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A B S T R A C T 

Mature neutron stars are expected to exhibit gravity g modes due to stratification caused by a varying matter composition in the 
high-density core. By employing the BSk equation-of-state family, and working within the relativistic Cowling approximation, 
we examine how subtle differences in the nuclear matter assumptions impact on the g-mode spectrum. We investigate the 
possibility of detecting individual g-mode resonances during a binary inspiral with current and next-generation ground-based 

detectors, like Cosmic Explorer and the Einstein Telescope. Our results suggest that these resonances may be within the reach 

of future detectors, especially for low-mass stars with M � 1 . 4 M �. 
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1

N
t  

a
o
o
r
G  

k
b
s

u  

i  

d
o
i
o  

M  

M  

b
s  

i
b
e  

T
t

o
p  

p  

�

w  

1  

m
s  

n
e  

m  

u
f

o  

m  

P  

p
d  

t
o
a  

S  

H  

i
s

n
a
w  

b  

e  

B
2  

s
fi

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/2/1967/7920787 by H
artley Library user on 04 February 2025
 I N T RO D U C T I O N  

eutron stars are highly compact and complex objects, the descrip- 
ion of which requires a rich variety of physics. In particular, there
re specific classes of oscillation modes associated with each aspect 
f the physics involved. One such feature is the varying composition 
f matter throughout the neutron star, introducing buoyancy as a 
estoring force in the equations of fluid dynamics (Reisenegger & 

oldreich 1992 ). The buoyancy gives rise to low-frequency ( � 1
Hz) gravity g modes. A realistic description of these modes requires 
oth Einstein’s general relativity and a detailed prescription for the 
trong nuclear interactions that occur at supernuclear densities. 

Given that the dense nuclear matter equation of state is largely 
nknown, it is in fact the inverse problem that we are interested
n. We want to establish how observational data can be used to
educe/constrain the neutron star equation of state. The techniques 
f stellar seismology for neutron stars are particularly promising 
n this respect; a star’s oscillation features provide a unique probe 
f the neutron star interior (McDermott, van Horn & Scholl 1983 ;
cDermott, van Horn & Hansen 1988 ; Andersson & Kokkotas 1998 ;
iniutti et al. 2003 ). Interest in this problem was naturally ele v ated

y the detection of gravitational waves from the GW170817 neutron 
tar merger event (Abbott et al. 2017 , 2018 ), and the problem is under
ntense scrutiny given the proposals for a next generation of ground- 
ased gra vitational-wa ve instruments, Cosmic Explorer (CE) (Reitze 
t al. 2019 ) and the Einstein Telescope (ET) (Punturo et al. 2010 ).
hese future instruments are expected to (finally) open a window to 

he neutron star oscillation spectrum. 
Much of the literature on neutron star seismology has focused 

n oscillation modes that depend weakly on the precise nuclear 
hysics below the crust, such as the fundamental f mode or the
ressure p modes. There has also been a considerable amount of
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ork on the gravity g modes (such as McDermott et al. 1983 ; Finn
986 ; Miniutti et al. 2003 ), which should be present in both cold
ature and hot young neutron stars (noting evidence from numerical 

imulations that the g modes may be excited during the proto-
eutron star stage following a core-collapse superno va; Vartan yan 
t al. 2023 ). In general, the g modes depend on both the internal
atter composition and the state of matter, so it is important to

nderstand what constraints on the nuclear physics could be made 
rom observations. 

Focusing on a mature neutron star, the g-mode frequencies depend 
n the variation of the lepton fraction with density (and the state of
atter, like the presence of superfluidity; Kantor & Gusakov 2014 ;
assamonti, Andersson & Ho 2016 ), which is sensitive to nuclear
arameters such as the nuclear symmetry energy (defined as the 
ifference between the energy per nucleon in pure neutron matter and
he energy per nucleon in symmetric nuclear matter). Therefore, an 
bservation of a specific g-mode frequency, for example, manifesting 
s a tidal resonance during binary inspiral (Lai 1994 ; Kokkotas &
chaefer 1995 ; Yu & Weinberg 2017a , b ; Andersson & Ho 2018 ;
o & Andersson 2023 ; Yu, Arras & Weinberg 2024 ) could provide

nformation about the underlying nuclear physics and the equation of 
tate beyond bulk properties such as the mass and radius of the star. 

In this paper, we examine how uncertainties in the underlying 
uclear physics impact on the matter composition and, in turn, 
ffect the g-mode frequencies and their detectability . Specifically , 
e consider the spectrum of g modes in a cold mature neutron star
ased on different equations of state from the BSk family (Pearson
t al. 2012 ; Fantina et al. 2013 ; Potekhin et al. 2013 ), specifically
Sk22, BSk24, BSk25, and BSk26 (Goriely, Chamel & Pearson 
013 ; Shchechilin, Chamel & Pearson 2023 ). These equations of
tate are based on generalized Skyrme-type forces with parameters 
tted to nuclear and astrophysical data. 
The advantage of the BSk family of models is that it allows us

o employ a realistic description of the matter stratification, going 
eyond previous work that tends to assume a constant adiabatic 
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ndex for the perturbations ( � 1 later). While the same information
an be extracted for other ‘realistic’ equation of state models, the BSk
amily has the advantage of being expressed in closed form, which
eans that the thermodynamical deri v ati ves required for the g-mode

alculation do not have to be w ork ed out numerically [as done in,
or example, the recent work by Gittins & Andersson ( 2024 )]. An
nalytical representation is convenient as it a v oids numerical errors
hat would be una v oidable if we were to base the calculation on
abulated equation of state data. 

The layout of the paper is as follows: in Section 2 , we outline
he background equations and physics that go into the problem.
he Cowling approximation, in which spacetime perturbations are
eglected, is used and the equations are shown to be in the same form
s in McDermott et al. ( 1983 ). Section 3 presents and discusses our
umerical results along with estimates of the detectability of tidal
esonances. Finally, Section 4 summarizes the work and presents
deas for future continuation of this effort. 

Throughout the paper, spatial indices are denoted with Latin char-
cters i, j, k, . . . and spacetime indices are denoted with early Latin
haracters a, b, c, . . . . The indices l and m will be used e xclusiv ely for
pherical-harmonic multipoles. The Einstein summation convention
ill be used for repeated tensor component indices. The signature of

he spacetime metric g ab is ( −, + , + , + ). 

 T H E  P E RTU R BAT I O N  PROBLEM  

e want to study the oscillation properties of a non-rotating rela-
ivistic star. This problem has been explored in great detail in the
iterature and the various steps required in its formulation are well
no wn. Ne v ertheless, we will pro vide the ke y ingredients here, partly
or completeness but also because the discussion provides a clear
llustration of the various simplifying assumptions we introduce. 

The first step involves establishing the background model. For
easons that will become clear later, the next few steps will be
aken without committing to a specific choice of spatial coordinates.
ater , the con ventional choice of Schwarzschild coordinates will be

ntroduced. 

.1 The fluid equations 

nitially, progress can be made by assuming that the unperturbed
etric is obtained from 

 s 2 = −e νc 2 d t 2 + γij d x 
i d x j . (1) 

here the spatial part of the metric, γij , is diagonal. Assuming a
erfect fluid, the stress-energy tensor takes the form 

 

ab = 

1 

c 2 
( ε + p ) u 

a u 

b + pg ab = 

ε 

c 2 
u 

a u 

b + p ⊥ 

ab , (2) 

here ε is the energy density, p represents the pressure, the fluid
our velocity u 

a is normalized in such a way that 

 a u 

a = g ab u 

a u 

b = −c 2 , (3) 

nd the orthogonal projection is defined by 

⊥ 

ab = g ab + 

1 

c 2 
u 

a u 

b , (4) 

ith g ab the inverse metric. 
In order to write down the equations of fluid dynamics one needs 

 b T 
ab = 

1 

c 2 

[
u 

a ∇ b 

(
εu 

b 
) + εu 

b ∇ b u 

a 
]+ ⊥ 

ab ∇ b p 

+ 

p 

c 2 

(
u 

a ∇ b u 

b + u 

b ∇ b u 

a 
) = 0 . (5) 
NRAS 536, 1967–1979 (2025) 
rojecting along u a , one obtains the energy equation: 

 

b ∂ b ε + ( p + ε) ∇ b u 

b = 0 . (6) 

eanwhile, the orthogonal projection of ( 5 ) leads to the momentum
quation: 

p + ε 

c 2 
u 

b ∇ b u 

c + ⊥ 

cb ∂ b p = 0 . (7) 

astly, we need the equation for baryon number conservation, 

 a 

(
nu 

a 
) = 0 , (8) 

here n is the baryon number density. The system of equations is
losed by an equation of state for matter, providing the pressure p 

s a function of (say) the number density n , the matter composition
nd temperature. In our analysis, we focus on mature neutron stars,
hich are expected to be cold enough that thermal effect can be

gnored. The equation of state can then be taken to be a function
f two parameters: n and the lepton (in our case, as we ignore the
resence of muons etc., equal to the proton/electron) fraction. 

.2 Perturbations 

ext, we want to consider perturbations. For the velocity, we
ntroduce the Eulerian perturbation (indicated by δ) such that the
otal four-velocity is 

¯ a = u 

a + δu 

a =⇒ ū a ̄u 

a = ḡ ab 

(
u 

a + δu 

a 
)

( u 

b + δu 

b ) = −c 2 . (9) 

he metric is similarly given by 

¯ ab = g ab + δg ab . (10) 

his means that, to linear order, we have 

u 

0 = 

c 

2 
e −3 ν/ 2 δg 00 . (11) 

vidently, the normalization does not involve the spatial components
u 

i . Rather, it fixes the time component so that the perturbed four-
elocity has three components, just like in classical fluid dynamics. 

Next, we introduce metric perturbations ‘inspired’ by the ADM
ormalism (Arnowitt, Deser & Misner 2008 ). That is, 

g 00 = δα, (12) 

g 0 i = δg i0 = δβi , (13) 

g ij = δγij . (14) 

hese variables will be further expanded in angular harmonics later.
his means that we have 

u 

0 = 

c 

2 
e −3 ν/ 2 δα. (15) 

Now let us return to the perturbation equations. Linearizing ( 8 ), it
ollows that 

 t δn + 

e ν/ 2 

√ −g 
∂ i 

[√ −g nδu 

i 
] = −n 

2 
e −ν∂ t δα, (16) 

here g = det( g ab ). Moving on to the perturbed energy equation, we
ave 

 t δε + 

1 

2 
( p + ε) e −ν∂ t δα + e ν/ 2 δu 

i ∂ i ε 

+ ( p + ε) 
1 √ 

γ
∂ i 

[
e ν/ 2 √ 

γ δu 

i 
] = 0 , (17) 
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here γ = det( γij ). Finally, the perturbed momentum equation is 
iven by 

p + ε 

c 2 
e −ν/ 2 ∂ t δu 

i + 

1 

2 
( δp + δε) g ij ∂ j ν + g ij ∂ j δp 

−p + ε 

2 
e −ν( g ij ∂ j ν) δα−p + ε 

2 
g ij e −ν

(
2 

c 
∂ t δβj −∂ j δα

)
= 0 . 

(18) 

At this point, it is notable that there is no direct coupling to δg ij 
n the final momentum equation. Any coupling to the spatial part 
f the metric enters via the Einstein equations. This observation is
seful for several reasons. For example, it helps explain how different 
ersions of the relativistic Cowling approximation – e.g. whether we 
ssume that all components of the perturbed metric are ignored (as in
cDermott et al. 1983 ) or retain the ‘momentum parts’ (as advocated

y Finn 1988 ) – impact on the problem. Moreo v er, the absence
f δg ij in ( 18 ) may help explain why oscillation modes obtained
n the conformal flatness approximation can be quite accurate, as 
emonstrated by, for e xample, Torres-F orn ́e et al. ( 2019 ). These
ssues would be worth closer inspection, but we will not explore 
hem further here. 

.3 Cowling approximation 

aving derived the perturbation equations of a relativistic, non- 
otating star, we now want to simplify the problem by introducing the
relati vistic) Co wling approximation. Here we take this to mean that
e ignore the perturbations of the gravitational field (McDermott 

t al. 1983 ). For relativistic problems, this obviously involves 
mitting the gra vitational-wa ve aspects. This is not expected to be a
ood approximation for oscillations that are efficient gravitational- 
 ave emitters [lik e the fundamental f mode or, indeed, the spacetime
 modes (Kokkotas & Schutz 1992 ; Andersson, Kokkotas & Schutz 
996 ), the latter of which do not ev en e xist in the Cowling ap-
roximation]. Ho we ver, the gravity g modes are weakly damped 
y gra vitational-wa ve emission, so the approximation should be 
dequate for the corresponding low-frequency dynamics (Finn 1988 ; 
r ̈uger 2015 ). 
We introduce the Cowling approximation by setting all metric 

erturbations to zero, i.e. 

α = δβi = 0 . (19) 

he accuracy of this approximation is discussed in detail in Finn 
 1988 ), with particular focus on the g modes. Along with this, we
ntroduce the fluid displacement vector, ξ i , defined as 

u 

i = c e −ν/ 2 ∂ 0 ξ
i = e −ν/ 2 ∂ t ξ

i , (20) 

hich follows from our assumed gauge condition. With this defini- 
ion, equation ( 18 ) leads to 

p + ε 

c 2 
e −ν∂ 2 t ξi + 

1 

2 
( δp + δε) ∂ i ν + ∂ i δp = 0 . (21) 

Now, considering the problem for non-rotating stars, we assume 
hat the oscillation modes, with label n and frequency ω n , are
ssociated with a polar perturbation displacement vector. In terms of 
he coordinate basis associated with the spherical polar coordinates 
 r, θ, ϕ], we then have (noting that the mode problem is degenerate
n the azimuthal angle ϕ for spherical stars so it is sufficient to keep
rack of the polar angle harmonic index l) 

i ( t, r, θ, ϕ) = ξ i 
l ( r, θ, ϕ) e iω n t , (22) 
ith spatial part 

i 
l = 

1 

r 
W l Y 

m 

l δi 
r + 

1 

r 2 
V l ∂ θY 

m 

l δi 
θ + 

1 

r 2 sin 2 θ
V l Y 

m 

l δi 
ϕ . (23) 

he radial and angular amplitudes, W l and V l , are functions of r only.
long with this, all scalar perturbations are expanded in spherical 
armonics. For example, the perturbed pressure is 

p = δp l Y 

m 

l e iω n t , (24) 

nd similar for δε. Finally, the background metric is taken to have
he Schwarzschild form 

 s 2 = −e νc 2 d t 2 + e λd r 2 + r 2 d θ2 + r 2 sin 2 θd ϕ 

2 , (25) 

hich means that the background configuration is obtained by 
olving the standard Tolman–Oppenheimer–Volkoff equations. 

Substituting the different expressions into ( 21 ) gives the following: 
or the r-component, we get 

p + ε 

c 2 
ω 

2 
n e 

λ−ν W l 

r 
= 

δp l + δε l 

2 

d ν

d r 
+ ∂ r δp l , (26) 

hile the ϕ-component leads to 

p + ε 

c 2 
ω 

2 
n e 

−νV l = δp l . (27) 

Next, applying the Cowling approximation to the perturbed energy 
quation ( 17 ) gives 

 t δε + e ν/ 2 δu 

i ∂ i ε + ( p + ε) 
1 √ 

γ
∂ i 

[
e ν/ 2 √ 

γ δu 

i 
] = 0 , (28) 

here 

 

γ = e λ/ 2 r 2 sin θ. (29) 

his can be simplified to 

p + ε 

r 2 
[ ∂ r ( rW l ) − l( l + 1) V l ] + 

(
d ε 

d r 
+ 

p + ε 

2 

d λ

d r 

)
W l 

r 
+ δε l = 0 . 

(30) 

n order to solve these equations, we need to relate δp and δε. This
equires information from the thermodynamics of the nuclear matter. 

Previously, the majority of the literature on neutron star oscil- 
ations assumes that, as the matter is cold, the fluid is barotropic
nd thus only involves one variable, i.e. ε = ε( n ). One can then
se p = p( n ) to arrive at p = p ( ε ), which is needed to close the
erturbation equations. Ho we ver, while this is a v alid approximation
or cold neutron stars in equilibrium, it cannot be applied to g modes.
s first argued by Reisenegger & Goldreich ( 1992 ), the characteristic

ime-scale associated with the rele v ant weak interactions is much
onger than the typical oscillation periods of these modes. Therefore, 
s a fluid element in the star is displaced from its equilibrium position,
uclear reactions do not act fast enough to restore β equilibrium 

etween the element and its new environment. Thus, buoyancy 
orces associated with the differing composition cause the displaced 
lement to oscillate, giving rise to the composition g modes that we
re interested in. In general, we assume that the composition is frozen
uring the oscillation, i.e. �x e = 0 where x e is the electron fraction
nd � is the Lagrangian perturbation (for a recent study on the g-
ode spectrum in the intermediate regime of finite reaction times, 

ee Counsell, Gittins & Andersson 2024 ). When thermal effect are
ccounted for, we also assume no heat is transferred, i.e. �s = 0,
here s the entropy per baryon. 
MNRAS 536, 1967–1979 (2025) 
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To close the system of equations, we introduce the adiabatic index
 1 of the perturbed matter defined such that 

p = 

� 1 p 

ε + p 

�ε, (31) 

ith 

 1 = 

p + ε 

p 

(
∂p 

∂ε 

)
s,x e 

(32) 

olds information about frozen composition and entropy gradients.
n the models we consider here, the stars are taken to be cold enough
hat thermal aspects can be ignored. 

Using the equations abo v e, one may deriv e the differential equa-
ions for the amplitudes W l and V l , which, for numerical purposes,
ill be cast in terms of the new variables’ 

 1 = 

W l 

r 2 

( r 

R 

)2 −l 

e λ/ 2 , (33) 

nd 

 2 = 

ω 

2 
n r 

GM r 

V l 

( r 

R 

)2 −l 

, (34) 

here R is the stellar radius and M r is given by 

d M r 

d r 
= 

4 πr 2 ε 

c 2 
. (35) 

e then arrive at the system of equations 

 

d Z 1 

d r 
= 

(
V 

� 1 
− l − 1 

)
Z 1 + 

[
l( l + 1) 

GM r 

ω 

2 
n r 

3 
e λ/ 2 − V 

� 1 β

]
Z 2 , (36) 

nd 

 

d Z 2 

d r 
= 

(
ω 

2 
n r 

3 

GM r 

+ A + 

rβ

)
e λ/ 2 Z 1 + 

(
3 − l − U − A −e λ/ 2 r 

)
Z 2 , 

(37) 

here 

 = 

d ln M r 

d ln r 
, (38) 

 = −d ln p 

d ln r 
, (39) 

 ± = e −λ/ 2 

[
1 

p + ε 

d( p + ε) 

d r 
− 1 

� 1 p 

d p 

d r 

(
1 ± � 1 p 

p + ε 

)]
, (40) 

nd 

= e ν+ λ/ 2 

(
1 + 

4 πr 3 p 

M r c 2 

)
. (41) 

he equations are now identical to those used by McDermott et al.
 1983 ). 

Two boundary conditions are required for this system, one at the
entre and one at the surface of the star. At the stellar surface, one
equires that �p = 0. Using ( 31 ) this corresponds to 

 2 − βZ 1 = 0 . (42) 

t the centre of the star, the differential equations ( 36 ) and ( 37 ) are
equired to be regular as r → 0. This leads to 

 1 − lGM r 

r 3 ω 

2 
n 

Z 2 = 0 . (43) 

astly a normalization condition for our solutions is added at the
tellar surface. Specifically, we use 

 1 e 
−λ/ 2 = 1 , (44) 
NRAS 536, 1967–1979 (2025) 
hich ensures that 

ξ r ( R) 

R 

= 1 . (45) 

.4 Mode orthogonality 

nvestigations into the g-mode properties are topical because of the
ossibility that the associated tidal resonances may be detectable
uring the late stage of binary inspiral with future gra vitational-wa ve
etectors. In Newtonian gravity, the tidal response is represented
y a mode sum (Lai 1994 ; Kokkotas & Schafer 1995 ; Pnigouras
t al. 2024 ), moti v ated by the fact that the indi vidual mode solutions
re orthogonal with respect to a specific inner product (Friedman &
chutz 1978 ). While a corresponding mode-sum expression is not yet
stablished in general relativity (and one may argue that it should not
xist, at least not as an e xact e xpression; Pitre & Poisson 2024 ), the
o wling approximation allo ws us to make progress in this direction.

n essence, we want to show that the mode equations are Hermitian
or some inner product. If this is the case, one has a suitable basis for
 mode expansion, which will prove useful later on. The argument is
ot exactly new, but it is useful to spell out the required steps given
he fact that different versions of the result exist in the literature and
e want to make sure that our model is internally consistent. 
First, we express the momentum equation ( 21 ) as (Friedman &

chutz 1978 ) 

− ω 

2 
n Aξi + C ij ξ

j = 0 . (46) 

n order for this equation to be Hermitian, we need a suitable inner
roduct 

 ηi , ξi 〉 = 

∫ 

ηi∗f ξi d V = 

∫ 

ηi∗f ξi 

√ −g d 3 x, (47) 

here ξ i and ηi are solutions to the perturbation equations and ∗
enotes the complex conjugate. Specifically, we need to identify a
unction f ( r), such that 

 ηi , C ij ξ
j 〉 = 〈 ξ i , C ij η

j 〉 ∗, (48) 

nd similarly for A . Once we establish this result, we can define the
ymplectic product 

 ( ηi , ξi ) = 〈 ηi , A∂ t ξi 〉 − 〈 A∂ t η
i , ξi 〉 , (49) 

uch that 

 t W = 〈 ηi , A∂ 2 t ξi 〉 − 〈 A∂ 2 t η
i , ξi 〉 = −〈 ηi , Cξi 〉 + 〈 Cηi , ξi 〉 

= −〈 ηi , Cξi 〉 + 〈 ξ i , Cηi 〉 ∗ = 0 . (50) 

his demonstrates that W provides a conserved quantity. Moreover,
or two mode solutions, ξ i e iω n t and ηi e iω n ′ t , we have (
ω 

2 
n ′ − ω 

2 
n 

) (〈 ηi , Aξi 〉 + 〈 Aηi , ξi 〉 
)
e i( ω n −ω n ′ ) t = 0 . (51) 

ince A and f ( r) are both real, it is easy to see that one must have (
ω 

2 
n ′ − ω 

2 
n 

) 〈 ηi 
, Aξi 〉 e i( ω n −ω n ′ ) t = 0 . (52) 

ssuming that the modes are not degenerate, this means that 

 ηi , Aξi 〉 = A 

2 
n δnn ′ , (53) 

or some amplitude A 

2 
n . This would then provide a basis for a mode

xpansion (following the steps from the Newtonian analysis). 
In order to make progress towards ( 48 ), the starting point is 

 ηi , C ij ξ
j 〉 = 

∫ 

ηi∗
[

1 

2 
( δξ ε + δξp) ∂ i ν + ∂ i δξp 

]
f 

√ −g d 3 x, (54) 
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here δξ indicates the perturbation associated with mode ξ i . Integrate 
y parts to find 

 ηi , C ij ξ
i 〉 = 

∮ 

ηi∗δξpf 
√ −g d S i 

+ 

∫ 

[
1 

2 
( δξ ε + δξp) ηi∗∂ i νf 

√ −g − δξp∂ i ( η
i∗f 

√ −g ) 

]
d 3 x, (55) 

here d S i is an outw ard-f acing vectorial tw o-surf ace element arrived
t through the divergence theorem. At the surface, δξp vanishes; 
ence, we have 

 ηi , C ij ξ
j 〉 = 

∫ [
1 

2 
( δξ ε + δξp) ηi∗∂ i νf 

√ −g − δξp∂ i ( η
i∗f 

√ −g ) 

]
d 3 x. 

(56) 

o keep this as general as possible, we require 

�ε 

ε + p 

= 

�n 

n 
= − 1 √ −g 

∂ i ( 
√ −g ξ i ) − 1 

2 
ξ i ∂ i ν. (57) 

Therefore, 

δε 

ε + p 

= − 1 √ −g 
∂ i ( 

√ −g ξ i ) − 1 

ε + p 

(
1 + 

ε + p 

�p 

)
ξ i ∂ i p, (58) 

δp 

� 1 p 

= − 1 √ −g 
∂ i ( 

√ −g ξ j ) − 1 

� 1 p 

(
1 + 

� 1 p 

ε + p 

)
ξ i ∂ i p, (59) 

here 

 = 

ε + p 

p 

d p 

d ε 
, (60) 

epresents the adiabatic index of the background configuration. 
Thus, the inner product becomes 

 ηi , C ij ξ
j 〉 = 

∫ 

1 √ −g 

(
1 + 

� 1 p 

ε + p 

)[
∂ j ( 

√ −g ξ j ) ηj∗∂ i p 

+ ξ j ∂ j p∂ i ( 
√ −g ηi∗) 

]
f 

√ −g d 3 x 

+ 

∫ 

1 

ε + p 

(
2 + 

ε + p 

�p 

+ 

� 1 p 

ε + p 

)

ξ j ∂ j pηi∗∂ i pf 
√ −g d 3 x 

+ 

∫ 

� 1 p 

( 
√ −g ) 2 

∂ j ( 
√ −g ξ j ) ∂ i ( 

√ −g ηi∗) f 
√ −g d 3 x 

+ 

∫ 

� 1 p 

[
1 √ −g 

∂ j ( 
√ −g ξ j ) 

+ 

1 

� 1 p 

(
1 + 

� 1 p 

ε + p 

)
ξ j ∂ j p 

]
ηi∗ ∂ i f 

f 
f 

√ −g d 3 x. 

(61) 

vidently, this is Hermitian only when f = const . In view of this,
e take f = 1 in the following. 
Going back to ( 53 ), we now have 

 ηi , Aξi 〉 = 

∫ 

p + ε 

c 2 
e −νηi∗ξi 

√ −g d 3 x = A 

2 
n δnn ′ , (62) 

hich shows how the mode solutions ξ i should be normalized. For 
 single mode, substituting in ( 23 ), this simplifies to 

 

2 
n = 

∫ R 

0 
e ( λ−ν) / 2 ( ε + p) 

c 2 

[
W 

2 
l + 

l( l + 1) 

r 2 
V 

2 
l 

]
d r, (63) 

n agreement with the result from Detweiler & Ipser ( 1973 ) and the
xpression employed by Kuan, Suvorov & Kokkotas ( 2021a ). 
 RESULTS  

he use of the Cowling approximation will (obviously) affect the 
ccuracy of the mode solutions. As we are ignoring the dynamical as-
ects of spacetime – the gra vitational-wa v e de grees of freedom – and
lso assume an ideal fluid – ignoring viscosity – the mode frequencies 
ill be real valued. In full general relativity, the mode frequencies

re complex as a result of damping due the emission of gravitational
adiation (the modes satisfy a pure outgoing-wave condition at spatial 
nfinity, see Andersson, Kokkotas & Schutz 1995 ). Ho we ver, as we
ocus our attention on the g modes, the frequencies of which have
een shown to have very small imaginary parts, Re ω n � Im ω n ≈ 0
Kr ̈uger 2015 ), the Cowling approximation is not expected to have a
ignificant impact on the results. 

.1 Stellar models and the f modes 

s already mentioned, we have opted to base our analysis on the BSk
quation-of-state family (Goriely et al. 2013 ; Shchechilin et al. 2023 ).
pecifically, four different models will be compared against one 
nother (BSk22, BSk24, BSk25, and BSk26). Mass–radius curves 
or these models are provided in the left panel of Fig. 1 . Each of these
quations of state are obtained from an analytical energy functional 
see Shchechilin et al. 2023 ), which can be used to calculate all
ecessary thermodynamic deri v ati ves – required to, for example, 
ork out the adiabatic index for frozen composition perturbations, � 1 

and each model involves slightly different assumptions regarding 
he nuclear interactions. The adiabatic index is calculated following 
he steps laid out by Andersson & Gittins ( 2023 ). Strictly speaking,
his calculation only applies to the neutron star core. The rele v ant
esults are provided in the right panel of Fig. 1 , which shows � 1 for
ach equation of state as function of the baryon number density n ,
learly demonstrating that the common assumption of a constant � 1 

s not appropriate for neutron stars. 
Using each of the four equation of state models, equations ( 36 )

nd ( 37 ) were solved for a variety of neutron star models with
ravitational masses ranging from M = 1 M � up to the maximum
llo wed mass gi ven by Shchechilin et al. ( 2023 ). In order to test
he implementation, we first of all calculated the f-mode frequency, 
 f . The results (all mode results in this paper are for l = 2) are
lotted, in geometric units ( G = c = 1), against 

√ 

M/R 

3 in Fig. 2 .
t is well known (Andersson & Kokkotas 1998 ), that in neutron stars
 f ∝ 

√ 

M/R 

3 and our results bring out this expectation. Ho we ver,
e need to keep in mind that, due to the Cowling approximation

hese frequencies will only be accurate to within about 15 per cent or
o (Yoshida & Kojima 1997 ); hence, the results should be considered
ith this in mind. 

.2 The gravity g modes 

oving on to the g modes, we need to pay careful attention to the
diabatic index � 1 . The results illustrated in Fig. 1 highlight the
ehaviour in the neutron star core. In order to explore the g modes,
e need to contrast the adiabatic index for the perturbations with that
f the background, �, which is obviously taken to be in chemical
quilibrium. We also need to extend the model to lower densities,
eyond the core fluid. For the background model, this is done by
sing the fits from Shchechilin et al. ( 2023 ) which smears out any
harp discontinuities, e.g. associated with distinct composition layers 
n the neutron star crust (R ̈uster, Hempel & Schaffner-Bielich 2006 ;
hamel & Haensel 2008 ). These discontinuities would give rise to

nterface modes if not smoothed out, an issue discussed later on. The
MNRAS 536, 1967–1979 (2025) 
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M

Figure 1. Left: Mass–radius curves for the chosen models from the BSk family (BSk22–26). Right: Plot showing the adiabatic index for frozen composition 
perturbations, � 1 , versus baryon number density n . 

Figure 2. Plot of the f-mode frequency ω f (in geometric units) versus √ 

M/R 

3 for BSk22–26 for total mass energies ranging from M = 1 M �
up to the maximum allowed mass in each case. 
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Figure 3. Plot of adiabatic and background indices � 1 and � versus baryon 
number density n for BSk22. The vertical dashed line corresponds to the 
location of the crust core interface density n cc and the dot–dashed line 
corresponds to the neutron drip point density n nd as given by Shchechilin 
et al. ( 2023 ). 
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 obtained for this model and the BSk22 example is shown in Fig. 3
the plots for the other equations of state are very similar). The results
how that the low-density background index varies significantly, a
ehaviour inherited from the fits of Shchechilin et al. ( 2023 ). For the
erturbations, we opt to simply extend the fit for � 1 from the core
odel to lower densities. This assumption is somewhat dubious, as

t does not account for the underlying microphysics in the crust (or
ndeed the elasticity of the nuclear lattice), but as is clear from Fig. 3 it

eans that we are ef fecti vely treating � 1 as constant at low densities.
his means that our low-density treatment is on a par with the vast
ajority of previous work on g modes (see Kuan et al. 2021a , b for

ecent examples) which assumes that the adiabatic index is constant
hroughout the star. In essence, our model may be inconsistent, but
t is an impro v ement on previous work. 

Of course, we need to be mindful of the inconsistencies at low
ensities. Especially, since there will be distinct mode features
ssociated with this region. That this should be the case is evident
rom Fig. 3 . It is generally the case that low-frequenc y wav es (the
 modes) can propagate in regions where � 1 > �. Fig. 3 confirms
hat the neutron star core represents one such propagation region.
n addition, we see that mode solutions may be supported in the
ow-density region near neutron drip. As we will soon see, this
eads to the presence of a second family of g modes, located in
he neutron star crust. The fact that our model is somewhat artificial
NRAS 536, 1967–1979 (2025) 
t low densities means that these additional mode results must be
onsidered with caution. Ho we ver, that there should exist g modes
ssociated with the neutron star crust is known since the work by
eisenegger & Goldreich ( 1992 ). One would expect these modes to
e sensitive to discontinuities between the different layers of nuclei
Finn 1987 ; Miniutti et al. 2003 ), a feature that is not present in our
odel. The dynamics of the crust region will also be sensitive to

he associated elasticity, which is not included here. Future efforts
hould aim towards a consistent treatment of both core and crust,
deally making use of a consistent equation of state model that co v ers
oth regions. 
The nature of the adiabatic and background indices is inherited by

he g-mode solutions, which typically have a number of distinguish-
ble features. Examples of this are provided in Figs 4 and 5 . The first
f these, Fig. 4 , shows the radial component of the fluid displacement
r versus r for the fundamental g mode, g 1 , and the first overtone, g 2 
which is identified by the presence of a node in the eigenfunction in
he star’s core), for the BSk22 model. Meanwhile, Fig. 5 shows the
undamental g modes for the other three equations of state, BSk24–
6. All results are for stars with mass M = 1 . 4 M �. In the figures, the
ed and green dashed lines correspond to the locations of the crust–
ore interface density, n cc , and the neutron drip point density, n nd , for
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Figure 4. Plots of ξ r for the first two g modes for a neutron star with M = 1 . 4 M � and the BSk22 equation of state. On the left is g 1 and on the right g 2 . The 
vertical dashed line corresponds to the location of the crust–core interface density n cc and the dot–dashed line corresponds to the neutron drip point density n nd 

as given by Shchechilin et al. ( 2023 ). The horizontal dashed line corresponds to ξ r = 0 and the dimensionless mode frequency ( 64 ) is given on top. 

Figure 5. Plots of ξ r for the fundamental g mode, g 1 , for neutron stars with M = 1 . 4 M � for the BSk24–26 equations of state (as indicated in the respective 
panels). The vertical dashed line corresponds to the location of the crust–core interface density n cc and the dot–dashed line corresponds to the neutron drip point 
density n nd for each equation of state, as given by Shchechilin et al. ( 2023 ). The horizontal dashed line corresponds to ξ r = 0. 
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ach equation of state. These mark the boundaries in the equation of
he state between the core, outer crust and inner crust. The values of
he two densities were taken from Shchechilin et al. ( 2023 ). From the
lots, we note the characteristic g-mode amplitude peak in the core 
f the star and additional features closer to the surface (for BSk26 the
wo peaks are notably of comparable magnitude). Different features 
f the eigenfunctions can be linked to distinguishable features in 
he equation of state, like the sharp variation in the sound speed at
eutron drip (see Fig. 3 ). In fact, the behaviour near neutron drip
esembles that expected for interface waves. Ho we ver, in contrast to
he results from Gittins & Andersson ( 2024 ), we are not dealing with
istinct interface modes here. 
Even though the four equation of state models belong to the same

amily, there are notable differences between the mode solutions, 
uch as how deep into the core the peak of the oscillation is located.
onsidering the electron fraction as a function of baryon number 
MNRAS 536, 1967–1979 (2025) 
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M

Figure 6. Plots of ξ r for the first two crustal g modes for a neutron star with M = 1 . 4 M � and the BSk22 equation of state. On the left is the first crustal 
mode and on the right is the second one. The vertical dashed line corresponds to the location of the crust–core interface density n cc and the dot–dashed line 
corresponds to the neutron drip point density n nd as given by Shchechilin et al. ( 2023 ). The horizontal dashed line corresponds to ξ r = 0 and the dimensionless 
mode frequency ( 64 ) is given on top. 
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Table 1. The dimensionless mode frequencies ( 64 ) for the first two l = 2 
core and crust g modes using the BSk22 equation of state for a few chosen 
gravitational masses. The results were obtained from the full analytical � 1 

and also setting � 1 = � in the crust while retaining the original � 1 in the 
core. The results confirm that one set of the identified g modes originates 
from the physics in the neutron star crust. 

M � Mode Full � 1 ̃  ω n � 1 = � in crust ˜ ω n 

1.4 Core g 1 0.1822 0.1814 
g 2 0.1263 0.1219 

Crust g 1 0.2111 –
g 2 0.1064 –

1.6 Core g 1 0.1832 0.1831 
g 2 0.1240 0.1221 

Crust g 1 0.1890 –
g 2 0.0934 –

1.8 Core g 1 0.1850 0.1847 
g 2 0.1232 0.1223 

Crust g 1 0.1689 –
g 2 0.0847 –

2 Core g 1 0.1860 0.1858 
g 2 0.1224 0.1220 

Crust g 1 0.1501 –
g 2 0.0745 –
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ensity from Shchechilin et al. ( 2023 ), we note that BSk22 has the
ighest electron fraction in the core while BSk26 has the lowest. In
ddition to this, BSk26 has an additional peak at low density. Both
eatures help explain the behaviour for BSk26 seen in Fig. 5 , i.e. the
mplitude peak in the core being closer to the crust and being smaller
han for the other BSk models. 

As already suggested, the presence of the crustal region leads to the
ppearance of an additional set of modes. Examples of these solutions
re shown in Fig. 6 for BSk22, again for a star with M = 1 . 4 M �.
hese modes are clearly identified by a more significant fluid motion

n the crust region, while the mode amplitude in the star’s core
emains low. This allows us to distinguish the two families of mode
olutions. In order to confirm that the second set of modes owe their
xistence to the low-density propagation region identified in Fig. 3 ,
e have also calculated the modes for a model where we set � 1 = � 

t densities below neutron drip (adopting the strategy from Kr ̈uger,
o & Andersson 2015 ). The results of this e x ercise show that the
rst core g modes are not significantly affected, while the crust g
odes disappear from the spectrum (see Table 1 ). This accords with

ur expectations. 
The results in Table 1 also show that the core/crust g-mode

requencies are interleaved in the mode spectrum. The table provides
esults for the dimensionless frequencies, based on the scaling 

˜  2 n = 

ω 

2 
n 

GM/R 

3 
. (64) 

Moving on, we examine the dependence of the g modes on the
tellar mass M . Results for the first two core g modes are shown in
ig. 7 , plotting ˜ ω versus M for the different BSk equations of state.
he range of stellar masses was chosen to be from 1 M � up to the
pproximate maximum masses given by Shchechilin et al. ( 2023 ).
omparing to the f modes from Fig. 2 , we note that there is much
ore variance in the behaviour between the different equations of

tate. For BSk22 and BSk26, ˜ ω tends to decrease with increasing M ,
hereas the opposite behaviour is seen for BSk24 and BSk25. We

lso note a sharp change in the results near the maximum mass for
Sk26. 
Finally, returning to the crustal g modes, their frequency varies

lightly with the mass again decreasing with increasing M . This
s evident from Fig. 8 , and should be expected as n cc and n nd do
ot depend on M; therefore, the fraction of the stellar mass that
s the crust decreases with increasing M . This result agrees with
NRAS 536, 1967–1979 (2025) 
he findings of Reisenegger & Goldreich ( 1992 ). Unlike the core g
odes, there is minimal difference between the crustal modes of the

ifferent BSk models. Again this is to be expected as they depend
ore on the crustal parameters than � 1 . 

.3 Detectability of tidal resonances 

aving determined the g-mode solutions, we are well placed to
iscuss to what extent the modes are detectable, e.g. through the
ssociated tidal resonance in a binary inspiral signal. For a binary
eutron star system – or, indeed, a black hole–neutron star system
a resonance occurs between the mode frequency and the orbital

requency when (for quadrupole modes with m = 2) ω n ≈ 2 �orb .
his causes energy to be transferred into the mode, exciting the
scillation and drawing energy from the orbit (Lai 1994 ; Ho 2018 ).
s the orbit loses energy, it shrinks faster, manifesting as a change

n the gravitational waveform (Andersson & Ho 2018 ). The goal is
hen to quantify this shift in the waveform for a given mode. The
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Figure 7. Plots of dimensionless frequencies ˜ ω ( 64 ) versus total mass energy M/M � for the g modes g 1 and g 2 for the BSk22–26 equations of state. On the 
left is the plot for the fundamental g mode, g 1 , and on the right is the plot for its first o v ertone g 2 . 

Figure 8. Plot of dimensionless frequency ˜ ω ( 64 ) versus total mass energy 
M/M � for the first crustal g mode for the BSk22–26 equations of state. 
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1 For comparison with its relativistic analogue ( 83 ), the o v erlap inte gral in 
Newtonian gravity is defined as 

Q nl = 

∫ 
ρξ i∗

n ∇ 

(
r l Y lm 

)
d V , 

where ρ is the mass density. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/2/1967/7920787 by H
artley Library user on 04 February 2025
ore g modes are particularly interesting in this respect because, 
v en though the y are e xpected to leav e a weak signature, detection
ould help constrain the composition and state of matter in the 
eutron star interior. Previous work suggests that such detections 
ay, just about, be within the reach of next-generation gravitational- 
ave instruments (Ho & Andersson 2023 ). 
The problem of tidal resonances is not yet completely formulated 

n general relativity, so we will resort to a hybrid approximation based 
n the Newtonian tidal interaction. First, let us assume a Newtonian 
rbit, with masses M 1 and M 2 , an orbital separation D( t) and orbital
requency �orb . Then, the shift in orbital phase �� due to energy
ransfer �E during the inspiral can be estimated as Lai ( 1994 ) 

�� 

2 π
≈ − t D 

t orb 

�E 

| E orb | , (65) 

here E orb is the orbital energy given by 

 orb = −GM 1 M 2 

2 D 

, (66) 

 orb is the orbital period, given by 

 orb = 

2 π

�orb 
, (67) 

nd t D 

is the orbital decay time-scale given by 

 D 

= 

D 

| Ḋ | , (68) 
here the dot indicates a deri v ati ve with respect to time. To
eading order, the orbital separation evolves due to the emission 
f gravitational waves as 

˙
 = − 64 

5 c 5 
M 1 M 2 ( M 1 + M 2 ) 

D 

3 
. (69) 

he mode resonance then occurs when the mode frequency ω n is
wice the orbital frequency. This can be related to gravitational wave
requency f by 

 n = 2 �orb = 2 πf . (70) 

ne can also relate �orb to D by Kepler’s law 

orb = 

√ 

G ( M 1 + M 2 ) 

D 

3 
. (71) 

or simplicity, it is assumed from now on that the two masses are
qual, M = M 1 = M 2 . 

The last piece of the puzzle involves quantifying �E. From Lai
 1994 ), one can relate the energy transfer to the mode o v erlap inte gral
 nl , the parameter quantifying the coupling between the tide and the
ode, 1 as 

E ≈ π2 

512 

GM 

2 

R 

ω 

1 / 3 
n Q 

2 
nl 

(
Rc 2 

GM 

)5 / 2 

. (72) 

utting all this together, we have 

�� 

2 π
≈ − 5 π

4096 

(
c 2 R 

GM 

)5 ˜ Q 

2 
nl 

˜ ω 

2 
nl 

, (73) 

here ˜ ω n is the dimensionless mode frequency ( 64 ) and we also
ormalized the o v erlap inte gral to MR 

l (Ho & Andersson 2023 ). We
ill assume that a similar expression applies in the relativistic case
although this remains to be justified by a detailed deri v ation – with

he scaling based on the fully relativistic results for the star’s mass
nd radius. 

In order to work out the o v erlap inte gral from the Cowling mode
esults, we consider a binary neutron star system, where the orbit is
n the equatorial plane and it is assumed each star sees the other as
MNRAS 536, 1967–1979 (2025) 
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 point mass. The gravitational energy that one of the stars absorbs
rom the other is given by the tidal part of the Hamiltonian, 

 tid = 

∫ 

� 

T δε 
∗

c 2 

√ −g d 3 x, (74) 

here � 

T is the tidal potential experienced by the star and the integral
s o v er the star’s volume (K uan et al. 2021a ). 

In order to assess the rele v ance of the lo w-frequency g-mode
esonances, we use the Newtonian result to approximate the tidal
otential as in Kuan et al. ( 2021a ). From Pnigouras et al. ( 2024 ), we
hen have 

 

T = −GM 

∞ ∑ 

l= 2 

l ∑ 

m =−l 

W lm 

r l 

D( t) l+ 1 
Y lm 

e −imψ , (75) 

here ψ is the orbital phase and W lm 

= 0 for odd l + m , else 

W lm 

= ( −1) ( l+ m ) / 2 

√ 

4 π

2 l + 1 
( l − m )!( l + m )! 

[
2 l 

(
l + m 

2 
! 

)(
l − m 

2 
! 

)]
. (76) 

ow consider a motion of the neutron star ξ i , it can be expressed as
he sum o v er modes, 

i = 

∑ 

nlm 

q nlm 

ξ i 
nlm 

e iω nlm t , (77) 

here q nlm 

is the amplitude of each mode. Here, the eigenfunctions
i 
nlm 

satisfy the rele v ant mode equations, which in this w ork are tak en
o be ( 36 ) and ( 37 ). No w, gi ven the mode orthogonality, δε can be
xpressed as the sum of contributions of all the modes, 

ε = 

∑ 

nlm 

δε nlm 

e iω nlm t . (78) 

rom ( 28 ) we know that 

 t δε + ∂ t ξ
i ∂ i ε + 

( p + ε) e ν/ 2 

√ −g 
∂ i 

[
e −ν/ 2 √ −g ∂ t ξ

i 
] = 0 . (79) 

sing ( 77 ) and ( 78 ) gives 

ε nlm 

= −q nlm 

[
ξ i 
nlm 

∂ i ε + 

( p + ε) e ν/ 2 

√ −g 
∂ i 

(
e −ν/ 2 √ −g ξ i 

nlm 

. 
)]

. (80) 

his can then be put into ( 74 ) and, after simplifying and integrating
y parts, we arrive at 

 tid = −
∑ 

nlm 

q ∗nlm 

∫ 

ε + p 

c 2 
ξ i∗
nlm 

∇ i ( � 

T ) 
√ −g d 3 x. (81) 

inally, using ( 75 ), 

 tid = −GM 

∑ 

n 

∞ ∑ 

l= 2 

l ∑ 

m =−l 

q ∗nlm 

W lm 

D( t) l+ 1 
Q nl e 

−imψ (82) 

here Q nl is identified as the relativistic analogue of the tidal o v erlap
nte gral, giv en by 

 nl = 

∫ 

ε + p 

c 2 
ξ i∗
n ∇ i ( r 

l Y lm 

) 
√ −g d 3 x, (83) 

hich agrees with the expression used by Kuan et al. ( 2021a ).
ubstituting in ( 23 ) from the previous section, for a specific mode,

he dimensionless o v erlap inte gral simplifies to 

˜ 
 nl = 

1 

MR 

l 

∫ R 

0 
e ( ν+ λ) / 2 ε + p 

c 2 
r l [ l W l + l ( l + 1) V l ] d r. (84) 

ote that, as the star is not rotating, there is no explicit dependence
n m . 
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We have calculated the overlap integral ˜ Q n 2 for the f mode and the
rst two core g modes for a range of neutron star masses and the four
ifferent BSk equations of state (and equal mass systems). For the
alculation of the o v erlap inte grals, we will adopt the more common
ormalisation choice A 

2 = MR 

2 , as defined in ( 63 ), instead of that of
 45 ). The sample of results provided in Table 2 give useful insight into
ow the tidal coupling varies with the stellar parameters. From Fig. 9 ,
t is immediately clear that the value of ˜ Q n 2 for the f mode is several
rders of magnitude greater than for the g modes. This is expected
ue to the f mode most closely resembling the tidal potential, and
bviously accords with the Newtonian results. A closer inspection of
ig. 9 shows that for f modes, the results for the different equations of
tate are very similar to one another. In fact, with the exception of
Sk26, the results are almost indistinguishable. For the g modes,

he behaviour is notably less regular. This is to be e xpected, giv en
hat the g modes are more sensitive to local variations at different
ensities inside the star. Still, in general we note that ˜ Q n 2 tends to
ecrease with the mass of the star, as one would expect from ( 84 ). 
Moving on to the question of detectability, we follow the argu-
ents from Ho & Andersson ( 2023 ) – combining ( 73 ) with the results

rom Table 2 . The inferred value for the change in phase associated
ith each resonance is plotted against frequency in Fig. 10 alongside

he sensitivity curves of LIGO A + , CE, and the ET, at a distance of
0 Mpc (the inferred distance to GW170817). In order to generate
he curves for each detector we need to quantify the detectable shift
n orbital phase as a function of frequency �� ( f ) for each one. This
s calculated from 

 �� | = 

√ 

S n ( f ) 

2 A ( f ) 
√ 

f 
, (85) 

here S n ( f ) is the power spectral density of the noise for each
etector and A ( f ) is the gra vitational wa ve amplitude of a generated
est waveform as discussed by Read ( 2023 ). One still then needs to
hoose a waveform model. For simplicity, noting that recent work
y Read ( 2023 ) shows that the differences in current waveform
odels are much smaller than the estimated data uncertainties

or the low frequencies we are interested in, only one waveform
odel was considered. If a mode is detectable for one waveform
odel it should be detectable for others. Specifically, we used

he IMRPhenomPv2 NRTidal model as it includes the static tidal
eformabilities (Dietrich et al. 2019 ). It is important to note that,
s the inferred phase uncertainties are estimated from expected
ra vitational-wa ve data and existing waveform models, they only
erve as approximate upper limits on any effects not considered
n the waveform modelling, like the influence of dynamical tides
onsidered here. 

Our results are shown in Fig. 10 with each panel labelled with
he total mass M of each neutron star in the binary. We see that, in
eneral, low-mass stars are the most promising for detection for these
 modes. This is not surprising because of the M 

−5 dependence in
 73 ). As expected from Fig. 9 , BSk22 appears most promising while
he other three equations of state perform similarly. 

 C O N C L U S I O N S  

y employing four models from the BSk equation-of-state family, we
ave shown how subtle differences in the nuclear matter assumptions
mpact on the g-mode oscillation spectrum of neutron stars. This
as achieved by setting up the linear perturbation equations in a
imensionless formalism, within the Cowling approximation, in the
pirit of work by McDermott et al. ( 1983 ) and others. The advantage
f the BSk family of models is that it allows us to employ a realistic



NS g modes in relativistic Cowling 1977 

Table 2. Dimensionless mode frequencies ( 64 ) for different l = 2 core g modes, as well as for the f mode, for the four BSk equations of state and 
total mass energies 1 . 2, 1 . 4, and 1 . 6 M �. Also calculated is the dimensionless o v erlap inte gral Q n 2 for each mode using ( 84 ). These data were used 
to produce Fig. 10 . The notation e −p at the end of each number stands for ×10 −p . 

M � Mode BSk22 BSk24 BSk25 BSk26 
˜ ω n 

˜ Q n 2 ˜ ω n 
˜ Q n 2 ˜ ω n 

˜ Q n 2 ˜ ω n 
˜ Q n 2 

1.2 f 1.4996 5.70e −1 1.4885 5.67e −1 1.4801 5.69e −1 1.4730 5.40e −1 
g 1 0.1822 1.12e −3 0.0966 9.30e −5 0.0964 2.26e −5 0.0654 2.37e −4 
g 2 0.1317 6.65e −4 0.0712 1.24e −4 0.0623 2.98e −5 0.0300 1.91e −5 

1.4 f 1.4353 5.32e −1 1.4224 5.30e −1 1.4140 5.31e −1 1.4028 4.99e −1 
g 1 0.1822 9.17e −4 0.1032 6.74e −5 0.1157 1.09e −4 0.0571 1.79e −4 
g 2 0.1263 5.29e −4 0.0724 8.56e −5 0.0740 3.18e −5 0.0262 3.94e −6 

1.6 f 1.3766 4.90e −1 1.3628 4.88e −1 1.3544 4.88e −1 1.3372 4.53e −1 
g 1 0.1832 7.25e −4 0.1194 1.91e −4 0.1325 1.03e −4 0.0502 1.29e −4 
g 2 0.1240 4.17e −4 0.0768 5.40e −5 0.0859 1.02e −4 0.0226 2.68e −5 

Figure 9. Plot of dimensionless o v erlap inte gral ˜ Q n 2 ( 84 ) vrsus total mass energy M for the fundamental f mode and the first two core g modes for the 
BSk22–26 equations of state. 
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escription of the matter stratification, which is required to calculate 

he g-mode spectrum. 
Along with the expected core g modes, another class of mode 

olutions was observed, determined to be crustal g modes of the kind
iscussed by Reisenegger & Goldreich ( 1992 ). Such modes arise
ue to distinct features in the equation of state, like the crust–core
nterface and the onset of neutron drip, both of which are encoded
nto the pressure and energy density functionals of Shchechilin 
t al. ( 2023 ) that we employ in our calculations. These modes
re, ho we ver, sensiti ve to aspects of the low-density physics (like
he crust elasticity) that are not included in our model and hence
he corresponding results are not expected to be robust. The fact 
hat the modes originate in the crust is demonstrated by the modes
isappearing from the oscillation spectrum when we artificially set 
 1 = � in the low-density region. This exercise also demonstrates

hat the core g modes, which provide the main focus for our
iscussion, are fairly insensitive to the low-density physics. 
Once the mode frequencies were obtained, we examined the 

ossibility of detecting these modes with next generation ground- 
ased detectors such as CE (Reitze et al. 2019 ) and the ET (Punturo
t al. 2010 ). This was achieved by calculating the o v erlap inte gral
 n, 2 for the l = 2 modes and relating this to the detectable shift in

rbital phase as a function of frequency �� ( f ) for each detector,
ollowing the arguments of Ho & Andersson ( 2023 ) and Read ( 2023 ).
MNRAS 536, 1967–1979 (2025) 
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M

Figure 10. Plot of detectable shift in orbital phase �� ( f ) ( 73 ) versus frequency for the first two core g modes for the BSk22–26 equations of state. The curves 
are upper limits calculated using �� from ( 85 ) for LIGO A + (long-dashed), the ET (solid), and CE (short-dashed). Each plot is labelled by the mass energy M 

of each individual neutron star. All the binaries are assumed to be equal mass systems and located 40 Mpc from the detectors. 
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n general, the results show that there is a greater chance of detection
or low-mass stars systems, with BSk22 in particular being the most
romising model. 
While our results may not be o v erly promising, the y highlight the

mportance of stratification and composition when considering the g-
ode spectrum of neutron stars. With the next generation of ground-

ased detectors having impro v ed sensitivity at low frequencies, the
uture detection of g modes remains a distinct possibility. With this in
ind, the precise dependence on uncertain aspects of the underlying

uclear physics need to be further explored in future work. 
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