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Abstract
Cancer-associated Fibroblasts (CAFs) have emerged as critical regulators of anti-tumour immunity, with both 
beneficial and detrimental properties that remain poorly characterised. To investigate this, we performed single-
cell and spatial transcriptomic analysis, comparing head & neck squamous cell carcinoma (HNSCC) subgroups, 
which although heterogenous, can be considered broadly immune-hot and immune-cold (human papillomavirus 
[HPV]+ve and HPV-ve tumours respectively). This identified six fibroblast subpopulations, including two with 
immunomodulatory gene expression profiles (IL-11 + inflammatory [i]CAF and CCL19 + fibroblastic reticular cell 
[FRC]-like). IL-11 + iCAF were spatially associated with inflammatory monocytes and regulated in vitro through 
synergistic activation of canonical NF-κB signalling by IL-1β and TNF-α. FRC-like were enriched in immune-
hot HPV+ve tumours, associated with CD4 + T-cells and B-cells in tertiary lymphoid structures and regulated 
through non-canonical NF-κB signalling via lymphotoxin. Pan-cancer analysis revealed several ‘iCAF’ subgroups 
present in both normal and cancer tissues; IL11 + iCAF were found in cancers from the gastrointestinal (GI) tract 
and transcriptomically distinct from iCAFs previously described in pancreatic and breast cancers with greater 
inflammatory properties; FRC-like fibroblasts were present at low frequencies in all tumour types, and were 
associated with significantly better survival in patients receiving checkpoint immunotherapy. This work clarifies and 
expands current literature on immunomodulatory CAFs, highlighting links with important immunological niches.
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Introduction
Fibroblasts are ubiquitous cells that assume special-
ised phenotypes and activation states to play a multifac-
eted role in health and disease [1]. Although historically 
regarded as structural cells that principally remodel 
extracellular matrix (ECM) they are now recognised as 
key immune sentinel cells capable of initiating, maintain-
ing, and suppressing immune responses in response to 
pathological stimuli [2].

Cancer-associated fibroblasts (CAF) research has 
mostly focused on cells with a myofibroblast phenotype 
(myCAF); these are found in most cancer types, have 
numerous tumour-promoting functions and are akin 
to myofibroblasts in fibrotic diseases [1, 3]. However, 
recent single cell studies have identified transcriptomi-
cally distinct CAF subtypes, including inflammatory CAF 
(iCAF), antigen presenting CAF (apCAF) and metabolic 
CAF (meCAF) [4–7]. These phenotypes form part of a 
plastic population that can change states in response to 
local stimuli; Biffi and colleagues elegantly demonstrated 
this, switching pancreatic stellate cells between myCAF 
and iCAF states in vitro by manipulating TGF-β and IL-1 
signalling respectively [4]. This plasticity emphasises 
the role of fibroblasts as key early response cells in tis-
sues. Although iCAF have been identified in several can-
cer types, including pancreatic ductal adenocarcinoma 
(PDAC), breast and lung cancers [5–7], it is not yet clear 
whether this phenotype is common to all tumours or 
whether all ‘iCAF’ are the same. Although there are com-
mon mechanisms that fibroblasts use to regulate tissue 
inflammation, inflammatory stimuli have been shown to 
produce organ-specific immune signatures in fibroblasts 
from different organs [8] suggesting that inflammatory 
CAF phenotypes could vary.

The clinical success of immune checkpoint inhibi-
tors in treating multiple cancer types is well established. 
However, only a subset of patients respond favourably 
[9], and this has generated significant interest in under-
standing how the tumour microenvironment suppresses 
anti-tumour immunity. myCAF have several immu-
nosuppressive functions and myCAF-rich tumours 
are resistant to immunotherapy [6, 10, 11]. iCAF also 
express several cytokines associated with immune eva-
sion, including IL6, LIF and CXCL12 [12]. Conversely, 
in autoimmunity, fibroblasts have been shown to amplify 
chronic inflammation [13], and a novel population of 
‘interferon licenced fibroblasts’ that enhance immuno-
therapy response has been identified in murine tumour 
models [14]. Thus, a fibroblast may support or suppress 
immunity depending on context. Given their plasticity, 
the concept of generating an immune-supportive phe-
notype to improve immunotherapy response in cancer is 
intriguing.

In most cancer types, tumours with high levels of 
tumour-infiltrating lymphocytes (TIL) have better 
prognosis and show improved response to checkpoint 
immunotherapy [15]. Head and neck cancer (HNSCC) 
is subdivided into human papillomavirus (HPV)-related 
(HPV+ve) tumours and those typically associated with 
smoking/alcohol (~ 30% and 70% of cases respectively). 
Around 85% of HPV+ve HNSCC are heavily infiltrated 
by T- and B-cells and are considered immune-hot [16]. 
Despite presenting mostly at late stage, such tumours are 
associated with significantly better survival compared 
with TIL-low HPV-ve tumours [16].

In this study we hypothesised that fibroblast pheno-
types vary between immune-hot (HPV+ve) and immune-
cold (HPV-ve) HNSCC subtypes, reflecting their 
multifaceted role in anti-tumour immunity. Using single 
cell and spatial transcriptomics we identified six fibro-
blast subsets in HNSCC, including two that were char-
acterised by expression of immunomodulatory genes and 
occupied distinct immunological niches (IL11 + inflam-
matory [i]CAF and CCL19 +  fibroblastic reticular cell 
[FRC]-like). IL11 + iCAF were spatially associated with 
and activated by inflammatory monocytes, through IL-1β 
and TNF-α stimulation. We also showed that IL11 + iCAF 
were transcriptomically distinct from iCAFs previously 
described in pancreatic and breast cancers [5, 6, 17, 18], 
with heightened inflammatory features. FRC-like cells 
were enriched in immune-hot HPV+ve tumours, associ-
ated with CD4 + T-cells and B-cells in tertiary lymphoid 
structures (TLSs), activated by lymphotoxin signal-
ling. Across cancer types, FRC-like cells represented a 
rare phenotype, but were detected in all tumour types 
and associated with positive response to checkpoint 
immunotherapy.

Methods
Human subjects
Ethical approval for the study was obtained through 
the UK National Research Ethics Service (REC No. 09/
H0501/90) and written informed consent was obtained 
from all subjects. Tumour and matched-normal tissue 
were obtained from patients undergoing surgical tumour 
resection at Poole Hospital (Poole, Dorset, UK) for 
HNSCC. Tissue samples were transported (within 1  h) 
to the laboratory on ice in serum-free Dulbecco’s Modi-
fied Eagle Medium (DMEM; Sigma-Aldrich). Sample 
information (including clinical and sample digestions) 
is shown in Supplementary Table 1. Patient HPV status 
was confirmed using p16 immunostaining in combina-
tion with assessing HPV-encoded gene expression using 
a human-HPV hybrid reference genome to align and 
map reads (see details below). HPV-encoded exons were 
detected in 6 patients using the human-HPV-16 reference 
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genome and 1 patient using the human-HPV-33 refer-
ence genome (Supplementary Fig. 1A).

Primary fibroblast culture and in vitro experiments
Please see Supplementary Materials.

Sample processing
Please see Supplementary Materials.

scRNA-Seq
For each sample, 5000 single cells were captured on 
an Illumina 10X Chromium Controller™ system using 
the Illumina single cell 3’ gene expression and library 
preparation kits (V3.1 #1000269). Sample capture, sam-
ple indexing, and library preparation were carried out 
according to manufacturer’s instructions. Size distribu-
tion, quality control, and quantification of the libraries 
was assessed using High Sensitivity DNA chips (Agilent 
Technologies #5067 − 4626) and KAPA library quantifica-
tion qPCR kit (Roche #07960140001). Prepared libraries 
were pooled and sent to Oxford Genomics (UK) for 150-
base pair, paired-end sequencing on a Novaseq6000™.

Sequence alignment and annotation
FASTQ files were aligned to the Human reference 
genome (GRCh38–2020-A) which had the HPV genome 
concatenated to both the FASTA and GTF reference files 
(using cellranger count v6.1.1, 10x Genomics). Human-
HPV references were made using the cellranger mkref 
command (cellranger v6.1.1). scRNA-Seq data was pro-
cessed with cellranger count (cellranger v6.1.1) generat-
ing feature-barcode matrices in which subsequent data 
analysis was carried out in R (v4.1.1) using Seurat pack-
age (v4.1.0).

Quality control, normalisation and integration
Each patient expression matrix was initially created 
into a Seurat object with cells requiring expression of at 
least 200 genes and genes expressed in at least 3 cells. 
Poor quality cells were removed using a mitochondrial 
RNA percentage threshold calculated by the median + 3* 
median absolute deviation [cells above this threshold 
(~ 20%) were removed]. Cells expressing > 6000 features 
were removed to reduce potential doublets. Seurat was 
then used for normalisation and reciprocal PCA (RPCA) 
integration of scRNA-Seq data (further details in Supple-
mentary Materials). Principal component analysis (PCA) 
was then performed on the integrated object followed 
by Uniform Manifold Approximation and Projection 
(UMAP) visualisation. Clustering was performed using 
shared nearest-neighbour (SNN) graph construction 
(FindNeighbors) followed by FindClusters.

Identifying marker genes
Differentially expressed genes (DEGs) were identified for 
each cluster using FindAllMarkers (Wilcoxon rank sum 
test) with genes selected expressed in ≥ 25% of cells and 
log2FC ≥ 0.5 (adjusted p value < 0.05). DEGs were com-
pared to known cell type markers described widely in the 
literature to annotate broad and finer cell types.

HNSCC inter-dataset integration
Seurat’s RPCA integration was also used for HNSCC 
inter-dataset integration with GSE164690 (Further 
details in Supplementary Materials).

Gene module scores and pathway analysis
Module scores were calculated using Seurat’s Add-
ModuleScore function calculated by taking the average 
expression levels of each cluster at the single cell level 
subtracted by aggregated expression of control feature 
sets. All gene signatures used in the analysis are shown 
in Supplementary Table 8. Pathway analysis was per-
formed using over-representation analysis (enrichr v3.2; 
[19]) and gene set enrichment analysis (GSEA) (clus-
terprofiler v4.6.2; [20]) using KEGG and MSigDB Hall-
mark databases. Enriched pathways with P value and 
adjust p value < 0.05 were examined. PROGENy: Path-
way RespOnsive GENes for activity inference was used to 
infer activities of 14 pathways [21]. PROGENy pathway 
activity scores were calculated for the Seurat object run-
ning ‘progeny’ command (organism="Human”, top = 500, 
perm = 1, return_assay = TRUE). Pathway activity scores 
were then scaled. Summarised scores (mean) of each 
activity for each cell cluster were determined and plotted 
in a heatmap.

Differential abundance
We utilised MiloR (v1.6.0) to identify differentially abun-
dant phenotypes using KNN graphs [22]. MiloR was 
run on the integrated objects separately with the follow-
ing parameters used for buildGraph and makeNhoods: 
k = 70, d = 20, refined = TRUE. To account for cell type 
abundance differences resulting from use of different 
digestions, the digest was specified in the design formula 
along with source (tumour/normal), HPV status or lym-
phocyte abundance classification (see below). SpatialFDR 
threshold (alpha) was set to 0.05 when highlighting dif-
ferentially abundant neighbourhoods – which were dis-
played in bee-swarm plots.

Prior to differential abundance testing of fibroblasts, 
scRNA-Seq samples were classified into ‘High’, ‘Mod-
erate’ and ‘Low’ tertiles reflective of lymphocyte pres-
ence. Pearson residuals for lymphocyte abundance were 
calculated relative to the total number of immune cells 
per sample. Samples classified as lymphocyte-High, 
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representing immune-hot tumours were then compared 
to lymphocyte-Low samples (immune-cold).

When calculating relative cell type proportions per 
sample in the scRNA-Seq data we accounted for diges-
tion differences in select samples that had undergone 
scRNA-Seq of liberase and col + digests separately, calcu-
lating pseudo-mixtures by combining the relative abun-
dance of cell types for each sample in a 1:9 (liberase: col+) 
ratio.

Trajectory and pseudotime
Monocle 3 (v1.0.0) and slingshot (v2.6.0) were used for 
trajectory analysis and pseudotime calculations. Both 
methods yielded the same lineages. Monocle 3 was used 
to determine genes that change as a function of pseu-
dotime, graph_test, specifying the neighbour_graph as 
‘prinicpal_graph’ was run.

Transcription factor analysis
DoRothEA regulons, a collection of transcription fac-
tors and their targets, were used to infer transcription 
factor activities in fibroblast populations [23]. Activities 
were determined using run_wmean from the decoupleR 
(v2.5.0) package and subsequently scaled.

Pan-cancer fibroblast atlas (PCFA) and label transfer
Please see Supplementary Materials.

Spatial transcriptomics
All pre-sequencing procedures were carried out follow-
ing the manufacturer’s instructions on 6.5  mm capture 
areas using the Visium V2 CytAssist workflow. All sam-
ples were processed through the Spaceranger pipeline 
(v2.0.0) according to 10x Genomics guidelines. Please 
see Supplementary Materials for details of spatial tran-
scriptomics processing, spot deconvolution and spatially 
guided ligand-receptor/NicheNet analysis.

Bulk RNA sequencing (scRNA-Seq)
Counts for the Head and Neck Squamous Cell Carci-
noma, TCGA-HNSC (https://www.cancer.gov/tcga) (566 
samples: 520 primary solid tumour; 46 solid tissue nor-
mal) cohort (Illumina HiSeq platform) were downloaded 
using TCGAbiolinks and converted to CPM using edgeR. 
TPM normalised data for TCGA-HNSC was downloaded 
from GDC data portal. The cBioPortal for cancer genom-
ics [24] was used to obtain additional metadata from the 
Head and Neck Squamous Cell Carcinoma (TCGA, Fire-
hose Legacy) study. UCSCXenaTools package (v1.4.8) 
was used to download Batch effects normalized mRNA 
data (n = 11,060) from the Pan-Cancer Atlas Hub and cor-
responding clinical metadata.

Bulk RNA-Seq deconvolution
To investigate the cell type abundance in bulk RNA-Seq 
data, the immunedeconv R package (v2.1.0) was used 
to run MCP-counter [25] on TPM normalised HNSCC 
(TCGA) Bulk RNA-Seq.  The ‘deconvolute’ function was 
run specifying ‘MCP_counter’.

ssGSEA
We used single sample GSEA (ssGSEA) using the GSVA 
package (v1.46.0) to calculate enrichment scores for gene 
sets in bulk RNA-Seq samples.

Analysis of immunotherapy data
The following bulk RNA-Seq datasets were used for 
analysis of immunotherapy treated patients. HNSCC 
(GSE159067): 102 patients with advanced HNSCC 
treated with immunotherapy targeting PD-1/PD-L1. 
Lung (GSE161537): 82 patients with advanced non-
small cell lung cancer (NSCLC) treated with second-line 
immunotherapy targeting PD-1/PD-L1. Metastatic mela-
noma (PRJEB23709): 91 patients treated with anti-PD-1 
alone or combined anti-PD-1 and anti-CTLA-4 immuno-
therapy. Overall survival analysis (Kaplan-Meier and cox 
regression) was performed out using survival package 
(v3.5-7); patients were split into high and low (based on 
ssGSEA scores) using the optimal cut points determined 
by surv_cutpoint (survminer v0.4.9). Multivariate cox 
regression was carried out using ‘coxph’ function (sur-
vival) specifying the fibroblast abundance, sex, and age. 
Generation of fibroblast subset specific gene signatures 
(Supplementary Table 8) used in ssGSEA are detailed in 
Supplementary Materials.

Multiplex immunofluorescence using PhenoCycler-Fusion
Please see Supplementary Materials.

Statistical analysis
Statistical analysis was performed using R environment 
v4.1.1 [ggpubr package (v0.4.0) for plotting graphs] and 
Graph Pad Prism 9 (v10, GraphPad, San Diego, CA, 
USA). Wilcoxon rank-sum test (two-sided) or Students 
t-test (two-sided) were used to evaluate associations 
between continuous variables. Normality was assessed by 
Shapiro–Wilk test. One-way ANOVA or Kruskal-Wallis 
test was used to compare > 2 groups. Multiple compari-
sons were investigated by adjusting the p-value using 
the Bonferroni method. Correlation analysis was car-
ried out using spearman’s rho (two-sided). P-values were 
combined using the weighted Fisher’s method. Survival 
analysis was carried out using Kaplan-Meier curves with 
log-rank test and multivariate cox regression statistics. 
P < 0.05 was considered to indicate a statistically signifi-
cant difference.

https://www.cancer.gov/tcga
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Results
HPV+ve HNSCC frequently has an immune-hot tumour 
microenvironment
We set out to characterise fibroblast phenotypes across 
immune-hot and immune-cold tumours. Previous stud-
ies have reported increased lymphocyte infiltration into 
HPV+ve HNSCC compared to HPV-ve [16]. In order to 
capture this heterogeneity in immunological contexts, we 
performed scRNA-Seq on treatment-naïve HNSCC sam-
ples (n = 10; 7 HPV+ve; 3 HPV-ve) with matched normal 
oropharyngeal mucosa [n = 7] (Fig.  1A; Supplementary 
Fig.  1B, C; Supplementary Table 1). To increase patient 
numbers, this (EPG) dataset (82,844 cells after quality 
control) was integrated with a publicly available data-
set (Fig. 1A; HNSCC samples of oral cavity/oropharynx; 
[26]), generating an atlas of 159,826 cells from 24 patients 
(11 HPV-ve; 13 HPV+ve; 7 normal; Fig. 1B; Supplemen-
tary Fig.  1D, E). Spatial transcriptomic analysis (10x; 
Visium) and multiplexed immunofluorescence (MxIF) 
staining and imaging (Akoya; PhenoCycler) were per-
formed on tumour sections from the initial ten patients 
(Fig. 1A).

Deconvolution of bulk RNA-Seq data from the 
HNSCC TCGA cohort using MCP-counter confirmed 
that HPV+ve tumours contain significantly more 
CD8 + T-cells (p < 0.0001), CD4 + T-cells (p < 0.0001) and 
B-cells (p < 0.0001; Supplementary Fig. 1F). Spatial tran-
scriptomic analysis using MCP-counter to deconvolute 
cell type abundance within individual spots, also showed 
significantly more T-cells (p < 0.001), B-cells (p < 0.01) 
and total lymphocytes (p < 0.01) in HPV+ve tumours 
(Fig.  1C; Supplementary Fig.  1G); also confirmed by 
MxIF (Fig. 1D). While HPV+ve tumours are largely char-
acterised by an immune-hot tumour microenvironment, 
variation exists, with a proportion of HPV+ve tumours 
having lower TIL levels associated with poorer survival 
relative to TIL-high HPV+ve tumours [16]. Notably, there 
was a prominent fibroblast presence in both HPV-ve and 
HPV+ve tumours (Fig. 1C; Supplementary Fig. 1G).

A more detailed analysis of immune cell subsets (Sup-
plementary Table 2) in the scRNA-Seq data revealed dif-
ferences in T-cell and NK-cell phenotypes (56,664 cells) 
between HPV+ve and HPV-ve tumours (Supplementary 
Fig. 2A, B). CD4 + ICOS + PDCD1+ (PD-1) T-cells, resem-
bling T follicular helper (Tfh) cells were more common 
in HPV+ve tumours, as were CD4 + naïve-like T-cell 
clusters and KIT + NK-cells (Supplementary Fig.  2B). 
Analysis of B- and plasma cells (26,156 cells) showed that 
germinal centre (GC) B-cells (RGS13+, NEIL1+), cycling 
B-cells (UBE2C+, TYMS+) and naïve B-cells (TCL1A+, 
IL4R+) were all enriched in HPV+ve tumours compared 
to HPV-ve tumours (Supplementary Fig.  2C, D), while 
switched B-cell subsets were found in both. There were 

no differentially abundant myeloid populations (Supple-
mentary Fig. 2E, F).

scRNA-Seq of HNSCC reveals distinct subsets of 
inflammatory fibroblasts
To investigate fibroblast phenotypes present in HNSCC, 
we first broadly identified all fibroblasts based on lumi-
can expression (LUM+; 4,894 cells); fibroblasts clus-
tered closely with RGS5 + mural cells (2,174 cells), which 
included pericytes and smooth muscle cells (SMCs; 
Supplementary Fig.  3A, B). We identified six clusters of 
fibroblasts; three confined to tumours (CAF) and three 
present in both tumours and normal tissue (Fig.  2A; 
Supplementary Fig.  3C, D, E; Supplementary Table 3). 
Overall, individual patient tumours showed significant 
fibroblast heterogeneity, generally containing a mixture 
of the six phenotypes (Supplementary Fig. 3E, F).

The largest CAF cluster expressed canonical myofi-
broblastic CAF (myCAF) markers (POSTN, MMP11, 
ACTA2) and, as expected, showed highest enrichment 
for TGFβ signalling (Fig.  2B; Supplementary Fig.  3G). 
This cluster was characterised by high expression of ECM 
genes (including COL1A1, FN1, COL1A2, COL6A3 and 
COL11A1); with numerous differentially expressed genes 
(DEGs) associated with core matrisome components 
[collagens (n = 14), glycoproteins (n = 22) and proteogly-
cans (n = 5)] (Supplementary Fig.  3H; Supplementary 
Table 3 [27]).

An inflammatory CAF (iCAF) population was char-
acterised by high expression of inflammatory cytokines 
(e.g., IL11, IL6, CXCL8, CXCL1, CXCL5; Fig. 2B). Nota-
bly, iCAF also expressed upregulated ECM genes (albeit 
at a comparatively lower level than myCAF), with higher 
levels of genes associated with ECM remodelling (MMP3, 
MMP1, PLAU), glycolysis/hypoxia (HIF1A, ENO1, GK, 
CA12, SLC16A3/MCT4) and neutrophil-recruiting che-
mokines (CXCL1, CXCL5, CXCL6, CXCL8) (Supple-
mentary Table 3). This cluster was highly enriched for 
hypoxia, MAPK, NF-κB, and TNFα signalling pathways 
(Supplementary Fig. 3G).

A further CAF cluster expressed lower levels of 
myCAF/iCAF marker genes; this ‘proto-CAF’ cluster dis-
played few unique DEGs (n = 19) compared with other 
fibroblast phenotypes (which ranged from n = 83–232 
unique DEGs) and on the UMAP adjoined normal fibro-
blast and CAF clusters, likely representing a transition 
state. myCAF and iCAF were present in both HPV-ve 
and HPV+ve HNSCC (Supplementary Fig.  3E, F), but 
HPV-ve HNSCC samples contained greater proportions 
of CAF/fibroblasts relative to total cell number per sam-
ple (Supplementary Fig. 3E).

Within normal mucosa we identified three fibroblast 
subtypes (also present in tumours). Universal (adventi-
tial) fibroblasts expressing PI16 were present in normal 
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Fig. 1  HPV+ve HNSCC frequently has an immune-hot tumour microenvironment. (A) Schematic of workflow for integrative single cell and spatial analy-
sis. (B) Plot showing UMAP embeddings for integrated (Seurat RPCA) HNSCC scRNA-Seq dataset comprising HPV-ve HNSCC (n = 11; 59,907 cells), HPV+ve 
HNSCC (n = 13; 69,967 cells) and normal oropharyngeal tissue (n = 7; 29,952 cells). UMAP plots displaying 12 clusters are accompanied with bar plots 
showing relative proportions of broad cell types per patient sample. Clusters are annotated based on expression of marker genes as shown in Supple-
mentary Fig. 1E. (C) H&E images with spatial feature plots showing spatial transcriptomics MCP-counter deconvoluted abundance for B-cells, T-cells 
and CAF in representative examples of HPV+ve and HPV-ve patients. Cell type abundance within each Visium (10x) spot estimated by MCP-counter is 
displayed. (D) MxIF (Phenocycler-Fusion) examples of DAPI, CD3E, CD20 and Pan-Cytokeratin staining in representative HPV+ve and HPV-ve patients
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Fig. 2 (See legend on next page.)
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mucosa, HPV+ve and HPV-ve tumour samples (Supple-
mentary Fig. 3E, F). These expressed CD34 and distinc-
tive ECM-associated genes, including COL14A1, OGN 
and TNXB, likely reflecting their vascular-niche func-
tion (Fig.  2B, Supplementary Fig.  3H). ADH1B + fibro-
blasts were the most common subtype in normal tissue 
(54% of fibroblasts) but were infrequent in tumours (5% 
of fibroblasts; Fig. 2C; Supplementary Fig. 3E). The core 
matrisome profile of ADH1B + fibroblasts was similar to 
universal (PI16+) fibroblasts (Supplementary Fig.  3H). 
The third fibroblast subgroup expressed CCL19, CCL21, 
VCAM1, RBP5 and SPIB (Fig. 2B) with a phenotype akin 
to fibroblastic reticular cells (FRC), specialised fibroblast 
subsets of lymphoid tissues that organise and traffic lym-
phoid cells.

Notably, when present in tumours, normal fibroblast 
subtypes up-regulated activation- (FAP, FN1, PDPN, 
COL1A1), inflammation- (CXCL1, ISG15) and insulin-
like growth factor (IGF)-related (IGF1, IGFBP2, IGFBP4) 
genes (Supplementary Fig.  3I) suggesting early activa-
tion (with these genes expressed at higher levels in CAF 
clusters).

Fibroblast phenotypes differ between immune-hot and 
immune-cold tumours
To investigate whether fibroblast subsets were differ-
entially abundant in immune-hot and immune-cold 
tumours, we classified scRNA-Seq samples (n = 24) into 
‘High’, ‘Moderate’ and ‘Low’ tertiles using lymphocyte 
abundance. Samples classified as lymphocyte-High were 
considered immune-hot tumours, of which all were 
HPV+ve, whereas lymphocyte-Low samples were con-
sidered immune-cold. FRC-like fibroblasts were the 
only fibroblast subset significantly enriched in immune-
hot tumours (Fig.  2D), with 12/12 FRC-like neighbour-
hoods significantly differentially abundant (logfc > 3.75; 
spatialFDR < 0.05). Levels of FRC-like fibroblasts var-
ied between individual HPV+ve tumours but were uni-
formly rare in all HPV-ve cases (Supplementary Fig. 3E, 
F, J). Immune-cold tumours were found to contain 
greater abundance of myCAF, iCAF and proto-CAF, with 
60–65% of neighbourhoods within these clusters labelled 
as differentially abundant (logfc<-2.75; spatialFDR < 0.05).

Regulation of the iCAF and FRC-like inflammatory 
phenotypes
We sought to identify how the different inflammatory 
fibroblast phenotypes were regulated by inferring lin-
eages arising from universal (PI16+) fibroblasts [1]. To 
achieve this we performed trajectory analysis, which 
identified three lineages leading to the formation of 
FRC-like fibroblasts (through ‘ADH1B+’), myCAF and 
iCAF (both through ‘proto-CAF’; Fig. 2E; Supplementary 
Fig. 3K).

We next examined signalling pathways regulating FRC-
like and iCAF inflammatory subsets by assessing pathway 
enrichment in genes changing as a function of pseudo-
time in KEGG and Hallmarks gene sets (q_value < 0.05 & 
morans_I > 0.25). Pseudotime analysis of the FRC-like lin-
eage (1) showed increased expression of genes associated 
with NF-κB signalling pathway (KEGG; p.adjust < 0.01) 
and Allograft rejection (Hallmarks; p.adjust < 0.0001) 
(Fig.  2F; Supplementary Table 4). While many genes 
(e.g., CCL19, C7, IRF8) showed a pseudotime-dependent 
increase in expression through the ADH1B + cluster to 
FRC-like, other genes enriched for TNF-alpha Signalling 
via NF-κB (Hallmarks; p.adjust < 0.0001) increased in the 
ADH1B + cluster but decreased in the FRC-like cluster 
(e.g., SOCS3, JUN, IRF1, FOS, JUNB). Gene set enrich-
ment analysis (GSEA) of the MSigDB Hallmarks gene 
sets revealed significant enrichment for allograft rejec-
tion in FRC-like fibroblasts (Supplementary Fig. 3L).

In the iCAF lineage (2), pseudotime analysis revealed 
increased expression of genes associated with TNF-
alpha signalling via NF-κB (Hallmarks; p.adjust < 0.0001), 
Epithelial Mesenchymal transition (Hallmarks; 
p.adjust < 0.0001), inflammatory response (Hallmarks; 
p.adjust < 0.0001) and JAK-STAT signalling pathway 
(KEGG; p.adjust < 0.01) (Fig.  2F; Supplementary Table 
4). GSEA showed enrichment for Glycolysis, Hypoxia, 
inflammatory response and TNF-alpha signalling via 
NF-κB (Supplementary Fig. 3L).

Intriguingly, while the chief inflammatory path-
way, NF-κB, was associated with both iCAF and FRC-
like inflammatory phenotypes, the corresponding 
genes differed. FRC-like NF-κB genes (e.g., CCL21, 
CCL19, TNFSF13B) are specifically associated with the 

(See figure on previous page.)
Fig. 2  scRNA-Seq of HNSCC reveals distinct subsets of immunomodulatory fibroblasts. (A) UMAP of fibroblasts from integrated HNSCC dataset showing 
six clusters (4,894 cells; n = 24 HNSCC; n = 7 normal). (B) Heatmap showing the average expression of selected differentially expressed genes for each 
fibroblast cluster. (C) Differential abundance testing between HNSCC and normal samples. Highlighting differentially abundant neighbourhoods. (D) 
Differential abundance testing between immune-hot (n = 8) and immune-cold (n = 8) HNSCC. Samples classified based on lymphocyte content (see 
methods). (E) Trajectory analysis showing fibroblast lineages arising from universal (PI16+) fibroblasts. Lineage reconstruction and pseudotime inference 
using Slingshot package. (F) Examination of potential signalling pathways regulating iCAF and FRC-like inflammatory subsets by assessing pathway en-
richment in genes that change as a function of pseudotime in the KEGG and Hallmarks gene sets (determined using Monocle 3 trajectory; q_value < 0.05 
& morans_I > 0.25). Over-representation analysis showing selected enriched pathways of pseudotime-dependent genes. (G) Heatmap of activity of the 
top 25 transcription factors using DoRothEA regulons (wmean). Clustered scaled activity scores are shown. Below the heatmap shows scaled activity of 
RELA and RELB. (H) Average expression of genes with cytokine activity across fibroblast clusters. Differentially expressed genes filtered for GOMF_CYTO-
KINE ACTIVITY MSigDB gene set
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Fig. 3 (See legend on next page.)
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alternative NF-κB pathway, commonly triggered through 
lymphotoxin, LIGHT, CD40-L and BAFF, and are related 
to lymphoid organ development and adaptive immu-
nity [28]. Conversely, iCAF NF-κB genes (e.g., CXCL1, 
CXCL8) are generally associated with the classical NK-κB 
pathway, typically activated via IL-1, TNF-α or LPS and 
associated with inflammation and innate immunity [28]. 
Accordingly, we examined transcription factor (TF) 
activity in FRC-like and iCAF subsets by assessing the 
transcriptomic ‘footprint’ of active transcription factors 
using the DoRothEA database [23]. FRC-like fibroblasts 
showed strong activity for RELB and NFKB2 (p100/p52), 
again providing evidence for alternative NF-κB pathway 
activation through NF-κB RelB-p52 complexes, whereas 
top iCAF active transcription factors included RELA 
(p65), CEBPB and JUN/FOSL1 (AP1; Fig. 2G).

Analysis of fibroblast phenotypes: spatial distribution, 
immune cell interactions and regulation of phenotypes
FRC-like fibroblasts and iCAF possessed distinct inflam-
matory cytokine profiles (Fig.  2H); FRC-like cytokines 
were associated with lymphocyte recruitment, prolif-
eration, and survival [e.g., CCL19/21, IL7/15, TNFSF14 
(LIGHT), TNFSF13B (BAFF), CXCL13], with iCAF-spe-
cific cytokines related to myeloid/ granulocyte recruit-
ment and differentiation (CXCL1/5/6/8, CSF2/3). This, in 
addition to their different regulatory pathways, suggested 
that FRC-like fibroblasts and iCAF were likely associated 
with distinct immunological niches. To investigate this, 
we first performed correlative sample-level analysis on 
scRNA-Seq data using the previously identified immune 
cell subsets in the integrated HNSCC scRNA-Seq data-
set (Supplementary Fig. 2). We followed this with spatial 
transcriptomics (Visium 10x) analysis; using the anno-
tated scRNA-Seq data as a reference to derive cell-type 
specific gene signatures that were used to deconvo-
lute cell types present within each 55  μm spot [29, 30]. 

Applying this integrative approach for myCAF and uni-
versal (PI16+) fibroblasts, identified previously described 
spatial and cellular relationships (Supplementary Fig. 4).

FRC-like fibroblasts are found within TLS and colocalise 
with B-cells and CD4 + T-cells
In sample-level scRNA-Seq correlations of tumours, 
FRC-like fibroblasts positively correlated with various 
B-cell subsets [including cycling B-cells, FCRL4 + B-cells 
and germinal centre (GC) B-cells], plasma cells, 
KIT + NK-cells (Fig. 3A), with high correlation with IgM 
expressing B/plasma cells. FRC-like fibroblasts also cor-
related with CD4 + T follicular helper (Tfh) cells. Spa-
tial transcriptomic analysis confirmed that each tumour 
contained multiple fibroblast subsets that were spatially 
discrete (82.4% of fibroblast-containing spots contained 
one subset only; Supplementary Fig.  5). FRC-like fibro-
blasts colocalised with B-cells and CD4 + T-cells (non-
Treg; p < 0.0001), found either in focal areas containing 
high densities of B/CD4 + cells (non-Treg) (HPV+ve/-
ve HNSCC) or occasionally more widespread in two 
HPV+ve samples (59%/23% total spots) but still colocal-
ising with large numbers of B/CD4 + T-cells (Fig.  3BC; 
Supplementary Fig.  6A, B, C). There was also a spatial 
correlation between FRC-like fibroblasts and plasma 
cells, Tregs and CD8 + T-cells (Fig.  3B; Supplemen-
tary Fig.  6A, B). PDPN is commonly utilised as a pan-
fibroblast marker and has been specifically employed to 
identify FRC in lymph nodes [31]. MxIF on spatial tran-
scriptomic-determined FRC-like regions of interest (ROI) 
confirmed the presence of PDPN+/CD31- fibroblasts 
colocalising with CD20 + and CD4 + cells (Fig.  3D; Sup-
plementary Fig. 6D) within and surrounding CD21 + fol-
licular dendritic cells, along with high densities of 
B-cells, suggesting formation of tertiary lymphoid struc-
tures (TLS). We therefore compared TLS and FRC-like 
enrichment in spatial transcriptomic data using different 

(See figure on previous page.)
Fig. 3  FRC-like fibroblasts colocalise with B-cells and CD4 + T-cells, found within TLS and are regulated via LTβR signalling. (A) FRC-like fibroblast and 
immune cell sample-level scRNA-Seq correlations (spearman; p < 0.05). For HNSCC samples only, fibroblast proportions (relative to total fibroblasts) per 
sample were correlated against immune cell cluster proportions (relative to total immune cells). Only significant positive associations are shown. (B) 
Spatial transcriptomics cell type correlations (spearman) using RCTD imputed abundance (normalised weights ≥ 0.05). Visium (10x) spots were deconvo-
luted using RCTD. Spearman correlation of normalised weights was carried out on each patient separately. Correlation coefficients are plotted for each 
of 10 patients, median displayed as vertical line in boxplot and mean as star symbol. Weighted Fisher’s method was used to combine p values. (C) Spatial 
feature plot of deconvoluted values of FRC-like fibroblasts, B-cells and CD4 + T-cells in a HPV + ve HNSCC sample. (D) MxIF (Phenocycler-Fusion) showing 
staining (DAPI, Pan-cytokeratin, PDPN, CD31, αSMA, CD21, CD20, CD4) in FRC-like containing region of interest identified by RCTD deconvolution. MxIF 
markers are shown separately and accompanied by composite image of all markers. PDPN + CD31- cells marking fibroblasts. (E) FRC-like abundance 
(RCTD) and TLS signature [33] enrichment (AddModuleScore) spatial feature plot with spearman correlation of RCTD normalised weights. Correlations for 
each Visium (10x) spot across all 10 patients. Top 5 correlations shown, including FRC-like fibroblasts with highest correlation coefficient. (F) Volcano and 
ligand-receptor interaction plots showing spatially differentially expressed ligands (Log2FC ≥ 1; padj < 0.0001). Differentially expressed ligands in FRC-like 
containing spots (normalised weight ≥ 0.05). Ligands displayed are those found within the GOMF_CYTOKINE_ACTIVITY MSigDB gene set; expressed in 
FRC-like fibroblasts, B-cells or CD4 + T-cells; and have expression of corresponding receptor in FRC-like fibroblasts. (G) qPCR analysis of FRC-like fibroblast 
markers (CCL19, CCL21, SPIB and RBP5) in primary NOF treated with a TGFBR1 inhibitor (ALKi; 1µM) and 50ng/ml LTa1β2 for 7 days. Results show mean ± SD 
of 3 independent experiments in n = 1 primary NOF cell line. One-way ANOVA with Bonferroni correction. (H) qPCR analysis of FRC-like fibroblast markers 
(CCL19, CCL21, SPIB and RBP5) in n = 7 primary NOF lines treated with 100ng/ml LTa1β2 + ALKi (1µM) for 48 h. Results show mean ± SD of 9 independent 
experiments, colours of points correspond to primary NOF line. Paired Student t test (two-tailed). † = Ct undetermined, assumed Ct = 40. *p < 0.05; 
**p < 0.01; ***p < 0.001. ****p < 0.0001
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TLS gene signatures [32]. Spot deconvolution (RCTD) 
showed that FRC-like fibroblasts significantly correlated 
with module enrichment scores for various TLS signa-
tures that have been used in several solid cancer studies 

(Spearman’s r ≥ 0.5, p < 0.0001; Fig.  3E, Supplementary 
Fig. 6E; [33–36]).

Fig. 4 (See legend on next page.)
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FRC-like fibroblasts are regulated via LTβR signalling
We next investigated potential interactions in the FRC-
like niche by examining ligands and receptors that were 
differentially expressed in Visium spots that contained 
FRC-like fibroblasts (spots containing at least 5% FRC-
like cells imputed by RCTD deconvolution; Supplemen-
tary Fig.  7A; Supplementary Table 5). LTβR-binding 
ligands [TNFSF14 (LIGHT), LTB, LTA, CD40LG] were 
amongst cytokine activity-possessing ligands that were 
spatially associated, expressed by highly correlating cell 
types (Fig.  3F; Supplementary Fig.  7B) and known to 
stimulate alternative NF-κB pathway activation (con-
sistent with previous pathway/TF analysis). LIGHT 
and CD40LG were top ligands inferred via NicheNet 
[37] (Supplementary Fig.  7C). Lymphotoxin was highly 
expressed in B-cells, T-cells and DCs (Supplementary 
Fig.  7D), whereas LIGHT was expressed by FRC-like 
fibroblasts. In common with FRC-like fibroblasts, most 
other fibroblast subsets also expressed receptors for 
these (and other) inflammatory ligands (Supplementary 
Fig.  7E), highlighting the potential for immunological 
plasticity in these cells depending on ligand availability.

We then assessed the ability of the LTβR-binding ligand 
lymphotoxin α1β2 (LT) to regulate the FRC-like pheno-
type in cultured primary oral fibroblasts (NOFs). Treat-
ment with LT in combination with an ALK5 (TGFBR1) 
inhibitor induced FRC-like-specific genes CCL19 
(p < 0.0001), CCL21 (p < 0.0001), SPIB (p < 0.0001), RBP5 
(p < 0.01; Fig. 3G). This was confirmed in further primary 
NOF cultures (n = 7; CCL19, p < 0.01; CCL21, p < 0.05; 
SPIB, p < 0.01; RBP5, p < 0.001; Fig. 3H).

iCAF colocalise with inflammatory monocytes and 
neutrophils
iCAF correlated strongly with a subset of CD14 + IL1Bhigh 
inflammatory monocytes (Spearman’s r = 0.72, p < 0.0001; 
Fig.  4A; Supplementary Fig.  8A). Spatial transcriptomic 

analysis showed that iCAF were spatially distinct from 
myCAF (Supplementary Fig. 5), located primarily at the 
tumour periphery, particularly towards the tumour sur-
face. iCAF colocalised with monocytes and neutrophils 
(p < 0.0001), also frequently found at the periphery of 
tumours (Fig.  4B, C; Supplementary Fig.  6A, B; Supple-
mentary Fig. 8C). MxIF on iCAF ROI (identified through 
spatial transcriptomics deconvolution) showed that these 
areas contained PDPN+/CD31- fibroblasts and were 
associated with disruptions in surface epithelium (pan-
cytokeratin) and CD68+, CD14 + and MPO + myeloid 
cells (Fig. 4D; Supplementary Fig. 8C).

iCAF are regulated via IL-1β and TNF-α
Next, we examined the expression of spatially located 
ligands in cell types highly correlating with iCAF (Sup-
plementary Table 5). Top ligands associated with cyto-
kine activity in the iCAF-niche included CXCL8, IL1A, 
IL6, OSM, IL11 and particularly IL1B which was highly 
expressed by inflammatory monocytes (Fig.  4E; Supple-
mentary Fig.  8D). We also inferred ligand regulatory 
activity using NicheNet, which highlighted IL1B and 
IL1A as top spatially defined ligands with iCAF (gene 
set) regulatory potential (Supplementary Fig. 8E). Indeed, 
myeloid cells (monocytes, neutrophils, macrophage) 
expressed highest levels of these ligands (IL1B, IL1A, 
OSM), supportive of iCAF associating with a myeloid 
niche (Supplementary Fig. 7D).

We tested the potential of these ligands for regulat-
ing the iCAF phenotype in NOFs. In addition to IL-1β, 
we included TNF-α due to pathway and TF enrichment 
for classical NF-κB signalling and high expression in 
monocytes [although TNF was not spatially differen-
tially expressed in the iCAF niche, likely resulting from 
expression in multiple immune cell types (Supplemen-
tary Fig. 7D)]. NOFs were treated with IL-1β and TNF-
α, either alone or in combination. We also included 

(See figure on previous page.)
Fig. 4  iCAF colocalise with inflammatory monocytes and neutrophils and are regulated via IL-1β and TNF-α signalling. (A) iCAF and immune cell sample-
level scRNA-Seq correlations (spearman; p < 0.05). For HNSCC samples only, fibroblast proportions (relative to total fibroblasts) per sample were correlated 
against immune cell cluster proportions (relative to total immune cells). Only significant positive associations are shown. (B) Spatial transcriptomics cell 
type correlations (spearman) using RCTD imputed abundance (normalised weights ≥ 0.05). Visium (10x) spots were deconvoluted using RCTD. Spear-
man correlation of normalised weights was carried out on each patient separately. Correlation coefficients are plotted for each of 10 patients, median 
displayed as vertical line in boxplot and mean as star symbol. Weighted Fisher’s method was used to combine p values. (C) Spatial feature plot of decon-
voluted values of iCAF, monocytes and neutrophils in a HPV-ve HNSCC sample. (D) MxIF (Phenocycler-Fusion) showing staining (DAPI, Pan-cytokeratin, 
PDPN, CD31, αSMA, MPO, CD68, CD14) in iCAF containing region of interest identified by RCTD deconvolution. MxIF markers are shown separately and 
accompanied by composite image of all markers. (E) Volcano and ligand-receptor interaction plots showing spatially differentially expressed ligands 
(Log2FC ≥ 1; padj < 0.0001). Differentially expressed ligands identified using FindMarkers on iCAF containing spots (normalised weight ≥ 0.05) filtered for 
ligands. Ligands displayed are those found within the GOMF_CYTOKINE_ACTIVITY MSigDB gene set; expressed in iCAF, monocytes or neutrophils; and 
have expression of corresponding receptor in iCAF. (F) qPCR analysis of iCAF markers (IL6, MMP3, IL11 and MME) in primary NOF treated with IL1β (1ng/
mL), TNF𝛼 (1ng/mL), IL1β (1ng/mL) + TNF𝛼 (1ng/mL) and TGFβ (4ng/mL) for 48 h. Results show mean ± SD of 3 biological replicates in n = 1 primary NOF 
cell line. One-way ANOVA with Bonferroni correction. P values marked by asterisk under bars reflect comparisons with CTL. (G) qPCR analysis of iCAF mark-
ers (IL6, MMP3, IL11 and MME) in n = 5 primary NOF lines treated with TGFβ (4ng/mL) or IL1β (1ng/mL) + TNF𝛼 (1ng/mL) for 72 h. Results show mean ± SD 
of n = 9 independent experiments, colours of points correspond to primary NOF line. One-way ANOVA with Bonferroni correction. (H) qPCR analysis of 
iCAF markers (IL6, MMP3, IL11 and MME) in n = 3/4 primary NOF lines treated with TGFβ (4ng/mL), IL1β (1ng/mL) + TNF𝛼 (1ng/mL), monocyte conditioned 
media (CM) or LPS-activated monocyte conditioned media for 72 h. Results show mean ± SD of n ≥ 3 independent experiments, colours of points cor-
respond to primary NOF line. One-way ANOVA with Bonferroni correction. *p < 0.05; **p < 0.01; ***p < 0.001. ****p < 0.0001
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TGF-β1, a central regulator of the myCAF phenotype for 
reference. Both IL-1β and TNF-α induced expression of 
IL6 (p < 0.0001), MMP3 (p < 0.0001) and MME (p < 0.01; 
Fig. 4F), but with limited upregulation of IL11. However, 
combining IL-1β with TNF-α increased expression of all 
inflammatory marker genes compared with individual 
treatments (IL6, p < 0.0001; MME, p < 0.05), including 
IL11, which increased 16-fold (log2FC = 4) compared to 
IL-1β alone (p < 0.05). This was validated in several pri-
mary fibroblast cultures (n = 9), where TNF-α and IL-1β 
robustly induced iCAF gene expression (Fig.  4G). IL11 
was also induced by TGF-β1 (p < 0.0001); conversely, 
ACTA2 (αSMA; a myCAF marker) was induced by 
TNF-α/IL-1β (p < 0.001); while other iCAF (IL6, MMP3, 
MME) and myCAF (POSTN, TAGLN, COL1A1) genes 
were more specifically regulated by TNF-α/IL-1β and 
TGF-β1 respectively (Supplementary Fig. 8F).

Given the iCAF/monocyte spatial relationship, we 
investigated whether monocytes regulated the iCAF 
phenotype. NOF treated with conditioned medium 
from monocytes activated with LPS induced upregu-
lated expression of iCAF genes (IL6, p < 0.0001; MMP3, 
p < 0.0001, IL11, p < 0.001; MME, p < 0.001; Fig. 4H). Simi-
lar to TNF-α/IL-1β treatment, ACTA2 was also increased 
(p < 0.05; Supplementary Fig. 8G).

In summary, the two immune-related HNSCC fibro-
blast subtypes occupy distinct immunological niches; 
FRC-like are found in TLS with CD4 + T-cells and B-cells 
and regulated through non-canonical NF-κB signalling 
via LTBR; iCAF are found with inflammatory monocytes 
and neutrophils and regulated through canonical NF-κB 
signalling through TNF-α and IL-1β.

Pan-cancer fibroblast analysis identifies conserved and 
semi-conserved inflammatory fibroblast phenotypes
To compare the HNSCC fibroblast phenotypes with 
other cancers, we generated a scRNA-Seq (10x Chro-
mium) pan-cancer fibroblast atlas (PCFA) from seven 
cancer types: HNSCC, pancreatic, breast, lung, colon, 
oesophageal and gastric cancers (Fig.  5A). Only datas-
ets containing both tumour and normal samples were 
included to differentiate between normal (steady-state) 
and cancer-associated phenotypes (Fig. 5B, C, D).

The PCFA (86,414 fibroblasts; 376 samples), revealed 
16 populations, including broadly conserved, as well as 
tissue-specific subsets. Where possible, fibroblast sub-
groups were labelled using designations from previous 
studies (Supplementary Table 6). Conserved phenotypes 
in normal tissue included universal (PI16+) Fib, stress-
response Fib (DNAJB1+, HSPH1+, HSPA1A+; which 
incorporated the head & neck ADH1B + fibroblasts) and 
CXCL14 + CFD + Fib (Fig.  5E). Tissue-specific subsets 
included CXCL8 + breast fibroblasts [most abundant sub-
set (>85%) in normal breast tissue], NPNT+ (alveolar) 

lung fibroblasts and F3+/ADAMDEC1 + colonic/gastric 
fibroblasts (all found in normal and tumour samples; Fig. 
5D, E). The FRC-like cluster was mostly composed of 
cells from the head & neck with a contribution from lung 
(from normal tissues and cancers) and low numbers from 
other cancer types (Fig. 5D, E).

Only subsets found exclusively in cancers were 
termed CAF (Fig.  5D). Conserved common CAF clus-
ters included myCAF (the most abundant CAF subset in 
all tumour types except gastric cancer; Supplementary 
Fig. 9A), IGF1 + CAF and proto-CAF. Other clusters had 
increased frequency in certain cancer types or were rare 
across cancers. For example, three clusters had a larger 
contribution from pancreatic tumour/normal samples 
(HAS1 + CAF, metabolic CAF [meCAF] and C7 + Fib 
(Fig.  5E; Supplementary Fig.  9A). meCAF expressed 
markers of glycolysis and hypoxia (ENO1, ENO2, 
NDRG1, PGK1, LDHA, SLC2A1) consistent with a pre-
viously described population [38]. Although this cluster 
was observed pan-cancer, outside of pancreatic samples 
it was generally found at very low number (Supplemen-
tary Fig.  9A). No bona fide apCAF subpopulation was 
detected, but CD74 was differentially expressed in several 
clusters (Supplementary Table 6).

The HNSCC iCAF resided in the IL11 + CAF cluster 
(Supplementary Fig.  9B); this semi-conserved pheno-
type was one of the most abundant fibroblast subpopu-
lations in HNSCC, colorectal carcinoma (CRC) and 
oesophageal squamous cell carcinoma (ESCC) (Supple-
mentary Fig.  9A) but was not present in lung or breast 
cancers. Label transfer using the HNSCC myeloid cells as 
a reference to identify myeloid phenotypes in CRC/ESCC 
scRNA-Seq datasets showed that IL11 + CAF similarly 
correlated with IL1B + inflammatory monocytes suggest-
ing the same immunological niche is present in different 
cancer types (Supplementary Fig. 9C).

‘iCAF’ gene signature highlights different normal fibroblast 
and CAF populations
iCAF have been identified in several cancer types 
included in the PCFA (including PDAC and breast can-
cer), yet the iCAF population identified in HNSCC 
(IL11 + CAF) was restricted to HNSCC and GI cancers. 
We therefore performed enrichment analysis using a 
previously described PDAC iCAF gene signature [5] to 
investigate whether other PCFA subgroups expressed 
previously described iCAF markers. This approach high-
lighted several putative iCAF-enriched populations from 
both normal and tumour samples; in normal tissues these 
included Stress-response Fib, CXCL8 + Breast Fib and 
universal (PI16+) fibroblasts; in tumours, IL11 + CAF, 
IGF1 + CAF and proto-CAF (Fig. 6A). We examined the 
iCAF signature-enriched clusters from tumours in more 
detail.
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Fig. 5  Pan-Cancer fibroblast analysis identifies conserved and semiconserved inflammatory fibroblast phenotypes. (A) Schematic of Pan-Cancer Fibro-
blast Atlas (PCFA) including anatomical sites, sample/fibroblast numbers and original publications. This integrated PCFA contained 86,414 fibroblasts from 
376 samples. (B) UMAP plot of PCFA displaying 16 clusters, and to the right, UMAPs coloured by anatomical site and source of sample (tumour or normal). 
Samples were integrated using harmony via Seurat v5 sketch-based integration. (C) PCFA UMAP split by anatomical site and tumour/normal samples with 
density of fibroblasts highlighted on UMAP. (D) Relative proportion of each cluster in down-sampled (to same number of cells from each anatomical site 
and same number of cells from tumour/normal samples) normal and tumour samples. (E) Relative proportion of each cluster in down-sampled (to same 
number) anatomical sites (including normal and tumour samples)
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Fig. 6  ‘iCAF’ gene signature highlights different normal fibroblast and CAF populations. (A) Feature plot (UMAP) showing expression of iCAF signature 
enrichment in PCFA, split by tumour or normal samples. AddModuleScore using the 12-gene iCAF signature from Elyada et al., (2019) [5]. (B) Propor-
tion of IL11 + CAF, proto-CAF and IGF1 + CAF in tumour samples across cancer types. (C) Heatmap showing average expression of DEGs upregulated in 
IGF1 + iCAF compared to universal (PI16+) fibroblasts. Clustering of rows form gene modules. (D) Selected iCAF gene (IL6, CXCL8, IL11, LIF) expression 
across clusters (sample-level). Wilcoxon rank-sum test (two-sided) compared to IGF1 + CAF. ns p ≥ 0.05, *p < 0.05; **p < 0.01; ***p < 0.001. ****p < 0.0001
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Notably, IGF1 + CAF expressed all PDAC iCAF mark-
ers suggesting this phenotype represented the iCAF 
described in PDAC (and breast cancer) studies (Supple-
mentary Fig.  9D; [5, 6, 17, 18]). IGF1 + CAF were pres-
ent in most cancer types (e.g., breast, oesophageal, lung), 
including high levels in PDAC (where they were compa-
rable to myCAF in abundance; Fig.  6B; Supplementary 
Fig.  9A). Transcriptionally, IGF1 + CAF differed con-
siderably from IL11 + CAF, clustering close to univer-
sal (PI16+) Fib and maintaining expression of universal 
(PI16+) Fib genes (PI16, CFD, COL14A1; Supplementary 
Table 7 A).

In our initial HNSCC analysis, ~ 50% of the (univer-
sal) PI16 + fibroblast cluster from tumour samples were 
labelled as IGF1 + CAF in the larger PCFA dataset. This 
showed that universal (PI16+) fibroblasts from tumours 
show evidence of activation and inflammatory changes 
(including expression of FAP, COL1A1, IGF1; Supple-
mentary Fig.  3I; Supplementary Fig.  9B). Given the 
transcriptional similarity between universal (PI16+) 
fibroblasts and IGF1 + CAF, we examined DEGs between 
these phenotypes (Supplementary Table  7B). 159 DEGs 
(log2FC > 1; p.adj < 0.05) were identified as up-regulated 
in IGF1 + CAF compared to PI16 + fibroblasts, including 
previously described markers of both iCAF and myCAF 
phenotypes (Supplementary Table  7B). We then ana-
lysed these DEGs across other common CAF popula-
tions (Fig. 6C). This showed 52/159 clustered DEGs were 
more strongly upregulated in myCAF (including POSTN, 
MMP11, COL1A1); and 42/159 clustered DEGs were 
more strongly up-regulated by the IL11 + CAF popula-
tion, including key inflammatory cytokines (CXCL8, 
CXCL2, CCL5). Moreover, iCAF-associated cytokines 
IL6, CXCL8 and IL11 (all p < 0.0001) were expressed 
markedly higher in IL11 + CAF compared to IGF1 + CAF 
(Fig. 6D).

These data suggest that IGF1 + CAF are an early 
activated state and are likely the predominant iCAF 
described in the current literature. In comparison, 
IL11 + CAF subtype are more inflammatory and found 
within cancers of the GI tract.

FRC-like fibroblasts are present across cancers at low 
frequency and are associated with positive response to 
immunotherapy
Across the seven cancers included in the PCFA, FRC-
like cells were a relatively rare fibroblast population, with 
77.8% of cells contributed from head and neck (62.1% 
normal; 15.6% tumour). Within tumour samples, FRC-
like fibroblasts were found with highest average relative 
abundance in HNSCC (11.2%) followed by lung cancer 
(1.7%) but were present in all cancers at low frequencies 
(Fig.  7A). FRC-like cells were detected in several nor-
mal tissue sites, likely representing mucosa-associated 

lymphoid tissues (MALT; Fig.  7A). In breast, oesopha-
geal, lung and pancreatic cancers, FRC-like fibroblasts 
were enriched in tumour samples, while were less com-
mon in HNSCC, gastric and colon cancer relative to nor-
mal samples.

The positive correlation between the FRC-like fibro-
blast and TLS gene signatures [33] across bulk RNA-Seq 
datasets (Fig. 7B), suggested that an FRC-like-containing 
immune hub exists in different cancers. Given that TLS 
have been linked with positive response to checkpoint 
immunotherapy in several cancer types [32, 33, 39] we 
investigated whether FRC-like fibroblasts were similarly 
associated. First, we utilised a dataset (GSE159067) con-
sisting of pre-treatment samples from 102 patients with 
advanced HNSCC treated with anti-PD-1/PD-L1 immu-
notherapy. Samples were scored using ssGSEA for fibro-
blast subset-specific genes (Supplementary Table 8). We 
found patients with higher FRC-like scores had signifi-
cantly improved survival (p < 0.01) (Fig. 7C). In contrast, 
iCAF were associated with significantly poorer survival 
(Supplementary Fig. 9E). We performed the same analy-
sis on datasets from lung cancer and melanoma patients. 
Similarly, we observed higher FRC-like scores were asso-
ciated with significantly improved survival in immune 
checkpoint inhibitor treated patients with lung cancer 
(p < 0.01; anti-PD1/PD-L1) and melanoma (p < 0.001; 
anti-CTLA4/PD-1); unlike HNSCC, iCAF were not prog-
nostic (Fig. 7D; Supplementary Fig. 9F, G, H).

Discussion
We characterised immune-hot and immune-cold 
HNSCC to investigate fibroblast phenotypes associ-
ated with the distinct immunological environments of 
HPV+ve and HPV-ve tumours, hypothesising that the 
high-TIL containing HPV+ve subset may contain a fibro-
blast phenotype that supports anti-tumour immunity. We 
included normal mucosa to separate cancer-associated 
phenotypes from those present in steady-state, as this 
was not included in recent HNSCC scRNA-Seq datasets 
[26, 40]. Single cell analysis identified six major fibroblast 
subgroups; universal (PI16+) fibroblasts, ADH1B + fibro-
blasts and CCL19 + FRC-like fibroblasts were present in 
normal tissue and tumours. myCAF, [IL11 +]  iCAF and 
proto-CAF were limited to tumours. Of these, proto-
CAF fibroblasts were likely a transition state as cells dif-
ferentiated towards myCAF/iCAF phenotypes. HPV+ve 
and HPV-ve cancers contained mixtures of all fibroblast 
subgroups, although proportions and relative abundance 
varied in individual tumours. In support of our hypoth-
esis, we found significantly higher numbers of FRC-like 
fibroblasts expressing CCL19 and CCL21 in immune-hot 
HPV+ve cancers. These tumours were situated in the oro-
pharynx, an anatomical site that contains secondary lym-
phoid organs (SLO; tonsils) and considerable numbers of 
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FRC-like cells were also present in matched normal oro-
pharyngeal tissue. However, scRNASeq did not identify 
FRC-like fibroblasts in HPV-ve HNSCC tumours at the 
same site, or in a minority of HPV+ve tumours, suggest-
ing either that FRC-like fibroblasts are retained within 
most HPV+ve tumours or arise de novo.

In lymph nodes, FRC play a central role in struc-
tural organisation; attracting and maintaining T-cells, 
supporting B-cell survival, promoting dendritic cell 

migration, and controlling permeability of high endo-
thelial venules [31]. Similar cells arise in autoimmune 
disease, where they transdifferentiate from local fibro-
blasts and play a central role in supporting TLS forma-
tion and maintenance [41]. Consistent with this, within 
tumours we found FRC-like fibroblasts located with 
B-cells and (Tfh) CD4  + T-cells in TLS structures, cor-
relating with several well-described TLS gene signatures. 
Development of mature FRCs from precursor cells in 

Fig. 7  FRC-like fibroblasts are present across cancers at low frequency and are associated with positive response to immunotherapy. (A) Abundance 
of FRC-like fibroblasts across anatomical sites (normal only) and cancer types (tumour only). Log10 scale used due to extremely low abundance of FRC-
like fibroblasts in non-head & neck tissue/tumours. (B) Correlation of FRC-like fibroblast signature and TLS signature [33] enrichment across selected 
cancer types in TCGA Bulk RNA-Seq data. ssGSEA run using batch effects normalized mRNA data from the Pan-Cancer Atlas Hub (UCSCXena). Spearman 
correlation coefficients and p-values displayed. (C) Kaplan-Meier (overall) survival plot showing anti-PD-1/PD-L1 treated HNSCC cohort (GSE159067; 
n = 102), stratified by FRC-like fibroblast (ssGSEA) scores. Below, forest plot for multivariate cox regression model using FRC-like level (high or low), patient 
sex and patient age. Hazard ratio estimates along with confidence intervals (95%) and p-values are plotted for each variable. (D) Kaplan-Meier (overall) 
survival plot showing anti-PD-1/PD-L1 treated NSCLC cohort (GSE161537; n = 82) and anti-CTLA-4 + anti-PD-1 or anti-PD-1 treated melanoma cohort 
(PRJEB23709; n = 91) stratified by FRC-like fibroblast (ssGSEA) scores. Below, forest plot for multivariate cox regression model using FRC-like level (high 
or low), patient sex and patient age. Hazard ratio estimates along with confidence intervals (95%) and p-values are plotted for each variable. Statistical 
significance shown on Kaplan-Meier plot assessed using a log-rank test
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SLO is driven by LTβR signalling [31], and TLS-form-
ing FRC-like ‘immunofibroblasts’ have been shown to 
be regulated by LTα1b2 and IL22 in Sjogren’s syndrome 
[41]. We found FRC-like fibroblasts to be similarly regu-
lated through non-canonical NF-κB signalling, showing 
strong activity for transcription factors RELB and NKFB2 
(p100/p52). LTβR signals via alternative NF-κB, bind-
ing to ligands such LTα1β2 and LIGHT [42]. LTA, LTB, 
LIGHT/TNFSF14 (all signalling via LTβR) and CD40L 
were all spatially associated with FRC-like cells, expressed 
by B- and T-cells (with LIGHT expressed by FRC-like), 
potentially driving the FRC-like phenotypic transition. 
These ligands have all been strongly implicated in TLS 
neogenesis [43]. Notably, LTBR was expressed by all 
fibroblast subsets (including CAF), suggesting a common 
capability to respond to LTBR ligands. In vitro, treatment 
of primary fibroblasts with lymphotoxin induced FRC-
like genes (CCL19, CCL21, SPIB) which was enhanced by 
inhibiting TGFβ signalling.

TLS have been reported in a variety of cancers includ-
ing HNSCC and NSCLC [44, 45], but their occurrence 
likely differs between cancer types. This perhaps is 
reflected in our pan-cancer fibroblast atlas; FRC-like cells 
were found with highest average relative abundance in 
HPV+ve HNSCC (11.2%) followed by lung cancer (1.7%). 
Rarer phenotypes are under-represented in scRNASeq 
and the distinct FRC-like clusters in HNSCC and pan-
cancer analysis was likely aided by inclusion of an FRC-
like-rich cancer type (HPV+ve HNSCC). The pan-cancer 
analysis demonstrated that FRC-like fibroblasts are pres-
ent in all cancer types but with low abundance, and thus 
probably do not cluster discretely when datasets are ana-
lysed separately. It is also noteworthy that we detected 
FRC-like fibroblasts in HPV-ve Visium sections, but not 
using scRNA-Seq.  This highlights the power of deriv-
ing cell type specific gene signatures from scRNA-Seq 
data and using this to deconvolute spatial transcriptomic 
analysis of tissue sections: enabling far greater numbers 
of cells to be profiled and avoiding the challenges asso-
ciated with isolating stromal cells from tissue through 
disaggregation.

The presence of TLS is associated with favourable 
prognosis in many cancer types, including HNSCC [32, 
44], in part reflecting the presence of an ongoing, anti-
gen-dependent immune response [45]. Moreover, the 
presence of TLS has been shown to predict for response 
to immunotherapy response in several cancer types [33, 
39]. Our analysis of HNSCC, lung cancer and melanoma 
patients treated with immune checkpoint blockade shows 
that high levels of FRC-like fibroblasts in tumours are 
associated with significantly improved survival suggest-
ing that higher levels of FRC-like fibroblasts may identify 
likely responders. Furthermore, given their central role in 
TLS organisation and maintenance, generating FRC-like 

fibroblasts could be an attractive therapeutic strategy to 
potentiate immunotherapy response.

Recent studies have identified iCAF in several tumour 
types, including pancreatic cancer and breast cancer [5, 6, 
17, 38], using a variety of markers that encompass inflam-
matory cytokines and other genes (CXCL1, CXCL8, 
CXCL12, IL6, CFD, DPT) [5]. Using a frequently used 
iCAF gene signature [5], we identified several fibroblast 
clusters enriched in the pan-cancer analysis that shared 
expression of genes such as CXCL8, CXCL1, CXCL2, 
IL6, with some phenotypes present in normal tissue (e.g., 
CXCL8 + breast fibroblasts; a similar fibroblast popula-
tion has been described previously in breast tissue as 
‘Fibro-major’ [46]). Of the iCAF signature expressing 
subsets specific to cancers, IGF1 + CAF and IL11 + CAF 
were abundant in tumours. IGF1 + CAF were present in 
all tumour types and expressed all iCAF markers origi-
nally identified in PDAC. IGF1 + CAF were transcription-
ally similar to universal (PI16+) fibroblasts, maintaining 
expression of universal fibroblast genes (PI16, PLA2G2A, 
CFD) but showed evidence of activation (expression 
of FAP, COL1A1, IGF1) and expression of iCAF mark-
ers (IL6, CXCL8, CXCL2). Within the HNSCC dataset, 
~ 50% of PI16 labelled fibroblasts from tumour samples 
were labelled as IGF1 + CAF in the pan-cancer analysis, 
suggesting that this phenotype is an early/low activation 
phenotype consistent with previous studies [1, 47]. IGF1 
has been reported to mark iCAF in several cancer types 
[17, 48], and this low activation subset probably repre-
sents the most commonly referenced ‘iCAF’ phenotype 
in the literature currently.

IL11 + CAF expressed significantly higher levels of 
inflammatory genes compared to IGF1 + CAF. These were 
prevalent in GI tumours (HNSCC, CRC, ESCC), but not 
detected in breast or lung cancers. Although IL11 + CAF 
could be found with epithelial cells (unlike previous work 
highlighting iCAF to be distant to epithelial cells; [49]), 
they especially correlated with inflammatory monocytes 
and neutrophils. A recent large scRNA-Seq analysis of 
colorectal tumours revealed a ‘myeloid-cell-attracting’ 
hub consisting of inflammatory monocytes, neutrophils 
and MMP3 + CAF [50] hypothesised to be associated 
with tissue damage and microbial products. An associa-
tion between inflammatory fibroblasts and myeloid cells 
has also been described in autoimmune inflammatory 
bowel disease [51] and periodontitis [52], suggesting this 
inflammatory niche exists beyond cancer.

Gene enrichment and pseudotime analyses identified 
canonical NF-κB and JAK/STAT signalling as regulat-
ing the IL11 + CAF phenotype, with IL-1β and TNF-α 
as likely ligands. Treatment of normal oropharyngeal 
fibroblasts with IL1β and TNF-α combination upregu-
lated genes expressed by this phenotype in vivo. Con-
sistent with the spatial analysis, treatment of fibroblasts 
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with conditioned media from inflammatory monocytes 
treatment produced similar results. The immunologi-
cal role of IL11 + CAF in cancer is not clear, but highly 
expressed genes, including IL-6 cytokine family (IL6, 
IL11, OSM) are associated with immunotherapy resis-
tance [12]. The IL11 + CAF subset was associated with 
significantly poorer overall survival in immunotherapy-
treated HNSCC patients.

Conclusion
In conclusion, single cell analysis of HNSCC identifies 
inflammatory fibroblast subsets that are associated with 
distinct immune cell niches: CCL19 +  FRC-like with 
CD4 + T-cells and B-cells; IL11 + CAF with inflamma-
tory monocytes and neutrophils. Immune-hot HPV+ve 
HNSCC contain significantly higher levels of FRC-like 
fibroblasts; their spatial location within TLS, and their 
positive association with immunotherapy response sug-
gests that these cells support anti-tumour immunity. We 
also identify transcriptionally discrete iCAF phenotypes 
including a low activation/transition phenotype (IGF1+), 
likely the predominant iCAF in the current literature, 
as well as a more highly inflammatory IL11 + CAF sub-
type found within cancers of the GI tract. Distinguishing 
between these phenotypes and dissecting functional dif-
ferences will be important considerations going forwards. 
It is intriguing that immunological differences within 
tumours may be tied to fibroblast phenotypes, and the 
association of fibroblast subtypes with both negative and 
positive effects on anti-tumour immunity raises intrigu-
ing therapeutic possibilities.
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