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ARTICLE INFO ABSTRACT

Keywords: Anaerobic digestion (AD) offers a sustainable solution for clean energy production, with the potential for sig-
Feed scheduling nificant revenue enhancement through enhanced decision-making. However, the complexity and limited flexi-
Optimization

bility of AD systems pose challenges in developing reliable optimisation methods. Changing feeding strategies
provides opportunities for efficient feedstock utilisation and optimal gas production, especially in volatile gas
markets.

To provide better decision-making tools in AD for energy production, we propose an integrated site model for
the dynamic behaviour of the AD process in a biomethane-to-grid system and optimise production based on
predicted gas prices. The model includes methods for optimal feed co-digestion strategies and integrates these
results into a scheduling model to identify the optimal feedstock acquisition, feeding pattern, and potential gas
storage operation considering feedstock availability, properties, sustainability, and fluctuating gas demand under
different pricing variations.

The methodology was tested on a 150 tonnes per day farm-scale AD plant in the UK, processing energy crops
and manure considering both environmental (global warming potential) and economic objectives. The results
showed strong adaptability of the proposed feeding schedule to the general trend of gas prices over time. To
address the challenge of immediate price peaks, typically unattainable due to the system’s sluggish behaviour
and high retention times, the impacts of on-site storage were explored, leading to annual revenue increases
ranging from 2 % to 7.4 %, depending on the pricing scheme, which translates to a significant boost in terms of
revenue.

Anaerobic digestion
Co-digestion

Global warming potential
Storage

1. Introduction

Anaerobic digestion (AD) is an established approach for sustainable
waste management and renewable energy production from renewable
feedstocks. It provides a potential alternative to address environmental
problems and meet energy demands, while also having the potential to
deliver overall negative emissions through integration with carbon
capture and storage (CCS). Negative emissions will be required to offset
hard-to-abate emissions for net-zero (IPCC, 2023; Tan et al., 2022).
Recently, the UK Biomass Strategy has set ambitions to maximise the

utilisation of sustainable biomass supporting the UK’s net-zero target
and enhancing benefits including food and agricultural waste recycling
and biogas production through AD (Biomass Strategy, 2023). As it can
produce uninterrupted energy, AD can also help address the issue of
intermittent energy supply that is commonly associated with other
renewable sources such as wind and solar (Lafratta et al., 2021; Mauky
et al., 2017).

AD systems can be designed to be demand-oriented, meaning they
can be adjusted to meet the varying demands (price) of the gas grid. For
instance, the produced biogas can be stored and used when energy
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demand is high, or when other renewable sources are not producing
energy (Lafratta et al., 2021). However, there is a lack of extensive study
on the application of feed scheduling and techno-economic feasibility of
storage for large-scale flexible AD operations, as well as data on how
operating AD more flexibly will impact feedstock acquisition and plant
revenue. The development of demand-oriented models, in which an AD
plant can flexibly and sustainably respond to changes in gas price and/or
feedstock availability, can be of significant industrial interest. Such
models may increase the profitability of an industry that typically relies
on government subsidies to remain viable (Weinrich and Nelles, 2021).

This study proposes an integrated scheduling model to optimise AD
processes through considering whole-site integration including feed-
stock seasonality, cost, and availability, co-digestion, storage, gas price
prediction, and global warming potential (GWP) within a single opti-
misation model. Currently, there is no such tool available to aid oper-
ators with key decisions. AD operators operate conservatively based on
experience and simple models to ensure operation with minimal per-
turbations and continuous high gas production. They are not, however,
able to consider the impacts of varying feedstock prices, GWPs, process
dynamics, gas and electricity demand, etc. simultaneously to obtain
optimal operation. Such integration is therefore crucial for optimising
and realising the potential of AD and to help operators make strategic
decisions about feedstock selection and scheduling, while striking a
balance between biogas potential, costs, and reducing emissions.

Detailed mechanistic models of AD, most commonly the Anaerobic
Digestion Model Number 1 (ADM1) proposed by Batstone et al. (2002),
describe the physiochemical and biochemical reactions involved in AD
for representing the production of biogas. However, the model is known
to be challenging for real-time optimisation implementation due to the
large number of parameters that have low identifiability, slow solution
speed, and reliance on data that may not be collected in industrial
operation (Mata-Alvarez et al., 2011). Moreover, the ADM1 does not
account for co-digestion, which refers to the complex synergistic in-
teractions when various substrates are combined to enhance biogas
production (Pagés-Diaz et al., 2014). Co-digestion enhances biogas
production and process efficiency by reducing process inhibition,
improving digestibility, increasing the nutritional content of the
generated digestate, and strengthening process stability (Karki et al.,
2021; Xie et al., 2016). Extensions to the ADM1 that incorporate the
impacts of co-digestion have been explored by researchers such as
Mudzanani et al. (2023), Liu et al. (2020). However, these models still
require a large number of calibrating parameters and are computa-
tionally challenging to solve when included in optimisation models.

There are also simpler AD models which have been extended for
demand-oriented models, proposed by Barchmann et al. (2016), Korber
et al. (2022), Ohnmacht et al. (2021). These demand-oriented models in
these studies consider flexible gas production as demand profiles and
storage capacities, alongside simplified AD models considering only the
biomethane potential (BMP) of individual mono-digested feedstocks,
ignoring co-digestion effects, and assuming constant feedstock avail-
ability and neglecting the environmental footprint of the system in
decision-making (O Céileachair et al., 2022). However, it is important to
consider the effect of co-digestion, sustainability assessments, as well as
variable nature of feedstocks availability and costs.

The degree to which models can accurately predict whether demand
can be met, is reduced by this simplicity. Ohnmacht et al. (2021) pre-
sented a framework which optimised the biogas supply chain, deter-
mining the optimal capacities of AD and biogas storage systems based on
known demand profiles, however, they did not consider price changes
relating to storing and selling/converting at peak prices, nor did they
consider variation in solid retention times and its effect on storage re-
quirements. Willeghems and Buysse (2019) explored the potential
profitability of an AD site, by participating in the day-ahead electricity
market and proposed modifications that could enhance profitability.
However, there was no consideration of biomethane or bio-LNG costs,
storage and demands, nor of developing a whole-site scheduling model
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that can be adapted for different feedstock availabilities. To provide
accurate and optimal biogas production, co-digestion, feedstock avail-
ability and digester feed scheduling must be considered simultaneously.
Feedstock availability is crucial in AD operations, with varying
composition, and seasonal pricing and availability fluctuations posing
challenges to continuous and efficient digestion. To meet varying energy
demands, it is necessary to simultaneously consider how feeding
schedules impact the AD process for flexible biogas output.

Co-digestion is commonly employed in many commercial AD facil-
ities, as it allows for a diversification of feedstock sources that can
mitigate supply chain risks, while potentially providing synergistic ef-
fects for enhanced biogas production (Aichinger et al., 2015). A new
digital twin of AD proposed by Moretta et al. (2021) offers a reliable and
simplistic approach for better predictions of the impacts of co-digestion
on biogas output; however, feedstock acquisition, scheduling, and
mixing were not considered. Liu et al. (2021) optimised co-digestion in a
demand-oriented biogas supply chain with one-day modelling timescale
and simplified system boundaries, However, they did not account for
various feedstock scheduling, nor did they consider the effects of GWP
and seasonality on the response to demand.

Efficient storage management plays a pivotal role in balancing sup-
ply and demand dynamics in AD facilities (Dolat et al., 2024). utilising
storage not only ensures uninterrupted operation but also enables stra-
tegic inventory management to capitalise on market demand and gas
pricing fluctuations. On a gas-to-grid AD site, biogas could be stored
on-site for later use, combusted in a combined heat and power (CHP)
engine, primarily for on-site electricity and heat generation, or injected
into the grid after upgrading to biomethane (Liu et al., 2020). Moreover,
the integration of GWP as a factor within decision-making offers a ho-
listic approach to environmental sustainability, incentivising
emission-reducing AD (Chang et al., 2012; Zhang et al., 2024). Fig. 1
shows a gradual increase in the annual publications annual number of
publications on Scopus for key word search ’° Anaerobic Digestion
Modelling’ refined further to key words: * Global Warming Potential’,
’Co-digestion’, *Scheduling’, 'Demand Oriented’ and ’Other’.

The aim of this study is to improve the efficiency of the AD process by
enabling better on-site decision-making that connects up- and down-
stream processes in an integrated scheduling optimisation model that
simultaneously considers dynamic pricing mechanisms to bolster reve-
nue. To the best of our knowledge, no models consider the dynamic
interplay and balance between feedstock availability, storage capacities,
gas production, energy demand and dynamic pricing, which requires a
comprehensive approach for effective management and profitability
maximisation.

This paper introduces a comprehensive model that incorporates
diverse feedstocks with varying properties and availabilities, aiming to
determine the optimal blending patterns and feeding schedules in
response to predicted gas prices over a specified time horizon. The
model addresses critical factors such as co-digestion, demand fluctua-
tions, and seasonality while considering different storage capacities to
enhance profitability and the sustainability of AD operations. By tack-
ling these challenges within a unified optimisation framework, this
study advances the state-of-the-art in industrial AD optimisation, facil-
itating more integrated and informed decision-making for operators.

The paper is structured as follows: The methodology section provides
a detailed explanation of the modeling approach and the mathematical
formulation for the co-digestion and scheduling functions. A compre-
hensive case study is presented, focusing on the optimal feed scheduling
for a full-scale AD plant using real feedstock data and exploring various
scenarios, including gas price variability, GWP considerations, and
storage options. The results and discussion section analyses the opti-
misation outcomes and the insights derived from the different scenarios.
Finally, the conclusions summarise the key findings and implications of
the study.
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Fig. 1. Annual number of publications on Scopus for key word search * Anaerobic Digestion Modelling’ refined further to key words: * Global Warming Potential’,

*Co-digestion’, *Scheduling’, "Demand Oriented’ and *Other’.

2. Methodology

To formulate the optimal feeding plan for the AD reactor, several
critical considerations must be addressed. This process involves opti-
mising feed consumption through an optimal blending procedure to
exploit synergies, thereby minimising feeding rates while maximising
biomethane yield. Concurrently, the feeding rate must be regulated to
consider feedstocks’ supply chain constraints (such as seasonality,
availability and transportation), operational considerations (solids
content, carbon-to-nitrogen ratio, etc.) and to closely align with fluc-
tuating and uncertain market demands and price changes. Additionally,
environmental concerns, specifically GWP factors, must be incorporated
into the decision-making process to ensure that relevant sustainability
criteria are met.

The model includes two optimisation stages, both implemented in
Pyomo (Bynum et al., 2021), a Python-based optimisation package. The
first stage (referred to as the CoD model) calculates the optimal
co-digestion recipe, using a method proposed by Moretta et al. (2022).
The function is formulated as a Nonlinear Programme (NLP) and the
primary objective of the model is to identify the substrate blending
patterns that results in the highest biomethane potential due to their
synergistic effect (Bcop).

The second optimisation function, referred to as the Scheduler, in-
tegrates various essential data, including the availability and seasonality
of substrates, their chemical and physical compositions, prices, and
distances from the feed origin. Using the optimal blending ratios
determined in the first optimisation stage, together with the predicted
gas prices for the upcoming days as input data, the Scheduler generates
the optimal feeding and gas storage strategy through a Mixed-Integer
Linear Program (MILP) problem. This comprehensive approach en-
sures that the feeding plan not only meets production targets, but also
adapts to market conditions and minimises environmental impact.

The separation of the co-digestion and scheduling models serves two
key objectives. First, it prevents the integration of the nonlinear pro-
gramming (NLP) formulation of the co-digestion model with the mixed-
integer linear programming (MILP) problem of the scheduler, thereby
minimising the resulting computational complexity and enabling fast,
efficient solutions. Second, while this approach may lead to suboptimal
economic solutions due to the decoupling of blending and scheduling
decisions, it improves on the state of the art by providing higher short-
term gas yields and increased reactor productivity under any combina-
tion of feedstocks. This method offers a practical and scalable solution
that advances the integration of co-digestion optimisation into sched-
uling models, a feature not previously incorporated in other studies.

2.1. Co-Digestion model (f¢op)

The model takes experimental data such as the biomethane potential
(EBMP) and elemental composition of individual substrates as input and
calculates the optimal blending ratios leading to the maximum Co-
digestion biomethane yield (Bco,p) for every possible two or three-
component system. The number of possible substrates has been
limited to three for several reasons. BMP tests rarely use more than three
substrates, and substrates can often be grouped into fewer categories
due to their similarities. Additionally, limiting the blends to triplets
reduces computational time and increases efficiency.

It is important to note that the proposed model does not account for
complex co-digestion phenomena, such as the inoculum and microbial
community effects, nor does it consider kinetic parameters of bio-
methane production. However, due to the high retention times in the
process and the complexity involved in modeling these microbial ac-
tivities, we consider this model a suitable surrogate for scheduling
purposes.

The objective function of the NLP model is to maximise the bio-
methane potential (BMP) of the feed blend. This model returns the
optimal feedstock blending ratios in terms of mass fractions of the
chosen substrates (Eq. (2)).

Objective Function = Max [Bc,p) @

Beopr = inBi + Z (Hxi>Bmi.xF

ieF @#TCF \1i€T
2

|T|>1
VF = (j,k) v (i.k,m)

Here, Bc,pr is the BMP of co-digestion process for any desired feed
blend F. The model supports either two-component (j, k), or three-
component feed blends (j,k,m). x; is feeding ratio of component i in
the blend, B; (mL/gys) is the cumulative methane yield of single
component i obtained in lab-scale tests (EBMP). Here B, quantifies the
degree of synergistic correlation between substrates which is charac-
terised by two key parameters: the weighted average carbon to nitrogen

ratio (<1%) ) and the weighted average biodegradability (BDp.) of the

blend. These parameters are calculated according to Eqgs. (3) and (4),
respectively.

C C
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Here, <I%) represents the ratio of carbon to nitrogen content of each

i

substrate i in the blend and BD; is the biodegradability of the substrate i
and is the ratio of experimental to theoretical biomethane yield (Eq. (5)).

B;

BD; = —-
B,

6)

The Theoretical biomethane yield for each substrate i (TB;) can be
evaluated using the modified Buswell equation (Eq. (6)). This equation
calculates the theoretical BMP of the biomass with the hypothetical
chemical formula C,H,0,N_.S; as follows:

(3+8-3-5-1) 2215
T12n+a+16b+ 14c 1 32d

The equation, originally introduced by Buswell and Mueller (2002)
and later modified by Boyle (1977), is used to predict biomethane yield
based on the elemental composition of waste materials. Boyle’s modi-
fication includes nitrogen and sulphur to account for ammonia and
hydrogen Sulphide content in the biogas. Although this equation as-
sumes perfect conversion of biomass to methane—leading to an over-
estimation of the BMP—it remains widely used due to its simplicity and
reliance on straightforward input data (elemental composition). It pro-
vides valuable insights and comparisons regarding the potential of
various biomass feeds (Achinas and Euverink, 2016).

Through response surface prediction method, the correlation of B,
and the weighted parameters are identified according to Eq. (7):

TB (6)

2

Buixe = o + P4 <1%> ~ + PoBDmicr + f3 (%) . + P4BDuix @

mixF mixF

where Sy, 1, o, P3, and f, are regression coefficients equal to 21.7,
1.26, 445.7, —0.02 and —7.82 respectively according to Moretta et al.
(2022). The authors validated their model using experimental BMP data
and reported a good reliability with the Root Mean Square Error (RMSE)
values less than 20 mL/gys for two-substrate mixtures and less than 30
mL/gys for three-substrate mixtures.

It is important to recognise that the accuracy of the regression pa-
rameters —and, by extension, the precision of the response surface
model—is significantly limited by the database on which the model is
based. To achieve more accurate results, it is advisable to develop spe-
cific regression parameters tailored to the particular feed database in
use. However, in the absence of sufficient data, the current method and
parameters serve as a reasonable approximation.

As an input to this model, a comprehensive set of feed blends is
generated, encompassing all possible combinations of substrate pairs or
triplets. The model is then executed multiple times to determine the
optimal proportion for each blend within this set, ensuring maximum
yield and minimal waste by identifying the blending patterns with the
highest synergistic effect. These optimally blended feed combinations
are subsequently utilised as inputs for the second model, the scheduler,
which manages the scheduling of these blends.

It is important to note that the optimal feed proportions can range
between 0 and 1. A fraction close to 0 or 1 indicates that the pair or
triplet does not exhibit a synergistic effect, effectively suggesting mono-
digestion.

2.2. Scheduling model (fscheduter)

The second step in the proposed approach is the site scheduling
model, which suggests an optimal feeding timetable aimed at max-
imising profits from selling the produced bio-methane to the grid while
considering the system’s GWP impacts. This model selects feeding
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strategies based on the optimal recipes generated in the first stage and
accounts for constraints such as substrate availability, cost, location, and
physical-chemical properties. It is designed to integrate with a real-time
gas price prediction mechanism, which serves as an input for regulating
feed scheduling and subsequent gas production. Additionally, the model
can utilise gas storage as an extra degree of freedom, enhancing the
adaptability of gas supply to the grid under various pricing schemes. The
model is formulated as MILP for efficient solution time and performance.

2.2.1. Production model

The objective function maximises the revenue from selling the bio-
methane to the grid while minimising the expenditure incurred to pur-
chase the feed from suppliers (Costr,q) and minimising the GWP of the
entire process (Eq. (8)).

max " (Selly . pra) —7 GWP —y" COstrowm 8)
d ¢ days

In this equation, Sell; represents the amount of produced biomethane
sold on day (or time) d, pr, is the gas price on day d, and y’ and y” are
weighting factors for GWP and total cost respectively.

The model accounts for the potential to store gas in on-site storage
facilities. The produced biomethane (P;) can be either stored (S;), in
part or in full, or sold based on the methane price at that specific time
(prq) and the maximum storage capacity (Smax)-

Selly =P3+S41— Sq 9
Selly < Pg+Sq.1 (10)
Si < Smax 1)

To model changes in gas production due to the addition of various
substrates with different biomethane potentials to the digester, a
simplified correlation is introduced as follows:

Py~ Py =[(red” ¥ )H(Trea™ ¥Yea")] = [(rea” Yea™) + (Fea™ Yea )]
12)

Yed +Yia +Yed +Yea =1 13)

The term P; — P4, indicates the change to the production between
time (d-1) and d. The variables r;© and ry;~ specify the production
ramping up and ramping down when switching between different feeds.
Each ramp-up and ramp-down has two modes: transition and contin-
uous, indexed as t or c. The transition mode (4" or r,4~) occurs when a
new feed is introduced to the digester and continuous mode (r.q™, 7.47)
occurs when the feeding continues based on the previous new feed. The
activation or de-activation of these modes are controlled via the relevant
binary variables (y). To reduce computational time, the non-linear terms
in Eq. (12) are linearised through piecewise linearisation method.

The values of the ramping variables are calculated based on the
changes that occur to the biomethane potential of the whole reactor as a
new feed is introduced. For the transition mode, when a new feed is
selected for time d, depending on whether the new feed potential (6,) is
higher or lower than the production rate of the substrates already in the
reactor (Py_1), the upward or downward transition values are calculated
according to Eq. (14). Their corresponding binary variables, y;q* and
Ytqa~ become active depending on the direction of change to the bio-
methane potential (Eqgs. (15)-(18)).

(0a—Pur) ;RI;:LI) =Tq —Ted 14)
05 —041 <e+My,q" (15)
04—041>—€—My,q ae)
04—041—e>-M1-y,4") an
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04 —041+€< M(l —_ytd’) 18)

In these equations, € and M refer to relatively small and large values
respectively, to ensure the logical consistency of the inequality con-
straints. Solid retention time (SRT), determines the maximum feeding
rate (Eq. (21)) based on the volume of the digester (V,), which in turn
affects the ramp values. Specifically, a higher SRT allows for a higher
feeding rate and larger ramping increments. In other words, when a
particular feed is continuously fed into the reactor, it takes SRT duration
for the digester to reach equilibrium, where the feed potential (6,) aligns
with the production rate (Py).

The biomethane potential of the feed selected to be introduced at
time d (0y) is calculated according to Eq. (20).

Bcopir = ZBCODF (Xcopri VSi Ts;)) VFelJ (19)
icF
04 = ZBCODIF Wra F=(j,k)V(j,km) (20)

FeJ

Here, J represents the total set of pairs (j, k) or triples (j,k,m) feed
blends that are exported from the CoD model. The parameter Xcopy;
represents the portion of substrate i within the feed blend F, while
Bcopr refers to the biomethane yield of that blend. Both of these pa-
rameters are output from the CoD model. The feeding rate of that
particular feed blend on time d of the process is denoted by Wg4.

The total feed rate into the digester, which is the sum of the weight
rate of blend and pertinent supplied water (Wr4+ Wy§®), is controlled
by the solid retention time (SRT) and the total solid content of the mixed
substrate. This is expressed in Eq. (21):

Vreact P
SRT

Wpq+ Wpe = ( )yF_d VF € J 21
The water content (Wy§®) is calculated based on the maximum
allowable solid content of the feeds when entering the reactor (TSyq), as

shown in Eq. (22):

— T
W; if TSy > TSmax, €lse: WYS™ =0 (22)

W;/;ter —

The selection of feed mixtures F for time d is identified by the binary
variable yr 4, ensuring that only one feed mixture is chosen for each time
increment, as expressed in Eq. (23):

Z_ypydzl vdeD (23)
FeJ

After a transition, while the reactor continues to be fed with the same
feed until a new combination is selected, the ramping will operate in
continuous mode. This mode follows the same ramping increments as
the transition mode, as described by Egs. (24)-(26):

Py — Pyo=Tq" —Teqa” 24)
rea" < M(1-Yyq) (25)
rea < MQ1-y4q4) (26)

In these equations, 6, represents the biomethane potential of the feed
at time d. The SRT influences the feed rate, ensuring that the total solid
content remains below the maximum threshold (TS,,). The binary
variable yr 4 ensures the selection of a specific feed mixture for each
time period. During continuous mode, the ramping adjustments main-
tain consistency in feed transitions.

In our proposed model, the ramping effect (as described in Eq. (14))
is assumed to be linear, despite the actual changes in production
following a nonlinear pattern. More rigorous approaches, such as the
first-order kinetic model described by Brulé et al. (2014) and modified
Gompertz models, such as the ones proposed by Abudi et al. (2022),
Dumitrel et al. (2017), better mimic organic matter degradation through
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exponential terms. However, these models come at the cost of significant
computational complexity and time. Also, in practical feeding scenarios,
operators typically adjust feeds gradually from the previous pattern to
the desired new one, which mitigates deviations from linearity. Thus, to
streamline the optimisation process and eliminate non-linear terms, we
have formulated the ramping effects in a linear manner. This simplifi-
cation reduces computational demands while still providing a practical
approximation of the system’s response to feed changes.

2.2.2. Scheduling and availability constraints

As explained earlier, the binary variable yr 4 is responsible for
selecting a feed mixture F to be processed at time d. The model in-
corporates two important availability constraints: maximum acquirable
feed weight and seasonality (availability time period). The constraints
are formulated as follows:

d+M (1 - yF_d) > max ix (dretease i) VFeJ, ¥deD 27)
d+M (1 - y”) < min ip (dena;) YFed, VdeD (28)
e deZDWF,d Xcopri < Way ; Viel (29)
> )" > Wra Xcopri costi = Costroa (30)

icl Fe J,icF deD

Egs. (27) and (32) ensure that the selection and processing of the feed
mixture F occur within the availability period of each feed component
(from d,eeqse to deng). Additionally, Eq. (28) imposes a quantitative limit
on the feed, ensuring that the sum of the weights of components used
throughout the process does not exceed the total available weight of
each component (W,,). The ratio of each feed component (x¢,p) is linked
to the optimal feed ratio derived from the first optimisation model (fc,p)-

2.2.3. Global warming potential constraints

The GWP formulations are mainly built on the basis of the calcula-
tion model presented in Zhang et al. (2024). Total GWP is calculated as
the sum of GWPs from cultivation, transportation, plant’s external en-
ergy consumption, leakage and Combined Heat and Power (CHP) uti-
lisation (Eq. (31)).

GWP = Y GWPc; + Y GWPrs+ GWPy + GWP, + GWPcpp (31)
FeJ FeJ

The cultivation GWP (GWPc) is calculated based on the total weight

of the feed blend F consumed over the time period D (Wryqr) and the

cultivation burdens parameters (ac) which are listed in Table 1. The

Table 1
GWP parameters list.
Cultivation Crop type ac (GWP kgcoze) Ref. unit
(Styles et al., 2016) Grass silage 0.39 kg Dry
Maize silage 0.19 matter
Other cereal silage 0.31
Transportation Truck type ar (GWP Kkgcoze) Ref. unit
(Wernet et al., lorry 3.5-7.5 t 0.51617 t.km
2016) lorry 7.5-16 t 0.21658
lorry 16-32 t 0.1612
lorry >32 t 0.08955
Electricity & Heat Energy ag/n (GWP Ref. unit
(UK.GOV, 2023) Kgcoze)
Electricity generation 0.207 kwWh
Heat generation 0.180
CHP Units CHP combustion ag iy (GWP Ref. unit
(UK.GOV, 2023) Kgcoze)
Biogas combustion 0.00022 kWh
energy
Biogas combustion 0.0015884 Nm?®
volume
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fixed coefficient of 1.1 represents the impact of the crop loss:

GWP¢p = 1»1ZWTomlp (Xcopri Tsi ac; ¥i) VFelJ (32)
ieF
The (user specified) binary parameter y identifies the feed exclusively
cultivated for the AD processes.
The transportation impact (GWPy) is calculated as sum of the GWP
for shipping feeds to the plant and transporting the digestate to where it
is utilised.

GWPrp = > Wraaip Xconrs Li @ri + Y W oy Xcors L'i @'ri
icF icF
VFelJ
(33)

The parameters of L and L’ are the distances from the feed origin and
digestate consumption area to the AD plant respectively, W oqy is the
total weight of mixture F that converted to digestate, and ar; and o'r; are
vehicle conversion factors (as a function of feed or digestate weight)
listed in Table 1. If the electricity and heat required for the plant is
provided from the grid (not from the inside-plant heat and power units)
the resultant GWP will be calculated based on the kWh electricity and
heat consumed multiplied by the GWP factor for the electricity and heat
respectively according to Table 1.

GWPr = ag Eeeet + 0 Epear (34)

If the heat and electricity for the process are provided by the CHP
units within the AD plant, the resultant GWP (GWP¢yp) will be calcu-
lated according to the conversion factors listed in Table 1.

These factors are based on the units in which heat and electricity are
reported.

GWPcyp = aé Eetect + a}’{ Ehear (35)

If system leakage information is available (expressed as a percentage
of biogas production a;), the GWP of the leakage is calculated according
to the below correlation:

GWP, =18.09 a, ) Py (36)
deD
Of all the GWP components, only the cultivation and transportation
GWPs influence feed selection and decision-making. Other GWPs are
calculated and reported based on the AD plant’s existing performance
and infrastructure.

3. Case study

To demonstrate the performance of the model, we selected a case
study as a farm-scale anaerobic digestion (AD) plant with a digester
capacity of 10,000 m®, designed to process energy crops and manures.
Table 2 details the physicochemical properties, availability, cost, and
sourcing of the various feedstocks. The feeding rate is constrained by an
SRT of 70 days, with the maximum total solids content of the digester
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feed limited to 35 %. All specified capacities and feed information are
adapted from real site data provided by industrial partners with some
minor changes to the feed cost.

The objective of this case study is to establish the optimal schedule
aimed at maximising the revenue from selling bio-methane to the grid.
This involves considering the availability and seasonality of various feed
sources while accounting for fluctuating gas prices over time. The GWP
can also be integrated into the optimisation process or reported sepa-
rately at the discretion of process management.

To reduce computational time, the time frame is set on a weekly
basis, denoted by the subscript d in the mathematical formulations
presented in the methodology section. With changes to parameters, finer
time discretisation is easily considered in the model. Additionally, co-
digestion is limited to a two-component system. This approach gener-
ates the optimal blending ratio for feed pairs (j,k) and the corresponding
estimated biomethane potential (Bcopjx) using the CoD model. The
second model then optimises the scheduling of the available pairs to
maximise revenue, minimise feed cost, and reduce the GWP of the entire
process.

The study aims to optimise the production according to the predicted
gas price (parameter pry) over a limited time horizon with the ability of
quick re-scheduling based on an updated prediction set. The predicted
gas price scenarios used in the study are according to the real weekly
price of biogas reported by the Office of Gas and Electricity Market,
Ofgem, for natural gas price in 2023 (Ofgem, 2024) as depicted in Fig. 2.
The figure is divided into three distinct sections: low, middle and
high-range price frequency zones. The model was tested for each zone to
identify the effect of different pricing schemes on the scheduling. The
additional revenue gained through utilisation of gas storage facilities for
various pricing frequencies is also evaluated. We assume perfect fore-
sight of gas prices to demonstrate the approach, however, any fore-
casting approach may be used.

Many current AD plants typically lack the storage facilities necessary
to accommodate large-scale storage of produced gas, and they generally
rely on small ambient-storage facilities that can support only 20-30 % of
daily production. As a result, the base-case optimisation scenarios do not
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Fig. 2. Weekly price of natural gas from February 2021 to February 2024 acc.
to Ofgem (2024).

Table 2

Physical-chemical properties and availability of feedstocks (provided by project industrial partners).
Substrate Property Unit GFC DMS RS GS WG MS PS
Distance from plant km 15 15 15 15 15 15 15
Release date (Week No.) - 0 0 0 0 0 10 0
Release end (Week No.) - 20 20 10 20 20 20 20
Weight available tonnes 4000 4000 4000 4000 3000 10,000 10,000
Cost £/teed 30 80 40 20 100 50 0
Total Solid (TS) kg 15 /treed 105 523 328 453 874 220 72
Volatile Solid (VS) kg vs /trs 875 959 939 962 983 941 863
EBMP ming /tys 315 397 363 326 392 377 404
TBMP m2s /tys 433 446 435 435 436 442 508
C/N - 14.7 36.8 26.7 34.3 25.4 31.3 12.5

GFC: Grass Fresh-Cut, DMS: Dried Maize Silage, RS: Rye Silage, GS: Grass Silage, WG: Wheat Grain, MS: Maize Silage, PS: Pig Slurry.
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account for the effect of storage. However, for scenarios where we
consider storage, the mass storage capacities of up to 10,000 m>/day
(70,000 m3/week) is considered. The techno-economic impact of inte-
grating storage facilities is also included in the result analysis.

The starting point for all optimisation tasks is set to a baseline pro-
duction of 140,000 m® of biomethane, representing the current output of
the digester. The time horizon for price prediction and optimisation is
set to 20 weeks, meaning that price predictions provide estimates for the
upcoming 20 weeks. The model may be re-run in a rolling-horizon
scheduling optimisation method with updated data from production
output. For GWP calculations, only the cultivation and transportation
stages are considered, while other factors such as heat, electricity, and
CHP units are excluded. All system losses and leakages, including those
associated with storage facilities, are considered negligible and have
been excluded from the scope of this study as they do not affect the
optimisation trade-offs. In this case study, dried maize silage is the sole
feedstock cultivated for the AD process (i.e., all other energy crops are
assumed to be “bought-in”). Additionally, the distance from all feed
suppliers to the AD plant is uniformly set at 15 km. This uniformity is
intended to highlight the trade-offs related to the potential of various
feedstocks, rather than complicating the analysis with additional con-
straints such as transportation costs and the environmental impacts of
the decision-making process.

The modeling is performed in Pyomo, with the first model (CoD)
being solved using NLP solver IPOPT (Wachter and Biegler, 2006) and
the second model (Scheduler) using GUROBI (Gurobi Optimization,
2024) as the external solvers.

4. Results and discussions

The results of the first optimisation model (CoD) are presented in
Table 3, which identifies the optimal feed blending ratios and the
resultant bio-methane yield potential for various two-component
feeding system from the available substrates. In this table, the col-
umns x; and x; represent the weight percentages of components j and k
in the co-digestion process, respectively, and Bgep indicates the
maximum bio-methane yield achievable from the synergistic effect of
these blending ratios. The column TS;; shows the total solid percentage,
and the column Wj;/W,.q denotes the ratio of substrate (j, k) weight
over the total feed weight (the sum of supplied water and the substrate
weight). The weight fraction for each feed pair (W;x/Wiora) is calculated
based on the total solid content of that particular feed and the amount of

Table 3
Optimal feed blending pattern (output of the CoD function).

Feed Xj Xie Bcop TSk W k/Weotal
(k) %) (%) (mua/tvs) (%) (tjx / trota))
GFC, DMS 2% 98 % 403 52 % 0.70
GFC, RS 8 % 92 % 389 31% 1.00
GFC, GS 8 % 92 % 353 42 % 0.83
GFC, WG 0 % 100 % 394 87 % 0.42
GFC, MS 12 % 88 % 412 21 % 1.00
GFC, PS 59 % 41 % 440 9% 1.00
DMS, RS 77 % 23 % 464 48 % 0.73
DMS, GS 68 % 32% 464 50 % 0.70
DMS, WG 25 % 75 % 475 79 % 0.45
DMS, MS 86 % 14 % 446 48 % 0.73
DMS, PS 94 % 6 % 420 50 % 0.70
RS, GS 38 % 62 % 430 41 % 0.86
RS, WG 12 % 88 % 433 81 % 0.44
RS, MS 68 % 32% 456 29 % 1.00
RS, PS 89 % 11% 407 30 % 1.00
GS, WG 14 % 86 % 435 81 % 0.43
GS, MS 75 % 25 % 411 39 % 0.88
GS, PS 88 % 12% 376 41 % 0.83
WG, MS 92 % 8% 424 82 % 0.43
WG, PS 95 % 5% 413 84 % 0.42
MS, PS 87 % 13 % 427 20 % 1.00
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supply water that needs to be added to maintain the maximum total
solid content for the digester inlet, which is set at 35 %. It should be
noted that feed mixtures where substrates share less than 5 % can be
considered as blends with potentially no synergistic effect for optimal
co-digestion.

The results obtained from the Co-Digestion function can also be
visualised in a graph, shown in Fig. 3. This graph provides an insight into
the energy density (m%m/tfeed) and unit price for each feed blend ac-
cording to the co-digestion function results. Specifically, the figure il-
lustrates the unit weight bio-methane potential of each feed pair (m&4/
trotal) plotted against the unit price (£/t;)) for each feed combination. It
should be noted that the energy density of each feed pair (y-axis) con-
siders the biomethane yield of the total feed, i.e., the amount of water
needed to be supplied per tonne of feed blend (j, k) has also taken into
account. This visualisation helps in understanding the trade-offs be-
tween bio-methane yield and cost for different feed blends.

Fig. 4 illustrates the optimised feed scheduling aimed at maximising
net revenue from selling the produced biomethane to the grid across
three different gas price regions. The figure shows how the feeding
regime adjusts in response to predicted price variations and peaks. As
the pricing shifts from the low-range to the high-range, the feeding
pattern adapts accordingly to the new pricing scenarios, effectively
managing price fluctuations over time.

To minimise the GWP while maximising the revenue, the scheduling
and production of bio-methane adjusted as shown in Fig. 5. Similar to
the previous optimisation results (Fig. 4), the feeding schedule and
supply pattern are being adjusted to three different price frequency
levels and the feeding schedule is optimised for each of these pricing
schemes over the 20-weeks’ time frame.

As observed from the production figures, the generated schedules
generally follow the gas price trends, with production gradually
adjusting to target the main price peaks. However, the system’s response
to rapid price spikes is inadequate, and the designated feeding schedule
fails to address these sharp peaks effectively. This sluggish behaviour is
primarily attributed to the low organic loading rate OLR) resulting from
the high solid retention time (SRT) of the process. The high SRT rates
(typically around 70 days in many UK plants) limits the flexibility of AD
plants to respond quickly to sudden price fluctuations.

This inflexibility is partly due to regulatory requirements, such as
those for AD plants with PAS110 specifications, which mandate that
digestates meet certain residual BMP levels (WRAP, 2014). Additionally,
biological concerns, such as the risk of microbial population wash-out,
limit the ability to reduce the SRT below certain thresholds (Dicks and
Blase, 1982). Consequently, feeding rates cannot be significantly
increased without alternative measures to lower the BMP levels of the
digestates to acceptable standards while maintaining high microbial
activity.

Comparing Figs. 4 and 5 demonstrates that the inclusion of GWP
minimisation within the optimisation toward increasing revenue has
further limited the system’s flexibility in responding to gas price varia-
tions. Dried maize silage (DMS), as the only cultivated crop in this
particular case study, and as a high potential energy crop (as shown in
Table 3 and Fig. 3) necessary for adjusting production to address price
peaks, has been deselected from all feed blends. This limitation reduced
the degree of freedom in the optimisation, resulting in a further
production-to-price mismatch compared to the non-GWP optimisation.
This further highlights the significant contribution of cultivation to the
overall GWP of the process.

To overcome this intrinsic inflexibility, storage is integrated and
tested as an auxiliary solution to improve the flexibility of AD processes.
Incorporating storage capabilities into the production process signifi-
cantly alters the supply pattern of produced biomethane to the grid. As
shown in Fig. 6, during periods when prices are predicted to be low, the
biomethane supply to the grid is minimised. Conversely, when prices
peak, the supply to the grid is maximised, matching the storage facility
capacities. This strategic use of storage ensures optimal revenue by
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Feeding Schedule

Feed Name \ Week No. 1 2 3 4 5 6 7 8 9 10 11 12 13
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aligning supply with favourable market conditions.

The inclusion of storage in the optimisation scenarios does not
change the feeding schedules hugely, as these schedules were designed
to follow the overall price trends. Instead, the storage capacities were
effectively utilised during periods of price fluctuations, particularly
when prices experienced a decline.

The detailed optimisation results for different objective scenarios are
summarised in Table 4. Scenarios S1 to S3 focus on optimising the
schedule to maximise bio-methane selling revenue, considering the
feedstock prices alone across three different pricing schemes, as illus-
trated in Fig. 4. Scenarios S4 to S6 aim to minimise GWP in addition to
the revenue-maximising objectives from the first three scenarios, with
the corresponding feeding schedules and gas selling graphs shown in
Fig. 5. Scenarios S7 to S9 examine the impact of gas storage on opti-
misation without GWP concerns, while scenarios S10 to S12 incorporate
the effect of gas storage with GWP considerations.

According to Table 4, transitioning from the low-range (S1) to the
medium (S2) and high-range (S3) gas price schemes resulted in revenue
increases of approximately £660,000 and £2900,000, respectively, over
a 20-week period. However, this revenue growth comes with an increase
in feed costs of £35,000 and £131,000, and a rise in GWP of 85,000
kgcoze and 508,000 kgcoze, respectively. Additionally, incorporating
GWP-reduction scenarios leads to a revenue decrease of 1.9 %, 2.9 %,
and 4.7 % for low, middle, and high-range pricing, respectively, while
significantly decreasing the GWP by approximately 90 %, 93 %, and 97
% for these cases.

According to the feeding schedule for non-GWP scenarios S1 to S3
(Fig. 4), the feed blends [RS,GS] and [DMS,WG] are frequently selected

for low and mid-range gas price schemes, being used for mild and sharp
production increases, respectively. In the high-range price scenario,
[DMS,WG] continues to serve this purpose, while [RS,GS] is mainly
replaced by [DMS,GS]. For the GWP-included scenarios S4 to S6 (Fig. 5),
[DMS,WG] and [DMS,GS] are replaced mainly by [GS,WG] and, to some
extent, [RS,WG] to address the necessary changes in methane
production.

Fig. 3 provides insight into these trends. Among all possible feed-
stocks, [DMS,GS] and [DMS,WG] blends exhibit the highest methane
potential while maintaining a moderate price per unit weight. This is
why they are predominantly used in non-GWP scenarios to increase
production and target high price rises. [GS,WG] and [RS,WG] are the
next two high-potential options, slightly cheaper in price, followed by
[RS,GS], which has the highest yield but at a much lower cost. These
blends are mainly used for targeting mild price peaks and in GWP
minimisation scenarios, where DMS is avoided. Blends like [DMS,RS]
and [DMS,MS] are considered more expensive substitutes for [DMS,GS]
and [RS,WG], making them less attractive for GWP reduction or revenue
increase.

It must be emphasised that the above-mentioned results are inter-
preted and discussed in the context of the particular case study of this
research with all its assumptions, data and parameters provided. The
quality of the optimisation outcomes and production patterns is signif-
icantly influenced by the physicochemical properties of the substrates,
their availability, and the co-digestion results, especially in constructing
a potential-price distribution graph as shown in Fig. 3. However, the
approach presented here can be applied as a general methodology for
other plants with different assumptions, feed data, and parameters.
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Fig. 6. The effect of gas storage (up to 10,000 m3/day) on the supply of bio-methane to the grid for (a) Low-range (b) Middle-range (c) High-Range pricing schemes.

Table 4
Optimisation results for different scenarios.

No. Scenario Biomethane Selling Revenue (£) Feed Cost (£) Net Revenue (£) GWP (kgcoze) Revenue Increase (%)
S1 Scheduling - Low Gas Price 1344,120 574,018 178,106 770,102 -

S2 Scheduling - Mid Gas Price 2034,089 608,953 262,635 1425,136 -

S3 Scheduling - High Gas Price 4364,593 705,047 685,626 3659,546 -

S4 S1 + Min. GWP 1297,034 541,639 19,392 755,395 -1.9%
S5 $2 + Min. GWP 1944,024 559,951 19,247 1384,073 -29%
S6 S3 + Min. GWP 4078,133 589,806 19,286 3488,328 —4.7 %
S7 S1 + Gas Storage 1359,859 574,018 178,106 785,841 2.0 %
S8 S2 + Gas Storage 2188,365 661,489 516,461 1526,876 7.1 %
S9 S3 + Gas Storage 4488,430 705,047 685,626 3783,383 3.4 %
S10 S4 + Gas Storage 1331,727 560,877 19,239 770,850 2.0 %
S11 S5 + Gas Storage 2046,777 559,951 19,247 1486,826 7.4 %
S12 S6 + Gas Storage 4201,970 589,806 19,286 3612,164 3.6 %

The revenue increase due to storage, although modest in percentage
terms, represents significant earnings for AD plants. If the same price
changes occur over a year (instead of 20 weeks), earnings could rise by
approximately £40k, £267k, and £322k (2 %, 7.4 % and 3.6 %) for low,
mid, and high price change scenarios, respectively.

Utilising LNG facilities for storing the produced bio-methane in
liquid form is an appealing option. Liquefaction of the huge volume of
biogas produced per day and storage of bio-methane in relatively
smaller volumes can be a viable storage option. In addition to the
reduction of the storage volume, LNG cycles can be utilised in the pu-
rification step and leveraging the cryogenic cycle to liquify the COy
content of the biogas alongside with the liquefaction of the methane.
This in turn can eliminate the considerable costs related to conventional
purification methods such as membrane processes in addition to the
potential to store the CO5 (instead of venting it, which is done in most of
the AD plants in the UK).

10

Small scale LNG units with a liquefaction capacity of less than 15
tonnes per day are regarded as suitable options for liquifying the daily
production of such farm scale AD plants. Cost evaluation of such units in
the literature (specific capital cost) include £350/tonnes per annum of
LNG (TPA) (Pasini et al., 2019), £950/TPA (Capra et al., 2019; Lee et al.,
2020) up to £1450/TPA (Gustafsson et al., 2020). For the current case
study AD plant storage capacity (i.e., up to 10,000 m%m/day), this can
lead to annualised cost of £70k to £280k (on 20 years cost breakdown
basis). However, due to the large carbon credit potential of CO, storage
in such processes (credits ranging from $35 to $250/tco2, depending on
the pricing scenario in future (bp Energy Outlook, 2020)) in addition to
the aforementioned earnings from optimised scheduling, the cost of LNG
units can be fully compensated and the AD plants can benefit from extra
income.

While a detailed techno-economic assessment of biomethane storage
as LNG is beyond the scope of this research, heuristic calculations, such
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as those provided above, clearly demonstrate the viability of cryogenic
storage, warranting further investigation.

5. Conclusion

This study introduced a streamlined two-step optimisation method
aimed at enhancing feed and storage scheduling in anaerobic digestion
processes. The method integrates a Co-Digestion optimisation model
that replicates the synergistic effects of feed blends, coupled with a
linear model that simulates the impacts of dynamic ramping between
feeding recipes. This approach was tested under three distinct pricing
schemes, each characterised by different levels of price variability and
frequency of gas price fluctuations. The method was evaluated not only
for maximising revenue, but also for minimising global warming
potential.

The results indicate that, with reliable gas price prediction mecha-
nisms, the proposed method can suggest optimal feeding blends and
schedules, along with storage schedules. Although the schedules
generated alone are not able to fully capitalise on adaptations to short-
term price peaks due to high retention times, they effectively followed
the main trends of price changes. The optimiser demonstrated a clear
preference for high energy density feeds when substitutions were
necessary. In regions with low gas prices, the substitution was limited to
lower cost, lower energy density blends. However, in higher price zones,
the optimiser prioritised energy density over cost. When the optimiza-
tion was further constrained to minimize GWP alongside increasing
revenue, it restricted the optimiser to a limited number of feed candi-
dates, leading to more misalignments with price fluctuations.

Maximum residual BMP level standards and biological limitation
have been significant factors in preventing the reduction of SRT, thereby
contributing to the low flexibility of AD plants. To mitigate the impact of
low OLR (i.e., high SRT) on gas supply flexibility and maximise revenue
by leveraging price fluctuations, the study found gas storage to be a
promising solution. Implementing storage capacities of 10,000 m? led to
annual revenue increases of 2 %, 7.4 %, and 3.6 % for low, mid, and high
price change scenarios, respectively. These increases correspond to
significant annual earnings of £40k, £267k, and £322k. Additionally,
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utilising LNG facilities for biogas storage presents an opportunity for
extra revenue through CO; capture and storage, further enhancing the
economic viability of AD operations.
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Appendix
Nomenclature
Symbol Definition Unit
B ultimate experimental biomethane yield (EBMP) m?
tonnes ys
Bcopr BMP for co-digestion of feed blend F (per tonnes of VS) m3
tonnes vs
Bcontr BMP for co-digestion of feed blend F (per tonnes of blend) m3
tonnes vs
BD biodegradability -
C carbon to nitrogen content ratio -
(v)
Costrotal total purchasing cost of feeds £
cost; purchasing cost for substrate i £
D total number of steps (days/weeks) in the time horizon days, weeks, etc.
deng i the time when supply of substrate i is ended day, week, etc.
Arefease the time when substrate i is supplied day, week, etc.
Eeect electrical energy consumption of AD plant kWh
Ehear heating energy consumption of AD plant kwh
F feed blend of (j, k) or (j,k,m) -
GWP global warming potential (Total) kgcoze
GWPcp cultivation GWP kgcoze
GWPcpp combined heat and power (CHP) GWP kgcoze
GWPz electrical consumption GWP kgcoze
GWP,, leakage GWP kgcoze
GWPrp transportation GWP for feed mix F kgcoze
1 set of single feed substrates -

(continued on next page)
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(continued)
Symbol Definition Unit
L; distance of substrate i origin from the AD plant km
L; distance of the digestate i (pertained to substrate i) utilisation location from the AD plant km
Py biomethane production on time d m®
pra price of biomethane on time d £
Tea™ upward gas production ramp — Continuous mode m3
Ted downward gas production ramp — Continuous mode m®
T upward gas production ramp — Transition mode m3
Ted™ downward gas production ramp — Transition mode m3
Sq amount of biomethane stored on time d m3
Smax maximum gas storage capacity m?
Selly amount of biomethane sold to the grid on time d m?
SRT solid retention time d
TB theoretical biomethane yield m®
tonnes vs
TSy total solid content for feed mix F kg 1s
tonnes feed
TSmax maximum total solid content of the feed %
Vyeact digester volume m3
Vs volatile solid kg vs
tonnes s
Wra feeding rate of the reactor tonnesf,eq
d
Wrotalr total feed weight (for the whole time horizon D) tonneseeq
wiaer rate of water supply alongside with feed F tonnesyater
d
Wa, i available weight of substrate i tonneseeq
XcoDFi fraction of substrate i in blend F in co-digestion -
X; fraction of substrate i -
Yed© activation of upward gas production ramp — Continuous mode (Binary variable) -
Yed~ activation of downward gas production ramp — Continuous mode(Binary variable) -
Yed" activation of upward gas production ramp — Transition mode (Binary variable) -
Yed~ activation of downward gas production ramp — Transition mode (Binary variable) -
Yrd selection of blend F for feeding in time d -
¥i cultivated / non-cultivated substrate (user-defined parameter) -
aci cultivation GWP parameter kgcoze
kgrs
a leakage GWP parameter kgcoze
m3
ar; transportation GWP parameter for substrate i kgcoze
tonnes.km
ari transportation GWP parameter for substrate i digestate kgcoze
tonnes.km
ag GWP parameter for externally supplied electricity kgcoze
kWh
apg GWP parameter for externally supplied heat kgcoze
kWh
ag GWP parameter for electricity supplied by CHP kgcoze
kWh
ay GWP parameter for heat supplied by CHP kgcoze
kWh
B regression parameters for co-digestion model m?
tonnes vs
y penalty factor -
4 gas production potential for time d m®
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