

Contents lists available at ScienceDirect

Journal of Infection

journal homepage: www.elsevier.com/locate/jinf

Editorial

Microbiotoxicity: A call to arms for cross-sector protection of the human microbiome

Carpenter et al.'s recent study adds to the growing body of evidence showing that antibiotic use can be harmful to the human microbiome. We recently introduced the term "microbiotoxicity" to describe unintended harms of antibiotic therapy to the microbiome, proposing a framework for prescribers to weigh these bystander effects against intended therapeutic benefits.² However, it is becoming increasingly clear that microbiotoxicity extends far beyond antibiotics, encompassing non-antibiotic pharmaceuticals,³ dietary additives, and biocide-containing consumer products. Indeed, antibiotics are only one of a panoply of commonly used antimicrobials. The distinction between antibiotics, antiseptics, disinfectants, and sterilising agents lies primarily in the substrate to which they are applied: internal aspects of bodies, external aspects of bodies, surfaces, and inert substances, respectively (Fig. 1). Thus, all products with antimicrobial properties may cause unintended microbiotoxicity.

Apart from antibiotics, other pharmaceutical agents have been clearly shown to impact the microbiome, including proton pump inhibitors, metformin, selective serotonin reuptake inhibitors, statins and laxatives.3 These drugs alter microbial diversity and function, often promoting blooms of pathobionts and antimicrobial resistant organisms. Further, dietary additives such as emulsifiers, sweeteners, colours, and nanoparticles are associated with altered gut microbiota and permeability in both animal and human studies; for instance, germ-free mouse models indicate that emulsifiers contribute causally to transgenerational metabolic syndrome and colitis.4 Importantly, biocides are widely present in consumer products, including antiseptic soaps, chlorhexidine mouthwashes, and silver nanoparticles in clothing; these have been linked to altered microbiome and antimicrobial resistance profiles in end-users and even in treated wastewater.⁵ Finally, One Health research has highlighted that antimicrobial products not only directly impact the human microbiome, but also soil, plant, and animal microbiomes, potentiating the downstream impact on human health.⁶

Like others, we have previously argued that the human microbiome satisfies many of the traditional definitions of an organ system, including predictable structure, function and ontogeny.² Functionally, the microbiome interacts with the endocrine, immunological, and neurological systems to maintain immune and metabolic homeostasis. We remain concerned that microbiotoxicity is strongly associated with adverse health outcomes,² including atopic diseases, inflammatory bowel disease, metabolic syndrome, and colorectal cancer, with compelling evidence supporting a causal

relationship derived largely from animal models.⁷ Although interventional human microbiome research remains limited, a causal relationship between the microbiome and human health is evidenced by the efficacy of faecal microbiome transplantation in *Clostridium difficile* infection and, to a lesser extent, ulcerative colitis and graft-versus-host disease.⁸

Given the apparent importance of the microbiome in human health and disease, harm to this organ system should be considered in assessment of toxicity associated with products intended for human use. At present, there is no requirement to evaluate the impact of novel or existing therapeutics on the microbiome, or to incorporate the growing body of microbiome research into drug licencing or summaries of product characteristics. Moreover, microbiome risk assessment is not required to demonstrate that food additives or biocide-containing consumer goods are safe for human use. There is also no requirement to show that the addition of antimicrobials to non-pharmacological products, such as textiles and cosmetics, confers health benefits. The extent to which a clinician's duty of care includes consideration of the patient's microbiome is not clear, excepting situations where there is an immediate clinical manifestation of microbiotoxicity, such as *C. difficile* infection.

The lack of formal inclusion of the microbiome in definitions of toxicity has important consequences. With no legal or regulatory mandate to document the impact of products on the microbiome, there is little incentive to perform much-needed interventional microbiome studies, or to include existing evidence in a format readily accessible to the end-user, such as drug formularies. The direct consequence is a lack of visibility of clinically relevant research, contributing to perceptions of microbiome science as 'overhyped', and perpetuating its exclusion from regulation, clinical guidelines and clinical practice. The *status quo* thus impairs the ability of clinicians, patients, and the public to make informed decisions regarding the use of microbiotoxic products.

We argue in favour of an alternative approach, drawing on the Precautionary Principle adopted in environmental policy, whereby proactive risk reduction is pursued if there is plausible risk of serious or irreversible harm, even in the absence of scientific certainty. We are delighted that the concept of microbiotoxicity has recently been included explicitly in a House of Lords Private Members' Bill in the UK, introduced by Baroness Bennett of Manor Castle. 10 The Consumer Products (Control of Biocides) Bill would grant the Secretary of State the power to prohibit the sale of biocide-containing consumer products intended for human use that present a danger on

Fig. 1. Spectrum of antimicrobial products intended for human use, each of which has been associated with microbiotoxicity. Examples of UK regulatory bodies overseeing each class of product indicated in italics. Figure created using BioRender.com.

Fig. 2. A call to arms: key priorities to address microbiotoxicity.

grounds of microbiotoxicity. It would also mandate the establishment of a Biocidal Consumer Products Advisory Board to keep under review scientific and social evidence on microbiotoxicity in relation to biocidal consumer products. If enacted into law, this would provide a landmark precedent for considering the human microbiome in its own right, rather than focussing only on downstream manifestations of microbiotoxicity, such as infections caused by *C. difficile* or antimicrobial resistant microorganisms.

We echo Carpenter et al.'s warning of the limitations of inferring microbiotoxicity solely from the risk for *C. difficile* infection, and fully support their call for a more holistic approach to antibiotic stewardship. To this end, we advocate for the recognition of the microbiome as a human organ system, and for its inclusion in the safety assessment of products intended for human use, as well as in the clinician's duty of care to their patients (Fig. 2). Thus, informed use of any existing or novel product with antimicrobial properties should involve a risk assessment, in which the evidence for health benefits is weighed against potential harms, including microbiotoxicity. Cross-sector collaboration, particularly between human and veterinary medicine, public health, and environmental agencies, will be

essential to address the interconnected challenges of microbiotoxicity. Recognising the microbiome as a vital organ system and prioritising its protection is not only a scientific necessity but a societal obligation to safeguard human health.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The author is an Editorial Board Member/Editor-in-Chief/ Associate Editor/Guest Editor for this journal and was not involved in the editorial review or the decision to publish this article.

References

 Carpenter L, Miller S, Flynn E, Choo JM, Collins J, Shoubridge AP, et al. Exposure to doxycycline increases risk of carrying a broad range of enteric antimicrobial resistance determinants in an elderly cohort. J Infect 2024;89(4):106243. https://doi. org/10.1016/j.jinf.2024.106243

- Theodosiou AA, Jones CE, Read RC, Bogaert D. Microbiotoxicity: antibiotic usage and its unintended harm to the microbiome. Curr Opin Infect Dis 2023 Oct 1;36(5):371–8. https://doi.org/10.1097/OCO.00000000000000945
- Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut 2020 Aug;69(8):1510–9. https://doi.org/10.1136/gutjnl-2019-320204
- Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024 Jun;21(6):406–27. https://doi.org/10.1038/s41575-024-00893-5
- Stokes K, Bennett N, Fady P-E. Guarding Against Antimicrobial Resistance: Towards Responsible Biocide Use in Consumer Goods; 2024. doi: 10.5281/zenodo.13627461.
- Banerjee S, van der Heijden MGA. Soil microbiomes and one health. Nat Rev Microbiol 2023 Jan;21(1):6–20. https://doi.org/10.1038/s41579-022-00779-w
- Basic M, Dardevet D, Abuja PM, Bolsega S, Bornes S, Caesar R, et al. Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes 2022;14(1):2107386. https://doi.org/10.1080/19490976.2022.2107386
- Porcari S, Benech N, Valles-Colomer M, Segata N, Gasbarrini A, Cammarota G, et al. Key determinants of success in fecal microbiota transplantation: from microbiome to clinic. Cell Host Microbe 2023 May 10;31(5):712–33. https://doi.org/10. 1016/j.chom.2023.03.020
- Hype or hope? Nat Rev Microbiol 2019 Dec;17(12):717. https://doi.org/10.1038/ s41579-019-0283-5
- Consumer Products (Controlof Biocides) Bill [HL]; 2024. (https://bills.parliament. uk/publications/56209/documents/5091) (last accessed Dec 2024).

Anastasia A. Theodosiou •.1 School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G128TA, UK Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK

*Corresponding author at: School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G128TA, UK. E-mail address: at1u17@soton.ac.uk

Paul-Enguerrand Fady ¹

Biosecurity Policy Unit, The Centre for Long-Term Resilience, London WC2H 9JQ, England, UK

Natalie Bennett

House of Lords, UK Parliament, London SW1A OAA, England, UK

Robert C. Read

Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK

Debby Bogaert

Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK

Christine E. Jones

Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK

¹ Joint first authors.