ¼ B̃†
totXB̃tot; ðA3Þ

for some Hermitian matrix X to be chosen momentarily. In
the scenario where there is no signal, this statistic has

hqi0 ¼ hB̃†
NXB̃Ni ¼ Tr½XhB̃NB̃

†
Ni�; ðA4Þ

¼ tint
2
Tr½XStotBB�; ðA5Þ

hq2i0 ¼ hB̃†
NXB̃NB̃

†
NXB̃Ni; ðA6Þ

¼ t2int
4
ðTr½XStotBB�2 þ Tr½XStotBBXS

tot
BB�Þ: ðA7Þ

On the other hand, when a signal is present, its expectation is

hqiS ¼ hB̃†
SXB̃Si þ hB̃†

NXB̃Ni; ðA8Þ

¼ B̄2
St

2
int

12
Tr½X� þ tint

2
Tr½XStotBB�: ðA9Þ

A signal is distinguishable when the difference between q
with/without the signal exceeds the standard deviation of q
without any signal. That is, we should define the SNR as

SNR ¼ hqiS − hqi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2i0 − hqi20

p ; ðA10Þ

¼ B̄2
StintTr½X�

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½XStotBBXStotBB�

p : ðA11Þ

Now we can consider what an optimal choice of X would
be. The only matrix structure available is StotBB, and so we
should choose X ∝ ðStotBBÞn for some n. If StotBB has two
eigenvalues λ1, λ2, then this becomes

SNR ¼ B̄2
Stintðλn1 þ λn2Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2nþ2
1 þ λ2nþ2

2

q : ðA12Þ

It is not difficult to show that this expression is maximized
for n ¼ −2, leading to an optimal SNR of

SNR ¼ B̄2
Stint
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−21 þ λ−22

q
; ðA13Þ

¼ B̄2
Stint
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðStotBBÞ−2�

q
: ðA14Þ

This can be equivalently phrased as computing the two
SNRs representing the sensitivity along each eigenvector,
and then summing them in quadrature.
Finally, we note that the above discussion applies

when the signal is entirely coherent throughout the
duration of the experiment. If the coherence time of
the signal is shorter than the duration of the experiment,
then we can consider each coherence time as an inde-
pendent experiment. In this case, the SNRs for the
individual experiments can be summed in quadrature,
so that the total SNR is

SNR ¼ B̄2
Stcoh
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðStotBBÞ−2�

q
·

ffiffiffiffiffiffiffi
tint
tcoh

r
: ðA15Þ

APPENDIX B: AXION-PHOTON
COUPLING SIGNAL

In this appendix, we estimate the magnetic-field signal
Baγ induced by axion DM which couples to photons. This
computation largely follows Appendix B of Ref. [30], but
the background magnetic field B0 in this case will be
sourced by a magnetic dipole (the ferromagnet) instead
of a pair of anti-Helmholtz coils. The axion DM signal is
given by [30,76]

BaγðrÞ ¼
X
n

cn
fn
fa

BnðrÞe−imat; ðB1Þ

cn ¼ −

ffiffiffiffiffiffiffiffi
ℏc3

p
gaγf2aa0

f2n − f2a

Z
dVEnðrÞ� · B0ðrÞ; ðB2Þ

where En and Bn are the electric/magnetic fields for
the cavity modes of the shield (which have correspond-
ing frequencies fn and are normalized so thatR
dVjEnj2 ¼ 1).
In order to estimate the overlap integral in Eq. (B2), it is

useful to write B0 as the gradient of a magnetic potential,
which is possible in the absence of free currents or
magnetization (for static magnetic fields). Of course, the
ferromagnet is magnetized, so B0 itself cannot be written
this way. However because there are no free currents, we
may write B0 ¼ μ0ðH0 þMÞ with ∇ ×H0 ¼ 0. Because
H0 is curl free, it can be written as H0 ¼ ∇Ψ0. Then the
overlap integral becomes

Z
dVE�

n ·B0¼μ0

�Z
dA ·EnΨ0þ

Z
dVE�

n ·M

�
: ðB3Þ
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The second integral in Eq. (B3) only has support over the
volume of the ferromagnet. Assuming that the ferromagnet
is much smaller than the size of the shield, En will be
roughly constant over this volume, and so we can approxi-
mate this integral as μ0E�

n · μ, where μ is the magnetic
moment of the ferromagnet.
To compute the first integral in Eq. (B3) requires an exact

expression for Ψ0 on the boundary of the shield. In the
absence of the shield, this is just a magnetic dipole.
However, if the shield is superconducting, then B0 will
be modified in order to ensure that the perpendicular
magnetic field vanishes at the boundary of the shield.
As in Sec. II A, this can be accounted for via the method of
images. As we only wish to derive a parametric estimate for
the axion DM signal, we will simply take the magnetic
potential of a dipole

Ψ0ðrÞ ¼
μ · ðr − r0Þ
4πjr − r0j3

; ðB4Þ

where r0 is the location of the ferromagnet. Parametrically,
the first integral in Eq. (B3) is then also ∼μ0E�

n · μ.
Since En; Bn ∼ L−3=2 and fn ∼ c

L ≫ fa, then parametri-
cally Eq. (B1) becomes

Baγ ∼

ffiffiffiffiffiffiffiffi
ℏc3

p
gaγfaa0
fn

· μ0Enμ · Bn; ðB5Þ

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏcρDM

p
μ0

gaγμ

L2
: ðB6Þ

In principle, the overlap integrals in Eq. (B3) can be
computed for each mode, and they can be summed to
determine the exact proportionality constant in Eq. (B6).
Numerically, we find that this sum exhibits poor conver-
gence, and so we remain content with a parametric
estimate. [In Eq. (81), we include a conservative Oð0.1Þ
factor, in line with the factor computed in Ref. [30].] In
future work, detailed finite element method calculations
may be necessary to predict an accurate axion DM signal.
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