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Abstract

This paper studies the convergence rate of a second-order dynamical system asso-
ciated with a nonsmooth bilinearly coupled convex-concave saddle point problem,
as well as the convergence rate of its corresponding discretizations. We derive the
convergence rate of the primal-dual gap for the second-order dynamical system with
asymptotically vanishing damping term. Based on an implicit discretization scheme,
we propose a primal-dual algorithm and provide a non-ergodic convergence rate under
a general setting for the inertial parameters when one objective function is continuously
differentiable and convex and the other is a proper, convex and lower semicontinu-
ous function. For this algorithm we derive a O (1 /kz) convergence rate under three
classical rules proposed by Nesterov, Chambolle-Dossal and Attouch-Cabot without
assuming strong convexity, which is compatible with the results of the continuous-
time dynamic system. For the case when both objective functions are continuously
differentiable and convex, we further present a primal-dual algorithm based on an
explicit discretization. We provide a corresponding non-ergodic convergence rate for
this algorithm and show that the sequence of iterates generated weakly converges to a
primal-dual optimal solution. Finally, we present numerical experiments that indicate
the superior numerical performance of both algorithms.
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1 Introduction

Let X and ) be two real Hilbert spaces equipped with inner products (-, -) y and {-, -)y
1 1

(abbreviated (-, -)) and norms || - || x = (-, ~)§( and || - ||y = (., ~)§} (abbreviated || - |)).
Let there be given a continuous linear operator A : X — ) with induced norm

A] := max {||Ax]|| : x € X with ||x] < 1}.

In this paper, we consider the following bilinearly coupled convex-concave saddle
point problem,

min max L(x,y) = f(x)+ (Ax,y) — g(y). (1.1)

xeX ye

A pair (x*,y*) € X x Y is called a saddle point of the function L if for every
(x,y) € X x Y we have

L(x*,y) < L(x*, y") < L(x, y").

This saddle point problem is naturally associated with the convex optimization
problem

)Icrél}vl S () + g7 (Ax),

where f : X — R is a continuously differentiable convex function, g : JV —
R U {+o0} is a proper, convex and lower semicontinuous function, and g* : ) —
R U {+o0} is the Fenchel conjugate of g. Here we call (Ax, y) the bilinear coupling
term. As such, saddle point problems arise regularly in determining primal-dual pairs of
constrained convex optimisation problems. Recently such saddle points have also been
studied widely due to their occurrence in many relevant and challenging applications in
the field of imaging processing [ 14, 17], reinforcement learning [19, 36] and generative
adversarial networks [9, 13].

We denote by S the set of saddle points of problem (1.1). We assume that problem
(1.1) has at least one solution (x*, y*) which also satisfies the KKT conditions
k 3k 4,k
{Vf*(x)+A*y =0, (1.2)
Ax* —0g(y*) 30,

where A* is the adjoint operator of A. Now define the operator 77 : X x Y — X' x )
by

o VaL(x, ) \ _ (Vf(x)+ A%y
Tp(x,y) = (—ByL(x,y)) = ( daly) — Ax ) (1.3)
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It is obvious that the optimality condition (1.2) can be reformulated as 77 (x*, y*) 3 0
and S can be viewed as the set of zeros of the operator 7;. Since f (resp. g) is
convex and continuously differentiable (resp. convex and lower semicontinuous) and
A (resp. A*) is a linear operator, it is obvious that 77 (x, y) is maximal monotone, see
Corollary 20.28 in [7]. Thus, S can be interpreted as the set of zeros of the maximal
monotone operator 77, and so S is closed and convex.

Let us recall some significant developments regarding primal-dual algorithms for
the saddle point problem (1.1). Consider first the case of f and g being proper, convex,
and lower semicontinuous. With their celebrated first-order primal-dual algorithm,
Chambolle and Pock [14] provided an ergodic convergence rate of O (1/k) for the
primal-dual gap of problem (1.1). They also showed that their algorithm has strong con-
nections with other well-known methods, such as the extra-gradient method [27], the
Douglas-Rachford splitting method [30] and the preconditioned ADMM method [20].
When either f or g is strongly convex (the partially strongly convex case), they also
proved an ergodic convergence rate of O (1/k2) for an accelerated version of their
primal-dual algorithm. In addition, an ergodic linear convergence rate has been pro-
vided when both f and g are strongly convex (the strongly convex case). By employing
the Bregman distance, Chambolle and Pock [15] later established ergodic convergence
rates with simpler proofs for a more general case in which f has a nonsmooth plus
smooth composite structure. Based on the primal-dual algorithm described in [14], He
et al. [21] proposed a generalized primal-dual algorithm whilst relaxing the condition
for ensuring convergence, and obtained a convergence rate of O (1/k) in both the
ergodic and pointwise sense. Under the assumption that f is a convex and Fréchet
differentiable function with L s-Lipschitz continuous gradient and g being proper,
convex and lower semicontinuous, Chen et al. [17] provided an ergodic convergence
rate of O (Lf/k2 + 1Al /k) for the primal-dual gap of problem (1.1). Jiang et al. [26]
provided an accelerated O (1 /k2) rate and linear convergence for the strongly convex
case and partially strongly convex case, respectively. When both f and g exhibit a
nonsmooth plus smooth composite structure, He et al. [24] showed a non-ergodic con-
vergence rate of O (1/k) under convexity assumptions, a non-ergodic convergence rate
of O (1 / k2) for the partially strongly convex case, and an ergodic linear convergence
rate for the strongly convex case. Under the assumption that both f and g are smooth,
Kovalev et al. [28] proposed an accelerated primal-dual gradient method for solving
the saddle point problem and showed linear convergence when the objective function
is strongly convex-concave, convex-strongly concave, or even just convex-concave.
Thekumparampil et al. [36] developed a lifted primal-dual first order algorithm and
showed a lower complexity bound under the assumption that f and g are both strongly
convex smooth functions. Further results regarding (1.1) can be found in [14, 15, 17,
18, 21] and references therein.

1.1 Fast primal-dual algorithm via dynamical system
Recently, continuous-time dissipative dynamical systems have been extensively stud-

ied in the context of solution algorithms for various optimization problems. A decisive
step was taken by Su et al. in [35], where, for the minimization of a continuously
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differentiable convex function ® : X — R, the authors considered the following
second-order inertial dynamic with asymptotic vanishing viscous damping:

)'c'(t)—i-%fc(t)—l-V(D(x(t)) =0, ¢>0. (1.4)

For the case o = 3, the authors successfully link the inertial dynamic (1.4) with the
accelerated gradient method of Nesterov [8, 33]. Moreover, Attouch et al. [3] showed
that any trajectory of (1.4) weakly converges to a minimizer of ® when o > 3 and
established strong convergence properties for various practical settings. In addition,
Attouch and Peypouquet [4] and May [31] showed that the asymptotic convergence
rate of (1.4)1is o (l/kz) when o > 3.

Subsequently, the inertial dynamic method has been generalized to linear equality
constrained convex optimization problems by employing an augmented Lagrangian
approach. Attouch et al. [2] introduced a second-order continuous dynamical system
with viscous damping, extrapolation, and temporal scaling for linear equality con-
strained convex optimization problems and paved the way for the development of
the corresponding accelerated alternating direction method of multipliers (ADMM)
via temporal discretization. For the same type of problem, Bot and Nguyen [10] dis-
cussed the convergence behavior of the primal-dual gap, the feasibility measure, the
objective function value and the trajectory of a second-order dynamical system with
asymptotically vanishing damping term. Likewise, Bot et al. [11] recently presented
a corresponding numerical optimization algorithm originating from the second-order
dynamical system described in [ 10]. They were the first to provide convergence results
regarding the sequence of iterates generated by a fast primal-dual algorithm for lin-
early constrained convex optimization problems without additional assumptions such
as strong convexity.

It is thus natural to employ a dynamical system framework to study bilinearly
coupled convex-concave saddle point problems. Li et al. [29] provided a novel first
order algorithm based on continuous-time dynamical systems for a smooth bilinearly
coupled strongly-convex-concave saddle point problem and showed matching poly-
nomial convergence behavior in discrete time. Zeng et al. [38] presented convergence
rates for an inertial primal-dual dynamical system with asymptotic vanishing damping.
Recently, He et al. [25] provided convergence rates for a general inertial primal-dual
dynamical system with damping, scaling and extrapolation coefficients. Motivated by
the works described above, we consider here the following second-order primal-dual
dynamical system with asymptotically vanishing viscous damping:

() + Fx@) + VL (x(1), y(@) +01y(1)) = 0,
$() + L3() — dyL (x(t) + 01%(1), y(1)) 3 0, (1.5)
(x(to), y(to)) = (xo, yo) and (x(2o), y(t0)) = (%o, Yo),

where tp > 0, > 0,6 > 0 and (xp, ¥9), (X0, y0) € & x Y. Compared with the
dynamical systems mentioned in [25, 38], the second line of system (1.5) is a differ-
ential inclusion problem due to the nonsmoothness of g. If g is differentiable, we can
make minor adjustments accordingly and replace the symbols “9” and “>” with “v”
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and “=" in the second line of (1.5) respectively. By unfolding the expressions of the
gradients of L(-, -) in the dynamical system (1.5), we have the following reformulation
of system (1.5):

() + Fx() + Vf(x(@®) + A* (y(1) +0ty(t)) =0,
(@) + %y(1) — A (x(t) +0tx (1)) + g (y(r)) 3 0,
(x(20), y(t0)) = (x0, yo) and (x (), y(t0)) = (X0, Yo).

In this paper, we design two numerical algorithms based on the discretization of the
second-order dynamical system (1.5) to solve problem (1.1). Our main contributions
are as follows:

e We provide a convergence rate of O (1 /tz) for the primal-dual dynamical sys-
tem (1.5) with asymptotically vanishing viscous damping term and present the
corresponding inertial algorithm based on implicit discretization, for the case of
f being a continuously differentiable convex function with Lipschitz continuous
gradient and g being a proper, convex and lower semicontinuous function. We con-
sider a general setting for the inertial parameters which covers three classical rules
proposed by Nesterov [33], Chambolle-Dossal [16] and Attouch-Cabot [1]. We
obtain a non-ergodic convergence rate of O (1 / kz) for the primal-dual gap under
these rules which improves the ergodic convergence rate O (Lf /K2 + ||All/ k) rate
derived in [17]. In contrast to [15, 24, 26], we obtain the rate O (1 /kz) without
the assumption of strong convexity.

e We develop a primal-dual algorithm based on explicit discretization, for the case
when both f and g are two continuously differentiable convex functions with
Lipschitz continuous gradients. For smooth bilinearly coupled convex-concave
saddle point problems, our non-ergodic O (1/ k2) convergence rate of the primal-
dual gap under the three classical rules of the inertial parameters improves the
ergodic O (1/k) rate for general smooth saddle problems described in [32]. In
addition, we show that the sequence of iterates generated by our algorithm weakly
converges to a primal-dual solution in a general setting which covers the rules
of Chambolle-Dossal [16] and Attouch-Cabot [1]. This algorithm, based on the
discretization of a continuous energy function, is different from the one descried
in Bot et al. [11]. Our main result can be seen as an extension of their result for
linear equality constrained convex optimization problems.

This paper is organized as follows. We focus on an analysis of the second-order
dynamical system with asymptotically vanishing damping term in Section 2. In Section
3, we present a primal-dual algorithm derived from the implicit discretization of the
dynamical system and derive the convergence rate of the primal-dual gap within a
general setting for the inertial parameters. In Section 4, we present a primal-dual
algorithm for the case when when both f and g are smooth, and show the convergence
of the sequence of iterates. In Section 5, we test and compare our algorithms with other
relevant algorithms from the literature, before we summarize our results in Section 6.
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2 The primal-dual dynamical system

In this section, we assume that f is a convex continuously differentiable function with
L ¢ —Lipschitz continuous gradient and g is a proper, convex and lower semicontinuous
function. To derive the asymptotic behavior of the dynamical system (1.5), we note that
the standard way to analyse such systems is based on energy (Lyapunov) functions.
Many energy functions have been proposed to study dynamcial systems with various
damping terms and time scaling terms, see e. g. [2, 3, 25, 34, 35, 38], and choosing an
appropriate one is crucial. Motivated by the energy function introduced in Attouch et
al. [3] and Bot and Nguyen [10], we define the function &, ¢ : [t9, +00) — R as

Capo®) =E+E1+ & 2.1

with
Eo(t) := 02 (L(x(1), y*) — L(x*, y(1))),
1
&) = Sl —x") + 015 (1)|% + %nx(r) —x*|I?,

1
&(1) = SO @ = Y +050)|1* + é%Ily(t) - y*I%

where £ ;=00 —60 — 1> 0.

Theorem 2.1 Let (x(t), y(t)) be a solution of the dynamical system (1.5) and
(x*, y*) € S. Suppose a« > 3 and 1/(a — 1) < 6 < 1/2. Then we have

o
L@,y — L*, vy = 80 22)
“+00
(1 —29)/ t(L(x(1), y*) — L(x*, y(0)))dt < g“";(t‘)) < 400, (2.3)
0]
+00
(Oa =0 — 1)/ (112 + 1501 dr < % <too.  (24)
0]

Moreover, if 1/(a — 1) <0 < 1/2, then ||x()|| = O(1/t) and ||y()|| = O(1/t).

Proof By differentiating &; (¢) with respect to ¢ and employing a similar discussion to
Remark 4.7 in [5], we have

Eo(t2021(L(x, y*) — L(x*, y)) + %1% ((V f(x), ) + (A%, y¥) — (Ax*, ) + (0, ) .
El()=((x —x*) +0tx, (1 + 0)x + 01%) + & (x — x*, %)
=(x —x*) + 015, O(1 — ) + Di — 01V f (x) — 01 A* (y 4 019)) + & (x — x*, %)
=—0t(x — x*, VF(x)) — 0t(x — x*, A*y) — 0212 (x — x*, A*)
+0(1 +6 — a)t||x]|> — 0212 (%, V £ (x)) — 0212 (%, A*(y + 0t))),
Ex(1) = —0t(y — y*,n) + 01ly — y*, Ax) + 0212 (y — y*, A%)
+O(1+0 — Bt 911> — 6223, n) + 6212 (3, A(x + 61)),
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where 1 € dg(y). Combining these terms, we arrive at

Ea0 () = 20%1(L(x, y) = LG*, 3) +6(1 +0 — 0ot (11712 + 1151
—01 ((x —x*, VF () — (x*, A%y} + (y = y*, m) + (Ax, %))
< 202(L(x, y*) = L&Y, ) +6(1+6 — 6oyt (1512 + 151%)
01 (f (™) = f(x) + (&, A%y) +g(v™) — g(v) — (Ax, y™))
= 020 — DI(L(x, ) = L%, ) + 001 +6 = 6oor (112 + 1712)
2.5)
where the inequality follows from the convexity of f and g. Furthermore, from the

assumption, we obtain 6"0,,9 (t) < 0 and so &y ¢ (¢) is nonincreasing on [#p, +00). For
every t > fy, it holds that

1
Eap(t) = 02 (L(x (1), y*) — L(x*, y(1))) + SN0 = x") + 01i (1))

Qo — 6 — 1
@ - x*|?

1 Qo — 60 — 1
+3 1O =) + 0501 + “ () — y* |12
< &y0(t0), (2.6)

which yields (2.2). For every ¢ > fg, by integrating (2.5) from #( to ¢, we have

t
0(1 —20)
10
1
SLEE) ) = L, y(6)ds + 00— 6 - 1)/ s (K12 + 156)12) ds
o
< Eap (10)-

All items inside the integrals are nonnegative. Thus, we arrive at (2.3) and (2.4) by
passing t — +oo. Finally, from (2.6) we see that

[x@ =< (II(X(I) —x") + 01z ()| + llx (1) — x*)

1
(1 + m) V2Eq.0(t0)

2|2 -

holds, which yields ||x(¢)|| = O(1/¢) under the appropriate assumption. Similarly we
have [|y(@) | = O(1/1). o

We have thus shown a O (1 / t2) convergence rate of the primal-dual gap for the
dynamic system (1.5). Moreover, it is not difficult to prove that the primal-dual trajec-
tory of the second-order dynamical system (1.5) asymptotically weakly converges to
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a primal-dual optimal solution of the original saddle point problem (1.1) when « > 3
and both f and g are continuously differentiable convex functions with Lipschitz con-
tinuous gradient. In this paper we mainly focus on the convergence rates of numerical
algorithms that are derived from discretizations of the dynamic system (1.5). Next,
we will describe two primal-dual algorithms that also exhibit corresponding O (1/ kz)
convergence rates, which is compatible with the results in the continuous case.

3 A fast primal-dual algorithm based on implicit discretization

In this section, we assume that f is a continuously differentiable convex function with
L ¢-Lipschitz continuous gradient, and that g is a proper, convex and lower semicontin-
uous function. We will investigate the convergence properties of a numerical algorithm
which is derived from the implicit discretization of the dynamical system (1.5), i. e.
the nonergodic convergence rate for the primal dual gap, and the convergence rate of
some infinite series of iterates.

3.1 The fast scheme: from continuous to discrete

In order to provide a reasonable time discretization of the dynamical system (1.5), we
follow the techniques described in Attouch et al. [3], Bot et al. [11], and He et al. [22].
Let

u:=x+atj)'c, d u’ =y x+0x)=yx+y x—u+(y—1)x
vi=y+ g5, vWi=y (y+0ty) =yy+ gy =v+ - Dy,

2
=T’
as the following first-order dynamical system:

where y := ﬁ € [ 1]. Then, the dynamical system (1.5) can be reformulated

) = — L L A¥yY
u= afltvf(x) ya—n AV
u:x—i—ﬁx,
uyzyx+a’1)'c,

@3.1)

Ve (a l)Au —ﬁag(y),
v=y+ g0,
v=yy+ gy

Since f and g in system (3.1) do not necessarily have the same degree of smoothness,
we consider two different time steps for them respectively. Let 0 > 0. For x we

consider the time step
a—1
ok :=a(1+ A >, (3.2)

and set x (\/oxk) ~ xg41, u(Jork) =~ ugy1 and u? (Jork) ~ ”1}:+1’ which follows
from the fact that ,/o¢k is closer to 4/o (k + 1) than /o k. The first three lines of (3.1)
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at time t := ,/oxk for x, u, u” then provide

U+l —Uk _ «/ oxk A* Y
NG - y(oc 1) k+l’
4/ kx X
Ul = X1 + 5 Hjﬁ Skl Tk (3.3)
«/ ka+1—Xk
uk+1 = YXk4+1 + —Je

where the choice of z; is made as follows. To be specific, the second line of (3.3)
yields

o1 + -k (3.4)
—u —_ g, .
k+o—1 Kt 17k

X =
k+1 k+o—

and consequently we take the following choice for zj:

o=l ik (3.5)
= u Xk .
e a1 T ka1

Employing the second line of (3.3) again, we get

a—1 k—1 k
%k = Xk + (X — xp—1) | + ———xk = Xk
-1 a—1

k+a k+o—1
k—1

+k+a——l(xk — Xk—1). (3.6)

In addition, by (3.4) and (3.5), we arrive at

k+oa—1
Uk+1 — Uk = ﬁ(xkﬁ — 2%). 3.7

Consequently, (3.3) can be reformulated as follows:

Xirl = 2k — oV f(zk) — OA*ka,
k-1
2k = Xk + a1 Xk — Xk—1), (3.8)
k
MZH =YXk + g7 (k1 — Xk

We note that g is nonsmooth, for every k > 1 and time ¢ := k it follows that y(¢) = g,
v(t) = v and VY (1) = v,)cl. We now consider the following discretization scheme for
the last three lines in (3.1):

Uk+1 — Vk € ﬁAuzﬂ — K08,
vk+1 = Vitl + o7 (yk+1 = Yk), (3.9
vk+1 = VY Vk+1 + (yk+1 = Yk)s

where we replace vy with a suitable term vx4| to obtain an executable itera-
tive scheme, which is explained below. This approach also has been taken by Bot
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et al. [11], where the authors strive to derive an easily implementable numeri-
cal algorithm from their discretization of a second-order dynamical system for a
linear equality constrained convex optimization problem. They focus on an improve-
ment on the dual variable term v,}g 11 while here we want to choose a suitable
Ug+1 such that vgy; — vgy;r — 0 as k — +oo. For this purpose, we choose
Vg1 = Vk41 — kia;il(vkﬂ — vg). We then have 4] — vgy1 — 0 when k — 400
as long as vgy1 — vi is bounded for every k > 1. We will see from Proposition 3.1
below that vgy1 — vk is bounded under some mild conditions. With this option, we
can reformulate the first line in (3.9) to

k+a-—1 k+a-—1
- AW, - ———) . 3.10
oD A 80 (3.10)

Vk+1 — Uk €

Following Attouch and Cabot [1] and Bot et al. [11], we use the following change
of variables for every k > 1:

k—1 k+a-2

=1+ =
k oa—1 a—1

s

=1 _ _o=1 _ _k—1
tet1 1+L1 — ktoa—1°

P

(3.8), (3.9), (3.10) and the definition of #;, we arrive at the following discretization
scheme of the dynamical system (1.5):

which yields ;41 — 1 = % and

Therefore, by combining

Xkp1 = 2k — 0V f(zr) — ATV,

Tk = Xk + %(Xk — Xk—1),

Uy, = ka+ll + (te+1 — D1 — xp0), 3.11)
Vk+1 — Uk € %AMZH — k4108 (Vk+1)s

Vk+1 = Vi1 + (1 — D (k1 — Yi)s

Vipr = YVt + (et — DOkt — ).

By the relations given in (3.11), we have

Vil — Uk = b1 k1 — Y1) — (e — Dk — ye—1) (3.12)

and

Aup = (tiy1 +y — D Axppr — (1 — 1) Axg
=1 +y—DA@—0oVfzi)) — t+1 — 1) Axg
o
= (k1 +y — 1) AA*Y] |

f1 — 1

o 2 *
=& — — (a1 +v — 1) AA S
&k (Fe+1 14 ) <¥k+1 P 1

yk) , (3.13)
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where & = (tx1 +y — 1) A (zk — oV f(2k)) — (fx+1 — 1) Axy. Substituting (3.12)
and (3.13) into the fourth line of (3.11), we arrive at

e —1 1
0€9g(Vk+1) + Yr+1 — Yk — Ok — Yk=1) — =&k
Tk+1 14
o th+1 — 1
+— (o1 +y — D AAY <yk 1— —yk> .
y2 -1

After rearranging the order in which these sequences are updated, we are finally in a
position to propose our fast primal-dual algorithm for smooth f and nonsmooth g.

3.2 Afast algorithm and its convergence analysis

In this section we present the following fast primal-dual algorithm (for short, FPDA1)
based on system (3.11). We will prove that it exhibits an O (l/ kz) convergence rate for
the primal-dual gap under three classical rules for the choice of time steps #; proposed
by Nesterov, Chambolle-Dossal and Attouch-Cabot, without any assumption on strong
convexity.

Algorithm 1 Choose y, o, m > 0 such that
0 <max{m,oLs} <y <1 (3.14)
Choose {tx}x>1 as a nondecreasing sequence such that
n>land 12 —mtp — 1} <0, Vk > 1. (3.15)
Given xop = x1, yo = y1. For every k > 1, we set

th —1

Tk =Xk + (X, — Xx—-1),
k1
bk i=(kr1 + Y — DA@k — 0oV f(zr) — (k1 — 1) Axg,
. (e — 1)
Yk = Yk + Ok — Yk—1)»

lk+1
o 2
Skl = e (1 +y =17,

k= _fer1 =1 Yk
oty -1
. 1 - Sk+1 1
Vit = argmin 1 g(y) + = Iy — ell* + —— 1A%y — ¢OlI* — — (&, ¥) | ,
yey 2 2 y

Vit = Ykl + (e — DOks1 — i)

(o2
X1 =2k — 0oV f(zx) — ;A*U};H-
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The subproblem in Algorithm 1 determining yx4+; has a special splitting structure
which can be solved by some classical splitting methods such as the proximal method
or the corresponding accelerated FISTA scheme [6, 8]. We note that we obtain a
simplified version of Algorithm 1 by setting ¥ := 1, and by the analysis below we
will see that this version enjoys the same convergence rate as for the case y < 1. In
what follows we consider the general case y < 1, since some results for y < 1 will
be crucial in the analysis of Algorithm 3 described in the following section.

Remark 3.1 When A = 0 and f = 0, consider yp = y; and a nondecreasing sequence
{tx}k>1 which satisfies (3.15) for every k > 1. Then Algorithm 1 reduces to the
following proximal scheme:

th— 1
Ok — Ye—-1)»

Ve =Yk +
Tk+1

) 1 _ _
Yk+1 := arg min {g(y) +-lly — )’k||2} = proxg(yr)-
yey 2

On the other hand, if A = 0 and g = 0, suppose xg = x| and consider a nondecreasing
sequence {f}r>1 which satisfies (3.15) for every k > 1. We can then reformulate
Algorithm 1 as the following accelerated gradient scheme:

th—1

Tk = Xg + Xk — Xx—-1),

Tk+1
Xkl =2k — OV f(2k).

Before discussing the convergence properties of Algorithm 1, we first introduce the
following equations which will be used repeatedly

2{a, b) = lla +b)* — lla|* - |16]1%, (3.16)

st
Isa + tb|* = sllal> + tb]* — ——lla — b||*. (3.17)
s+t s+t

where a, b lie in a Hilbert space and s, t € R such that s + ¢ # 0. Next, we provide
some useful inequalities.

Lemma 3.1 Let {(xk, yk)}k=0 be the sequence generated by Algorithm 1 and let
(x*, y*) € S. Then, for every k > 1 the following two inequalities hold:

1
L(xey1,y") — L(x*, y") < - (A" (v =vy") 1 —x¥)
1 L
+;<Zk—xk+l,xk+l —x*) + Tf”xkﬂ — zl?

1 *y 112
—mllvf(Zk)—Vf(x )7 (3.18)
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and

1
L(xg41,Y") — Lxg, y*) < —y (A* (v —7Y*) a1 —xx)
1
+;<Zk—xk+],xk+1 —Xx)

Ly 2 1 2
— — - —|Vv -V .
+ > llxk+1 — z&ll 2L, IV f(zi) =V f )l

(3.19)

Proof Since f(x) is a convex continuously differentiable function with L ¢-Lipschitz
continuous gradient, by the Descent Lemma we obtain

L .
S G < fz) H AV f(z)s X1 — 2x) + Tf”xkﬂ — zl?,

and
1
S@) < f) +(Vf(z)s 2 — x) — E”Vf(zk) — VL%

Summing the above two inequalities yields

fGieg) = f(x)
ot E e — P — —— _ 2
= AV @O Xt — %)+ = e — 2L, IV f(zk) = VO
1 * .Y 1 | Lf 2
= —;M Vpy 1> Xkl — X) + ;(Zk — Xk+1, Xk41 — X) + 7'||xk+1 — 2l

! 2
—mllvf(Zk) — VI, (3.20)

where the last equation follows from the first line of (3.11). By taking inequality (3.20)
with x := x* and adding (x;41 — x*, A*y*) on both sides, we obtain

1
f D) + (Agr —x), y*) — f(x¥) < — (A* (v =vy") g1 —x)

L. oy Ly T S 912
+— {2k = X415 Xep1 —X7) + —= | xe41 — 2| V() =V &N
o 2 2Ly

(3.21)

Similarly, by taking inequality (3.20) with x := x; and adding (x¢41 — x¢, A*y*) on
both sides, we have

1
D) + (AGg1 — x0), y5) = ) < - (A* () =¥ *) s Xk —xx)
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1 Ly 1
k=X Xepr =X + —||xk+1 - ull® - E”Vf(zk) V@l
(3.22)
By recalling the definition of L(x, y), we complete the proof. O

For every (x*, y*) € S and every k > 1, we introduce now the following energy
function:

E(k) := tie1 (1 — 1) (LG, y*) = LG, y0)) + Er(k) + Ea k), (3.23)

where
1 (1—v) 1
Ei(b) = o llu] —yx"I? + %uxk — "2 and Ex(0) = S llv] =y
y(1—y)
e — yII%.

It is obvious that E (k) > 0 for every (x*, y*) € S and every k > 1. To some extent,
energy function (3.23) can be viewed as a discretization of (2.1). Next we show two
important inequalities for E(k) and E>(k) which will play a significant role in the
analysis that follows.

Lemma3.2 Let {(xk, yk)}k=0 be the sequence generated by Algorithm 1 and let
(x*, y*) € S. Then, for every k > 1 the following two inequalities hold:
Ei(k+1)— E (k)

< =Yg (Lt y) — L, y9) = tig1 (g — 1) (Lrigr, ) — Lxg, y9)
1 (I—=y)
(A* (Uk+1 yy*) ) ”1}:+1 - VX*> -
)/ o
J’ k+1

2
(te+1 — 1) llxk1 — xell

IVf(Zk) v

tk+1
—i(w L fa)rk+1 + (1= )L o)t — zll?

e (1 —

T ||Vf(2k) VAETS] B8 (3.24)

and
Ex(k +1) — Ex(k)
< Yl (LT, yig1) — L, y5) + tige1 (1 — DL, yrg1) — LE*, y)
Tk+1 14
+i (A ey = 75" 0l = 737} = A= P)gr = 1 D)y = 0l

)
l

§||v,f+] - (3.25)
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Proof To better understand the inequalities we have to prove, we first deal with the
inequality associated with g. Suppose ng+1 € 9g(Vk+1)- According to the last three
lines of (3.11) and (3.16), we have

1 1

14 %12 Y *2

Sty = vy 12 = Sl = vyl

1
= 0l = 0 0 — 1Y) = Sl = o1
= (Vg1 — Uk + (¥ = DOk+1 — 60, ¥ Okt1 — Y + (1 — DOk1 — Y1)
1
—5 iy = o 12

1
= fk+1(;AuZ+1 = M 15 ¥ Okt = ¥ + (k1 — DOk1 = Y1)

1
0 = DY Okt = Y Ykt =¥ + @ = Dkt = Dl = vl = Sy = o] 1?
= Yl 1 (M1 — A Vi1 = ¥™) = i1 (kger — D (g1 — AXS, yep1 — i)
1
+%<A (1 = 72*).
VL =YY = DY Okt — Y it — Y5) + (0 = Dt — Dl — el

1
R Ll A (3.26)
as well as

1
e = k31 =3 = =3 (0= 3712 = D =312 = i = )
(3.27)

and

— V1 (M1 — AX™, Vet — ) = et (1 — Dkt — AX™, Yeg1 — Yi)
< —vi1 (8k+) — 8OV — (AX™, w1 — ™) — k1 (kg — 1) (€ (kr1)
— g() — (AX™, yiy1 — W)
= Y1 (LY, yrg1) — L(x™, y9))
Ftir1 (1 — DLG", Y1) — LT, ye), (3.28)

where the inequality comes from the convexity of the function g(-) — (Ax*,-).
Combining (3.26), (3.27) and (3.28), we arrive at

Er(k+ 1) — Ex(k)

1 1 yad—y)
= S0l =731 = S0 = vy 1P+ T (s = ¥ 12 = e = >1?)
Vlept (LGS, yien) = L, 9) + tegr (e = DLGT, yegn) — L*, y0)

Tk+1 14
+7+(A (uf g —vx*) vl — vy ) — (L= y)trgr — 1+ E)”)’k-H — yill?

IA
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% Y2
§||Uk+1 — v |l

which is nothing else than (3.25). Next, in accordance with the coefficients of the
primal-dual gap in (3.25), by multiplying (3.18) with y 41 and (3.19) with tx 41 (tx+1—
1), we arrive at

Yieer (LGorgr, ¥ — L™, y9) + i1 (g — 1) (Lxigr, %) — L, y9)

Tk+1
< —7+<A Wy = YY)y (st — X + (kg1 — D@t — x0))

Tk+1 "
+T<Zk = Xkt 1, Y (X1 — X7) + (G — D1 — x1))

Ly (trt1 — 1+ ) it k+1
L A y + SIS @)= 6 2
1 1 -1
et =D o ey~ v pal?
2Lf
fk+1

Tk+1
=77 (A" (o] = yy") Uy —vx) + o (% = X up, — yx*)

Li(tgr1 —14+y)ty

L VI et — 2l — V"“HVf(zk) VL)

ter1 (41 — 1)

—%IIW(@) — Vo0l (3.29)
f

We notice that

fk+1(2k — Xk+1)
=ty — Xep) Fup —up + (L= ) (k= Xeg1) — ¥ (5 — Xeg1)

=ul —up, + @ — D —x0),

which we combine with the third line of (3.11) and (3.16) to see that

Ik+1
. {2k — X1, Up g — YXT)
1
2
=7 ((M}: —up gy —yx*) = (L= )1 — Dllxegr — x|

+ (= Y)y(x — X 1), (kg1 — x¥)))

1 1 1
2 2 2
= ——lluy —u 1~ ZIIMZH — yx I+ sl — x|

20 20
(1= ) (tesr — 1) , A=y )
- lxk+1 — Xk ll” — Tﬂxk — X1l
1— 1—
NSl ) AN Sk ) AT (3.30)

20 20
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holds. Note that all summands of E(k+1) — E (k) can be found in (3.30). Combining
this obervation with (3.29), we obtain

Ei(k+1)—E(k)

1 1
v * 2 v *12
u y X u y X + X, — X
D) I k+1 Il ) Il k I ) k41

e — |

I (1-y)
= : (zk — Xk+1, ”k+1 —yx*) —

(fk+1 -1+ ) [k 41 — xi?

- ;nuz — i I?
< =g (L1, ) — LE*99) =t (g1 — D (Lgr, ¥*) — L, ¥9))

R/ (1-y)
, (A* (vk+] yy*) , uZJr] —yx*) — o ( k+1— 1+ ) lxk41 — xil?

Y _ 7 2
_g“”k Uyl

L (t —14+y)t
4 > PV 1 — i ST @ =7 fGIP
-1
et =D oo g r )R, (3.31)

2Lf

By (3.7), the third line of (3.11), and (3.17), we deduce

1
Y2 _ 2
Z”uk+1 —u "= —gﬂukﬂ —up+ (¥ — DOk1 — x|l
14 y(—y)
= = luggr — el + ——— 1 — xl?
20 20
-V
- lugs1 — e — X1 + )
20
2
4] y(I—vy)
< = et — zl? + S e — x>
20 20
(3.32)
And finally, by substituting (3.32) into (3.31), we obtain (3.24). O

Theorem 3.1 Let {(xi, yx)}k>0 be the sequence generated by Algorithm 1 and let
(x*,y*) € S. Then the sequence {E(k)}y>) is nonincreasing and the following
inequalities hold:

(r —=m) )t (LOxk, y*) = L(x*, y0)) < 400,
k>1

D i ((r = Lot + (1= y)Lyo) |xern — 2l
k>1
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<400, (1 =) Y (g1 — Dllxigr — x> < +o0,

k>1
D v = v 1P < 400, (=) Y (st — Dllyest — yell < +o0,
k>1 k=1
D el Vf @) = VLI
k>1
<400, Dt (tirr = DIV f(z1) = Vf )P < +oo. (3.33)

k>1

Proof From Lemma 3.2 we conclude that

E(k+1) — E(k)
= (k2(g2 = 1) = kg1 1 — D) (L1, ¥5) = L&, yiq)) + Ere+ 1) — Eq(k)
i1 (kg1 — D (L Gkg1. ) — Lxg, y) — (L, yrg1) — LF, 30))
+Er(k+1) — Ey(k)
= (113+2 - l;3+1 — 2+ (1= V)lk+1) (L1, ") — L™, yreg1))
(I—v)

(k1 — 1) kg1 — xel?

Tk+1 Y41

— e (0 = Lyodtesr + (= )L yo) s = 2>~ ﬁnw&w—wu*)nz
t tee1 — 1

—%nv.ﬂzm — VFEOIP = (=Pt = L4+ Dyt =l

1
—E||UZ+1 — /)% (3.34)

Duetoy —Lyo > 0and 0 < y < 1in (3.14), it follows that (y — L fo)txq1 +
(I —y)Lyo > 0. According to (3.15), we have

t1%+2 - sz+1 —tip+ (L =)ty < (m— Dy
+( =Yg < (m — )ty < 0. (3.35)

Thus, all the coefficients in the right-hand side of (3.34) are nonpositive, and it follows
that the sequence { E(k)};> is nonincreasing for every k > 1. We complete the proof
of (3.33) via Lemma A. 4. O

Remark 3.2 By Theorem 3.1, if y < 1, we have

D (e = D(lxrer — 2 + Iyre1 — well?) < +oc. (3.36)
k>1
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It is obvious that y < 1 is equivalent to 6w — 6 — 1 > 0. In the continuous case, if
O — 6 — 1 > 0, then (2.4) can be rewritten as

+00
/ (14O + 15 O12) dr < +oo,
fo

which can be seen as the continuous counterpart of (3.36). When #; is computed by
the Chambolle-Dossal [16] or the Attouch-Cabot rule [1], (2.3) can likewise be seen
as the continuous counterpart of the first line of (3.33).

For every h = (x,y),h = (x',y) € X x ), we define the inner product

(h, W ywi=((x, ), &', Y)W = L(x, XY v + (y, ¥')y and the corresponding norm

o

||h||WZ=,/%||)C||2 +|lyll2 forall & = (x,y) € X x Y. Next, we show the bound-

edness of the sequence generated by Algorithm 1 and an O (1/#) convergence rate
for the sequences ||x; — xx—1| and ||yx — yxk—1l|. This is compatible with the results
[x(@®)] = O(/t) and ||y(¢)|| = O(1/t) for the continuous-time dynamic system, as
described in Theorem 2.1.

Proposition 3.1 Let {(xk, yx)}x>0 be the sequence generated by Algorithm 1. Suppose
that

1
T := inf ?" > 0. (3.37)

Then, the sequences {xi}ik>0, {Vk k>0 {tk (ck — Xk—1)}k>1 and {tx Yk — Yk—1)}i>1 are
bounded. Moreover, the sequence {vii1 — Vi }k>0 is bounded.

Proof Since {E(k)};> is nonincreasing we have E (k) < E(1). Consequently, by the
definition of {E(k)};>1, the sequences {u} }¢>1 and {v] }x>1 are bounded. Now let
(x*, y*) € S be fixed. We denote

R =",y €S, and hy = (xg, yi) € X x Y, Yk > 1.
By the third line of (3.11) and (3.17), for every k > 1, we see that

lul —yx*1* = It — 1+ y) (e — x*) — (e — Dxe—g — x|
=yt — 1+ P lxe — 32 =yt — Dllxe—r — x*||?
+(tx — 14 )t — Dllxg — xe—11?

holds. Similarly, we have

o) — yy*I? =yt — L+ P lye — ¥ 17 = v @ — Dllye—t — y*II?
+(tx — 14+ )% — Dllye — ye-1%,

and so the energy function can be rewritten as
E(k) = trg1 (te1 — D) (L, y*) — L(x*, w))
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+§zk||hk — W3, — g(fk — DAt — h*I2

1
5 = 14+ y) = Dilhe = hi I3y (3.38)

From the fact that E (k) is nonincreasing, for every k > 1 we get
Y *112 Y *12
Sl = 17lly = = = Dllhi—r = h7llyy = E(k) < E(1).

It follows that
Y Y
o el — h* 3y, < 5 = Dl = R 13y, + E(1)

< grk_lnhk_l — 113, + E(D), (3.39)

where the second inequality follows from the fact #x1 1 — #; < 1 in Lemma A. 1. After
summing up (3.39) from 1 to k, we have for every k > 1 that

14 Yt
Sl — R I3y < kE(D) + 5 llho — n* 113,
and so
2k to 5 2 5
Ik — h*|I3yy < ——E(1) + —lho — h*|I3y, < —E(1) + llho — h*[[3, < +o0e.
44 Yk Ik w YT w

With this, we conclude that both sequences {xi}t>0 and {yk}x>0 are bounded. In
addition, by the definitions of u,}: and v}(/ in (3.11), we have

feGo — xg—1) = uf — yx* + (1 — y) g — x*) — (=g — x5,

1Ok — =) = v} =y + A =)k — ¥ — Ok—1 — %),

which yields that the sequences {tx (xx — xx—1)}k>1 and {tx (yk — Yk—1)}k>1 are also
bounded. Moreover, by the definition of v, it is obvious that the sequence {viy+] —
Uk }k>0 is bounded. O

Note that condition (3.37) in Proposition 3.1, which is crucial for the following
analysis of weak convergence of sequence of iterates, has also been proposed in [6, 11].
We would like to emphasize here that we can show the boundedness of the sequences
considered in Proposition 3.1 by assuming y < 1. This can be seen as follows.
By Theorem 3.1, the sequence {E(k)};> is nonincreasing, by which E(k) < E(1)
follows. This yields

1 1
gnu,t —yx*I? + Envz —yy*I?

rd=y) (1—)
+V zay ka_X*lﬁ‘*‘%”)’k—y*llzSE(I)<+oo,
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We notice that the sequences {xi}x>0 and {yi}t>0 are bounded when y < 1.
Combining with the boundedness of {u}: }k>1and {v,’; }k>1, we also present that {#; (x; —
Xk—1)}k>1, {tk (Vk — Yk—1)}k>1 are bounded, in other words, ||xx — xk—1|| = O (1/t)
and [|yx — yk—1ll = O (1/1).

3.3 Fast convergence

This section has two aims. First, we show fast convergence of the primal-dual gap of
the bilinearly coupled convex-concave saddle point problem (1.1) when Algorithm 1
is deployed to solve it. Second, we consider a special case of (1.1) equivalent to a non-
smooth convex optimization problem with linear constraints and simplify Algorithm 1
accordingly. We then show fast convergence of the primal-dual gap, the feasibility mea-
sure and the objective function value of this nonsmooth problem when this algorithm
is deployed to solve it.

Note again that the sequence {E(k)};> is nonincreasing, which yields E(k) <
E(1). Thus we have

E()

L(xg, y) — L(x™, yp) < ————.
(% 37 %0 = b1 (Fg+1 — 1)

(3.40)

Bot et al. [11] presented several prominent choices for the sequence {t;}i>1, 1. €.
Nesterov’s rule [33], the Chambolle-Dossal rule [16], and the Attouch-Cabot rule [1]
(which k > [«] 4 1). These rules all satisfy the condition (3.15) in Algorithm 1. We
now consider what convergence rates we can achieve under these classical construction
of {fe}k=>1.

First, we consider Nesterov’s rule as proposed in Nesterov [33]:

1+ /1 +41
fi:=land tyy) :== ——,Vk > 1.

This sequence {#;}x>1 is strictly increasing. In our case, from (3.15) we have

A m2 4412 14,/ 14417 )
T" > thyl] = T", and we recover Nesterov’s rule by setting m := 1. In
addition, 7 > % holds for every k > 1 and so t > % (see, for instance, Lemma 4.3

. . 2 .
in [8]). Since tx41(t4+1 — 1) > % > kz, we arrive at a convergence rate for the

primal-dual gap of
L ) — L(x* =0 !
@, y) = L& y) =0 | 17 |-
Second, the Chambolle-Dossal rule [16] is given by
k—1
ti:=landty : =14+ ——,Vk > 1,
a—1
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where o > 3. Letus set m = a%l, with which we arrive at T = a+1 (see, for

instance, Example 3.15 in [11]). With fi1 (s — D) = (14 557) A5 >
we see that

(a—1)2"

1
L(.Xk, y*) - L(-X*7 yk) =0 <k_2>

holds.

Finally, we have #; := % in the Attouch-Cabot rule for every k > [a] + 1. We
can thus obtain the same convergence rate as above by a similar analysis.

Consider now the case f(x) = —(x, b) withb € X fixed. Then problem (1.1) canbe
reformulated as — miny ey max,cx —L(x, y) = g(y) — (x, A*y — b) and is therefore

equivalent to the following linear equality constrained optimization problem:

min g(y),
yey &

s.t. A*y = b. (3.41)

where g is a proper, convex and lower semicontinuous function. Recently, He et al.
[23] obtained a convergence rate of O (1 /kz) for the primal-dual gap, feasibility

measure and the objective function value for this type of nonsmooth case. In our case,
by Vf = —b we can choose Ly = y and o = 1 to satisfy (3.14) and obtain the
following simplified Algorithm 2 with y = 1 that also achieves a convergence rate of

O (1/k?) for the three general choices of # discussed above.

Algorithm 2 Choose 0 < m < 1 and {ft};>1 as a nondecreasing sequence such that r; >
1 and t,%H — mtgy] — t,? < 0, Vk > 1. choose x9 = x1 and y9 = y;. For every k > 1,
set

& =t Axy — (lk - 1) AXp—1 + tg41 Ab,
(e =1
lk+1

Yk =Yk t+ Ok — Yk—1)s

2

; 1 o2 et
) = arg min )+ lly = yel™+ —
Vi+1 e 8O+ S 1y = 2

T R A L
A%y Yk Ers¥) (s
k41

1
(e = Xg—1) — (A ypp1 — b) — (g1 — DA 1 — Yi)-

”Z+1 = Vi1 + k41 = DOk41 = Y-
I —
le+1

X1 =X+

Note that by choosing 7 = 1 + g%% in Algorithm 2 we arrive at an algorithm
similar but different to Algorithm 1 in [23]. Next, we will show fast convergence of
the feasibility measure and the objective function value when Algorithm 2 is used to
solve problem (3.41).

Theorem 3.2 Let {(xi, yr)}ik>0 be the sequence generated by Algorithm 2 and let
(x*, y*) € S. Then, for every k > 1, we have

t2||A*y; — b|| +2C
t2 ’
i

[A*yr —b| < (3.42)
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oﬂAﬁn—bn+2cwﬁn+ E(1)

. (343)
1 tk1 (k1 — 1)

lg() — eI <

where C := 1} | A*y1 —b||+supg= 1tes1 o1 —xi0) | 121 (1 —x0) [ 4+-supg= [lxkll+
lIxoll-

Proof From the last line of Algorithm 2, we obtain

tk — 1
Xkl — Xk — (xx — xx—1) = —tip1(A%yk1 — b) +
Tk+1
(tke1 — D(A%yx — D). (3.44)

Reformulating (3.44) yields

— b1 1 — Xi) + te(xe — xk—1) — Ok — Xp—1) = S1 — (1 — ag)dk, (3.45)

2

where §; = tk2(A*yk —b)anda; :=1— t"“t# By # > 1 and tl?—H — try1 <
k

t13+1 —migp) < t,? , we have 0 < g; < 1, for every k > 1. By telescoping (3.45), we

arrive at

= |81 — tg1 Cekg1 — xx) + 11(x1 — x0) — (3 — x0) |

k
Sk+1+ Zai&'
i=1

=C,

where the last inequality follows from the boundedness of x; and 41 (xg+1 — Xx). By
Lemma A. 3, for every k > 1, we have

ilA*y1 — bl +2C

A%y — b| < 5
U

)

which yields (3.42). Finally, by (3.40) and |g(yx) — ¢(y™)| =< |[L(xx, y*) —

Lx*, yi)ll + Ix*I|(A*yx — D)||, we arrive at (3.43), which completes the proof.
O

We can now consider some special cases of Algorithm 2. With Nesterov’s rule [33],
the Chambolle-Dossal rule [16], or the Attouch-Cabot rule [1] for the sequence {# },>1
we obtain a convergence rate of O (1 / k2) for the primal-dual gap, the feasibility
measure and the objective function value. This is an improvement to the convergence
rate o (1/k) derived in [12]. However, note that their o (1/k) convergence rate for
lyk — yk—1] is better than our convergence rate of O (1/k).
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4 A fast primal-dual algorithm based on explicit discretization

In this section, we assume that both f and g are continuously differentiable convex
functions and V f Vg are L y-, Lg-Lipschitz continuous, respectively. When o > 3
and ;=5 <60 < 5, we obtain the same convergence properties of the dynamical system
(1. 5) 1n a way similar to the proof of Theorem 2.1. In what follows, we will investigate
a numerical algorithm that is derived directly from an explicit discretization of the
dynamical system (1.5).

4.1 Afast algorithm and its convergence rate of the primal-dual gap

Fast gradient algorithms originating from various second order dynamical systems in
the spirit of Nesterov’s accelerated gradient method have been proposed in [3, 11,
35]. In our approach we will use the time step oy defined in (3.2) for the variable x.
Suppose p > 0. For y, we then take the time step

—1
k= p (1 + aT) forevery k > 1. 4.1

We have y(,/prk) ~ yiy1, v(/ork) = veg1 and oY (/prk) ~ U]):_H. By consid-
ering the same construction of a smooth function as in (3.11) for f and using a
similar approach for g, we obtain the following explicit discretization of the smooth
scheme (3.1):

Xkp1 =2 — oV f(zx) — vk+1,

Zk =x;+ m(xk — Xj— 1)

Mk+1 = YXk+1 + (Gl — 1)(Xk+1 — Xk), 42)
Vi1 = Ak — pvg(kk) + AukH,

)»k =+ L — i 1)

Vi1 = YYiet + e — Dk — 0.

where A can be obtained through a discussion analogous to that for z;. By the relations
given in (4.2), we get

A = (1 +y — DAy — (1 — D) A%y
= (i1 +y — DA O — pVgMk)) — (kg1 — 1) A%y
0
+; (k1 +y — 1D A*AMZH
fr1 — 1

- P
=&+ = (1 +y — D?A%A <Xk+1 -
4 1ty —1

xk> , 4.3)
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where & = (i1 +y — 1) A* (A — pVg(Ar)) — (trye1 — 1) A*yi. Substituting (4.3)
into the first line of (4.2), we arrive at

1 1.
0= —(q1 —2x) + Vflzr) + =&
o Y

14 2 % e — 1
+— tr1+y — D AA<Xk 1——Xk).
y2 ot Ty -1

Now we are in a position to present our fast primal-dual algorithm (for short, FPDA3)
for the smooth case:
Algorithm 3 Choose y, o, p, m > 0 such that

0 <max{m,oLy, pLe} <y < 1. “4.4)
Choose {tx}x>1 as a nondecreasing sequence with
n>land i}, —mtp — 1} <0, Vk > 1. (4.5)

Choose xg = x1 and yp = yj. For every k > 1, set

tk — 1
Tk =Xk + (Xk — Xk—1),
Tk+1
tr— 1
Ak =Yk + Ok — Ye—=1)»
Tk+1

&= (k1 +y — D A" e — pVg(A)) — (tk1 — 1) A%y,
_ P
Serr = 3 Gk 7 = 1)?,

By = fey1 — 1 Xk
1ty —1
Sk+1

[ _
Xp1 1= arg min {gnx = al? + = IAG = ZOI + (V f (@), )

1 -
+—(%'k,x>} ,
14
up g = yXig1 + (G — D Oogr — x0),

P
Vi+1 = A — pVg(Ak) + ;Au}:ﬂ-

Compared to Algorithm 1 which has been designed for the nonsmooth case, the sub-
problem in Algorithm 3 does not rely on the structure of f or g. Moreover, although
a choice of y = 1 provides for a simplified version of Algorithm 3 without affecting
the fast convergence rate, we will see that the condition y < 1 is indispensable for
showing weak convergence of the iterates (xg, yx) to a primal-dual optimal solution.
This phenomenon can also be found in corresponding continuous and discrete schemes
for unconstrained optimization problems. Fast convergence can be shown for o > 3,

@ Springer



176 Ke-wei. Ding et al.

while the weak convergence of the trajectory or the sequence of iterate holds only for
o > 3. By recalling the definition of y, it is obvious that ¥ < 1 holds only for o > 3.

For every (x*, y*) € S and every k > 1, we introduce the following energy
function:

E(k) = tey1 (e — 1) (L, y) — L™, yi0) + E1(k) + E(k), (4.6)

where
1 y(—y) 1
o % 2 2 o % 2
k) = E”Mk —yx*IT+ T”xk —x*||” and & (k) = %Hvk — ¥y
y(I—vy)
S vl M
0

It is obvious that £(k) > 0 for every (x*, y*) € S and every k > 1.

Theorem 4.1 Let {(xk, yk)}k>0 be the sequence generated by Algorithm 3 and
(x*, y*) € S. Then, for every k > 1, the sequence {E(k)};> is nonincreasing and we
have the following statements:

(r —m) Y (LG, y*) = L(x*, y)) < +00,

k>1
> teri((r = LyoYtigr + (1 = y)Lyo)llxerr —
k>1
<400, (1=y) Y (41 — Dlixisr — x> < +o,
k>1
> tert((r = Lgp)test + (= y)Lgp) Iyt — il
k>1
<400, (1 =) Y (41 — Dllyess — well* < 400,
k>1
YtV £ @) = V)P < oo,
k>1
Dttt = DIV f (@) = VF)|* < 4o,
k>1
D t41llVEg0w) — Ve(r)I* < +ov,
k>1
Dttt = DVE0w) — Vel
k>1
< +00. 4.7)

Proof In a way similar to the proof of (3.24), we can show that

&k +1) — &)
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< Y1 (LG, ykg1) = LG, 99) + e (epr — D) (LG, yrg1) — L™, y)

Tk+1 (1—-y)
- A (0l = vy*) gy —vx™) = tetr — D) vkt — vill?
Y+l «
Vg(hy)—V
2L, Ve () — Ve (yH)|I?
Tk+1

——((V Leo)tir1 + (L= y)Lgp)lyis1 — Aell?

1 (e — 1)

Ve(hg) — V 2
2L, Vg (Ai) gyl

holds. Combining this with (3.24), we arrive at

Ek+1) —Ek)

= (trg2(tig2 — D) = k1 (g1 — D) (LOkg1. ¥ = LG, yi1)) + E1k+ 1) — E1 (k)
i1 (k1 — D ((LOrg1, ¥5) = L, y)) = (LGEF, yiey1) = L, y))
+&k +1) — & (k)

IA

(o = 1 = tee2 + (0 = i) (LGsr, v = L6, yiyn)

1 _
ek 2 (tke1 — 1) k1 — xl?
”‘“ L = Lyt + (1= Y)Lg0) Iaiert = 2l = y "“ 17 o= Ve
_tk+1(fk+1 - _ 2
L D 1w ro — v el
a-y) J/ k+1

(k1 — 1) kg1 — el — ||Vg<xk> ve(y*)|?

1
—ﬂ(w Lgp)tgr1 + (1 — y)Lgp)nka — Ml
1 1
—"*‘(%nvwk) — Vgl (4.8)
8

By the assumptions (4.4), (4.5), and inequality (3.35), all the coefficients in the right-
hand side of (4.8) are nonpositive and so £(k+ 1) — £(k) < 0. We complete the proof
of (4.7) via Lemma A. 4. O

Remark 4.1 Compared to the energy function in [11], which contains an auxiliary
term || xx4+1 — Xk 12, our energy function £ (k) is exactly the discretization of the con-
tinuous energy function (2.1). In addition, we do not use any additional update in the
discretization process as in [11], where v,’(’ 41 is replaced by

{’IZH = v,’;ﬂ 4+ (I — ¥)(Yk+1 — Yr)- Only in the nonsmooth case we replaced
Vk+1 DY U1 = Vg1 — kj‘_a;il(ka — vg) to obtain an easily implementable iterative
scheme.
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However, we can indeed replace v, | with 5, := v/, ; + (1 — ) (k41 — %) in
the first line of explicit discretization scheme (4.2) and then introduce the following
energy function to analyze the behaviour of the thus modified algorithm:

1 1
€ =t +y = D (L0, ) = LOE 30) + 5, = a2 + 5”1),? —yy*I?
1-— 1-—
yd —vy) P yd—vy)

-y -1
" llxk lyk = y*I? + —————

_ 2
e P 2 lye — ye—11I7,

for every (x*, y*) € S and every k > 1. By an analysis similar to Theorem 4.1 and
Proposition 3.9 in [11], we then obtain that the sequence {E,;} > is nonincreasing
and we have the following statements: -

(r —=m) Yt (LG, y*) — L(x*, ) < 400,

k>1
Yt (1 (v = Lpo) + (A= y)Lso) Ixrn — zl)?
k>1
<400, (1= 1) > (tes1 — Dllyes1 — wll* < +oo.
k>1
D it (e (v = Lgp) + (1= )Lgp) llyir — Aell?
k>1
<400, (1 =) > (tes1 — Dlixas1 — xll* < 4o,
k>1
Y il Vf @) = VOO
k>1
<400, Y tesi (i1 — DIV (@0) = V. 0)lIP < oo,
k>1
(v = pLe(1 =) Y tira V() — Ve (3™
k>1
< 400, Ztk+1(tk+1 — DIIVg) — Vg1 < +o00.
k>1

Since {€(k)};>1 is nonincreasing for every k > 1, we again arrive at L (xg, y*) —
L(x*, yp) < lk“:(#) We notice that the classical three schemes for #, i. e. Nes-
terov’s rule [331r the Chambolle-Dossal rule [16], and the Attouch-Cabot rule [1] (with
the additional requirement k > [«] + 1) all still satisfy the conditions (4.5) in Algo-
rithm 3. As such, a convergence rate of O (1 /kz) for the primal-dual gap follows in

the same way as before.
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4.2 Convergence of the iterates

In this section, we will prove that the sequence generated by Algorithm 3 weakly
converges to a primal-dual optimal solution of the bilinearly coupled saddle point
problem (1.1) for the smooth case. We start by providing some useful estimates.

Proposition 4.1 Let {(xk, yk)}x>0 be the sequence generated by Algorithm 3 and let
(x*,y*) € S. Assume that 0 < m < y < 1 holds. Then we have the following
statements:

S ] A (e — )| < +oo, (4.9)
k>1
3 st — D[ A* Gieyr — 0| < +o0, (4.10)
k>1
3t | A (o — x*)|)? < oo, @.11)
k>1
Ztk+1(tk+1 — D A (xxg1 — x> < +oo. (4.12)
k>1

Moreover, there exists an M > 0 such that

M M
e YR T
Proof From the first line of (4.2), we have
* l Y ¥ _l _ _ AKX
A Vg1 — Y ) = =@k — xk41) — Vf(zk) — ATy
y o
1 *k
= — (k= x4 — (Vf(z) — V).

By Theorem 4.1 and the fact that #; > O for every k > 1, it follows that

1
D kg || A* (;U}:H - y*)

k>1

+2 ) iqallV f(zx) = V()P < Fo0.
k>1

2

2 2
=3 > tesillz — x|l
k=1

According to the last line of (4.2) and (3.17), for every k > 1 we have
1 tra1 — 1
A* (_vl]c/+l - y*) = A" <yk+1 e (e — W) — y*>
14 14
tra1 — 1 tra1 — 1
= (1 + +T> A* (vkg1 — y*) — +TA* (e — 7).

@ Springer



180 Ke-wei. Ding et al.

which yields

w1 Y * 2 fy1 — 1 * w2 k1 —1 * *) (|2
AT S )| = (0T ) AT O =) = AT e =)

14

fig1 — 1 ( fk+1—1> % 2
+ 1+ A - .
; ; 1A* (1 = )|

But by (4.5), we see that

Tkt (te1 — 1) f— 1 1
;—tk 1+ =—<t]?+l—l‘k+1—t,g+l‘k—ytk>
14 Y 14

IA

1
" ((m = D1 — (v — D)

m
(- - 1> e, 4.13)
%

where the last inequality follows from the fact that m < 1 and {#;} is nondecreasing.
Therefore,

IA

—1
e (14 522 147 G =)

fw—1 1 2
= (1 ) Gy e |4 (S - 57)
7 t —1 t — 1
n < SRS kD B (1 Ll )) 1A% (3 =)
14 Y
tew1 (trsy — 1 teer — 1
_ k+l( k+1 ) (1 + k+1 ) ||A* (yk+1 . yk)||2
YV Y
i — 1 * *\ |2 * 1 14 * :
<o (1 ) 147 Or = e |47 (S = 57)

tes1 (frg1 — 1)2
(1= 2w o=y P = B e G =

Let us set

t — 1

““Z”Q* NMW»—fwfza

—1)2
b= (1= 2 )4 (=) o+ S G -0 20,

2
A* l Y ¥ >0
yvk+1 y =

di = try1
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for every k > 1. By employing Lemma A. 4 and m < y, we obtain

2 2
oA (k=) < o0 Dt — D [ A* (ier — 3|7 < +oo,
k>1 k>1

and the sequence {tk (1 + %) |A* (vk — y*)HZ} is convergent and bounded. Sim-
ilarly, we obtain (4.11), (4.12) and the fact that 7 (1 + 1 - 1)) IA* Ger — x%)|12

is convergent. Since f;, < (1 + %(tk — 1)) for every k > 1, we arrive at

]
2 |A* (= y) | <« <1 = 1)) |A* (e — ") ||* < M2,

<« M

where M > 0. Thus, | A* (y¢ — y*)I| < 2. Similarly, we obtain [| A (x¢ — x*)|| < 2.

O
Next, we will show the weak convergence of the sequence {(xx, yx)}k>0.

Lemma 4.1 Let {(xk, yk)}k>0 be the sequence generated by Algorithm 3, let (x*, y*) €
S and suppose that 0 < m < y < 1 holds. Then, the limit limy_, ol||xk —x*|2 +

1 .
sl = 117 exists.

Proof Set a; = %ka —x*|? + %Ilyk — y*|| for all k > 0. By considering a
reformulation of £ (k) similar to (3.38) and the fact that £(k + 1) < £(k) for every
k > 1, we obtain

tip2(teg2 — D) (LGt v — LG, yig1)) + teprak41 — (1 — Dag
1 1 1
5 et = L)t = 1) (;nxm —xl® + Sl = )’k||2)
< tip1 (ka1 — D (L, y*) — L™, w0) + trag — (e — Dag—1

1 1 1
5t = T+ y) = 1) (;nxk — xp—1|? + ;uyk — Yk ||2> (4.14)

and thus

k42 (g2 — 1) 1 1
i1 (7* my (B3 = L i) £ 5 e = L) (Sl =l
1
+;”)’k+l - )’k”2)) + te1 (a1 — ag)

(fk+1(tk+1 —1) (
Tk

* * 1 1 2
<@ -0 L(xg, y*) — L&*, y) + 5t =T+ { —llxe = 21l

1 2
+;H)’k—yk71” + (i — 1) (ax — ag—1)

1 1 —1
" k+1(Tk+1 )(

o L(xg, y*) = L™, y)

@ Springer



182 Ke-wei. Ding et al.

TR Y 2+ I?
Lt — L et = x4 Livear — v
B k+1 14 po Ak+1 k 0 Yk+1 — Yk

< o (a0

* * 1 1 2
L(xg, y*) = L™, ) + 3 =1+l =21l

1
+;”}’k - Yk71”2)> + (i — 1) (ag — ag—1)
+(t+ 1) (LG, y*) — L™, wp)

1 1 1
+5 e = 1+y) <;ka+1 — x>+ et = ykuz) : (4.15)

where the last inequality follows from ;41 — 1 < #, which in turn holds due to Lemma
A. 1. We further define the sequences

k(1 — 1) (
173

1 1
Bk : L(xg, y*) — L(x*, yp)) + E(tk —14+y) (;ka — xe—1?

1
+;||yk — yk1||2> + (ak — ak—1),
di = (e + 1) (L, y*) — L5, y0)

1 1 , 1 s
+z 1 =1+ | =k — xll” + = lyk+1 — w7 ) = 0.
2 o 0

From these definitions, it is obvious that ax+1 < ax + Br+1. By (4.15) we arrive at
tk+1Br+1 < (tx — 1) Br + di. In addition, from Theorem 4.1, we note that ) ", | di <
+00if 0 < m < y < 1. Thus, by Lemma A. 5, we conclude that {a;} is con_vergent
which completes the proof. O

Theorem 4.2 Let {(xi, yr)}k>0 be the sequence generated by Algorithm 3 and let
(x*, ¥*) € S. Assume further that {ty}x>1 is chosen to satisfy (3.37) and 0 < m <
y < 1 holds. Then, we have

197G = 76 =0 (1VE) . 198010 = T8 =0 (1/VE).
Az, = Ax* = o (1/VE) . 1A% — A" = o (1/VE).

Consequently,
19 Lk vl = 0 (1/V) . 17, Lesk, w0l = 0 (1/VE)

Proof From the results of Theorem 4.1, we see that

lim 1[IV f(zk) — VN2 =0, lim 411 — DIV (k) — ViEoI? =0
k——+00 k— 00
holds. By (3.37), it follows that

Jim VKV fz0 = Ve =0, Tim VKV 0w = 9 F @0l =0,
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and therefore
Jim VRN @) = VO < tim VRIS @) = 9]

+k£rfoo VEIY f(xk) — V f ol =0,

which further gives ||V f(xx) — Vf(x*)|| = 0(1/\@). Similarly, |[Vg(yk) —
VeI = o(l/ﬁ) holds. By (3.37) and (4.9), we obtain [[A*(yx —
V| = o(l/ﬁ) which yields ||V, L (xg, yo)ll = 0(1/\/12). Similarly, we have
IVyLGr, y)ll =0 (1/\/12). This completes the proof. O

Theorem 4.3 Let {(xi, yr)}k>0 be the sequence generated by Algorithm 3 and let
(x*, ¥*) € S. Assume further that {ty}x>1 is chosen to satisfy (3.37) and that0 < m <
y < 1 holds. Then, the sequence {(xk, yk)}k>0 weakly converges to a primal-dual
optimal solution of the bilinearly coupled saddle point problem (1.1).

Proof Suppose (x, y) is an arbitrary weak sequential cluster point of the sequence
{(xk, Y&)}k=0. Thus, there exists a sequence {(xx,, Yk,)}n>0 such that (xi, , yx,) —
(x,y) asn — +o0o. By Theorem 4.2, we get

Vf(xk,) + A%y, = 0 and Vg(yk,) — Axk, — 0, as n — +o0.

Since the graph of the operator 77, in (1.3) is sequentially closed (see Proposition 20.38
from [7]), we conclude that

Vf(%) + A*5 = 0and Vg(5) — A% =0,

which means that (x,y) € S. From Lemma 4.1 we notice that the limit
limy—s 400 2 llxx — x*[1% + /1—)||yk — y*|1? exists for every (x*, y*) € S. With this,
we complete the proof via Opial’s Lemma as given in Lemma A. 2. O

Remark 4.2 Suppose we choose the Chambolle-Dossal rule or the Attouch-Cabot rule
for the sequence {fx}k>1 witha > 3, m = ﬁ <y <l,o < Ly—/ and p < ng
Then, by Theorem 4.3, the sequence {(xi, yr)}k>0 generated by Algorithm 3 converges
weakly to a primal-dual optimal solution of problem (1.1). If the sequence {t;}r>1 is
chosen to take the Nesterov rule with m = y = 1, although fast convergence rate of
the primal-dual gap still holds, we can not obtain the convergence of the sequence of

primal-dual iterates since the conditions in Theorem 4.3 require m < y < 1.

5 Numerical experiments

In this section we compare our proposed algorithms with other algorithms from the
literature on some examples. We illustrate that the theoretical convergence rates we
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obtained are closely matched by numerical results. In our first example, we consider
the convergence of the primal-dual gap and the term || (xk, yx) — (Xk—1, Yk—1)|l for
a nonsmooth bilinearly coupled saddle point problem. In a second example we con-
sider the convergence behavior of the primal-dual gap, the gradient and the term
[(xk, k) — (xk—1, yk—1)|| for a smooth bilinearly coupled saddle point problem. In
order to investigate the stability and efficiency of our algorithms, we test two groups
of problems with different dimensions and run our algorithms ten times for each
group. Then, we report the average numerical performances of the primal-dual gap,
the gradient and the term || (xg, yx) — (Xk—1, Yk—1)|| in the following examples.

5.1 Nonsmooth saddle-point problems

First, let us consider the following family of nonsmooth saddle point problems:

: 1 2 ATITP)
Z)ox — Ax,y) = ( SIvI2). 5.1
min max H19x —qll” + {Ax, y) = (pllylh + Syl (.1

where Q € R"", g € R", A € R™*" and u, x > 0. We note that several classical
problems admit this formulation, for examples Lasso models and regression problem
with elastic net regularizer.

Set © = 1 and k = 0.1. We generate Q, A and g by choosing each entry of these
matrices and vector independently from each other by drawing from the standard
Gaussian distribution. We solve the subproblem occuring in Algorithm 1 by the fast
iterative shrinkage-thresholding algorithm (FISTA, [8]) with the stopping condition

Iz — 2|l
max{|lz,_ I, 1} —

or the number of iterations exceeds 100. Here, the z; are the iterates generated by
FISTA, and we use § := 10710,

We compare the performance of Algorithm 1 (FPDA1) with the primal-dual algo-
rithm (PDA) [[14], Algorithm 1] and the accelerated primal-dual algorithm (APDA)
[[24], Algorithm 1 with Option 2] which fully utilizes the strong convexity of g(y). For
the parameters occuring in the various algorithms, we have configured them in such a
way that each group of parameters fulfills its respective convergence conditions, and
set them as follows:

e FPDAl: 0 = 104,60 = 10~!. We consider three different choices for o, namely
o =30, =50and o = 70.

e PDA:a =2x107%1=2x1073,6=1,

e APDA: o = 0.2/ A%, 8 = 4.

To provide an estimate for the value of the primal-dual gap, we approximate the
unknown solution (x*, y*) by

(X", 3% == (xk, i)
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Fig.1 Average performance of the primal-dual gap and the sequence of iterates for the nonsmooth test case

where k is the smallest index for which

| Cers i) — =1, Y= ll2 < €1

and

| L(xk, ye—1) — L(xk—1, yi)ll2 < €2

holds. Here we have used ¢; := 107! and ¢, := 10714,

Figure 1 illustrates the average convergence results of primal-dual gap and sequence
against the number of iterations. The results are very similar for the different problem
dimensions n = 1000, m = 500 and n = 2000, m = 1000 considered. As can
be seen in Fig 1, our Algorithm FPDAI1 exhibits superior performance compared to
the other algorithms, for all choices of the parameter «. In all cases, the number
of iterations needed for Algorithm FPDAL1 to achieve convergence is smaller than
any other algorithms. We also observe that the smaller the parameter « is, the better
Algorithm FPDA1 performs.

Next, we consider the non-strongly convex scenario for problem (5.1), where we
require only that both f and g are merely convex functions. For the function f, we
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Fig.2 Average performance of the primal-dual gap and the sequence of iterates for the non-strongly convex
test case

now consider a matrix Q of the form

_ (@10
o-(%'0).

where Q1 € R”~Dx=1) i5 generated by choosing each entry independently of the
others, with each entry drawn from the standard Gaussian distribution. For g, we set
k = 0. Then, both f and g are convex but not strongly convex. We compare the
performance of Algorithm 1 (FPDA1) with @ = 30, @« = 50 and @ = 70, against the
performance of the primal-dual algorithm PDA [[14], Algorithm 1] and the unified
primal-dual algorithm UPDA [[37], Algorithm 1]. Here we use the same parameters
for FPDA1 and PDA as in the first experiment. For UPDA, we set fg = 50, while
T is chosen as in Theorem 1 from [37]. Figure 2 illustrates the average convergence
results of primal-dual gap and sequence against the number of iterations. We notice
that Algorithm FPDA1 still exhibits superior numerical performance compared to the
other algorithms considered, for all choices of «.

One can also observe that Algorithm FPDA1 exhibits oscillations in the primal-
dual gap found, once numerical convergence has been established. This is due to using
(X*, y*) as an approximation for the actual optimal primal-dual solution (x*, y*) to
compute an approximation to the primal-dual gap which cannot be computed directly.
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Fig. 3 Average performance of the primal-dual gap, the gradient of the Lagrangian function, and the
sequence of iterates for the smooth test case

5.2 Smooth saddle point problems

Here we focus on the following family of smooth convex-concave saddle point
problem:

. 1 2 1 2
min max — — Ax,y) — =||Py — ,
xeRﬂyeRggzlle qalI” + (Ax, y) = SlIPy = pl

where Q € R, g € R", A € R™" as well as P € R p € R™. Note
that quadratic minimax games, linear regression and robust least squares problems

admit this formulation. Again, we generate O, A, P and g, p by choosing each entry
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of these matrices and vector independently from each other by drawing from the
standard Gaussian distribution.

We compare the performance of Algorithm 3 (FPDA3) with @ = 30, « = 50 and
a = 70, against the performance of the primal-dual algorithm (PDA) [[14], Algorithm
1] and the unified primal-dual algorithm (UPDA) [[37], Algorithm 1].

In [37], the authors introduced three choices for the parameter t occuring in their
algorithm, for the cases where the objective function is convex-concave, strongly
convex-concave and strongly convex-strongly concave, respectively. However, since
Q and P are randomly generated, we only know the convexity of f and g but can
not guarantee their strong convexity. For this reason, we are still using the iteration
rule of 7 given in Theorem 1 in [37], which does not rely on the strong convexity
of f and g. Here we take the same setting of parameters for FPDA3 and PDA as in
the first experiment and additionally set p = 10~* in FPDA3. For UPDA, we use the
parameter By = 0.1, while 7 is chosen as described above.

Figure 3 shows the primal-dual gap, the norm of the gradient of the Lagrangian
function, and the sequence of iterates against the number of iterations. As it can be seen,
the results are similar for different problem dimensions. Moreover, Algorithm FPDA3
exhibits superior numerical performance compared to the other algorithms considered.
We note that the norm of the gradient, ||(V L (xg, yk), VyL(xg, yi))Il, converges faster
to zero when Algorithm FPDA3 is used than when any other algorithm is deployed.
Also, the smaller « is, the better Algorithm FPDA3 performs.

6 Conclusion and perspectives

Our novel inertial primal-dual dynamics (1.5) allow us to construct two first-order
algorithms for bilinearly coupled saddle point problems. These algorithms not only
maintain the fast convergence rate for primal-dual values as found in several classical
accelerated algorithms, but also possess additional exciting properties, such as the
convergence of gradients towards zero, as well as global convergence of the iterates to
optimal saddle points. Recalling the main ideas of the proof of (2.6), we obtain the con-
vergence rate O (1 / t2) of the primal-dual gap for (1.5) without assuming continuous
differentiability of all functions. In light of this, it would be interesting to design a new
discretization of (1.5) with the objective of achieving a convergence rate of O (1 /kz)
when both f and g are two convex lower semicontinuous and proper functions. Addi-
tionally, it would be worth considering (1.5) in a more general context, which includes
situations involving general viscous damping, Hessian-driven damping, and temporal
rescaling. These topics are subject to further research.

Appendix

LemmaA.1 Let 0 < m < 1 and {tx}x>1 a nondecreasing sequence fulfilling

t > landtf, | —mtyp —1f <0, Yk > 1.
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Then for every k > 1 we have that ty+1 — ty < m < 1 holds.

Proof Let k > 1. From the assumption, we get

2
m+\/m2+4tk m+\/(m+2tk)2—4mtk

let1 = = <m+t,
k+ 5 5 k

andsotx41 —fr <m < 1. O

Opial’s Lemma which is used for the proof of the weak convergence of the trajectory
of dynamical system to a primal-dual solution of the original optimization problem
has received much popularity recently. The discrete version of the lemma stated below
can be found in Lemma 2.47 of [7].

LemmaA.2 Let X be a Hilbert space, S be a nonempty subset of X and {xi}i>1 be
a sequence in X. Assume that

(i) for every x* € S, the limit limg_, 1 ||xx — x™| exists;

(ii) every weak sequential cluster point of the trajectory {xi}x>1 as k — 400
belongs to S.

Then {xi}x>1 converges weakly to a point in S as k — +o0.

LemmaA.3 Let {gili>k, be a sequence in the Hilbert space X and {ay}i=k, be a
sequence in [0, 1), where ko > 1. For every k > ko, assume

k
8k+1 + Z ajgi|l <C,
J=ko
then,
sup [Igkll < | x| +2C.
k>ko
Proof The proof is similar to the one of Lemma 4 in [22]. O

The following lemma can be found as Lemma 1.1 in [11]:

LemmaA.4 Let {ax}, {bx} and {di} be sequences of real numbers for every k > 1.
Assume that {ay} is bounded from below, and {by} and {d}} are nonnegative such that
Zkzl dy < +00. Suppoose further that for every k > 1 it holds

ax+1 < a — by + dj.
Then the following statements are true
(1) the sequence {by} is summable, namely Zkzl by < 400,

(2) the sequence {ay} is convergent.
The following lemma can be founded as Lemma 4.1 of [11]:
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LemmaA.5 Let {6k}i>1, {ak}k>1 and {ti}k>1 be real sequences such that {ay}i>1 is
bounded from below and {t;}x>1 is nondecreasing and bounded from below by 1. Let
{dr}k>1 be a nonnegative sequence such that for every k > 1 we have

aky1 < ar + 6,
e 1Ok1 < (e — 16k + di.

If Zk>1 dr < 400, then the sequence {ay}x>1 is convergent.
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