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A B S T R A C T

Anaerobic digestion (AD) offers a sustainable solution for clean energy production, with the potential for sig
nificant revenue enhancement through enhanced decision-making. However, the complexity and limited flexi
bility of AD systems pose challenges in developing reliable optimisation methods. Changing feeding strategies 
provides opportunities for efficient feedstock utilisation and optimal gas production, especially in volatile gas 
markets.

To provide better decision-making tools in AD for energy production, we propose an integrated site model for 
the dynamic behaviour of the AD process in a biomethane-to-grid system and optimise production based on 
predicted gas prices. The model includes methods for optimal feed co-digestion strategies and integrates these 
results into a scheduling model to identify the optimal feedstock acquisition, feeding pattern, and potential gas 
storage operation considering feedstock availability, properties, sustainability, and fluctuating gas demand under 
different pricing variations.

The methodology was tested on a 150 tonnes per day farm-scale AD plant in the UK, processing energy crops 
and manure considering both environmental (global warming potential) and economic objectives. The results 
showed strong adaptability of the proposed feeding schedule to the general trend of gas prices over time. To 
address the challenge of immediate price peaks, typically unattainable due to the system’s sluggish behaviour 
and high retention times, the impacts of on-site storage were explored, leading to annual revenue increases 
ranging from 2 % to 7.4 %, depending on the pricing scheme, which translates to a significant boost in terms of 
revenue.

1. Introduction

Anaerobic digestion (AD) is an established approach for sustainable 
waste management and renewable energy production from renewable 
feedstocks. It provides a potential alternative to address environmental 
problems and meet energy demands, while also having the potential to 
deliver overall negative emissions through integration with carbon 
capture and storage (CCS). Negative emissions will be required to offset 
hard-to-abate emissions for net-zero (IPCC, 2023; Tan et al., 2022). 
Recently, the UK Biomass Strategy has set ambitions to maximise the 

utilisation of sustainable biomass supporting the UK’s net-zero target 
and enhancing benefits including food and agricultural waste recycling 
and biogas production through AD (Biomass Strategy, 2023). As it can 
produce uninterrupted energy, AD can also help address the issue of 
intermittent energy supply that is commonly associated with other 
renewable sources such as wind and solar (Lafratta et al., 2021; Mauky 
et al., 2017).

AD systems can be designed to be demand-oriented, meaning they 
can be adjusted to meet the varying demands (price) of the gas grid. For 
instance, the produced biogas can be stored and used when energy 
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demand is high, or when other renewable sources are not producing 
energy (Lafratta et al., 2021). However, there is a lack of extensive study 
on the application of feed scheduling and techno-economic feasibility of 
storage for large-scale flexible AD operations, as well as data on how 
operating AD more flexibly will impact feedstock acquisition and plant 
revenue. The development of demand-oriented models, in which an AD 
plant can flexibly and sustainably respond to changes in gas price and/or 
feedstock availability, can be of significant industrial interest. Such 
models may increase the profitability of an industry that typically relies 
on government subsidies to remain viable (Weinrich and Nelles, 2021).

This study proposes an integrated scheduling model to optimise AD 
processes through considering whole-site integration including feed
stock seasonality, cost, and availability, co-digestion, storage, gas price 
prediction, and global warming potential (GWP) within a single opti
misation model. Currently, there is no such tool available to aid oper
ators with key decisions. AD operators operate conservatively based on 
experience and simple models to ensure operation with minimal per
turbations and continuous high gas production. They are not, however, 
able to consider the impacts of varying feedstock prices, GWPs, process 
dynamics, gas and electricity demand, etc. simultaneously to obtain 
optimal operation. Such integration is therefore crucial for optimising 
and realising the potential of AD and to help operators make strategic 
decisions about feedstock selection and scheduling, while striking a 
balance between biogas potential, costs, and reducing emissions.

Detailed mechanistic models of AD, most commonly the Anaerobic 
Digestion Model Number 1 (ADM1) proposed by Batstone et al. (2002), 
describe the physiochemical and biochemical reactions involved in AD 
for representing the production of biogas. However, the model is known 
to be challenging for real-time optimisation implementation due to the 
large number of parameters that have low identifiability, slow solution 
speed, and reliance on data that may not be collected in industrial 
operation (Mata-Alvarez et al., 2011). Moreover, the ADM1 does not 
account for co-digestion, which refers to the complex synergistic in
teractions when various substrates are combined to enhance biogas 
production (Pagés-Díaz et al., 2014). Co-digestion enhances biogas 
production and process efficiency by reducing process inhibition, 
improving digestibility, increasing the nutritional content of the 
generated digestate, and strengthening process stability (Karki et al., 
2021; Xie et al., 2016). Extensions to the ADM1 that incorporate the 
impacts of co-digestion have been explored by researchers such as 
Mudzanani et al. (2023), Liu et al. (2020). However, these models still 
require a large number of calibrating parameters and are computa
tionally challenging to solve when included in optimisation models.

There are also simpler AD models which have been extended for 
demand-oriented models, proposed by Barchmann et al. (2016), Körber 
et al. (2022), Ohnmacht et al. (2021). These demand-oriented models in 
these studies consider flexible gas production as demand profiles and 
storage capacities, alongside simplified AD models considering only the 
biomethane potential (BMP) of individual mono-digested feedstocks, 
ignoring co-digestion effects, and assuming constant feedstock avail
ability and neglecting the environmental footprint of the system in 
decision-making (Ó Céileachair et al., 2022). However, it is important to 
consider the effect of co-digestion, sustainability assessments, as well as 
variable nature of feedstocks availability and costs.

The degree to which models can accurately predict whether demand 
can be met, is reduced by this simplicity. Ohnmacht et al. (2021) pre
sented a framework which optimised the biogas supply chain, deter
mining the optimal capacities of AD and biogas storage systems based on 
known demand profiles, however, they did not consider price changes 
relating to storing and selling/converting at peak prices, nor did they 
consider variation in solid retention times and its effect on storage re
quirements. Willeghems and Buysse (2019) explored the potential 
profitability of an AD site, by participating in the day-ahead electricity 
market and proposed modifications that could enhance profitability. 
However, there was no consideration of biomethane or bio-LNG costs, 
storage and demands, nor of developing a whole-site scheduling model 

that can be adapted for different feedstock availabilities. To provide 
accurate and optimal biogas production, co-digestion, feedstock avail
ability and digester feed scheduling must be considered simultaneously. 
Feedstock availability is crucial in AD operations, with varying 
composition, and seasonal pricing and availability fluctuations posing 
challenges to continuous and efficient digestion. To meet varying energy 
demands, it is necessary to simultaneously consider how feeding 
schedules impact the AD process for flexible biogas output.

Co-digestion is commonly employed in many commercial AD facil
ities, as it allows for a diversification of feedstock sources that can 
mitigate supply chain risks, while potentially providing synergistic ef
fects for enhanced biogas production (Aichinger et al., 2015). A new 
digital twin of AD proposed by Moretta et al. (2021) offers a reliable and 
simplistic approach for better predictions of the impacts of co-digestion 
on biogas output; however, feedstock acquisition, scheduling, and 
mixing were not considered. Liu et al. (2021) optimised co-digestion in a 
demand-oriented biogas supply chain with one-day modelling timescale 
and simplified system boundaries, However, they did not account for 
various feedstock scheduling, nor did they consider the effects of GWP 
and seasonality on the response to demand.

Efficient storage management plays a pivotal role in balancing sup
ply and demand dynamics in AD facilities (Dolat et al., 2024). utilising 
storage not only ensures uninterrupted operation but also enables stra
tegic inventory management to capitalise on market demand and gas 
pricing fluctuations. On a gas-to-grid AD site, biogas could be stored 
on-site for later use, combusted in a combined heat and power (CHP) 
engine, primarily for on-site electricity and heat generation, or injected 
into the grid after upgrading to biomethane (Liu et al., 2020). Moreover, 
the integration of GWP as a factor within decision-making offers a ho
listic approach to environmental sustainability, incentivising 
emission-reducing AD (Chang et al., 2012; Zhang et al., 2024). Fig. 1
shows a gradual increase in the annual publications annual number of 
publications on Scopus for key word search ’ Anaerobic Digestion 
Modelling’ refined further to key words: ’ Global Warming Potential’, 
’Co-digestion’, ’Scheduling’, ’Demand Oriented’ and ’Other’.

The aim of this study is to improve the efficiency of the AD process by 
enabling better on-site decision-making that connects up- and down
stream processes in an integrated scheduling optimisation model that 
simultaneously considers dynamic pricing mechanisms to bolster reve
nue. To the best of our knowledge, no models consider the dynamic 
interplay and balance between feedstock availability, storage capacities, 
gas production, energy demand and dynamic pricing, which requires a 
comprehensive approach for effective management and profitability 
maximisation.

This paper introduces a comprehensive model that incorporates 
diverse feedstocks with varying properties and availabilities, aiming to 
determine the optimal blending patterns and feeding schedules in 
response to predicted gas prices over a specified time horizon. The 
model addresses critical factors such as co-digestion, demand fluctua
tions, and seasonality while considering different storage capacities to 
enhance profitability and the sustainability of AD operations. By tack
ling these challenges within a unified optimisation framework, this 
study advances the state-of-the-art in industrial AD optimisation, facil
itating more integrated and informed decision-making for operators.

The paper is structured as follows: The methodology section provides 
a detailed explanation of the modeling approach and the mathematical 
formulation for the co-digestion and scheduling functions. A compre
hensive case study is presented, focusing on the optimal feed scheduling 
for a full-scale AD plant using real feedstock data and exploring various 
scenarios, including gas price variability, GWP considerations, and 
storage options. The results and discussion section analyses the opti
misation outcomes and the insights derived from the different scenarios. 
Finally, the conclusions summarise the key findings and implications of 
the study.
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2. Methodology

To formulate the optimal feeding plan for the AD reactor, several 
critical considerations must be addressed. This process involves opti
mising feed consumption through an optimal blending procedure to 
exploit synergies, thereby minimising feeding rates while maximising 
biomethane yield. Concurrently, the feeding rate must be regulated to 
consider feedstocks’ supply chain constraints (such as seasonality, 
availability and transportation), operational considerations (solids 
content, carbon-to-nitrogen ratio, etc.) and to closely align with fluc
tuating and uncertain market demands and price changes. Additionally, 
environmental concerns, specifically GWP factors, must be incorporated 
into the decision-making process to ensure that relevant sustainability 
criteria are met.

The model includes two optimisation stages, both implemented in 
Pyomo (Bynum et al., 2021), a Python-based optimisation package. The 
first stage (referred to as the CoD model) calculates the optimal 
co-digestion recipe, using a method proposed by Moretta et al. (2022). 
The function is formulated as a Nonlinear Programme (NLP) and the 
primary objective of the model is to identify the substrate blending 
patterns that results in the highest biomethane potential due to their 
synergistic effect (BCoD).

The second optimisation function, referred to as the Scheduler, in
tegrates various essential data, including the availability and seasonality 
of substrates, their chemical and physical compositions, prices, and 
distances from the feed origin. Using the optimal blending ratios 
determined in the first optimisation stage, together with the predicted 
gas prices for the upcoming days as input data, the Scheduler generates 
the optimal feeding and gas storage strategy through a Mixed-Integer 
Linear Program (MILP) problem. This comprehensive approach en
sures that the feeding plan not only meets production targets, but also 
adapts to market conditions and minimises environmental impact.

The separation of the co-digestion and scheduling models serves two 
key objectives. First, it prevents the integration of the nonlinear pro
gramming (NLP) formulation of the co-digestion model with the mixed- 
integer linear programming (MILP) problem of the scheduler, thereby 
minimising the resulting computational complexity and enabling fast, 
efficient solutions. Second, while this approach may lead to suboptimal 
economic solutions due to the decoupling of blending and scheduling 
decisions, it improves on the state of the art by providing higher short- 
term gas yields and increased reactor productivity under any combina
tion of feedstocks. This method offers a practical and scalable solution 
that advances the integration of co-digestion optimisation into sched
uling models, a feature not previously incorporated in other studies.

2.1. Co-Digestion model (fCoD)

The model takes experimental data such as the biomethane potential 
(EBMP) and elemental composition of individual substrates as input and 
calculates the optimal blending ratios leading to the maximum Co- 
digestion biomethane yield (BCoD) for every possible two or three- 
component system. The number of possible substrates has been 
limited to three for several reasons. BMP tests rarely use more than three 
substrates, and substrates can often be grouped into fewer categories 
due to their similarities. Additionally, limiting the blends to triplets 
reduces computational time and increases efficiency.

It is important to note that the proposed model does not account for 
complex co-digestion phenomena, such as the inoculum and microbial 
community effects, nor does it consider kinetic parameters of bio
methane production. However, due to the high retention times in the 
process and the complexity involved in modeling these microbial ac
tivities, we consider this model a suitable surrogate for scheduling 
purposes.

The objective function of the NLP model is to maximise the bio
methane potential (BMP) of the feed blend. This model returns the 
optimal feedstock blending ratios in terms of mass fractions of the 
chosen substrates (Eq. (2)). 

Objective Function = Max [BCoD] (1) 

BCoDF =
∑

i∈F
xiBi +

∑

∅∕=T⊆F

|T|>1

(
∏

i∈T
xi

)

BmixF

∀F = (j, k) ∨ (j, k,m)

(2) 

Here, BCoDF is the BMP of co-digestion process for any desired feed 
blend F. The model supports either two-component (j, k), or three- 
component feed blends (j, k,m). xi is feeding ratio of component i in 
the blend, Bi (mL/gVS) is the cumulative methane yield of single 
component i obtained in lab-scale tests (EBMP). Here BmixF quantifies the 
degree of synergistic correlation between substrates which is charac
terised by two key parameters: the weighted average carbon to nitrogen 

ratio (
(

C
N

)

mix
) and the weighted average biodegradability (BDmix) of the 

blend. These parameters are calculated according to Eqs. (3) and (4), 
respectively. 
(

C
N

)

mixF
=
∑

i∈F
xi

(
C
N

)

i
(3) 

Fig. 1. Annual number of publications on Scopus for key word search ’ Anaerobic Digestion Modelling’ refined further to key words: ’ Global Warming Potential’, 
’Co-digestion’, ’Scheduling’, ’Demand Oriented’ and ’Other’.
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BDmixF =
∑

i∈F
xi BDi (4) 

Here, 
(

C
N

)

i 
represents the ratio of carbon to nitrogen content of each 

substrate i in the blend and BDi is the biodegradability of the substrate i 
and is the ratio of experimental to theoretical biomethane yield (Eq. (5)). 

BDi =
Bi

TBi
(5) 

The Theoretical biomethane yield for each substrate i (TBi) can be 
evaluated using the modified Buswell equation (Eq. (6)). This equation 
calculates the theoretical BMP of the biomass with the hypothetical 
chemical formula CnHaObNcSd as follows: 

TB =

(
n
2 +

a
8 −

b
4 −

3c
8 − d

4

)

22415

12n + a + 16b + 14c + 32d
(6) 

The equation, originally introduced by Buswell and Mueller (2002)
and later modified by Boyle (1977), is used to predict biomethane yield 
based on the elemental composition of waste materials. Boyle’s modi
fication includes nitrogen and sulphur to account for ammonia and 
hydrogen Sulphide content in the biogas. Although this equation as
sumes perfect conversion of biomass to methane—leading to an over
estimation of the BMP—it remains widely used due to its simplicity and 
reliance on straightforward input data (elemental composition). It pro
vides valuable insights and comparisons regarding the potential of 
various biomass feeds (Achinas and Euverink, 2016).

Through response surface prediction method, the correlation of Bmix 
and the weighted parameters are identified according to Eq. (7): 

BmixF = β0 + β1

(
C
N

)

mixF
+ β2BDmixF + β3

(
C
N

)

mix

2

F
+ β4BDmix

2
F (7) 

where β0, β1, β2, β3, and β4 are regression coefficients equal to 21.7, 
1.26, 445.7, − 0.02 and − 7.82 respectively according to Moretta et al. 
(2022). The authors validated their model using experimental BMP data 
and reported a good reliability with the Root Mean Square Error (RMSE) 
values less than 20 mL/gVS for two-substrate mixtures and less than 30 
mL/gVS for three-substrate mixtures.

It is important to recognise that the accuracy of the regression pa
rameters —and, by extension, the precision of the response surface 
model—is significantly limited by the database on which the model is 
based. To achieve more accurate results, it is advisable to develop spe
cific regression parameters tailored to the particular feed database in 
use. However, in the absence of sufficient data, the current method and 
parameters serve as a reasonable approximation.

As an input to this model, a comprehensive set of feed blends is 
generated, encompassing all possible combinations of substrate pairs or 
triplets. The model is then executed multiple times to determine the 
optimal proportion for each blend within this set, ensuring maximum 
yield and minimal waste by identifying the blending patterns with the 
highest synergistic effect. These optimally blended feed combinations 
are subsequently utilised as inputs for the second model, the scheduler, 
which manages the scheduling of these blends.

It is important to note that the optimal feed proportions can range 
between 0 and 1. A fraction close to 0 or 1 indicates that the pair or 
triplet does not exhibit a synergistic effect, effectively suggesting mono- 
digestion.

2.2. Scheduling model (fScheduler)

The second step in the proposed approach is the site scheduling 
model, which suggests an optimal feeding timetable aimed at max
imising profits from selling the produced bio-methane to the grid while 
considering the system’s GWP impacts. This model selects feeding 

strategies based on the optimal recipes generated in the first stage and 
accounts for constraints such as substrate availability, cost, location, and 
physical-chemical properties. It is designed to integrate with a real-time 
gas price prediction mechanism, which serves as an input for regulating 
feed scheduling and subsequent gas production. Additionally, the model 
can utilise gas storage as an extra degree of freedom, enhancing the 
adaptability of gas supply to the grid under various pricing schemes. The 
model is formulated as MILP for efficient solution time and performance.

2.2.1. Production model
The objective function maximises the revenue from selling the bio- 

methane to the grid while minimising the expenditure incurred to pur
chase the feed from suppliers (CostTotal) and minimising the GWP of the 
entire process (Eq. (8)). 

max
∑

d ϵ days
(Selld . prd) − γʹ GWP − γ˝ CostTotal (8) 

In this equation, Selld represents the amount of produced biomethane 
sold on day (or time) d, prd is the gas price on day d, and γʹ and γ˝ are 
weighting factors for GWP and total cost respectively.

The model accounts for the potential to store gas in on-site storage 
facilities. The produced biomethane (Pd) can be either stored (Sd), in 
part or in full, or sold based on the methane price at that specific time 
(prd) and the maximum storage capacity (Smax). 

Selld = Pd + Sd− 1 − Sd (9) 

Selld ≤ Pd + Sd− 1 (10) 

Sd ≤ Smax (11) 

To model changes in gas production due to the addition of various 
substrates with different biomethane potentials to the digester, a 
simplified correlation is introduced as follows: 

Pd − Pd− 1 = [(rtd
+. ytd

+)+(rcd
+.ycd

+)] − [(rtd
− .ytd

− ) + (rcd
− .ycd

− )]

(12) 

ytd
+ + ytd

− + ycd
+ + ycd

− = 1 (13) 

The term Pd − Pd− 1 indicates the change to the production between 
time (d-1) and d. The variables rd

+ and rd
− specify the production 

ramping up and ramping down when switching between different feeds. 
Each ramp-up and ramp-down has two modes: transition and contin
uous, indexed as t or c. The transition mode (rtd

+ or rtd
− ) occurs when a 

new feed is introduced to the digester and continuous mode (rcd
+, rcd

− ) 
occurs when the feeding continues based on the previous new feed. The 
activation or de-activation of these modes are controlled via the relevant 
binary variables (y). To reduce computational time, the non-linear terms 
in Eq. (12) are linearised through piecewise linearisation method.

The values of the ramping variables are calculated based on the 
changes that occur to the biomethane potential of the whole reactor as a 
new feed is introduced. For the transition mode, when a new feed is 
selected for time d, depending on whether the new feed potential (θd) is 
higher or lower than the production rate of the substrates already in the 
reactor (Pd− 1), the upward or downward transition values are calculated 
according to Eq. (14). Their corresponding binary variables, ytd

+ and 
ytd

− become active depending on the direction of change to the bio
methane potential (Eqs. (15)–(18)). 

(θd − Pd− 1)

SRT
= rtd

+ − rtd
− (14) 

θd − θd− 1 ≤ ε + Mytd
+ (15) 

θd − θd− 1 ≥ − ε − Mytd
− (16) 

θd − θd− 1 − ε ≥ − M(1 − ytd
+) (17) 
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θd − θd− 1 + ε ≤ M(1 − ytd
− ) (18) 

In these equations, ε and M refer to relatively small and large values 
respectively, to ensure the logical consistency of the inequality con
straints. Solid retention time (SRT), determines the maximum feeding 
rate (Eq. (21)) based on the volume of the digester (Vreact), which in turn 
affects the ramp values. Specifically, a higher SRT allows for a higher 
feeding rate and larger ramping increments. In other words, when a 
particular feed is continuously fed into the reactor, it takes SRT duration 
for the digester to reach equilibrium, where the feed potential (θd) aligns 
with the production rate (Pd).

The biomethane potential of the feed selected to be introduced at 
time d (θd) is calculated according to Eq. (20). 

BCODtF =
∑

i∈F
BCODF

(
xCoDF,i VSi Tsi

)
∀ F ∈ J (19) 

θd =
∑

F∈J
BCODtF WF,d F = (j, k) ∨ (j, k,m) (20) 

Here, J represents the total set of pairs (j, k) or triples (j, k,m) feed 
blends that are exported from the CoD model. The parameter xCoDF,i 

represents the portion of substrate i within the feed blend F, while 
BCODF refers to the biomethane yield of that blend. Both of these pa
rameters are output from the CoD model. The feeding rate of that 
particular feed blend on time d of the process is denoted by WF,d.

The total feed rate into the digester, which is the sum of the weight 
rate of blend and pertinent supplied water (WF,d + Wwater

F,d ), is controlled 
by the solid retention time (SRT) and the total solid content of the mixed 
substrate. This is expressed in Eq. (21): 

WF,d + Wwater
F,d =

(
Vreact ρ

SRT

)

.yF,d ∀ F ∈ J (21) 

The water content (Wwater
F,d ) is calculated based on the maximum 

allowable solid content of the feeds when entering the reactor (TSmax), as 
shown in Eq. (22): 

Wwater
F,d =

WF,d(TSF − TSmax)

TSmax
; if TSF ≥ TSmax, else : Wwater

F,d = 0 (22) 

The selection of feed mixtures F for time d is identified by the binary 
variable yF,d, ensuring that only one feed mixture is chosen for each time 
increment, as expressed in Eq. (23): 
∑

F∈J
yF,d = 1 ∀ d ∈ D (23) 

After a transition, while the reactor continues to be fed with the same 
feed until a new combination is selected, the ramping will operate in 
continuous mode. This mode follows the same ramping increments as 
the transition mode, as described by Eqs. (24)–(26): 

Pd− 1 − Pd− 2 = rcd
+ − rcd

− (24) 

rcd
+ ≤ M (1 − ycd

− ) (25) 

rcd
− ≤ M (1 − ycd

+) (26) 

In these equations, θd represents the biomethane potential of the feed 
at time d. The SRT influences the feed rate, ensuring that the total solid 
content remains below the maximum threshold (TSmax). The binary 
variable yF, d ensures the selection of a specific feed mixture for each 
time period. During continuous mode, the ramping adjustments main
tain consistency in feed transitions.

In our proposed model, the ramping effect (as described in Eq. (14)) 
is assumed to be linear, despite the actual changes in production 
following a nonlinear pattern. More rigorous approaches, such as the 
first-order kinetic model described by Brulé et al. (2014) and modified 
Gompertz models, such as the ones proposed by Abudi et al. (2022), 
Dumitrel et al. (2017), better mimic organic matter degradation through 

exponential terms. However, these models come at the cost of significant 
computational complexity and time. Also, in practical feeding scenarios, 
operators typically adjust feeds gradually from the previous pattern to 
the desired new one, which mitigates deviations from linearity. Thus, to 
streamline the optimisation process and eliminate non-linear terms, we 
have formulated the ramping effects in a linear manner. This simplifi
cation reduces computational demands while still providing a practical 
approximation of the system’s response to feed changes.

2.2.2. Scheduling and availability constraints
As explained earlier, the binary variable yF, d is responsible for 

selecting a feed mixture F to be processed at time d. The model in
corporates two important availability constraints: maximum acquirable 
feed weight and seasonality (availability time period). The constraints 
are formulated as follows: 

d + M
(

1 − yF,d

)
≥ max i∈F (drelease i) ∀ F ∈ J, ∀ d ∈ D (27) 

d + M
(

1 − yF,d

)
≤ min i∈F (dend i) ∀ F ∈ J, ∀ d ∈ D (28) 

∑

F∈J, i∈F

∑

d∈D

WF,d .xCoDF,i ≤ Wav. i ∀ i ∈ I (29) 

∑

i∈I

∑

F∈ J, i∈F

∑

d∈D
WF,d xCoDF,i costi = CostTotal (30) 

Eqs. (27) and (32) ensure that the selection and processing of the feed 
mixture F occur within the availability period of each feed component 
(from drelease to dend). Additionally, Eq. (28) imposes a quantitative limit 
on the feed, ensuring that the sum of the weights of components used 
throughout the process does not exceed the total available weight of 
each component (Wav). The ratio of each feed component (xCoD) is linked 
to the optimal feed ratio derived from the first optimisation model (fCoD).

2.2.3. Global warming potential constraints
The GWP formulations are mainly built on the basis of the calcula

tion model presented in Zhang et al. (2024). Total GWP is calculated as 
the sum of GWPs from cultivation, transportation, plant’s external en
ergy consumption, leakage and Combined Heat and Power (CHP) uti
lisation (Eq. (31)). 

GWP =
∑

F∈J
GWPCF +

∑

F∈J
GWPTF + GWPE + GWPL + GWPCHP (31) 

The cultivation GWP (GWPC) is calculated based on the total weight 
of the feed blend F consumed over the time period D (WTotalF) and the 
cultivation burdens parameters (αC) which are listed in Table 1. The 

Table 1 
GWP parameters list.

Cultivation 
(Styles et al., 2016)

Crop type αC (GWP kgCO2e) Ref. unit
Grass silage 0.39 kg Dry 

matterMaize silage 0.19
Other cereal silage 0.31

Transportation 
(Wernet et al., 
2016)

Truck type αT (GWP kgCO2e) Ref. unit
lorry 3.5–7.5 t 0.51617 t.km
lorry 7.5–16 t 0.21658
lorry 16–32 t 0.1612
lorry >32 t 0.08955

Electricity & Heat 
(UK.GOV, 2023)

Energy αE/H (GWP 
kgCO2e)

Ref. unit

Electricity generation 0.207 kWh
Heat generation 0.180

CHP Units 
(UK.GOV, 2023)

CHP combustion αEʹ/Hʹ (GWP 
kgCO2e)

Ref. unit

Biogas combustion 
energy

0.00022 kWh

Biogas combustion 
volume

0.0015884 Nm3
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fixed coefficient of 1.1 represents the impact of the crop loss: 

GWPCF = 1.1
∑

i∈F
WTotalF

(
xCoDF,i Tsi αCi ŷi

)
∀ F ∈ J (32) 

The (user specified) binary parameter ŷ identifies the feed exclusively 
cultivated for the AD processes.

The transportation impact (GWPT) is calculated as sum of the GWP 
for shipping feeds to the plant and transporting the digestate to where it 
is utilised. 

GWPTF =
∑

i∈F
WTotalF xCoDF,i Li αTi +

∑

i∈F
Wʹ

TotalF xCoDF,i Lʹ
i αʹ

Ti

∀ F ∈ J
(33) 

The parameters of L and Lʹ are the distances from the feed origin and 
digestate consumption area to the AD plant respectively, Wʹ

TotalF is the 
total weight of mixture F that converted to digestate, and αTi and αʹ

Ti are 
vehicle conversion factors (as a function of feed or digestate weight) 
listed in Table 1. If the electricity and heat required for the plant is 
provided from the grid (not from the inside-plant heat and power units) 
the resultant GWP will be calculated based on the kWh electricity and 
heat consumed multiplied by the GWP factor for the electricity and heat 
respectively according to Table 1. 

GWPE = αE Eelect + αH Eheat (34) 

If the heat and electricity for the process are provided by the CHP 
units within the AD plant, the resultant GWP (GWPCHP) will be calcu
lated according to the conversion factors listed in Table 1.

These factors are based on the units in which heat and electricity are 
reported. 

GWPCHP = α
E
ʹ Eelect + α

H
ʹ Eheat (35) 

If system leakage information is available (expressed as a percentage 
of biogas production αL), the GWP of the leakage is calculated according 
to the below correlation: 

GWPL = 18.09 αL

∑

d∈D
Pd (36) 

Of all the GWP components, only the cultivation and transportation 
GWPs influence feed selection and decision-making. Other GWPs are 
calculated and reported based on the AD plant’s existing performance 
and infrastructure.

3. Case study

To demonstrate the performance of the model, we selected a case 
study as a farm-scale anaerobic digestion (AD) plant with a digester 
capacity of 10,000 m3, designed to process energy crops and manures. 
Table 2 details the physicochemical properties, availability, cost, and 
sourcing of the various feedstocks. The feeding rate is constrained by an 
SRT of 70 days, with the maximum total solids content of the digester 

feed limited to 35 %. All specified capacities and feed information are 
adapted from real site data provided by industrial partners with some 
minor changes to the feed cost.

The objective of this case study is to establish the optimal schedule 
aimed at maximising the revenue from selling bio-methane to the grid. 
This involves considering the availability and seasonality of various feed 
sources while accounting for fluctuating gas prices over time. The GWP 
can also be integrated into the optimisation process or reported sepa
rately at the discretion of process management.

To reduce computational time, the time frame is set on a weekly 
basis, denoted by the subscript d in the mathematical formulations 
presented in the methodology section. With changes to parameters, finer 
time discretisation is easily considered in the model. Additionally, co- 
digestion is limited to a two-component system. This approach gener
ates the optimal blending ratio for feed pairs (j,k) and the corresponding 
estimated biomethane potential (BCODj,k) using the CoD model. The 
second model then optimises the scheduling of the available pairs to 
maximise revenue, minimise feed cost, and reduce the GWP of the entire 
process.

The study aims to optimise the production according to the predicted 
gas price (parameter prd) over a limited time horizon with the ability of 
quick re-scheduling based on an updated prediction set. The predicted 
gas price scenarios used in the study are according to the real weekly 
price of biogas reported by the Office of Gas and Electricity Market, 
Ofgem, for natural gas price in 2023 (Ofgem, 2024) as depicted in Fig. 2. 
The figure is divided into three distinct sections: low, middle and 
high-range price frequency zones. The model was tested for each zone to 
identify the effect of different pricing schemes on the scheduling. The 
additional revenue gained through utilisation of gas storage facilities for 
various pricing frequencies is also evaluated. We assume perfect fore
sight of gas prices to demonstrate the approach, however, any fore
casting approach may be used.

Many current AD plants typically lack the storage facilities necessary 
to accommodate large-scale storage of produced gas, and they generally 
rely on small ambient-storage facilities that can support only 20–30 % of 
daily production. As a result, the base-case optimisation scenarios do not 

Table 2 
Physical-chemical properties and availability of feedstocks (provided by project industrial partners).

Substrate Property Unit GFC DMS RS GS WG MS PS

Distance from plant km 15 15 15 15 15 15 15
Release date (Week No.) – 0 0 0 0 0 10 0
Release end (Week No.) – 20 20 10 20 20 20 20
Weight available tonnes 4000 4000 4000 4000 3000 10,000 10,000
Cost £/tfeed 30 80 40 20 100 50 0
Total Solid (TS) kg TS /tfeed 105 523 328 453 874 220 72
Volatile Solid (VS) kg VS /tTS 875 959 939 962 983 941 863
EBMP m3

CH4 /tVS 315 397 363 326 392 377 404
TBMP m3

CH4 /tVS 433 446 435 435 436 442 508
C/N – 14.7 36.8 26.7 34.3 25.4 31.3 12.5

GFC: Grass Fresh-Cut, DMS: Dried Maize Silage, RS: Rye Silage, GS: Grass Silage, WG: Wheat Grain, MS: Maize Silage, PS: Pig Slurry.

Fig. 2. Weekly price of natural gas from February 2021 to February 2024 acc. 
to Ofgem (2024).
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account for the effect of storage. However, for scenarios where we 
consider storage, the mass storage capacities of up to 10,000 m3/day 
(70,000 m3/week) is considered. The techno-economic impact of inte
grating storage facilities is also included in the result analysis.

The starting point for all optimisation tasks is set to a baseline pro
duction of 140,000 m3 of biomethane, representing the current output of 
the digester. The time horizon for price prediction and optimisation is 
set to 20 weeks, meaning that price predictions provide estimates for the 
upcoming 20 weeks. The model may be re-run in a rolling-horizon 
scheduling optimisation method with updated data from production 
output. For GWP calculations, only the cultivation and transportation 
stages are considered, while other factors such as heat, electricity, and 
CHP units are excluded. All system losses and leakages, including those 
associated with storage facilities, are considered negligible and have 
been excluded from the scope of this study as they do not affect the 
optimisation trade-offs. In this case study, dried maize silage is the sole 
feedstock cultivated for the AD process (i.e., all other energy crops are 
assumed to be “bought-in”). Additionally, the distance from all feed 
suppliers to the AD plant is uniformly set at 15 km. This uniformity is 
intended to highlight the trade-offs related to the potential of various 
feedstocks, rather than complicating the analysis with additional con
straints such as transportation costs and the environmental impacts of 
the decision-making process.

The modeling is performed in Pyomo, with the first model (CoD) 
being solved using NLP solver IPOPT (Wächter and Biegler, 2006) and 
the second model (Scheduler) using GUROBI (Gurobi Optimization, 
2024) as the external solvers.

4. Results and discussions

The results of the first optimisation model (CoD) are presented in 
Table 3, which identifies the optimal feed blending ratios and the 
resultant bio-methane yield potential for various two-component 
feeding system from the available substrates. In this table, the col
umns xj and xk represent the weight percentages of components j and k 
in the co-digestion process, respectively, and BCoD indicates the 
maximum bio-methane yield achievable from the synergistic effect of 
these blending ratios. The column TSj,k shows the total solid percentage, 
and the column Wj,k/Wtotal denotes the ratio of substrate (j, k) weight 
over the total feed weight (the sum of supplied water and the substrate 
weight). The weight fraction for each feed pair (Wj,k/Wtotal) is calculated 
based on the total solid content of that particular feed and the amount of 

supply water that needs to be added to maintain the maximum total 
solid content for the digester inlet, which is set at 35 %. It should be 
noted that feed mixtures where substrates share less than 5 % can be 
considered as blends with potentially no synergistic effect for optimal 
co-digestion.

The results obtained from the Co-Digestion function can also be 
visualised in a graph, shown in Fig. 3. This graph provides an insight into 
the energy density (m3

CH4/tfeed) and unit price for each feed blend ac
cording to the co-digestion function results. Specifically, the figure il
lustrates the unit weight bio-methane potential of each feed pair (m3

CH4/ 
ttotal) plotted against the unit price (£/tj,k) for each feed combination. It 
should be noted that the energy density of each feed pair (y-axis) con
siders the biomethane yield of the total feed, i.e., the amount of water 
needed to be supplied per tonne of feed blend (j, k) has also taken into 
account. This visualisation helps in understanding the trade-offs be
tween bio-methane yield and cost for different feed blends.

Fig. 4 illustrates the optimised feed scheduling aimed at maximising 
net revenue from selling the produced biomethane to the grid across 
three different gas price regions. The figure shows how the feeding 
regime adjusts in response to predicted price variations and peaks. As 
the pricing shifts from the low-range to the high-range, the feeding 
pattern adapts accordingly to the new pricing scenarios, effectively 
managing price fluctuations over time.

To minimise the GWP while maximising the revenue, the scheduling 
and production of bio-methane adjusted as shown in Fig. 5. Similar to 
the previous optimisation results (Fig. 4), the feeding schedule and 
supply pattern are being adjusted to three different price frequency 
levels and the feeding schedule is optimised for each of these pricing 
schemes over the 20-weeks’ time frame.

As observed from the production figures, the generated schedules 
generally follow the gas price trends, with production gradually 
adjusting to target the main price peaks. However, the system’s response 
to rapid price spikes is inadequate, and the designated feeding schedule 
fails to address these sharp peaks effectively. This sluggish behaviour is 
primarily attributed to the low organic loading rate OLR) resulting from 
the high solid retention time (SRT) of the process. The high SRT rates 
(typically around 70 days in many UK plants) limits the flexibility of AD 
plants to respond quickly to sudden price fluctuations.

This inflexibility is partly due to regulatory requirements, such as 
those for AD plants with PAS110 specifications, which mandate that 
digestates meet certain residual BMP levels (WRAP, 2014). Additionally, 
biological concerns, such as the risk of microbial population wash-out, 
limit the ability to reduce the SRT below certain thresholds (Dicks and 
Blase, 1982). Consequently, feeding rates cannot be significantly 
increased without alternative measures to lower the BMP levels of the 
digestates to acceptable standards while maintaining high microbial 
activity.

Comparing Figs. 4 and 5 demonstrates that the inclusion of GWP 
minimisation within the optimisation toward increasing revenue has 
further limited the system’s flexibility in responding to gas price varia
tions. Dried maize silage (DMS), as the only cultivated crop in this 
particular case study, and as a high potential energy crop (as shown in 
Table 3 and Fig. 3) necessary for adjusting production to address price 
peaks, has been deselected from all feed blends. This limitation reduced 
the degree of freedom in the optimisation, resulting in a further 
production-to-price mismatch compared to the non-GWP optimisation. 
This further highlights the significant contribution of cultivation to the 
overall GWP of the process.

To overcome this intrinsic inflexibility, storage is integrated and 
tested as an auxiliary solution to improve the flexibility of AD processes. 
Incorporating storage capabilities into the production process signifi
cantly alters the supply pattern of produced biomethane to the grid. As 
shown in Fig. 6, during periods when prices are predicted to be low, the 
biomethane supply to the grid is minimised. Conversely, when prices 
peak, the supply to the grid is maximised, matching the storage facility 
capacities. This strategic use of storage ensures optimal revenue by 

Table 3 
Optimal feed blending pattern (output of the CoD function).

Feed xj xk BCoD TSj,k Wj,k/Wtotal

(j,k) (%) (%) (m3
CH4/tVS) (%) (tj,k / ttotal)

GFC, DMS 2 % 98 % 403 52 % 0.70
GFC, RS 8 % 92 % 389 31 % 1.00
GFC, GS 8 % 92 % 353 42 % 0.83
GFC, WG 0 % 100 % 394 87 % 0.42
GFC, MS 12 % 88 % 412 21 % 1.00
GFC, PS 59 % 41 % 440 9 % 1.00
DMS, RS 77 % 23 % 464 48 % 0.73
DMS, GS 68 % 32 % 464 50 % 0.70
DMS, WG 25 % 75 % 475 79 % 0.45
DMS, MS 86 % 14 % 446 48 % 0.73
DMS, PS 94 % 6 % 420 50 % 0.70
RS, GS 38 % 62 % 430 41 % 0.86
RS, WG 12 % 88 % 433 81 % 0.44
RS, MS 68 % 32 % 456 29 % 1.00
RS, PS 89 % 11 % 407 30 % 1.00
GS, WG 14 % 86 % 435 81 % 0.43
GS, MS 75 % 25 % 411 39 % 0.88
GS, PS 88 % 12 % 376 41 % 0.83
WG, MS 92 % 8 % 424 82 % 0.43
WG, PS 95 % 5 % 413 84 % 0.42
MS, PS 87 % 13 % 427 20 % 1.00
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Fig. 3. Distribution of cost and biomethane potential of various feed blends.

Fig. 4. The optimal feeding schedule and bio-methane supply chart based on three different pricing zones (a) Low-range (b) Middle-range (c) High-Range.
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aligning supply with favourable market conditions.
The inclusion of storage in the optimisation scenarios does not 

change the feeding schedules hugely, as these schedules were designed 
to follow the overall price trends. Instead, the storage capacities were 
effectively utilised during periods of price fluctuations, particularly 
when prices experienced a decline.

The detailed optimisation results for different objective scenarios are 
summarised in Table 4. Scenarios S1 to S3 focus on optimising the 
schedule to maximise bio-methane selling revenue, considering the 
feedstock prices alone across three different pricing schemes, as illus
trated in Fig. 4. Scenarios S4 to S6 aim to minimise GWP in addition to 
the revenue-maximising objectives from the first three scenarios, with 
the corresponding feeding schedules and gas selling graphs shown in 
Fig. 5. Scenarios S7 to S9 examine the impact of gas storage on opti
misation without GWP concerns, while scenarios S10 to S12 incorporate 
the effect of gas storage with GWP considerations.

According to Table 4, transitioning from the low-range (S1) to the 
medium (S2) and high-range (S3) gas price schemes resulted in revenue 
increases of approximately £660,000 and £2900,000, respectively, over 
a 20-week period. However, this revenue growth comes with an increase 
in feed costs of £35,000 and £131,000, and a rise in GWP of 85,000 
kgCO2e and 508,000 kgCO2e, respectively. Additionally, incorporating 
GWP-reduction scenarios leads to a revenue decrease of 1.9 %, 2.9 %, 
and 4.7 % for low, middle, and high-range pricing, respectively, while 
significantly decreasing the GWP by approximately 90 %, 93 %, and 97 
% for these cases.

According to the feeding schedule for non-GWP scenarios S1 to S3 
(Fig. 4), the feed blends [RS,GS] and [DMS,WG] are frequently selected 

for low and mid-range gas price schemes, being used for mild and sharp 
production increases, respectively. In the high-range price scenario, 
[DMS,WG] continues to serve this purpose, while [RS,GS] is mainly 
replaced by [DMS,GS]. For the GWP-included scenarios S4 to S6 (Fig. 5), 
[DMS,WG] and [DMS,GS] are replaced mainly by [GS,WG] and, to some 
extent, [RS,WG] to address the necessary changes in methane 
production.

Fig. 3 provides insight into these trends. Among all possible feed
stocks, [DMS,GS] and [DMS,WG] blends exhibit the highest methane 
potential while maintaining a moderate price per unit weight. This is 
why they are predominantly used in non-GWP scenarios to increase 
production and target high price rises. [GS,WG] and [RS,WG] are the 
next two high-potential options, slightly cheaper in price, followed by 
[RS,GS], which has the highest yield but at a much lower cost. These 
blends are mainly used for targeting mild price peaks and in GWP 
minimisation scenarios, where DMS is avoided. Blends like [DMS,RS] 
and [DMS,MS] are considered more expensive substitutes for [DMS,GS] 
and [RS,WG], making them less attractive for GWP reduction or revenue 
increase.

It must be emphasised that the above-mentioned results are inter
preted and discussed in the context of the particular case study of this 
research with all its assumptions, data and parameters provided. The 
quality of the optimisation outcomes and production patterns is signif
icantly influenced by the physicochemical properties of the substrates, 
their availability, and the co-digestion results, especially in constructing 
a potential-price distribution graph as shown in Fig. 3. However, the 
approach presented here can be applied as a general methodology for 
other plants with different assumptions, feed data, and parameters.

Fig. 5. The optimal feeding schedule and bio-methane supply chart with minimum GWP based on three different pricing zones (a) Low-range (b) Middle-range (c) 
High-Range.
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The revenue increase due to storage, although modest in percentage 
terms, represents significant earnings for AD plants. If the same price 
changes occur over a year (instead of 20 weeks), earnings could rise by 
approximately £40k, £267k, and £322k (2 %, 7.4 % and 3.6 %) for low, 
mid, and high price change scenarios, respectively.

Utilising LNG facilities for storing the produced bio-methane in 
liquid form is an appealing option. Liquefaction of the huge volume of 
biogas produced per day and storage of bio-methane in relatively 
smaller volumes can be a viable storage option. In addition to the 
reduction of the storage volume, LNG cycles can be utilised in the pu
rification step and leveraging the cryogenic cycle to liquify the CO2 
content of the biogas alongside with the liquefaction of the methane. 
This in turn can eliminate the considerable costs related to conventional 
purification methods such as membrane processes in addition to the 
potential to store the CO2 (instead of venting it, which is done in most of 
the AD plants in the UK).

Small scale LNG units with a liquefaction capacity of less than 15 
tonnes per day are regarded as suitable options for liquifying the daily 
production of such farm scale AD plants. Cost evaluation of such units in 
the literature (specific capital cost) include £350/tonnes per annum of 
LNG (TPA) (Pasini et al., 2019), £950/TPA (Capra et al., 2019; Lee et al., 
2020) up to £1450/TPA (Gustafsson et al., 2020). For the current case 
study AD plant storage capacity (i.e., up to 10,000 m3

CH4/day), this can 
lead to annualised cost of £70k to £280k (on 20 years cost breakdown 
basis). However, due to the large carbon credit potential of CO2 storage 
in such processes (credits ranging from $35 to $250/tCO2, depending on 
the pricing scenario in future (bp Energy Outlook, 2020)) in addition to 
the aforementioned earnings from optimised scheduling, the cost of LNG 
units can be fully compensated and the AD plants can benefit from extra 
income.

While a detailed techno-economic assessment of biomethane storage 
as LNG is beyond the scope of this research, heuristic calculations, such 

Fig. 6. The effect of gas storage (up to 10,000 m3/day) on the supply of bio-methane to the grid for (a) Low-range (b) Middle-range (c) High-Range pricing schemes.

Table 4 
Optimisation results for different scenarios.

No. Scenario Biomethane Selling Revenue (£) Feed Cost (£) Net Revenue (£) GWP (kgCO2e) Revenue Increase (%)

S1 Scheduling - Low Gas Price 1344,120 574,018 178,106 770,102 –
S2 Scheduling - Mid Gas Price 2034,089 608,953 262,635 1425,136 –
S3 Scheduling - High Gas Price 4364,593 705,047 685,626 3659,546 –
S4 S1 + Min. GWP 1297,034 541,639 19,392 755,395 − 1.9 %
S5 S2 + Min. GWP 1944,024 559,951 19,247 1384,073 − 2.9 %
S6 S3 + Min. GWP 4078,133 589,806 19,286 3488,328 − 4.7 %
S7 S1 + Gas Storage 1359,859 574,018 178,106 785,841 2.0 %
S8 S2 + Gas Storage 2188,365 661,489 516,461 1526,876 7.1 %
S9 S3 + Gas Storage 4488,430 705,047 685,626 3783,383 3.4 %
S10 S4 + Gas Storage 1331,727 560,877 19,239 770,850 2.0 %
S11 S5 + Gas Storage 2046,777 559,951 19,247 1486,826 7.4 %
S12 S6 + Gas Storage 4201,970 589,806 19,286 3612,164 3.6 %
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as those provided above, clearly demonstrate the viability of cryogenic 
storage, warranting further investigation.

5. Conclusion

This study introduced a streamlined two-step optimisation method 
aimed at enhancing feed and storage scheduling in anaerobic digestion 
processes. The method integrates a Co-Digestion optimisation model 
that replicates the synergistic effects of feed blends, coupled with a 
linear model that simulates the impacts of dynamic ramping between 
feeding recipes. This approach was tested under three distinct pricing 
schemes, each characterised by different levels of price variability and 
frequency of gas price fluctuations. The method was evaluated not only 
for maximising revenue, but also for minimising global warming 
potential.

The results indicate that, with reliable gas price prediction mecha
nisms, the proposed method can suggest optimal feeding blends and 
schedules, along with storage schedules. Although the schedules 
generated alone are not able to fully capitalise on adaptations to short- 
term price peaks due to high retention times, they effectively followed 
the main trends of price changes. The optimiser demonstrated a clear 
preference for high energy density feeds when substitutions were 
necessary. In regions with low gas prices, the substitution was limited to 
lower cost, lower energy density blends. However, in higher price zones, 
the optimiser prioritised energy density over cost. When the optimiza
tion was further constrained to minimize GWP alongside increasing 
revenue, it restricted the optimiser to a limited number of feed candi
dates, leading to more misalignments with price fluctuations.

Maximum residual BMP level standards and biological limitation 
have been significant factors in preventing the reduction of SRT, thereby 
contributing to the low flexibility of AD plants. To mitigate the impact of 
low OLR (i.e., high SRT) on gas supply flexibility and maximise revenue 
by leveraging price fluctuations, the study found gas storage to be a 
promising solution. Implementing storage capacities of 10,000 m3 led to 
annual revenue increases of 2 %, 7.4 %, and 3.6 % for low, mid, and high 
price change scenarios, respectively. These increases correspond to 
significant annual earnings of £40k, £267k, and £322k. Additionally, 

utilising LNG facilities for biogas storage presents an opportunity for 
extra revenue through CO2 capture and storage, further enhancing the 
economic viability of AD operations.

CRediT authorship contribution statement

Meshkat Dolat: Writing – original draft, Software, Methodology, 
Investigation, Conceptualization. Rohit Murali: Writing – original 
draft, Software, Methodology. Mohammadamin Zarei: Writing – 
original draft, Software, Methodology, Conceptualization. Ruosi 
Zhang: Methodology, Data curation. Tararag Pincam: Writing – review 
& editing, Validation, Methodology. Yong-Qiang Liu: Writing – review 
& editing, Validation, Supervision, Project administration, Methodol
ogy, Funding acquisition. Jhuma Sadhukhan: Writing – review & 
editing, Supervision, Project administration, Funding acquisition. 
Angela Bywater: Writing – review & editing, Validation, Methodology, 
Conceptualization. Michael Short: Writing – review & editing, Writing 
– original draft, Supervision, Software, Resources, Project administra
tion, Methodology, Investigation, Funding acquisition, 
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:

Michael short reports financial support was provided by Engineering 
and Physical Sciences Research Council. If there are other authors, they 
declare that they have no known competing financial interests or per
sonal relationships that could have appeared to influence the work re
ported in this paper.

Acknowledgments

We would like to acknowledge that this work was supported by the 
Engineering and Physical Sciences Research Council (EPSRC) [Grant No. 
EP/Y005600/1].

Appendix

Nomenclature

Symbol Definition Unit

B ultimate experimental biomethane yield (EBMP) m3

tonnes VS
BCoDF BMP for co-digestion of feed blend F (per tonnes of VS) m3

tonnes VS
BCoDtF BMP for co-digestion of feed blend F (per tonnes of blend) m3

tonnes VS
BD biodegradability –
(

C
N

)
carbon to nitrogen content ratio –

CostTotal total purchasing cost of feeds £
costi purchasing cost for substrate i £
D total number of steps (days/weeks) in the time horizon days, weeks, etc.
dend i the time when supply of substrate i is ended day, week, etc.
drelease i the time when substrate i is supplied day, week, etc.
Eelect electrical energy consumption of AD plant kWh
Eheat heating energy consumption of AD plant kWh
F feed blend of (j, k) or (j,k,m) −

GWP global warming potential (Total) kgCO2e

GWPCF cultivation GWP kgCO2e

GWPCHP combined heat and power (CHP) GWP kgCO2e

GWPE electrical consumption GWP kgCO2e

GWPL leakage GWP kgCO2e

GWPTF transportation GWP for feed mix F kgCO2e

I set of single feed substrates –

(continued on next page)
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(continued )

Symbol Definition Unit

Li distance of substrate i origin from the AD plant km
Lʹ

i distance of the digestate i (pertained to substrate i) utilisation location from the AD plant km
Pd biomethane production on time d m3

prd price of biomethane on time d £
rcd

+ upward gas production ramp – Continuous mode m3

rcd
− downward gas production ramp – Continuous mode m3

rtd
+ upward gas production ramp – Transition mode m3

rtd
− downward gas production ramp – Transition mode m3

Sd amount of biomethane stored on time d m3

Smax maximum gas storage capacity m3

Selld amount of biomethane sold to the grid on time d m3

SRT solid retention time d
TB theoretical biomethane yield m3

tonnes VS
TSF total solid content for feed mix F kg TS

tonnes feed

TSmax maximum total solid content of the feed %
Vreact digester volume m3

VS volatile solid kg VS

tonnes TS
WF,d feeding rate of the reactor tonnesfeed

d
WTotalF total feed weight (for the whole time horizon D) tonnesfeed

Wwater
F,d rate of water supply alongside with feed F tonneswater

d
Wav. i available weight of substrate i tonnesfeed

xCoDF,i fraction of substrate i in blend F in co-digestion –
xi fraction of substrate i –
ycd

+ activation of upward gas production ramp – Continuous mode (Binary variable) –
ycd

− activation of downward gas production ramp – Continuous mode(Binary variable) –
ytd

+ activation of upward gas production ramp – Transition mode (Binary variable) –
ytd

− activation of downward gas production ramp – Transition mode (Binary variable) –
yF,d selection of blend F for feeding in time d –
ŷi cultivated / non-cultivated substrate (user-defined parameter) –
αCi cultivation GWP parameter kgCO2e

kgTS
αL leakage GWP parameter kgCO2e

m3

αTi transportation GWP parameter for substrate i kgCO2e

tonnes.km
αʹ

Ti transportation GWP parameter for substrate i digestate kgCO2e

tonnes.km
αE GWP parameter for externally supplied electricity kgCO2e

kWh
αH GWP parameter for externally supplied heat kgCO2e

kWh
αEʹ GWP parameter for electricity supplied by CHP kgCO2e

kWh
αHʹ GWP parameter for heat supplied by CHP kgCO2e

kWh
β regression parameters for co-digestion model m3

tonnes VS
γ penalty factor –
θd gas production potential for time d m3
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Brulé, M., Oechsner, H., Jungbluth, T., 2014. Exponential model describing methane 
production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical 
methane potential assays. Bioprocess. Biosyst. Eng. 37, 1759–1770. https://doi.org/ 
10.1007/S00449-014-1150-4/METRICS.

Buswell, A.M., Mueller, H.F., 2002. Mechanism of methane fermentation. Ind. Eng. 
Chem. 44, 550–552. https://doi.org/10.1021/IE50507A033.

Bynum, M.L., Hackebeil, G.A., Hart, W.E., Laird, C.D., Nicholson, B.L., Siirola, J.D., 
Watson, J.P., Woodruff, D.L., 2021. Pyomo — Optimization modeling in python. 
Springer Optimization and Its Applications 67. 10.1007/978-3-030-68928-5.

Capra, F., Magli, F., Gatti, M., 2019. Biomethane liquefaction: a systematic comparative 
analysis of refrigeration technologies. Appl. Therm. Eng. 158, 113815. https://doi. 
org/10.1016/J.APPLTHERMALENG.2019.113815.

M. Dolat et al.                                                                                                                                                                                                                                   Digital Chemical Engineering 13 (2024) 100191 

12 

https://doi.org/10.1007/S13399-020-00665-6/METRICS
https://doi.org/10.1016/J.REFFIT.2016.08.001
https://doi.org/10.1016/J.REFFIT.2016.08.001
https://doi.org/10.1016/j.watres.2015.07.033
https://doi.org/10.15150/LT.2016.3146
https://www.gov.uk/government/publications/biomass-strategy
https://www.gov.uk/government/publications/biomass-strategy
http://10.1016/B978-0-08-021791-8.50019-6
http://10.1016/B978-0-08-021791-8.50019-6
https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-energy-outlook-2020.html
https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-energy-outlook-2020.html
https://doi.org/10.1007/S00449-014-1150-4/METRICS
https://doi.org/10.1007/S00449-014-1150-4/METRICS
https://doi.org/10.1021/IE50507A033
http://10.1007/978-3-030-68928-5
https://doi.org/10.1016/J.APPLTHERMALENG.2019.113815
https://doi.org/10.1016/J.APPLTHERMALENG.2019.113815


Chang, N.B., Qi, C., Islam, K., Hossain, F., 2012. Comparisons between global warming 
potential and cost-benefit criteria for optimal planning of a municipal solid waste 
management system. J. Clean. Prod. 20, 1–13. https://doi.org/10.1016/j. 
jclepro.2011.08.017.

Dicks, M.R., Blase, M., 1982. Economic feasibility of methane production with 
alternative technologies, pp. 539–544. 10.1016/B978-0-08-029396-7.50071-9.

Dolat, M., Murali, R., Zhang, R., Zarei, M., Zhang, Duo, Zhang, Dongda, Sadhukhan, J., 
Short, M., 2024. Optimal feed scheduling and co-digestion for anaerobic digestion 
sites with dynamic demands. Comput. Aided Chem. Eng. 53, 1705–1710. https:// 
doi.org/10.1016/B978-0-443-28824-1.50285-4.

Dumitrel, G.A., Cioabla, A.E., Ionel, I., Varga, L.A., 2017. Experimental and modelling 
approach of biogas production by anaerobic digestion of agricultural resources. Rev. 
Chim. 68, 1391–1395. https://doi.org/10.37358/RC.17.6.5660.

Gurobi Optimization, LLC (2024). Gurobi Optimizer Reference Manual. Available at: htt 
ps://www.gurobi.com.

Gustafsson, M., Cruz, I., Svensson, N., Karlsson, M., 2020. Scenarios for upgrading and 
distribution of compressed and liquefied biogas — Energy, environmental, and 
economic analysis. J. Clean. Prod. 256, 120473. https://doi.org/10.1016/J. 
JCLEPRO.2020.120473.

IPCC, 2023. Summary for policymakers, climate change 2023: synthesis report. A report 
of the intergovernmental panel on climate change. Contribution of working groups I, 
II and III to the sixth assessment report of the intergovernmental panel on climate 
change. IPCC, Geneva, Switzerland.

Körber, M., Weinrich, S., Span, R., Gerber, M., 2022. Demand-oriented biogas production 
to cover residual load of an electricity self-sufficient community using a simple 
kinetic model. Bioresour. Technol. 361. https://doi.org/10.1016/j. 
biortech.2022.127664.

Karki, R., Chuenchart, W., Surendra, K.C., Shrestha, S., Raskin, L., Sung, S., 
Hashimoto, A., Kumar Khanal, S., 2021. Anaerobic co-digestion: current status and 
perspectives. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2021.125001.

Lafratta, M., Thorpe, R.B., Ouki, S.K., Shana, A., Germain, E., Willcocks, M., Lee, J., 
2021. Demand-driven biogas production from anaerobic digestion of sewage sludge: 
application in demonstration scale. Waste BioMass Valorization 12, 6767–6780. 
https://doi.org/10.1007/s12649-021-01452-8.

Lee, S.H., Lim, D.H., Park, K., 2020. Optimization and economic analysis for small-scale 
movable LNG liquefaction process with leakage considerations. Appl. Sci. 10, 5391. 
https://doi.org/10.3390/APP10155391, 2020Page10, 5391. 

Liu, Y., Huang, T., Li, X., Huang, J., Peng, D., Maurer, C., Kranert, M., 2020. Experiments 
and modeling for flexible biogas production by co-digestion of food waste and 
sewage sludge. Energies 13. https://doi.org/10.3390/en13040818 (Basel). 

Liu, Y., Huang, T., Peng, D., Huang, J., Maurer, C., Kranert, M., 2021. Optimizing the co- 
digestion supply chain of sewage sludge and food waste by the demand oriented 
biogas supplying mechanism. Waste Manag. Res. 39, 302–313. https://doi.org/ 
10.1177/0734242X20953491.
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